Selected Publications
Learning beyond sensations: how dreams organize neuronal representations. (pdf , DOI , arXiv )
N. Deperrois, M.A. Petrovici, W. Senn, J. Jordan
Neuroscience & Biobehavioral Reviews 2023
NMDA-driven dendritic modulation enables multitask representation learning in hierarchical sensory processing pathways. (pdf , DOI , bioRxiv )
W.A.M. Wybo, M.C Tsai, V.A.K. Tran, B. Illing, J. Jordan, A. Morrison, W. Senn
PNAS 2023
A Neuronal Least-action Principle For Real-time Learning In Cortical Circuits. (pdf , DOI , bioRxiv )
W. Senn, Dold D., Kungl A.F., Ellenberger B, Jordan J., Bengio Y., Sacramento J. and Petrovici M.A.
eLIFE 2024
Learning cortical representations through perturbed and adversarial dreaming. (pdf , DOI , arXiv )
N. Deperrois, M.A. Petrovici, W. Senn, and J. Jordan
eLIFE 2022
Natural-gradient learning for spiking neurons. (pdf , DOI , arXiv )
E. Kreutzer, W. Senn, M.A. Petrovici
eLIFE 2022
Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses. (pdf , DOI )
W.A.M. Wybo, J. Jordan, B. Ellenberger, U. Marti Mengual, T. Nevian, W. Senn
eLIFE 10:e60936, 2021
Evolving interpretable plasticity for spiking networks. (pdf , DOI , arXiv )
J. Jordan, M. Schmidt, W. Senn, M.A. Petrovici
eLIFE 2021
Fast and energy-efficient neuromorphic deep learning with first-spike times. (pdf , DOI , arXiv )
J. Göltz, L. Kriener, A. Baumbach, S. Billaudelle, O. Breitwieser, B. Cramer, D. Dold, A.F. Kungl, W. Senn, J. Schemmel, K. Meier, M.A. Petrovici
Nature Machine Intelligence 823–835, 2021
Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons. (pdf , arXiv )
P. Haider, B. Ellenberger, L. Kriener, J. Jordan, W. Senn, M.A. Petrovici
Advances in Neural Information Processing Systems (NeurIPS) 2021
Ghost Units Yield Biologically Plausible Backprop in Deep Neural Networks. (pdf , DOI )
T. Mesnard, G. Vignoud, J. Sacramento, W. Senn, Y. Bengio
arXiv 2019
Lagrangian neurodynamics for real-time error-backpropagation across cortical areas. (pdf )
D. Dold, A.F. Kungl, J. Sacramento, M.A. Petrovici, K. Schindler, J. Binas, Y. Bengio, W. Senn
2019
Dendritic cortical microcircuits approximate the backpropagation algorithm. (pdf , arXiv )
J. Sacramento, R.P. Costa, Y. Bengio, W. Senn
Advances in Neural Information Processing Systems (NeurIPS) 2018
Prospective Coding by Spiking Neurons. (pdf , DOI )
J. Brea, A. Gaál, R. Urbanczik †, W. Senn
PLoS Comput Biol 12(6): e100500, 2016
Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites. (pdf , DOI )
M. Schiess, R. Urbanczik, W. Senn
PLoS Comput Biol 12(2): e1004638, 2016
Learning by the dendritic prediction of somatic spiking. (pdf , DOI , Supplement )
R. Urbanczik, W. Senn
Neuron 81(3):521–528, 2014
Spatio-Temporal Credit Assignment in Neuronal Population Learning. (pdf , DOI , Supplement )
J. Friedrich, R. Urbanczik, W. Senn
PLoS Comput Biol 7:1-13, 2011
Spike-Time-Dependent Plasticity and Heterosynaptic Competition Organize Networks to Produce Long Scale-Free Sequences of Neural Activity. (pdf , DOI )
I.R. Fiete, W. Senn, C.Z.H. Wang, R.H.R. Hahnloser
Neuron 65:563-576, 2010
Reinforcement learning in populations of spiking neurons. (DOI , Supplement )
R. Urbanczik, W. Senn
Nat. Neurosci. 12:250-252, 2009
Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. (pdf , DOI , Supplement )
M. Murayama, E. Pérez-Garci, T. Nevian, T. Bock, W. Senn, M.E. Larkum
Nature 457:1137-1141, 2009