Selected Publications
Learning beyond sensations: how dreams organize neuronal representations. (pdf, DOI, arXiv)
N. Deperrois, M.A. Petrovici, W. Senn, J. Jordan
Neuroscience & Biobehavioral Reviews 2024
NMDA-driven dendritic modulation enables multitask representation learning in hierarchical sensory processing pathways. (pdf, DOI, bioRxiv)
W.A.M. Wybo, M.C Tsai, V.A.K. Tran, B. Illing, J. Jordan, A. Morrison, W. Senn
PNAS 2023
A Neuronal Least-action Principle For Real-time Learning In Cortical Circuits. (pdf, DOI, bioRxiv)
W. Senn, D. Dold, A.F. Kungl, B. Ellenberger, J. Jordan, Y. Bengio, J. Sacramento and M.A. Petrovici
eLIFE 2023
Learning cortical representations through perturbed and adversarial dreaming. (pdf, DOI, arXiv)
N. Deperrois, M.A. Petrovici, W. Senn, and J. Jordan
eLIFE 2022
Natural-gradient learning for spiking neurons. (pdf, DOI, arXiv)
E. Kreutzer, W. Senn, M.A. Petrovici
eLIFE 2022
Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses. (pdf, DOI)
W.A.M. Wybo, J. Jordan, B. Ellenberger, U. Marti Mengual, T. Nevian, W. Senn
eLIFE 10:e60936, 2021
Evolving interpretable plasticity for spiking networks. (pdf, DOI, arXiv)
J. Jordan, M. Schmidt, W. Senn, M.A. Petrovici
eLIFE 2021
Fast and energy-efficient neuromorphic deep learning with first-spike times. (pdf, DOI, arXiv)
J. Göltz, L. Kriener, A. Baumbach, S. Billaudelle, O. Breitwieser, B. Cramer, D. Dold, A.F. Kungl, W. Senn, J. Schemmel, K. Meier, M.A. Petrovici
Nature Machine Intelligence 823–835, 2021
Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons. (pdf, arXiv)
P. Haider, B. Ellenberger, L. Kriener, J. Jordan, W. Senn, M.A. Petrovici
Advances in Neural Information Processing Systems (NeurIPS) 2021
Ghost Units Yield Biologically Plausible Backprop in Deep Neural Networks. (pdf, DOI)
T. Mesnard, G. Vignoud, J. Sacramento, W. Senn, Y. Bengio
arXiv 2019
Lagrangian neurodynamics for real-time error-backpropagation across cortical areas. (pdf)
D. Dold, A.F. Kungl, J. Sacramento, M.A. Petrovici, K. Schindler, J. Binas, Y. Bengio, W. Senn
2019
Dendritic cortical microcircuits approximate the backpropagation algorithm. (pdf, arXiv)
J. Sacramento, R.P. Costa, Y. Bengio, W. Senn
Advances in Neural Information Processing Systems (NeurIPS) 2018
Prospective Coding by Spiking Neurons. (pdf, DOI)
J. Brea, A. Gaál, R. Urbanczik †, W. Senn
PLoS Comput Biol 12(6): e100500, 2016
Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites. (pdf, DOI)
M. Schiess, R. Urbanczik, W. Senn
PLoS Comput Biol 12(2): e1004638, 2016
Learning by the dendritic prediction of somatic spiking. (pdf, DOI, Supplement)
R. Urbanczik, W. Senn
Neuron 81(3):521–528, 2014
Spatio-Temporal Credit Assignment in Neuronal Population Learning. (pdf, DOI, Supplement)
J. Friedrich, R. Urbanczik, W. Senn
PLoS Comput Biol 7:1-13, 2011
Spike-Time-Dependent Plasticity and Heterosynaptic Competition Organize Networks to Produce Long Scale-Free Sequences of Neural Activity. (pdf, DOI)
I.R. Fiete, W. Senn, C.Z.H. Wang, R.H.R. Hahnloser
Neuron 65:563-576, 2010
Reinforcement learning in populations of spiking neurons. (DOI, Supplement)
R. Urbanczik, W. Senn
Nat. Neurosci. 12:250-252, 2009
Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. (pdf, DOI, Supplement)
M. Murayama, E. Pérez-Garci, T. Nevian, T. Bock, W. Senn, M.E. Larkum
Nature 457:1137-1141, 2009