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A B S T R A C T   

Semantic representations in higher sensory cortices form the basis for robust, yet flexible behavior. These rep
resentations are acquired over the course of development in an unsupervised fashion and continuously main
tained over an organism’s lifespan. Predictive processing theories propose that these representations emerge 
from predicting or reconstructing sensory inputs. However, brains are known to generate virtual experiences, 
such as during imagination and dreaming, that go beyond previously experienced inputs. Here, we suggest that 
virtual experiences may be just as relevant as actual sensory inputs in shaping cortical representations. In 
particular, we discuss two complementary learning principles that organize representations through the gener
ation of virtual experiences. First, “adversarial dreaming” proposes that creative dreams support a cortical 
implementation of adversarial learning in which feedback and feedforward pathways engage in a productive 
game of trying to fool each other. Second, “contrastive dreaming” proposes that the invariance of neuronal 
representations to irrelevant factors of variation is acquired by trying to map similar virtual experiences together 
via a contrastive learning process. These principles are compatible with known cortical structure and dynamics 
and the phenomenology of sleep thus providing promising directions to explain cortical learning beyond the 
classical predictive processing paradigm.   

1. Introduction 

Throughout their life, animals enjoy a wide variety of unique sensory 
experiences. However, seemingly unaffected by this diversity, animals 
exhibit a remarkable degree of consistency in their behaviour and can, 
often effortlessly, leverage prior knowledge to generalize to novel cir
cumstances. For example, they easily recognize which category an ob
ject belongs to (Biederman, 1987), within a fraction of a second (Thorpe 
et al., 1996), and despite the various conditions in which this object can 
be observed (DiCarlo et al., 2012). How is this possible? 

Insights from neuroscience and machine learning suggest that this 
cognitive feat may be grounded in neuronal activity patterns in higher 
cortical areas that reflect the semantic content of sensory inputs. Thus, 
these “semantic neuronal representations” extract relevant factors of 
variation such as object categories from stimuli while remaining 
invariant to irrelevant factors such as pose, lighting, or partial occlusions 
(Barlow, 2001; DiCarlo et al., 2012). Strikingly, such an organized and 
invariant code is observed in recordings from the inferior temporal (IT) 
cortex, the highest area of the ventral visual stream (Fig. 1a; 

(Grill-Spector et al., 2001; Hung et al., 2005). 
Such structure in neuronal activities arises over the course of 

development (Fig. 1b; (Rodman, 1994). Yet, the mechanisms underlying 
this emergence remain unclear. Computational models of the sensory 
cortex attempt to explain how, from sensory evoked activities (activities 
from lower cortical areas, e.g., in V1 cortex), neurons extract features of 
increasing complexity along the cortical hierarchy (Hubel and Wiesel, 
1965), leading to high-level semantic representations (Richards et al., 
2019. Supervised models of sensory processing suggest that cortical 
feedforward pathways learn to map sensory inputs to specific object 
categories that are externally provided, for example by a teacher. 
However, animals seem to learn with little to no supervision and do not 
require millions of category labels during development (Bergelson and 
Swingley, 2012; Bergelson and Aslin, 2017; Slone and Johnson, 2015; 
Huber et al., 2021). 

To acquire semantic latent representations, cortical networks may 
thus leverage learning principles that do not rely on labelled data, 
similar to unsupervised machine learning models (Liu et al., 2021; 
Zhuang et al., 2021. For example, cortical feedback pathways could 
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implicitly learn the structure of the sensorium by generating activities in 
lower sensory cortex that are similar to sensory-evoked responses 
(generative modeling, Clark, 2013. Therefore, we first discuss the pre
dictive processing framework (Fig. 1c, Rao and Ballard, 1999), that 
posits that the brain shapes its representations by trying to predict 
evoked activities in early sensory cortex. We then present “adversarial 
dreaming” (Fig. 1d; Deperrois et al., 2022) where representations are 
improved through the generation of creative dreams during sleep and 
their discrimination from actual experiences. 

Another possibility is to directly shape feedforward pathways to 
construct relevant high-level representations, by using simple, alterna
tive labels that can directly be inferred from data (self-supervised 
learning, (Ericsson et al., 2022). Accordingly, we introduce “contrastive 
dreaming” (Fig. 1e), during which neuronal activities in higher cortical 
areas are pulled together for semantically similar inputs, and pushed 
apart for dissimilar stimuli. 

For each framework, we start by presenting the underlying compu
tational principles and then discuss suggested bio-plausible imple
mentations. Finally, we discuss experimental approaches to (in)validate 
the presented hypotheses. 

2. Learning by predicting evoked low-level cortical activities 

2.1. Principles of predictive processing 

In perception, an efficient way to represent relevant aspects of the 
sensorium is to try to “explain away” evoked activities in lower sensory 
cortex through a cascade of predictions performed by cortical feedback 
pathways (Helmholtz, 1878; Clark, 2013). These predictions reflect 
what the brain already knows about the sensorium. Informally, one may 
consider them emerging from a set of priors acquired through experi
ence. By trying to match the sensory evoked signal, the brain thus seeks 
for latent causes that would best characterize the stimulus, such as its 
semantic category. Through these processes, brains can learn organized 
semantic representations (Friston, 2010; Clark, 2013). 

These ideas have been formalized by computational frameworks 
such as predictive coding (Fig. 1c; Rao and Ballard, 1999), which de
scribes how neuronal dynamics and synaptic plasticity are both involved 
in learning generative models of the environment. First, on short time 
scales, neuronal activities change to better predict the evoked activity. 
Second, on longer time scales, synaptic plasticity aims to further 
improve these predictions (Box 1). Over time, minimization of predic
tion errors through these dynamics implicitly organizes latent repre
sentations (Lotter et al., 2017.) In computational models, the prediction 

Fig. 1. Semantic representations in higher cortical areas emerge over the course of development.(a) Sketch of time-averaged activity of neurons in IT in response to a 
visual stimulus. Visual stimuli activate cells in the retina and these signals are processed along the hierarchy of the visual cortex, here the ventral visual stream. (b) 
Typical neuronal responses to the presentation of different objects at early and late stages of development. Over the course of development, activity patterns align 
with the semantic category of the input (here, different patterns encode “cat” and “car” stimuli) but are invariant to semantically preserving transformations (e.g., 
cars from different viewing angles). (c) Common neuroscientific theories hypothesize that brains learn representations by trying to predict their sensorium (predictive 
processing, Rao and Ballard, 1999. (d) During offline states, e.g., sleep, brains continue to generate virtual experiences that may further contribute to learning 
semantic representations, for example by combining several memories into new, realistic experiences. (e) In addition, regenerating previous experiences with natural 
semantically preserving variations can provide additional signals for learning. 
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error is usually a point-wise measure at an appropriately coarse graining 
of the stimulus. For example, for images, the prediction error is typically 
measured at a pixel level. In the brain, it is thought to be computed by 
subclasses of layer 2/3 pyramidal neurons (Mumford, 1992; Bastos 
et al., 2012; Shipp, 2016) that compare activities between predictive 
neurons and neurons activated by sensory inputs (Keller and 
Mrsic-Flogel, 2018). 

Due to the hierarchical nature of the predictive coding framework, 
neuronal populations develop selectivity for low-level details in early 
areas and for high-level properties (objects, shapes, scenes) in later 
areas, compatible with experimentally measured neuronal responses 
and receptive fields (Rao and Ballard, 1999). Moreover, building models 
based on these principles leads to the emergence of latent representa
tions suitable for efficiently learning downstream tasks (Rumelhart 
et al., 1986; Kingma and Welling, 2013; Lotter et al., 2017; Millidge 
et al., 2021). Predictive processing principles thus suggest a computa
tional model compatible with cortical structure and activity for learning 
in brains (but see Koch and Poggio, 1999; Murray et al., 2004) from a 
simple goal: predicting sensory-evoked low-level cortical activities. 

2.2. Beyond the prediction of sensations 

As soon as we reduce external sensory inputs, for instance through 
unfocusing our eyes, meditation, or deep rest, we can become aware of 
virtual experiences continuously produced by our brain (Mildner and 
Tamir, 2019). These manifest in their strongest form as dreams, mostly 
occurring during the rapid-eye-movement (REM) phase of sleep (Nir and 
Tononi, 2010). While dreams may feel familiar, they often represent 
objects, scenes, situations that go beyond what we previously experi
enced (Fosse et al., 2003; Wamsley, 2014). Indeed, during REM dreams 
previous waking experiences are often not identically recalled but rather 
incorporated with other past memories into a new narrative (Fogel et al., 
2018; Northoff et al., 2023). 

The predictive processing framework has been previously suggested 
to also account for the phenomenology of virtual experiences during 
sleep (Hobson and Friston, 2012; Hobson et al., 2014). Accordingly, the 
same feedback pathways employed to generate predictions of sensory 
inputs during wakefulness, are “freed” from sensory inputs during sleep, 
allowing the generation of virtual experiences. This has been proposed 
to contribute to minimizing the generative model’s complexity, i.e., the 
degrees of freedom required to describe the sensorium, for example by 
pruning redundant synapses. Consequently, dreaming would facilitate 
the ability to generalize and understand the semantics of the external 
world. 

Here, we suggest that learning from virtual experiences has addi
tional roles besides minimizing complexity. As we will describe in the 
following, learning during offlines states can further improve the pre
dictive model by increasing its realism, can sharpen our ability to 
distinguish between internally generated and externally driven activ
ities, and robustify semantic neuronal representations against pertur
bations, such as occlusions of parts of the visual field. To this end we 
discuss two complementary approaches, “adversarial dreaming” and 
“contrastive dreaming”, which, as we will explain, are crucial for 
organizing neuronal representations. 

3. Learning representations by creating virtual experiences 

3.1. Principles of adversarial learning 

Cortical models that aim to also learn from virtual experiences, such 
as dreams, cannot rely exclusively on sensory prediction errors due to 
the absence of ground-truth evoked activities, but have to find alterna
tive sources of learning signals. For example, such models could learn to 
produce data that appears “similar” to previous stimuli without trying to 
exactly reproduce them. But how can we quantify this similarity to 
derive useful learning signals? One possibility is to expand the model 

with an additional module that learns to measure the similarly between 
generated data and actual stimuli. In this spirit, Generative Adversarial 
Networks (GANs, Goodfellow et al., 2014) introduce an architecture that 
consists of two networks: a generator producing virtual samples and a 
discriminator judging whether a sample is real or generated. These two 
networks are trained adversarially, with the discriminator learning to 
distinguish generated from real samples while the generator learns to 
fool the discriminator by improving the realism of the generated samples 
(Box 2). Through this adversarial game, the generator gradually learns 
to synthesize samples that are similar to the training data. This process 
can be illustrated by a student (generator) that tries to fake their parents’ 
handwriting, and the teacher (discriminator) that detects whether the 
writing is real or fake. After many attempts, the student learns how to 
fool their teacher by writing in a way that is hardly distinguishable from 
their parents’ handwriting. 

The goal of this process is to find a balanced optimum in which the 
generator produces a large variety of samples with sufficient similarity 
to real samples. For example, in the context of natural image generation, 
generated samples contain colors, shapes, and objects that are typically 
present in real images. However they can also be distorted or combined 
versions of these objects, as a consequence of adversarial learning, as 
even after convergence the generator keeps the freedom to generate 
creative samples (Brock et al., 2019). 

Furthermore, GANs are known to extract semantic latent represen
tations from data (Radford et al., 2015; Donahue et al., 2016; Donahue 
and Simonyan, 2019). Intuitively, this originates from the 
optimization-induced organization of the GANs’ latent space where 
nearby points lead to images that are semantically similar (Brock et al., 
2019). This smoothness generalizes when interpolating between distant 
points in the latent space: generated samples exhibit smooth transitions 
from one sample to another, creating new objects that can combine 
features from multiple distinct objects (Berthelot et al., 2018; Brock 
et al., 2019). Exploiting this learned structure, several models invert the 
generative process of GANs and demonstrate that their latent space 
contains semantic representations that can be useful to perform down
stream tasks (Makhzani et al., 2015; Dumoulin et al., 2017; Donahue 
and Simonyan, 2019). 

3.2. Adversarial dreaming 

Adversarial learning principles have been hypothesized to allow the 
brain to learn semantic representations from virtual experiences, such as 
creative dreams, typically occurring during REM sleep (Deperrois et al., 
2022). In this study, the authors1 propose a cortical architecture with a 
feedback pathway that generates activity in early sensory cortex from 
high-level representations. Additionally, they introduce a feedforward 
pathway that determines whether activity in lower sensory cortices is 
externally driven or internally generated. Feedforward pathways thus 
assume the role of the discriminator in GANs and are additionally sha
ped through predictive learning, being simultaneously trained to infer 
latent representations from low-level activities (Fig. 2a). Latent repre
sentations inferred during wakefulness are stored in a simple hippo
campus model allowing storage and replay. When a hippocampal 
memory is retrieved, feedback pathways are reactivated and generate 
the associated sensory input. 

Learning in this model is organized across three different physio
logical phases, wakefulness, non-rapid eye movement (NREM) and rapid 
eye movement (REM) sleep, each characterized by a different objective. 
During REM sleep, two different representations from previously 
observed stimuli are retrieved and together with cortical background 
activity (Spanò et al., 2020) generate a creative dream through feedback 
pathways. These dreams thus contain elements from both stored 

1 when referring to Deperrois et al. (2022), the authors, although identical to 
the present paper, are referred to in third person 
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Box 1 - Predictive processing theories 

Predictive coding (Rao and Ballard, 1999) hypothesizes that brains minimize errors between predictions generated by feedback pathways and 
low-level evoked activities. This serves two complementary functions: finding latent activities that are compatible with a presented stimulus 
(inference) and adjusting synaptic weights to improve predictions (learning). 

Mathematically, predictive coding can be described as a special case of variational inference (Jordan et al., 1999; Friston, 2005; Marino, 2022). 
Assuming a Gaussian distribution for the generative model and approximate posterior, predictive coding infers a latent activity z* that (locally) 
minimizes the following loss via gradient descent 

L pred =‖ x − G(z)‖2+ ‖ z − μz‖
2, (1)  

where x represents sensory input, z the latent activity of the network, G a (deep) generative network and μz the mean of the latent prior. 
Intuitively, predictive coding thus infers latent activities z* by minimizing the reconstruction error between the generated prediction G(z) and 
the actual sensory input x (first term of Equation (1)). The second term reflects the prior and can be interpreted as a regularization term that can 
implement activity constraints, such as sparsity (Rao and Ballard, 1999). 

Once latent activities are inferred, a gradient step with respect to the parameters of the generator G is taken on Equation (1), further reducing the 
reconstruction error between actual inputs z and predicted inputs G(z). 

These separate optimization steps assume that synaptic weight changes (and thus, learning) occur on a slower timescale than inference.  

Box 2 - Generative adversarial networks 

Generative Adversarial Networks (GANs, Goodfellow et al., 2014) introduce a generator G that generates data samples from noise, and a binary 
classifier, or discriminator (D), that distinguishes these generated samples from real data. The generator G is trained to fool the discriminator D 
into believing that generated samples are real by creating samples that belong to the data distribution. For a sample from the data distribution x 
~ p(x) and a noise vector sampled from the prior distribution, e.g., p(z) ∼ N (0, I), the objective of the discriminator D is to minimize the loss 
L adv = − logD(x) − log(1 − D(G(z))), (2)  

while the objective of the generator G is to maximize this loss. This equation defines the cross-entropy loss for a binary classifier (D) with a 
sigmoid output, where the label is 1 for all data samples x, and 0 for all generated samples G(z). Thus, the discriminator improves its ability to 
discern real from generated samples, while the generator improves the quality of its generated samples so it can fool the (improved) 
discriminator. After sufficiently many training steps, the generator is able to generate realistic samples, even for complex datasets containing 
high-resolution images (Radford et al., 2015; Karras et al., 2018; Brock et al., 2019).  

Fig. 2. Learning representations via adversarial dreaming.(a) During wakefulness, external stimuli are processed from V1 to IT cortex along feedforward pathways 
(green). These learn to recognize the induced early sensory activity as coming from outside (purple neuron). Simultaneously, latent representations are stored in the 
hippocampus. (b) During REM sleep several independent memories are replayed from the hippocampus and combined in high-level areas. Feedback pathways (blue) 
map this latent activity to early sensory areas where virtual experiences (dreams) are generated. Following the principles of adversarial learning, feedforward 
pathways (green) learn to distinguish virtual from stimulus-evoked low-level activities, while feedback pathways improve the generative process to make this 
distinction harder. 
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memories (Fig. 2b). To improve the realism of these virtual experiences, 
feedback pathways are trained to adversarially fool the FF discriminator 
into believing that the activity in early sensory areas is externally driven. 
This process defines “adversarial dreaming”. Formally, adversarial 
dreaming is minimizing the classical objective functions of GANs (Box 2) 
during Wake and REM phases via synaptic weight changes implement
ing stochastic gradient descent. 

The results from this model suggest that REM creative dreams, 
generated through adversarial dreaming, become more realistic over 
learning, but still remain different and novel as compared to external 
sensory inputs (Deperrois et al., 2022), in line with dream phenome
nology (Nir and Tononi, 2010; Scarpelli et al., 2019). Crucially, gener
ating these virtual experiences through both memory combinations and 
adversarial learning improves the quality of the learned cortical repre
sentations. Indeed, the authors show that object categories can easily be 
extracted from the latent activity using a linear classifier. Additionally, 
they demonstrate that this ability is significantly impaired when they 
artificially inhibit REM sleep during training. The authors thus conclude 
that creative dreams are a key ingredient for the acquisition of semantic 
latent representations. 

3.3. Neuronal and behavioral correlates 

The principle of adversarial dreaming leads to neuronal and behav
ioral consequences that can be investigated experimentally. 

A central feature of the framework is that creative dreams during 
offline states, such as REM sleep, are crucial for the emergence of 
organized cortical representations. This could be tested by recording 
neuronal population activity in high-level areas using multielectrode 
arrays. From these recordings, one could quantify how well neuronal 
representations separate object categories, either by training a linear 
classifier on these representations (Hung et al., 2005) or by computing 
the representation dissimilarity matrices between stimuli (Yamins et al., 
2014). We expect that in subjects who are chronically deprived of REM 
sleep, such as with antidepressant drugs (Palagini et al., 2013), opto
genetic inhibition (Boyce et al., 2016; Aime et al., 2022), or that lack the 
ability to form mental images (aphantasia, Zeman et al., 2015; Pearson, 
2019), representations are less semantically organized than for control 
subjects. Behaviorally, this would translate as a slower learning speed of 
novel object classification tasks. 

Considering the similarities between mental imagery, imagination 
and dreaming (Kahan et al., 1997; Llewellyn, 2016a; Pearson, 2019), 
one could use mental imagery as a practical alternative to dreaming for 
studying the impact on learning and representation of novel objects in 
humans. A potential experiment would involve asking human subjects to 
classify novel 3D objects and monitoring their learning progress. Human 
subjects could be asked to perform mental imagery training sessions 
following the presentation of novel objects, for instance by mentally 
rotating them. We predict that participants who performed these mental 
tasks would perform better at categorizing these novel objects than the 
control participants. 

Furthermore, in adversarial dreaming, internal activity in early 
sensory areas becomes more similar to evoked activity over the course of 
learning, which suggests that dreams should become more realistic with 
age. This correlates with dream reports over different stages of life, that 
are initially unstructured and plain, and gradually become more 
meaningful, narrative and less bizarre (Nir and Tononi, 2010; Scarpelli 
et al., 2019). According to the theory, this may reflect that older persons 
know more about the structure of the world and its limitations, and thus 
become more conservative and less prone to exploration, reducing their 
capacity to learn new concepts. On a neuronal level, this corresponds to 
an increasing similarity between stimulus evoked and REM generated 
activity in lower sensory areas. In this line, previous work has demon
strated that spontaneous activity, potentially driven by creative day
dreaming, indeed becomes more similar to evoked activity in ferret 
visual cortex over the course of development (Berkes et al., 2011). 

Finally, in terms of cortical structure, adversarial dreaming predicts a 
functional organization into two effectively separate feedforward and 
feedback streams. If the information is not forced to go up and down the 
whole hierarchy, shortcuts between higher cortical areas will prevent 
lower cortical areas to learn useful features. Even though cross- 
projections between feedforward and feedback pathways are observed 
experimentally (Gilbert and Li, 2013), adversarial dreaming predicts 
that those are effectively gated off during essential periods for orga
nizing neuronal representations. 

3.4. Creativity and adversarial dreaming 

As a consequence of adversarial dreaming, new virtual experiences 
can be generated by randomly combining different memories (Fig. 2b). 
This thus leads to the generation of low-level activities that are unlikely 
to have been evoked by previously experienced stimuli, but that 
nevertheless may be part of the external world. While the main focus of 
this article is to suggest a role of virtual experiences on learning, such a 
phenomenon suggests two additional functional benefits that are 
important to mention. 

First, by learning to encode these novel experiences, the system 
prepares for a future where these imagined sensations are encountered 
in the wild, such as simulating a dangerous situation offline to escape 
from it faster when it actually occurs (cf. Hobson, 2009; Llewellyn, 
2016b). Furthermore, generating “semantic superpositions” and 
exposing the feedforward pathways to these may equip the agent with 
the ability to quickly recognize new stimuli as a composition of known 
components, making its reaction to them significantly simpler, such as 
an electric bike leveraging our knowledge about engines and bikes. In a 
behavioral experiment, one could investigate whether participants 
viewing novel stimuli composed of known parts identify their related 
categories faster after REM sleep. 

Second, novel adversarially generated experiences could provide an 
unexpected solution to a specific problem the agent is facing. During 
REM sleep, the agent may hence experience an “insight” suggesting how 
to solve a complex problem (also see Friston et al., 2017), such as the 
Benzene structure that was discovered through a dream by Kekulé 
(Mazzarello, 2000). In this line, generative models are now used in the 
field of drug discovery to circumvent the limitation of traditional ap
proaches relying upon domain knowledge from physics and chemistry to 
construct synthesis rules. In particular, GAN-based frameworks such as 
adversarial autoencoders have been used to extend the search of possible 
molecules for drug design, generating compounds with desired molec
ular properties (Guimaraes et al., 2017; De Cao and Kipf, 2018; Blan
chard et al., 2021). Naturally, not all creative combinations experienced 
during dreaming are useful, and their usefulness is ultimately deter
mined by how compatible they are with the actual external world. This 
suggests that additional steps may be necessary, such as testing experi
mentally the existence of suggested compounds. 

More broadly, creative dreaming closely relates to concepts of how to 
trigger creative thoughts (Llewellyn, 2016a: After being intensively 
exposed to a certain topic, one needs periods of rest, or “incubation” 
periods, to freely let the generator produce samples. Experimentally, this 
could be tested by evaluating the performance of participants at a cre
ative synthesis task (Finke et al., 1996; Palmiero et al., 2015), consisting 
of combining different visual patterns into a new, potentially useful 
object. Subjects that have chronically impaired REM sleep would be less 
likely to synthesize useful/realistic objects (Giancola et al., 2022). The 
adversarial dreaming framework thus expands the predictive processing 
view to the offline generation of creative, virtual experiences that could 
facilitate the acquisition of semantic representations. We next introduce 
another unsupervised learning principle that offline states could 
leverage. 
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4. Learning representations by contrasting sensory experiences 

4.1. Principles of contrastive learning 

Ultimately, the idea of semantic latent representations is to have 
similar latent neuronal responses to semantically similar stimuli 
(DiCarlo et al., 2012. Instead of learning representations implicitly via 
generative models, one could directly train feedforward pathways to 
map semantically similar inputs to similar latent representations, and 
dissimilar inputs to different regions of the latent space (e.g., Le-Khac 
et al., 2020. In this context, one often refers to similar (“positive”) ex
amples as being “pulled together” and dissimilar (“negative”) examples 
as being “pushed apart” from each other during the training process. 

How are positive examples obtained during training, before the 
network has had the chance to organize its representations? Typically, 
positive examples are created by transforming an existing sample 
through so-called data augmentations, consisting of cropping, color 
distorting, or blurring the sample (Chen et al., 2020). Through this 
transformation process, the input remains semantically similar to the 
original input, while its sensory structure can be vastly different. 

Negative examples serve to prevent trivial solutions, such as map
ping all samples to the same latent vector, often referred to as “repre
sentational collapse” (Le-Khac et al., 2020; Bardes et al., 2021). For a 
given sample, all the other samples from the data set are typically 
considered negative examples. Even though this broad definition in
cludes samples from the same category, which can not be excluded in the 
absence of labels, the majority of negative samples will come from a 
different category for typical datasets. Note that recent work suggests 
that negative examples may not be required for efficient contrastive 
learning. Alternative methods include ensuring that representations are 
variable enough (Bardes et al., 2021) or breaking the symmetry between 
projections of positive examples (Grill et al., 2020; Chen and He, 2021). 
Through simple yet effective principles, contrastive learning led to 
models that are currently state-of-the-art at learning semantic repre
sentations useful for downstream tasks in an unsupervised manner (Liu 
et al., 2021; Ericsson et al., 2022). 

4.2. Contrastive dreaming 

Contrastive learning principles may be leveraged by the brain to 
enhance and robustify neuronal representations during imagination and 
dreaming. Just like for adversarial dreaming, the generative model 
learned by feedback pathways from the prediction of sensory inputs 
during wakefulness can be leveraged for learning during sleep. In 
contrastive dreaming, only a single hippocampal memory serves as the 
basis for subsequent generation of activity in early sensory cortex. 
Instead of combining multiple stored memories, the virtual experiences 

thus represent previously observed sensory inputs that are altered by a 
series of augmentations. These augmentations need to be strong enough 
to change the low-level details of the virtual experience, but not so 
strong as to change its semantic content, e.g., adding noise to, blurring, 
cropping, rotating or distorting an image (Fig. 3a). These augmentations 
could be applied by leveraging an additional cortical module, or by 
directly influencing generation through modulation of feedback path
ways at different hierarchical levels (Karras et al., 2018; Wybo et al., 
2023). The goal of feedforward pathways then consists of mapping this 
altered input to its original hippocampal representation, thus pulling 
together positive pairs (Fig. 3a). 

Negative examples are provided by older memories, with feedfor
ward pathways learning to map the augmented experience away from 
these (Fig. 3b). Cortically, this could occur after the positive phase, by 
maintaining the inferred latent representation and comparing it to other 
hippocampal memories. 

This approach was partly explored by Deperrois et al. (2022). During 
the NREM phase of the model, virtual experiences generated from single 
hippocampal memories were partly occluded. This process made the 
feedforward network more robust to similar perturbations during 
perception. We hypothesize that by extending the model to additional 
augmentations, and contrasting it with negative examples (Fig. 3b), such 
a phase could further improve the semantic organization of the model’s 
latent space. In summary, we propose that the efficiency of contrastive 
learning objectives can be exploited by offline states through contrastive 
dreams of previous experiences. 

4.3. Neuronal and behavioral correlates 

The contrastive dreaming framework can be experimentally inves
tigated. First, it makes predictions about dream phenomenology. One 
can assess the diversity of internally generated experiences by waking 
up sleeping participants at different physiological stages, such as NREM, 
REM, hypnagogic or day-dreaming states (Waters et al., 2016), and 
asking them to report the content from their dreams, or possibly by 
directly communicating with them while dreaming (Konkoly et al., 
2021). We predict that dreams reported from the hypothesized 
“contrastive” states, such as within sharp-wave ripples during NREM 
sleep (Kudrimoti et al., 1999), tend to contain individual previous ex
periences. Depending on the detail of the dream reports, they may even 
reveal the suggested augmentations, for example in the form of distorted 
colors or reversed directions. In contrast, dreams from adversarial 
dreaming during REM sleep would be dissimilar to previous experiences 
but rather combine diverse elements from them (Fogel et al., 2018. 
These predictions are line with experimental data showing that NREM 
dream reports have more episodic memory sources (Baylor and Cav
allero, 2001) and exhibit less complexity (Martin et al., 2020). 

Box 3 - Contrastive learning 

Contrastive learning algorithms use an encoder that is trained to compare (latent) representations of data samples. These representations are 
shaped by pulling together representations of semantically similar inputs and pushing apart those of dissimilar inputs (Jaiswal et al., 2020; 
Le-Khac et al., 2020. Similar (positive) examples are usually obtained by applying a series of (semantically preserving) data augmentations such 
as cropping, resizing, blur, color distortion to a given sample (Chen et al., 2020, and negative examples are simply other samples from the 
dataset. This comparison can be learned with a loss function L contr defined on a single positive pair (i, j) and a large number of negative pairs (i, 
k)k∕=i such as: 

L contr = − log
exp(sim(zi, zj)∕τ)

∑2N
k=1,k∕=iexp(sim(zi, zk)∕τ)

, (3)  

where where N is the number of examples in a minibatch (2N because all examples are augmented), zi is the representation of the sample k, 
sim(u, v) = uTv∕(‖ u ‖ ‖ v ‖) denotes the dot product between l2 normalized u and v and τ denotes the temperature parameter (Chen et al., 2020), 
i.e., this loss function computes the cosine of the angle between u and v. Through this learning objective, the network aims to reduce the distance 
between the representations of positive pairs (zi, zj) and increase the distance between the representations of negative pairs (zi, zk)k∕=i.  
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Second, contrastive dreaming makes prediction at the neuronal level. 
During wakefulness, as sensory inputs that are nearby in time usually 
involve the same object under different views (Illing et al., 2021), one 
could expect that over the course of development, activities in high 
sensory areas of the ventral stream of the visual cortex become 
increasingly stable during the observation of a moving object. This could 
be measured by the representation dissimilarity matrix approach 
(Yamins et al., 2014) tracking high-level activities over time. We would 
thus expect impaired NREM sleep to lead to more variable neuronal 
representations. More generally, the contrastive dreaming principle 
predicts that while activities from lower areas are very different across 
stimulus categories and augmentations, high-level activities should 
become robust against augmentations but remain sensitive to stimulus 
categories. Additionally, one could compare low-level and high-level 
activities during NREM sleep. We predict that while high-level activ
ities resemble waking activities closely due to hippocampal replay, 
low-level activities vary significantly due to augmentations (Fig. 3a). 

5. Learning beyond the shackles of direct experiences 

5.1. Summary 

To explain the emergence of semantic neuronal representations in an 
autonomous, unsupervised manner, influential neuroscientific theories 
suggest that the brain minimizes prediction errors between its expec
tations and stimulus-evoked activities (Rao and Ballard, 1999; Friston, 
2005; Millidge et al., 2021; Mikulasch et al., 2022). Models emerging 
from these frameworks are successful at describing various properties of 
cortical networks and can solve complex computational tasks. However, 
the rich, sometimes bizarre world of non-sensory related phenomena our 
brains experience on a nightly basis appear only to reduce the 
complexity of the generative model. To complement predictive pro
cessing theories, here we discussed two computational frameworks 
through which brains can benefit even more from their internally 
generated virtual experiences. 

First, adversarial dreaming combines several stored memories with 
cortical noise and pits feedback and feedforward pathways against each 
other in a creative game of generating and discriminating low-level 
activities. This process thereby implicitly learns an organized latent 
structure. Second, contrastive dreaming explicitly trains feedforward 
networks to map semantically similar inputs to similar high-level 
cortical representations by dreaming up previously observed inputs 

with semantically preserving augmentations. Both principles are 
compatible with the bidirectional architecture of sensory cortices and 
could be implemented in network models relying on biologically plau
sible credit assignment algorithms and learning rules (Richards et al., 
2019; Lillicrap et al., 2020). 

While our principles primarily pertain to dreaming, we anticipate 
their applicability to other forms of spontaneous, virtual experiences 
like mental imagery (Pearson, 2019), meditation (Cooper et al., 2022), 
and spontaneous thoughts (Mildner and Tamir, 2019). The key 
distinction lies in the nature of these experiences: adversarial dreaming 
involves the creative recombination of memory elements, whereas 
contrastive dreaming reenacts “augmented” past experiences. We pro
pose that virtual experiences during dreamlike states generally align 
with one of these two mechanisms. 

5.2. Outlook: Learning from predictive, adversarial and contrastive 
principles 

Despite their algorithmic differences, the three presented learning 
principles can be implemented by the same cortical architecture. They 
however require different physiological phases, in line with previous 
theories (Hinton et al., 1995; Giuditta et al., 1995; Hobson and Friston, 
2012; Lewis et al., 2018). 

An interesting direction would be to explore whether the combined 
optimization of different learning objectives could have a synergistic 
effect on the acquisition of semantic representations. While the combi
nation of predictive and adversarial learning has been previously 
explored (Makhzani et al., 2015; Brock et al., 2017; Ulyanov et al., 
2017), the benefits of combining contrastive and adversarial principles 
remain to be elucidated (but see Chen et al., 2019; Deperrois et al., 
2022). 

Finally, humans develop under some supervision, for example in the 
form of explicit verbal instructions about object categories. It is hence 
natural to explore the combination of the unsupervised learning prin
ciples described so far with sparse labels to further improve the learned 
latent structure (see also Deperrois et al., 2022). 

Since these principles are in many ways complementary, experi
mentally the influence of each may be challenging to tease apart. 
However, despite their similarities, they have different functional goals. 
Predictive processing allows the brain to predict upcoming stimuli, 
adversarial dreaming aims to prepare the brain for previously unob
served stimuli, and contrastive dreaming aims to make latent 

Fig. 3. Learning representations via contrastive dreaming.(a) During NREM single memories are replayed and generate activities in V1, which are modified in a 
semantically preserving way, e.g., rotating or squeezing the input. Following the principles of contrastive learning, feedforward pathways learn to map this 
“augmented input” to the same latent representations as the initially replayed hippocampal representation. (b) To implement the contrastive step during NREM, 
feedforward pathways learn to push apart the inferred representation to a different hippocampal memory, serving as a negative example. 
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representation invariant to irrelevant factors of variation. Through 
carefully designed experiments, for instance analyzing the individual 
effects of NREM and REM sleep on cortical dynamics (Tamaki et al., 
2020), or by analyzing the effect of different learning tasks on NREM 
and REM activity patterns (Fogel and Smith, 2006; Fogel et al., 2007) 
their different functional goals may hence be exploited to tease apart 
their influences on neuronal representations. 

5.3. Relation to previous work 

Gershman (2019) proposed an adversarial framework for brain 
function in view of psychological and neural evidence. In particular, he 
discusses the consequences of a dysfunctioning discriminator on the 
perception of hallucinations, leading to potential delusions observed in 
mental disorders. The framework discussed here may serve as a sug
gestion for implementing a mechanistic model of these ideas and further 
elucidate the consequences of dysfunction in specific modules. 

Previous work suggested an alternative explanation for the creative 
aspect of dreams during REM sleep. The pioneer activation-synthesis 
theory from Hobson and McCarley (1977) suggests that REM dreams 
result from the brain “making the best of a bad job in producing even 
partially coherent dream imagery from the relatively noisy signals sent 
up to it from the brain stem”. Adversarial dreaming provides a concrete 
instantiation of this idea by forming coherent REM dreams from inco
herent signals. From replaying a random mixture of episodes out of the 
hippocampus to the cortex, the discriminator network provides the 
feedback to increase the realism of the generated dream imagery. Other 
authors attribute this creative phenomenon to a shift of topographical 
neural activity towards the Default Mode Network (Domhoff and Fox, 
2015), encouraging external inputs from wakefulness to be integrated 
with internally generated imagery, jointly manifesting as bizarre dream 
content (Northoff et al., 2023). 

Generative modeling’s early developments, notably the Wake-Sleep 
algorithm (Hinton et al., 1995), previously emphasized the impor
tance of offline processes in optimizing latent representations. First, the 
sleep phase in the Wake-Sleep algorithm, while conceptually different, is 
algorithmically akin to the positive phase of ’contrastive dreaming,’ 
where generated inputs are aligned with their originating latent activ
ities via the feedforward network. Second, this algorithm introduced a 
bidirectional structure of cortical projections, where feedforward path
ways encode sensory inputs and feedback pathways generate sensory 
predictions or fictive inputs. This concept later influenced the devel
opment of variational autoencoders (Kingma and Welling, 2013); their 
biological plausibility was recently examined in (Marino, 2022. The 
introduced framework here also leverages a bidirectional organization 
necessary to implement both adversarial and contrastive dreaming 
paradigms. In this view, backward projections serve a dual role of 
making predictions during wakefulness, while generating virtual expe
riences during offline states. 

Previous work on predictive processing suggests that its principles 
extend beyond waking experiences (Hobson and Friston, 2012; Hobson 
et al., 2014). This theory rests on the free-energy principle, which for
mulates processing and learning as a variational optimization problem. 
Intuitively speaking, a good model should provide a good explanation of 
observed data (“model accuracy”), while maintaining a minimal set of 
assumptions (“model complexity”), together maximizing “model evi
dence” (Friston, 2010. Accordingly, wakefulness provides an opportu
nity to optimize both of these components, while dreams, or more 
generally offline states, specifically allow for the reduction of model 
complexity. Indeed, such ideas have been successfully employed for 
machine learning models (Ponnapalli et al., 1999; Simoncelli and 
Olshausen, 2001; Williams, 1995) and suggested to provide a functional 
explanation for synaptic homeostasis during sleep (Tononi and Cirelli, 
2014): minimizing the brain’s model complexity may improve gener
alization abilities. 

Similar to predictive processing, adversarial dreaming also aims to 

maximize model evidence, though implicitly with the help of feedfor
ward pathways, rather than explicitly (Huszár, 2017). Nevertheless, this 
similarity in spirit suggests that adversarial dreaming too could benefit 
from the reduction of complexity as suggested by Hobson et al. (2014). 
Vice versa, predictive processing could benefit from the ability of 
feedforward pathways being able to distinguish between internally 
generated and externally driven activities in sensory cortex, learned via 
adversarial dreaming. While predictive processing learns semantic rep
resentations implicitly, contrastive dreaming explicitly optimizes these 
behaviorally relevant variables. Nevertheless, the neuronal representa
tions emerging from contrastive learning may also help generative 
models to maximize model evidence. These observations suggest an 
intimate relation between these theories, jointly highlighting the 
importance of virtual, non-sensory, experiences. 

Two recent studies suggested how the brain could benefit from 
constrastive objectives. In Illing et al. (2021), the authors propose that 
positive examples are obtained from the observation of a moving object, 
while negative examples appear through saccades towards new objects. 
In contrast, Halvagal and Zenke (2022) argue that the brain does not 
need negative examples, as long as latent activities are encouraged to 
remain sufficiently variable (through variance maximization, Bardes 
et al., 2021. Through this mechanism, networks learn invariant repre
sentations for stimulus features which change slowly in time. A down
side from these models is that positive examples, and thus augmented 
inputs, are assumed to be obtained through the observation of moving 
objects, leading to limited augmentation. However, a series of strong 
augmentations are needed to obtain strong semantic representations via 
contrastive learning objectives (Chen et al., 2020). To avoid interference 
of such strong augmentations with perception, hosting them during 
offline states as suggested by the contrastive dreaming principle thus 
provides a beneficial alternative. 

5.4. Conclusion: The necessity of virtual experiences for learning 

We proposed that essential processes shaping our cortical function 
arise from brains generating virtual experiences during sleep. Learning 
from an imagined world may thus be just as important as learning from 
sensations. This view significantly expands our perspective on percep
tion and learning. Do we need to be constantly focused on our sensorium 
to learn optimally, or can we finally justify sometimes having our heads 
in the clouds? 
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