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eLife assessment
This manuscript describes a potentially important theoretical framework to link predictive coding, 
error-based learning, and neuronal dynamics. The provided evidence is solid, but some details 
would benefit from additional clarification. The exposition of the manuscript is targeted for a 
specialist audience.

Abstract One of the most fundamental laws of physics is the principle of least action. Motivated 
by its predictive power, we introduce a neuronal least-action principle for cortical processing of 
sensory streams to produce appropriate behavioral outputs in real time. The principle postulates 
that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-
dendritic mismatch error within individual neurons. For output neurons, the principle implies mini-
mizing an instantaneous behavioral error. For deep network neurons, it implies the prospective 
firing to overcome integration delays and correct for possible output errors right in time. The 
neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical 
microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on 
the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback 
during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somatodendritic 
mismatch error within each cortical neuron and performs gradient descent on the output cost at any 
moment in time. The neuronal least-action principle offers an axiomatic framework to derive local 
neuronal and synaptic laws for global real-time computation and learning in the brain.

Introduction
Wigner’s remark about the ‘unreasonable effectiveness’ of mathematics in allowing us to understand 
physical phenomena Wigner, 1960 is famously contrasted by Gelfand’s quip about its ‘unreason-
able ineffectiveness’ in doing the same for biology (Borovik, 2021). Considering the component of 
randomness that is inherent to evolution, this may not be all that surprising. However, while this argu-
ment holds just as well for the brain at the cellular level, ultimately brains are computing devices. At 
the level of computation, machine learning, and neuroscience have revealed near-optimal strategies 
for information processing and storage, and evolution is likely to have found similar principles through 
trial and error (Hassabis et al., 2017). Thus, we have reason to hope for the existence of fundamental 
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principles of cortical computation that are similar to those we have found in the physical sciences. 
Eventually, it is important for such approaches to relate these principles back to brain phenomenology 
and connect function to structure and dynamics.

In physics, a fundamental measure of ‘effort’ is the action of a system, which nature seeks to 
‘minimize.’ Given an appropriate description of interactions between the system’s constituents, the 
least-action principle can be used to derive the equations of motion of any physical system (Feynman 
et  al., 2011; Coopersmith, 2017). Here, we suggest that in biological information processing, a 
similar principle holds for prediction errors, which are of obvious relevance for cognition and behavior.

Based on such errors, we formulate a neuronal least-action (NLA) principle which can be used to 
derive neuronal dynamics and map them to observed dendritic morphologies and cortical microcir-
cuits. Within this framework, local synaptic plasticity at basal and apical dendrites can be derived 
by stochastic gradient descent on errors. The errors that are minimized refer to the errors in output 
neurons that are typically thought to represent motor trajectories, planned and encoded in cortical 
motor areas and ultimately in the spinal cord and muscles. In the context of motor control, a phenom-
enological ‘minimal action principle’ has previously been proposed that guides the planning and 
execution of movements (Feldman and Levin, 2009). Our neuronal least-action principle reformulates 
and formalizes the classical equilibrium point hypothesis (Latash, 2010) in a dynamical setting, linking 
it to optimality principles in sensory-motor control (Todorov, 2004).

Other attempts exist to link biological information processing and neural networks with the least-
action principle, for instance by directly learning to reproduce a given trajectory (Amirikian and 
Lukashin, 1992), by minimizing the physical action for the muscle force generation by motor unit 
recruitment (Senn et al., 1995), minimizing cognitive prediction errors (Alonso et al., 2012), mini-
mizing output errors with a weight-change regularization (Betti and Gori, 2016), minimizing psycho-
motor work (Fox and Kotelba, 2018), minimizing data transport through a network (Karkar et al., 
2021), minimizing the discrimination information (Summers, 2021), or minimizing the free energy 
(Friston, 2010; Friston et al., 2022). Apart from the latter, however, these attempts remain far from 
the biology that seems to resist a formalization with the tool of physics – at least, when applied too 
strictly.

The fundamental novelty of our NLA principle is the way it deals with time. In physics, bodies 
interact based on where they are now, irrespective of what happens in the future. Living systems, 
instead, interact based on what could happen in the near future, and react early to stay alive. This 
difference is also mirrored in the way our NLA principle looks for an error-minimizing trajectory of 
brain states. We postulate that the brain trades with near-future states and seeks for a path that 
minimizes errors of these future states at any moment in time. Looking ahead towards what will likely 
happen allows the network for correcting the internal trajectory of deep neurons early enough so that 
the delayed output moves along the desired path. The notion of looking into the future to gate a 
dynamical system is also central in optimal control theory (as expressed by the Bellman equation, see 
e.g. Todorov, 2006). Yet, starting with a neuronal action is more principled as it includes the derivation 
of the dynamical system itself that will be optimally controlled.

The insight into the time structure of biological information processing allows us to express a 
simple form of a total ‘mismatch energy’ for our cortical neuronal networks, from which we derive the 
dynamic neuronal and synaptic laws.In short, the mismatch energy within a single pyramidal neuron is 
the squared prediction error between basal dendrites and the soma, together with the apical dendrites 
receiving a top-down feedback. The apical dendrites calculate a local prospective prediction error 
that looks ahead in time and overcomes neuronal integration delays (Figure 1a). As a consequence, 
the output neurons are corrected on the fly by the prospective error processing, pushing them in real 
time closer to the desired path. In addition, the prospective errors are suited for gradient learning of 
the sensory synapses on the basal dendrites. This gradient learning is proven to reduce the error in 
the output neurons at any moment in time.

The NLA principle builds on and integrates various ingredients from existing work and theories. 
Output neurons, be they motor neurons or decision-making neurons, are postulated to be ‘nudged’ 
towards the desired target time course by additional synaptic input to the soma or the proximal 
apical dendrite, as described by Urbanczik and Senn, 2014. The cortical microcircuit with lateral 
‘inhibition’ that seeks to cancel the top-down feedback in order to extract the apical error is inspired 
by Sacramento et  al., 2018 and Haider et  al., 2021. The energy-based approach for describing 
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error-backpropagation for weak nudging is borrowed from the Equilibrium Propagation algorithm 
(Scellier and Bengio, 2017) that we generalize from a steady-state algorithm to real-time computa-
tion in cross-cortical microcircuits. Our theory covers both cases of weak and strong output nudging. 
For strong nudging, it likewise generalizes the least-control principle (Meulemans et al., 2022) and 
the prospective configuration algorithm (Song et al., 2024) from a steady-state to a dynamic real-
time version, linking to optimal feedback control (Todorov and Jordan, 2002). Finally, the apical 
activity of our pyramidal neurons can be seen in the tradition of predictive coding (Rao and Ballard, 
1999), where cortical feedback connections try to explain away lower-level activities. Yet, different 
from classical predictive coding, our prediction errors are integrated with the soma, and these errors 
are prospective in time. The errors extrapolate from current to future activities, so that their inte-
gration improves the network output in real time. The combination of an energy-based model with 
prospective coding in which neuronal integration delays are compensated on the fly enters also in 
Haider et al., 2021.

The paper is organized as follows: we first define the prospective somatodendritic mismatch error, 
construct out of this the mismatch energy of a network, and ‘minimize’ this energy to obtain the error-
corrected, prospective voltage dynamics of the network neurons. We then show that the prospective 
error coding leads to an instantaneous and joint processing of low-pass filtered input signals and 
backpropagated errors. Applied to motor control, the instantaneous processing is interpreted as a 
moving equilibrium hypothesis according to which sensory inputs, network state, motor commands, 
and muscle feedback are in a self-consistent equilibrium at any point of the movement. We then 

Figure 1. Somato-dendritic mismatch energies and the neuronal least-action (NLA) principle. (a1) Sketch of a cross-cortical network of pyramidal 
neurons described by NLA. (a2) Correspondence between elements of NLA and biological observables such as membrane voltages and synaptic 
weights. (b1) The NLA principle postulates that small variations ‍δũ‍ (dashed) of the trajectories ‍̃u‍ (solid) leave the action invariant, ‍δA = 0‍. It is 
formulated in the look-ahead coordinates ‍̃u‍ (symbolized by the spyglass) in which `hills' of the Lagrangian (shaded gray zones) are foreseen by the 
prospective voltage so that the trajectory can turn by early enough to surround them. (b2) In the absence of output nudging (‍β = 0‍), the trajectory 

‍u(t)‍ is solely driven by the sensory input, and prediction errors and energies vanish (‍L = 0‍, outer blue trajectory at bottom). When nudging the output 
neurons towards a target voltage (‍β > 0‍), somatodendritic prediction errors appear, the energy increases (red dashed arrows symbolising the growing 
‘volcano’) and the trajectory ‍u(t)‍ moves out of the ‍L = 0‍ hyperplanes, riding on top of the `volcano' (red trajectory). Synaptic plasticity ‍Ẇ ‍ reduces the 
somatodendritic mismatch along the trajectory by optimally ‘shoveling down the volcano’ (blue dashed arrows) while the trajectory settles in a new 
place on the ‍L = 0‍ hyperplane (inner blue trajectory at bottom).

https://doi.org/10.7554/eLife.89674
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derive a local learning rule that globally minimizes the somato-dendritic mismatch errors across the 
network, and show how this learning can be implemented through error-extracting cortical microcir-
cuits and dendritic predictive plasticity.

Results
Somato-dendritic mismatch errors and the Lagrangian of cortical 
circuits
We consider a network of neurons – identified as pyramidal cells – with firing rates ‍ri(t)‍ in continuous 
time ‍t‍. The somatic voltage ‍ui‍ of pyramidal neuron ‍i‍ is driven by the close-by basal input current, 

‍
∑

jWijrj‍, with presynaptic rates ‍rj‍ and synaptic weights ‍Wij‍, and an additional distal apical input ‍ei‍ that 
will be learned to represent a prospective prediction error at any moment in time (Figure 1a). While 
in classical rate-based neuron models the firing rate ‍ri‍ of a neuron is a function of the somatic voltage, 

‍ρ(ui)‍, the NLA principle implies that the effective firing rate of a cortical neuron is prospective. More 
concretely, the formalism derives a firing rate that linearly extrapolates from ‍ρ(ui)‍ into the future with 
the temporal derivative, ‍ri = ρ(ui) + τ ρ̇(ui)‍, where ‍ρ̇(ui)‍ represents the temporal derivative of ‍ρ(ui(t))‍. 
There is experimental evidence for such prospective coding in cortical pyramidal neurons where the 
instantaneous rate ‍ri‍ is in fact not only a function of the underlying voltage, but also a function of how 
quickly that voltage increases (see Figure 2a).

The second central notion of the theory is the prospective error ‍ei‍, that we interpret as prospec-
tive somato-dendritic mismatch error in the individual network neurons, ‍ei = (ui + τ u̇i) −

∑
jWijrj‍ . It 

is defined as a mismatch between the prospective voltage, ‍ui + τ u̇i‍, and the weighted prospective 
input rates, ‍

∑
jWijrj‍. In the same way, as the firing rates ‍rj‍ linearly extrapolate into the future given the 

Figure 2. Prospective coding in cortical pyramidal neurons enables instantaneous voltage-to-voltage transfer. (a1) The instantaneous spike rate of 
cortical pyramidal neurons (top) in response to sinusoidally modulated noisy input current (bottom) is phase-advanced with respect to the input adapted 
from Köndgen et al., 2008. (a2) Similiarly, in neuronal least-action (NLA), the instantaneous firing rate of a model neuron (‍r = ρ(u) + τ ρ̇(u)‍, black) 
is phase-advanced with respect to the underlying voltage (‍u‍, red, postulating that the low-pass filtered rate is a function of the voltage, ‍̄r = ρ(u)‍). (b) 
Dendritic input in the apical tree (here called ‍̄e‍) is instantaneously causing a somatic voltage modulation (‍u‍, modeling data from Ulrich, 2002). The low-
pass filtering with ‍τ ‍ along the dendritic shaft is compensated by a lookahead mechanism in the dendrite (‍e = ē + τ ˙̄e‍). In (Ulrich, 2002) a phase advance 
is observed even with respect to the dendritic input current, not only the dendritic voltage, although only for slow modulations (as here). (c) While the 
voltage of the first neuron (‍u1‍) integrates the input rates ‍rin‍ from the past (bottom black upward arrows), the output rate ‍r1‍ of that first neuron looks 
ahead in time, ‍r1 = ρ(u1) + τ ρ̇(u1)‍ (red dashed arrows pointing into the future). The voltage of the second neuron (‍u2‍) integrates the prospective rates 

‍r1‍ (top black upwards arrows). By doing so, it inverts the lookahead operation, resulting in an instantaneous transfer from ‍u1(t)‍ to ‍u2(t)‍ (blue arrow and 
circles).

https://doi.org/10.7554/eLife.89674
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current-voltages ‍uj‍ of the presynaptic neurons ‍j‍, the postsynaptic error is based on the linear extrap-
olation of its current voltage ‍ui‍ using its temporal derivative, ‍ui + τ u̇i‍ . If the prospective error ‍ei‍ is low-
pass filtered with time constant ‍τ ‍, it takes the form ‍̄ei = ui −

∑
jWijr̄j‍, where ‍̄rj‍ is the corresponding 

low-pass filtered firing rate of the presynaptic neuron ‍j‍ (that becomes a function of the presynaptic 
voltage, ‍̄rj = ρ(uj)‍ , see Methods, Sect. Euler-Lagrange equations as inverse low-pass filters). We refer 
to ‍̄ei‍ as a somato-dendritic mismatch error of neuron that, as compared to ‍ei‍, is non-prospective and 
instantaneous.

We next interpret the mismatch error ‍̄ei‍ in terms of the morphology and biophysics of pyramidal 
neurons with basal and apical dendrites. While the error ‍ei‍ is formed in the apical dendrite, this error 
is low-pass filtered and added to the somatic voltage ‍ui‍, that is also driven by the low-pass filtered 
basal input ‍

∑
jWijr̄j‍, so that  ‍ui =

∑
jWijr̄j + ēi‍. From the perspective of the basal dendrites, the low-

pass filtered apical error ‍̄ei‍ can be calculated as the difference between the somatic voltage and the 
own local low-pass filtered input, ‍̄ei = ui −

∑
jWijr̄j‍. The somatic voltage ‍ui‍ is assumed to be sampled 

in the basal dendrite by the backpropagating acting potentials (Urbanczik and Senn, 2014; Spicher 
et al., 2017). The apical error now appears as a ‘somato-basal’ mismatch error, that both are summa-
rized as a somato-dendritic mismatch error. It tells the difference between ‘what a neuron does,’ 
which is based on the somatic voltage ‍ui‍, and ‘what the basal inputs think it should do,’ which is based 
on its own input ‍

∑
Wijr̄j‍ (Figure 1a2). The two quantities may deviate because neuron ‍i‍ get addi-

tional ‘unpredicted’ apical inputs from higher-area neurons that integrate with the somatic voltage ‍ui‍. 
What cannot be predicted in ‍ui‍ by the sensory-driven basal input remains as somato-basal (somato-
dendritic) mismatch error ‍̄ei‍.

Associated with this mismatch error is the somatodendritic mismatch energy defined for each 
network neuron ‍i ∈ N ‍ as the squared mismatch error,

	﻿‍
EM

i = 1
2 ē 2

i = 1
2

(
ui −

∑
jWijr̄j

)2
.
‍�

(1)

On a subset of output neurons of the whole network, ‍O ⊆ N ‍, a cost is defined as a function of 
the somatic voltage and some instructive reference signal such as targets or a reward. When a target 
trajectory ‍u∗o (t)‍ is available, the cost is defined at each time point as a squared target error,

	﻿‍ Co = 1
2 (ē∗o )2 = 1

2
(
u∗o − uo

)2
‍� (2)

Much more general mismatch energies and cost functions are conceivable, for instance, errors of 
the form ‍̄ei = ui − fi(u, t)‍ for general functions ‍fi‍ of the voltage vector ‍u‍ and of time, encompassing 
conductance-based neurons, but also further dynamic variables can be included such as threshold 
adaptation (see Appendix 6). The cost represents a performance measure for the entire network that 
produces the output voltages ‍uo(t)‍ in response to some input rates ‍rin(t)‍. The cost directly relates to 
behavioral or cognitive measures such as the ability of an animal or human to perform a particular 
task in real time. The target could be provided by explicit external supervision, for example, target 
movements in time encoded by ‍u∗o (t)‍, it could represent an expected reward signal, or it could arise 
via self-supervision from other internal prediction errors.

We define the Lagrangian (or ‘total energy’) of the network as a sum across all mismatch energies 
and costs, weighted by the nudging strength ‍β‍ of the output neurons,

	﻿‍
L =

∑
i∈N

EM
i + β

∑
o∈O

Co = 1
2
∑
i∈N

(
ui −

∑
jWijr̄j

)2
+ β

2
∑
o∈O

(
u∗o − uo

)2 .
‍�

(3)

The low-pass filtered presynaptic rates, ‍̄rj‍, also encompass the external input neurons. While in 
classical energy-based approaches, ‍L‍ is called the total energy, we call it the ‘Lagrangian’ because 
it will be integrated along real and virtual voltage trajectories as done in variational calculus (leading 
to the Euler-Lagrange equations, see below and Appendix 6). We ‘prospectively’ minimize ‍L‍ locally 
across a voltage trajectory, so that, as a consequence, the local synaptic plasticity for ‍Wij‍ will globally 
reduce the cost along the trajectory (Theorem 1 below).

Due to the prospective coding, the Lagrangian can be minimal at any moment in time while the 
network dynamics evolve. This is different from the classical predictive coding (Rao and Ballard, 1999) 
and energy-based approaches (Scellier and Bengio, 2017; Song et  al., 2024), where a stimulus 

https://doi.org/10.7554/eLife.89674
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needs to be fixed in time while the network relaxes to a steady state, and only there the prediction 
error is minimized (see Appendix 3).

The least-action principle expressed for prospective firing rates
Motivated by the prospective firing in pyramidal neurons, we postulate that cortical networks strive 
to look into the future to prevent instantaneous errors. Each neuron tries to move along a trajectory 
that minimizes its own mismatch error ‍̄ei‍ across time (Figure 1b). The ‘neuronal currency’ with which 
each neuron ‘trades’ with others to choose its own error-minimizing trajectory is the future discounted 
membrane potential,

	﻿‍
ũ(t) = 1

τ

ˆ ∞

t
u(t′) e

−
t′ − t
τ dt′ .

‍�
(4)

The prospective voltages ‍̃u‍ are the ‘canonical coordinates’ entering the NLA principle, and in 
these prospective coordinates the overall network searches for a ‘least-action trajectory’. Since from 
‍̃u‍ we can recover the instantaneous voltage via ‍u = ũ − τ ˙̃u‍ (see Appendix 2), we can replace ‍u‍ in the 
Lagrangian and obtain ‍L‍ as a function of our new prospective coordinates ‍̃u‍ and the ‘velocities’ ‍̇̃u‍, 

i.e.,
‍
L = L

[
ũ, ˙̃u

]
‍
, where bold fonts represent vectors. Inspired by the least-action principle from physics, 

we define the neuronal action ‍A‍ as a time-integral of the Lagrangian,

	﻿‍
A =
ˆ t2

t1
L
[
ũ(t), ˙̃u(t)

]
dt .

‍�
(5)

The NLA principle postulates that the trajectory ‍̃u(t)‍ keeps the action ‍A‍ stationary with respect to 
small variations ‍δũ‍ (Figure 1b1). In other words, nature chooses a trajectory such that, when deviating 
a little bit from it, say by ‍δũ‍, the value of ‍A‍ will not change (or at most up to second order in the vari-
ation), formally ‍δA = 0‍. The motivation to search for a trajectory that keeps the action stationary is 
borrowed from physics. The motivation to search for a stationary trajectory by varying the near-future 
voltages ‍̃u‍, instead of ‍u‍, is assigned to the evolutionary pressure in biology to ‘think ahead of time.’ To 
not react too late, internal delays involved in the integration of external feedback need to be consid-
ered and eventually need to be overcome. In fact, only for the ‘prospective coordinates’ defined by 
looking ahead into the future, even when only virtually, will a real-time learning from feedback errors 
become possible (as expressed by our Theorems below).

The equations of motion that keep the action stationary with respect to these prospective coordi-
nates are known to satisfy the Euler-Lagrange equations.

	﻿‍

∂L
∂ũi

− d
dt

∂L
∂ ˙̃ui

= 0.
‍�

(6)

Applying these equations to our Lagrangian yields a prospective version of the classical leaky inte-
grator voltage dynamics, with rates ‍r‍ and errors ‍e‍ that are looking into the future (Methods, Sects. 
Euler-Lagrange equations as inverse low-pass filters, Deriving the network dynamics from the Euler-
Lagrange equations),

	﻿‍ τ u̇ = −u + Wr + e,‍� (7a)

	﻿‍ ē = r̄′net·WT
netē + βē∗.‍� (7b)

The ‘‍‍’ denotes the component-wise product, and the weight matrix splits into weights from input 
neurons and weights from network neurons, ‍W = (Win, Wnet)‍. While for output neurons a target error 
can be defined, ‍̄e∗o = u∗o − uo‍, for non-output neurons i no target exists and we hence set ‍̄e

∗
i = 0‍. In a 

control theoretic framework, the neuronal dynamics (Equation 7a) represent the state trajectory, and 
the adjoint error dynamics Equation 7b represent the integrated costate trajectory (Todorov, 2006).

From the point of view of theoretical physics, where the laws of motion derived from the least-action 
principle contain an acceleration term (as in Newton’s law of motion, like ‍mẍ = −x + F‍ for a harmonic 
oscillator), one may wonder why no second-order time derivative appears in the NLA dynamics. As an 
intuitive example, consider driving into a bend. Looking ahead in time helps us to reduce the lateral 
acceleration by braking early enough, as opposed to braking only when the lateral acceleration is 

https://doi.org/10.7554/eLife.89674
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already present. This intuition is captured by minimizing the neuronal action ‍A‍ with respect to the 
discounted future voltages ‍̃ui‍ instead of the instantaneous voltages ‍ui‍. Keeping up an internal equi-
librium in the presence of a changing environment requires looking ahead and compensating early 
for the predicted perturbations. Technically, the acceleration disappears because the Euler-Lagrange 
operator (Equation 6) turns into a lookahead-gradient operator, 

‍
∂
∂ũi

− d
dt

∂
∂ ˙̃ui

=
(
1 + d

dt
)

∂
∂ui ‍

, since the ‍̈̃ui‍ 

is absorbed via ‍̇̃ui − τ ¨̃ui = u̇i‍ (see Methods, Sect. Euler-Lagrange equations as inverse low-pass filters, 
and Appendix 6 for the link to the least-action principle in physics).

Mathematically, the voltage dynamics in Equation 7a specifies an implicit differential equation 
since ‍̇u(t)‍ also appears on the right-hand side. This is because the prospective rates ‍r = ρ(u) + τ ρ̇(u)‍ 
include ‍̇u‍ through ‍ρ̇(u) = ρ′(u)·u̇‍. Likewise, the prospective errors ‍e = ē + τ ˙̄e‍, with ‍̄e‍ given in Equation 
7b and plugged into Equation 7a, imply ‍̇u‍ through ‍̇̄e(u) = ē′(u)·u̇‍. Nevertheless, the voltage dynamics 
can be stably run by replacing ‍̇u(t)‍ on the right-hand side of Equation 7a with the temporal derivative 

‍̇u(t − dt)‍ from the previous time step (technically, the Hessian ‍(1 − Wρ′ − ē′)‍ is required to be strictly 
positive definite, see Methods Sect. From implicit to explicit differential equations and Appendix 3). 
This ensures that the voltage dynamics of Equation 7a, Equation 7b can be implemented in cortical 
neurons with a prospective firing and a prospective dendritic error (see Figure 2).

The error expression in Equation 7b is reminiscent of error backpropagation Rumelhart et al., 
1986 and can in fact be related (Methods, Sect. Deriving the error backpropagation formula). Formally, 
the errors are backpropagated via transposed network matrix, ‍WT

net‍, modulated by ‍̄r
′
i‍, the derivative 

of ‍̄ri = ρ(ui)‍ with respect to the underlying voltage. While the transpose can be constructed with 
various local methods see Akrout et al., 2019; Max et al., 2022 in our simulations we mainly adhere 
to the phenomenon of feedback alignment (Lillicrap et al., 2016) and consider fixed and random-
ized feedback weights ‍B‍ (unless stated differently). Recent control theoretical work is exploiting the 
same prospective coding technique as expressed in Equation 7a, Equation 7b to tackle general 
time-varying optimization problems see Simonetto et al., 2020 for a review and Appendix 3 for the 
detailed connection.

Prospective coding in neurons and instantaneous propagation
The prospective rates and errors entering via ‍r‍ and ‍e‍ in the NLA (Equation 7a) are consistent with 
the prospective coding observed in cortical pyramidal neurons in vitro (Köndgen et al., 2008). Upon 
sinusoidal current injection into the soma, the somatic firing rate is advanced with respect to its 
voltage (Figure 2a), effectively compensating for the delay caused by the current integration. Like-
wise, sinusoidal current injection in the apical tree causes a lag-less voltage response in the soma 
(Figure 2b, Ulrich, 2002). While the rates and errors in general can be reconstructed from their 
low-pass filterings via ‍r = r̄ + τ ˙̄r‍ and ‍e = ē + τ ˙̄e‍, they become prospective in time because ‍̄r‍ and ‍̄e‍ are 
themselves instantaneous functions of the voltage ‍u‍, and hence ‍r‍ and ‍e‍ depend on ‍̇u‍. The derivative 
of the membrane potential implicitly also appears in the firing mechanism of Hodgkin-Huxley-type 
conductances, with a quick depolarization leading to a stronger sodium influx due to the dynamics 
of the gating variables (Hodgkin and Huxley, 1952). This advances the action potential as compared 
to a firing that would only depend on ‍u‍, not ‍̇u‍, giving an intuition of how such a prospective coding 
may arise. A similar prospective coding has been observed for retinal ganglion cells (Palmer et al., 
2015) and cerebellar Purkinje cells (Ostojic et al., 2015), making a link from the visual input to the 
motor control.

To understand the instantaneous propagation through the network, we low-pass filter the dynamic 
equation ‍u + τ u̇ = Wr + e‍ (obtained by rearranging Equation 7a), with ‍̄e‍ given by Equation 7b, to 
obtain the somatic voltage ‍u = W r̄(u) + ē(u)‍. At any point in time, the voltage is in a moving equi-
librium between forward and backpropagating inputs. Independently of the network architecture, 
whether recurrent or not, the output is an instantaneous function of the low-pass filtered input and 
a putative correction towards the target, ‍uo(t) = FW (̄rin(t), ē∗o (t))‍, see Figure 2C and Methods, Sect. 
Proving theorem 1 (rt-DeEP). The mapping again expresses an instantaneous propagation of voltages 
throughout the network in response to both, the low-pass filtered input ‍̄rin‍ and feedback error ‍̄e∗o‍. This 
instantaneity is independent of the network size, and in a feed-forward network is independent of 
its depths (see also Haider et al., 2021, where the instantaneity is on the rates, not the voltages). In 
the absence of the look-ahead activity, each additional layer would slow down the network relaxation 
time.

https://doi.org/10.7554/eLife.89674
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Notice that an algorithmic implementation of the time-continuous dynamics of a ‍N ‍-layer feed-
forward network would still need ‍N ‍ calculation steps until information from layer 1 reaches layer 
‍N ‍. However, this does not imply that an analog implementation of the prospective dynamics will 
encounter delays. To see why, consider a finite step-change ‍∆u1‍ in the voltage of layer 1. In the 
absence of the look-ahead, ‍∆u1‍ was mapped within the infinitesimal time interval ‍dt‍ to an infinites-
imal change ‍du2‍ in the voltages of layer 2. But with a prospective firing rate, ‍r1 = ρ(u1) + τρ′(u1) · u̇1‍, 
a step-change ‍∆u1‍ translates to a delta-function in ‍r1‍, this in turn to a step-change in the low-pass 
filtered rates ‍∆r̄1‍, and therefore within ‍dt‍ to a step-change ‍∆u2‍ in the voltages ‍u2‍ of the postsynaptic 
neurons (Figure 2c). Iterating this argument, a step-change ‍∆u1‍ propagates ‘instantaneously’ through 
‍N ‍ layers within the ‘infinitesimal’ time interval ‍N dt‍ to a step-change ‍∆uN ‍ in the last layer. When run 
in a biophysical device in continuous time that exactly implements the dynamical Equation 7a, the 
implementation becomes an instantaneous computation (since ‍dt→0‍). Yet, in a biophysical device, 
information has to be moved across space. This typically introduces further propagation delays that 
may not be captured in our formalism where low-pass filtering and prospective coding cancel each 
other exactly. Nevertheless, analog computation in continuous time, as formalized here, offers an 
idea to ‘instantaneously’ realize an otherwise time-consuming numerical recipe run on time-discrete 
computing systems that operate with a finite clock cycle.

Prospective control and the moving equilibrium hypothesis
Crucially, at the level of the voltage dynamics (Equation 7a) the correction is based on the prospective 
error ‍e‍. This links our framework to optimal control theory and motor control where delays are also 
taken into account, so that a movement can be corrected early enough (Wolpert and Ghahramani, 
2000; Todorov and Jordan, 2002; Todorov, 2004). The link between energy-based models and 
optimal control was recently drawn for strong nudging (‍β → ∞‍) to learn individual equilibrium states 
(Meulemans et al., 2022). Our prospective error ‍e(t)‍ appears as a ‘controller’ that, when looking at 
the output neurons, pushes the voltage trajectories toward the target trajectories. Depending on the 
nudging strength ‍β‍, the control is tighter or weaker. For infinitely large ‍β‍, the voltages of the output 
neurons are clamped to the time-dependent target voltages, ‍uo = u∗o‍ (implying ‍e∗o = 0‍), while their 
errors, ‍̄eo = uo − (Wr̄)o‍, instantaneously correct all network neurons. For small ‍β‍, the output voltages 
are only weakly controlled, and they are dominated by the forward input, ‍uo ≈ (Wr̄)o‍.

To show how the NLA principle with the prospective coding globally maps to cortico-spinal circuits 
we consider the example of motor control. In the context of motor control, our network mapping 

‍uo = FW (̄rin, ē∗o )‍ can be seen as a forward internal model that quickly calculates an estimate of the 
future muscle length ‍uo‍ based on some motor plans, sensory inputs, and the current proprioceptive 
feedback (Figure 3a). Forward models help to overcome delays in the execution of the motor plan by 
predicting the outcome, so that the intended motor plans and commands can be corrected on the fly 
(Kawato, 1999; Wolpert and Ghahramani, 2000).

The observation that muscle spindles prospectively encode the muscle length and velocity (Dimi-
triou and Edin, 2010) suggests that the prospective coding in the internal forward model mirrors the 
prospective coding in the effective forward pathway. This forward pathway leads from the motor plan 
to the spindle feedback, integrating also cerebellar and brainstem feedback (Kawato, 1999). Based 
on the motor plans, the intended spindle lengths and the effective muscle innervation are communi-
cated via a descending pathway to activate the ‍γ‍- and ‍α‍-motoneurons, respectively (Li et al., 2015). 
The mapping from the intended arm trajectory to the intended spindle lengths via ‍γ‍-innervation is 
mainly determined by the joint geometry. The mapping from the intended arm trajectory to the force-
generating ‍α‍-innervation, however, needs to also take account of the internal and external forces, and 
this is engaging our network ‍W ‍.

When we prepare an arm movement, spindles in antagonistic muscle pairs that measure the muscle 
length are tightened or relaxed before the movement starts (Papaioannou and Dimitriou, 2021). 
According to the classical equilibrium-point hypothesis (Feldman and Levin, 2009; Latash, 2010), 
top-down input adjusts the activation threshold of the spindles through (‍γ‍-) innervation from the 
spinal cord so that slight deviations from the equilibrium position can be signaled (Figure 3a). We 
postulate that this ‍γ‍-innervation acts also during the movement, setting an instantaneous target 

‍u∗
o (t)‍ for the spindle lengths. The effective lengths of the muscle spindles is ‍uo‍, and the spindles are 

prospectively signaling back the deviation from the target through the ‍Ia‍-afferents (Dimitriou and 

https://doi.org/10.7554/eLife.89674
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Edin, 2010; Dimitriou, 2022). The low-pass filtered ‍Ia‍-afferents may be approximated by a threshold-
nonlinearity, ‍Ia = β⌊uo − uo

∗⌋+‍, with ‍β‍ being interpreted as spindle gain (Latash, 2018). Combining 
the feedback from agonistic and antagonistic muscle pairs allows for extracting the scaled target error 

‍β ē∗o = β(uo
∗ − uo)‍. Taking account of the prospective feedback, we postulate the moving equilibrium 

hypothesis according to which the instructional inputs, ‍̄rin‍, the spindle feedback, ‍β ē∗o‍, and the muscle 
lengths, ‍uo‍, are at any point of the movement in a dynamic equilibrium. The moving equilibrium 
hypothesis extends the classical equilibrium-point hypothesis from the spatial to the temporal domain 
(for a formal definition of a moving equilibrium see Methods, Sect. From implicit to explicit differential 
equations).

Prediction errors are also reduced when motor units within a muscle are recruited according to 
the size principle (Senn et al., 1997), which itself was interpreted in terms of the physical least-action 
principle (Senn et al., 1995). With regard to the interpretation of the prospective feedback error ‍e∗o‍ as 
spindle activity, it is worth noticing that in humans the spindle activity is not only ahead of the muscle 
activation (Dimitriou and Edin, 2010), but also share the property of a motor error (Dimitriou, 2016). 
The experiments show that during the learning of a gated hand movement, spindle activity is initially 
stronger when making movement errors, and it returns back to baseline with the success of learning. 
This observation is consistent with the NLA principle, saying that the proprioceptive prediction errors 

Figure 3. Moving equilibrium hypothesis for motor control and real-time learning of cortical activity. (a) A voluntary movement trajectory can be 
specified by the target length of the muscles in time, ‍uo

∗
‍, encoded through the ‍γ ‍-innervation of muscle spindles, and the deviation of the effective 

muscle lengths from the target, ‍uo − uo
∗ = −ē∗o‍. The ‍Ia‍-afferents emerging from the spindles prospectively encode the error, so that their low-

pass filtering is roughly proportional to the length deviation, truncated at zero (red). The moving equilibrium hypothesis states that the low-pass 

filtered input ‍̄rin‍, composed of the movement plan ‍̄r
plan
in ‍ and the sensory input (here encoding the state of the plant e.g., through visual and 

proprioceptive input, ‍̄r
vis
in ‍ and ‍̄r

prop
in ‍), together with the low-pass filtered error feedback from the spindles, ‍̄e∗o‍, instantaneously generate the muscle 

lengths, ‍uo = FW (̄rin, ē∗o )‍, and are thus at any point in time in an instantaneous equilibrium (defined by Equation 7a, Equation 7b). (b1) Intracortical 
intracortical electroencephalogram (iEEG) activity recorded from 56 deep electrodes and projected to the brain surface. Red nodes symbolize the 56 
iEEG recording sites modeled alternately as input or output neurons, and blue nodes symbolize the 40 ‘hidden’ neurons for which no data is available, 
but used to reproduce the iEEG activity. (b2) Corresponding NLA network. During training, the voltages of the output neurons were nudged by the 
iEEG targets (black input arrows, but for all red output neurons). During testing, nudging was removed for 14 out of these 56 neurons (here, represented 
by neurons 1, 2, 3). (c1) Voltage traces for the 3 example neurons in a2, before (blue) and after (red) training, overlaid with their iEEG target traces 
(gray). (c2) Total cost, integrated over a window of 8 s of the 56 output nodes during training with sequences of the same duration. The cost for the test 
sequences was evaluated on a 8 s window not used during training.

https://doi.org/10.7554/eLife.89674
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are minimized through the movement learning. We next address how the synaptic strengths ‍W ‍ 
involved in producing the muscle length can be optimally adapted to capture this learning.

Local plasticity at basal synapses minimizes the global cost in real time
The general learning paradigm starts with input time series ‍rin(t),i‍ and target time series ‍u∗o (t)‍, while 
assuming that the target series are an instantaneous function of the low-pass filtered input series, 

‍u∗
o (t) = F ∗(rin(t))‍. The low-pass filtering in the individual inputs could be with respect to any time 

constant ‍τ
∗
in,i‍ (that may also be learned, see Appendix 2). Yet, for simplicity, we assume the same 

time constant ‍τ ‍ for low-pass filtering the rates of the network neurons and input neurons. The goal of 
learning is to adapt the synaptic strengths ‍W ‍ in the student network so that this moves towards the 
target mapping, ‍FW → F ∗

‍. The local synaptic plasticity will also reduce the global cost ‍C‍ defined on 
the output neurons ‍o‍ in terms of the deviation of the voltage from the target, ‍u∗o − uo‍ (Equation 2).

The problem of changing synaptic weights to correct the behavior of downstream neurons, poten-
tially multiple synapses away, is typically referred to as the credit assignment problem and is notoriously 
challenging in physical or biological substrates operating in continuous time. A core aspect of the NLA 
principle is how it relates the global cost ‍C‍ to the Lagrangian ‍L‍ and eventually to somato-dendritic 
prediction errors ‍̄e‍ that can be reduced through local synaptic plasticity ‍Ẇ ‍. We define this synaptic 
plasticity as a partial derivative of the Lagrangian with respect to the weights, ‍Ẇ ∝ − ∂L

∂W = ē r̄T
‍. Since 

the somatodendritic mismatch error is ‍̄e = u − Wr̄‍, this leads to the local learning rule of the form 
‘postsynaptic error times low-pass filtered presynaptic rate’,

	﻿‍ Ẇ = η (u − Wr̄) r̄T.‍� (8)

The plasticity rule runs simultaneously to the neuronal dynamics in the presence of a given nudging 
strength ‍β‍ that tells how strongly the voltage of an output neuron is pushed towards the target, 

‍uo → u∗o‍. The learning rule is local in space since ‍Wr̄‍ is represented as a voltage of the basal dendrites, 
and the somatic voltage ‍u‍ may be read out at the synaptic site on the basal dendrite from the back-
propagating action potentials that sample ‍u‍ at a given time (Urbanczik and Senn, 2014). The basal 
voltage ‍Wr̄‍ becomes the dendritic prediction of the somatic activity ‍u‍, interpreting Equation 8 as 
‘dendritic predictive plasticity’.

We have derived the neuronal dynamics as a path that keeps the action stationary. Without an 
external teaching signal, the errors vanish, and the voltage trajectory wriggles on the bottom of the 
energy landscape (‍L = 0‍, Figure 1b2). If the external nudging is turned on, ‍β > 0‍, errors emerge and 
hills grow out of the landscape. The trajectory still tries to locally minimize the action, but it is lifted 
upwards on the hills (‍L > 0‍, Figure 1b2). Synaptic plasticity reshapes the landscape so that, while 
keeping ‍β‍ fixed, the errors are reduced and the landscape again flattens. The transformed trajectory 
settles anew in another place (inside the ‘volcano’ in 1b2). Formally, the local plasticity rule (Equation 
8) is shown to perform gradient descent on the Lagrangian and hence on the action. In the energy 
landscape picture, plasticity ‘shovels off’ energy along the voltage path so that this is lowered most 
efficiently. The error that is back-propagated through the network tells at any point on the voltage 
trajectory how much to ‘dig’ in each direction, i.e., how to adapt the basal input in each neuron in 
order to optimally lower the local error.

The following theorem tells that synaptic plasticity ‍Ẇ ‍ pushes the network mapping ‍uo = FW (̄rin)‍ 
towards the target mapping ‍u∗

o = F ∗ (̄rin)‍ at any moment in time. The convergence of the mapping is 
a consequence of the fact the plasticity reduces the Lagrangian ‍L = EM + βC‍ along its gradient.

Theorem 1 (real-time dendritic error propagation, rt-DeEP)
Consider an arbitrary network ‍W ‍ with voltage and error dynamics following Equation 7a, Equation 
7b. Then the local plasticity rule ‍Ẇ ∝ ē r̄T‍ Equation 8, acting at each moment along the voltage 
trajectories, is gradient descent

(i) on the Lagrangian ‍L‍ for any nudging strength ‍β≥0‍, i.e., ‍̄e r̄T = − dL
dW ‍, with 

‍
lim

β→∞
ē r̄T = − dEM

dW ∝ Ẇ
‍
.

(ii) on the cost ‍C‍ for small nudging, ‍β→0‍, while up-scaling the error to ‍
1
β ē‍, i.e., 

‍
lim
β→0

1
β ē r̄T = − dC

dW ∝ Ẇ
‍
.

The gradient statements hold at any point in time (long enough after initialization), even if the input 
trajectories ‍rin(t)‍ contain delta functions and the target trajectories ‍u∗

o (t)‍ contain step functions.

https://doi.org/10.7554/eLife.89674
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Loosely speaking, the NLA enables the network to localize in space and time an otherwise global 
problem: what is good for a single neuron (the local plasticity) becomes good for the entire network 
(the gradient on the global cost). Learning is possible at any point in time along the trajectory 
because the NLA inferred a prospective voltage dynamics expressed in prospective firing rates ‍ri‍ and 
prospective errors ‍ei‍ of the network neurons. In the limit of strong nudging (‍β → ∞‍), the learning rule 
performs gradient descent on the mismatch energies ‍EM

i‍ in the individual neurons. If the network 
architecture is powerful enough so that after learning all the mismatch energies vanish, ‍EM

i = 0‍, then 
the cost will also vanish, ‍C = 1

2∥u∗
o − uo∥2 = 0‍. This is because for the output neurons, the mismatch 

error includes the target error (Equation 7b). In the limit of weak nudging (‍β → 0‍), the learning rule 
performs gradient descent on ‍C‍, and with this also finds a local minimum of the mismatch energies.

In the case of weak nudging and a single steady-state equilibrium, the NLA algorithm reduces to 
the Equilibrium Propagation algorithm (Scellier and Bengio, 2017) that minimizes the cost ‍C‍ for a 
constant input and a constant target. In the case of strong nudging and a single steady-state equilib-
rium, the NLA principle reduces to the Least-Control Principle (Meulemans et al., 2022) that mini-
mizes the mismatch energy ‍EM‍ for a constant input and a constant target, with the apical prediction 
error becoming the prediction error from standard predictive coding (Rao and Ballard, 1999). While 
in the Least-Control Principle, the inputs and outputs are clamped to fixed values, the output errors 
are backpropagated and the network equilibrates in a steady state where the corrected network activ-
ities reproduce the clamped output activities. This state is called the ‘prospective configuration’ in 
Song et al., 2024 because neurons deep in the network are informed about the distal target already 
during the inference, and are correspondingly adapted to be consistent with this distal target. In the 
NLA principle, after an initial transient, the network always remains in the moving equilibrium due to 
the prospective coding. While inputs and targets dynamically change, the network moves along a 
continuous sequence of prospective configurations.

In the motor control example, the theorem tells that a given target motor trajectory ‍u∗
o (t)‍ is learned 

to be reproduced with the forward model ‍uo(t) = FW (̄rin(t))‍, by applying the dendritic predictive plas-
ticity for the network neurons (Equation 8). We next exemplify the theory by looking into the brain, 
reproducing cortical activity, and showing how a multi-layer cortical network can learn a sensory-
motor mapping while staying in a moving equilibrium throughout the training.

Reproducing intracortical EEG recordings and recognizing handwritten 
digits
As an illustration, we consider a recurrently connected network that learns to represent intracor-
tical electroencephalogram (iEEG) data from epileptic patients (Figure 3b). For each electrode, we 
assign a neuron within this network to represent the activity of the cell cluster recorded in the corre-
sponding iEEG signal via its membrane potential. During learning, a randomly selected subset of 
electrode neurons are nudged towards the target activity from recorded data while learning to be 
reproduced by the other neurons. After learning, we can present only a subset of electrode neurons 
with previously unseen recordings and observe how the activity of the other neurons closely matches 
the recordings of their respective electrodes (Figure 3c). The network derived from NLA is thus able 
to learn complex correlations between signals evolving in real-time by embedding them in a recurrent 
connectivity structure.

As an example of sensory-motor processing in the NLA framework, we next consider a well-studied 
image recognition task, here reformulated in a challenging time-continuous setting, and interpreted 
as a motor task where 1 out of 10 fingers has to be bent upon seeing a corresponding visual stimulus 
(see Figure 3). In the context of our moving equilibrium hypothesis, we postulate that during the 
learning phase, but not the testing phase, an auditory signal identifies the correct finger and sets 
the target spindle lengths of 10 finger flexors, ‍u∗

o (t)‍. The target spindle length encodes the desired 
contraction of a flexor muscle in the correct finger upon the visual input ‍rin(t)‍, and a corresponding 
relaxation for the nine incorrect fingers.

We train a hierarchical three-layer network on images of handwritten digits (MNIST, LeCun, 1998), 
with image presentation times between ‍0.5τ ‍ (=5 ms) and ‍20τ ‍ (=200 ms, with ‍τ =10‍ the membrane 
time constant). Figure 4a-c depict the most challenging scenario with the shortest presentation time. 
Synaptic plasticity is continuously active, despite the network never reaching a temporal steady state 
(Figure 4b1). Due to the lookahead firing rates in the NLA, the mismatch errors ‍̄ei(t)‍ represent the 

https://doi.org/10.7554/eLife.89674
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correct gradient and propagate without lag throughout the network. As a consequence, our mismatch 
errors are almost equal to the errors obtained from classical error backpropagation applied at each 
time step to the purely forward network (i.e. the network that suppresses the error-correction ‍̄e‍ of the 
voltage and instead considers the ‘classical’ voltage ‍ul = Wl ρ(ul−1)‍ only, see blue dots in Figure 4b2). 
The network eventually learned to implement the mapping ‍uo = FW (̄rin) ≈ u∗

o‍ with a performance 
comparable to error-backpropagation at each ‍dt‍, despite the short presentation time of only 5 ms 
(Figure 4c1). The approximation is due to the fact that the NLA learns an instantaneous mapping 
from the low-pass filtered input rates ‍̄rin‍ to the output voltage ‍uo‍, while the mapping from the original 
input rates ‍rin‍ to the voltages ‍u1‍ of the first-layer neurons (and hence also to the output voltages ‍uo‍) 
is delayed by ‍τin‍. Since in the simulations, the target voltages ‍u∗

o‍ were switched instantaneously with 

‍rin‍ (and not with ‍̄rin‍), however, a mismatch error between ‍uo‍ and ‍u∗
o‍ remains for stimulus presentation 

times shorter than ‍τin‍ (Figure 4c2). The Latent Equilibrium (Haider et al., 2021) avoids these temporal 
limitations by implementing an instantaneous mapping on the rates instead on the voltages (Methods, 
Sect. From implicit to explicit differential equations).

The instantaneous voltage propagation relieves an essential constraint of previous models of bio-
plausible error backpropagation (e.g. Scellier and Bengio, 2017; Whittington and Bogacz, 2017; 
Sacramento et  al., 2018), with reviews (Richards et  al., 2019; Whittington and Bogacz, 2019; 
Lillicrap et al., 2020): without lookahead firing rates, networks need much longer to correctly propa-
gate errors across layers, with each layer roughly adding another membrane time constant of 10 ms, 
and thus cannot cope with realistic input presentation times. In fact, in networks without lookahead 
output, learning is only successful if plasticity is switched off while the network dynamics did not reach 
a stationary state during a stimulus presentation interval (Figure 4c2). Notice also that the prospective 
coding is necessary to keep the network activity stable for an instantaneous processing of the sensory 
input. If, in the absence of prospective coding, we would only shrink the membrane time constant to 
0, the recurrent error processing would become unstable (see Appendix 3).

Figure 4. On-the-fly learning of finger responses to visual input with real-time dendritic error propagation (rt-DeEP). (a) Functionally feedforward 
network with handwritten digits as visual input (‍r

(2)
in (t)‍ in Figure 3a, here from the MNIST data set, 5 ms presentation time per image), backprojections 

enabling credit assignment, and activity of the 10 output neurons interpreted as commands for the 10 fingers (forward architecture: 784×500×10 
neurons). (b) Example voltage trace (b1) and local error (b2) of a hidden neuron in neuronal least-action (NLA) (red) compared to an equivalent network 
without lookahead rates (orange). Note that neither network achieves a steady state due to the extremely short input presentation times. Errors are 
calculated via exact backpropagation, i.e., by using the error backpropagation algorithm on a pure feedforward NLA network at every simulation time 
step (with output errors scaled by ‍β‍), shown for comparison (blue dots). (c) Comparison of network models during and after learning. Color scheme 
as in (b). (c1) The test error under NLA evolves during learning on par with classical error backpropagation performed each Euler ‍dt‍ based on the 
feedforward activities. In contrast, networks without lookahead rates are incapable of learning such rapidly changing stimuli. (c2) With increasing 
presentation time, the performance under NLA further improves, while networks without lookahead rates stagnate at high error rates. This is caused 
by transient, but long-lasting misrepresentation of errors following stimulus switches: when plasticity is turned off during transients and is only active 
in the steady state, comparably good performance can be achieved (dashed orange). (d) Receptive fields of 6 hidden-layer neurons after training, 
demonstrating that even for very brief image presentation times (5ms), the combined neuronal and synaptic dynamics are capable of learning useful 
feature extractors such as edge filters.

https://doi.org/10.7554/eLife.89674
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Implementation in cortical microcircuits
So far, we did not specify how errors ‍e‍ appearing in the differential equation for the voltage (Equation 
7a) are transmitted across the network in a biologically plausible manner. Building on Sacramento 
et al., 2018, we propose a cortical microcircuit to enable this error transport, with all neuron dynamics 
evolving according to the NLA principle. Although the idea applies to arbitrarily connected networks, 
we use the simpler case of functionally feedforward networks to illustrate the flow of information in 
these microcircuits (Figure 5a).

For such an architecture, pyramidal neurons in area ‍l‍ (that is a ‘layer’ of the feedforward network) 
are accompanied by a pool of interneurons in the same layer (area). The dendrites of the interneu-
rons integrate in time (with time constant ‍τ ‍) lateral input from pyramidal neurons of the same layer 
(‍rl‍) through plastic weights ‍WIP

l‍. Additionally, interneurons receive ‘top-down nudging’ from pyra-
midal neurons in the next layer through randomly initialized and fixed back projecting synapses ‍BIP

l‍ 
targeting the somatic region, and interneuron nudging strength ‍β

I
‍. The notion of ‘top-down’ origi-

nates from the functionally feed-forward architecture leading from sensory to ‘higher cortical areas.’ In 
the context of motor control, the highest ‘area’ is the last stage controlling the muscle lengths, being 
at the same time the first stage for the proprioceptive input (Figure 3a).

According to the biophysics of the interneuron, the somatic membrane potential becomes a convex 
combination of the two types of afferent input (Urbanczik and Senn, 2014),

	﻿‍ uI
l = (1 − βI)WIP

lr̄l + βIBIP
lul+1.‍� (9)

In the biological implementation, the feedback input is mediated by the low-pass filtered firing 
rates ‍̄rl+1 = ρ(ul+1)‍, not by ‍ul+1‍ as expressed in the above equation. Yet, we argue that for a threshold-
linear ‍ρ‍ the ‘top-down nudging’ by the rate ‍̄rl+1‍ is effectively reduced to a nudging by the voltage ‍ul+1‍. 
This is because errors are only backpropagated when the slope of the transfer function is positive, 

‍r
′
l+1 > 0‍, and hence when the upper-layer voltage is in the linear regime. For more general transfer 

functions, we argue that short-term synaptic depression may invert the low-pass filtered presynaptic 
rate back to the presynaptic membrane potential, ‍̄rl+1 → ul+1‍, provided that the recovery time constant 
‍τ ‍ matches the membrane time constant (see end of Results and Appendix 1).

Apical dendrites of pyramidal neurons in each layer receive top-down input from the pyramidal 
population in the upper layer through synaptic weights ‍Bl‍. These top-down weights could be learned 
to predict the lower-layer activity (Rao and Ballard, 1999) or to become the transposed of the forward 

Figure 5. Hierarchical plastic microcircuits implement real-time dendritic error learning (rt-DeEL). (a) Microcircuit with ‘top-down’ input (originating 
from peripheral motor activity, blue line) that is explained away by the lateral input via interneurons (dark red), with the remaining activity representing 
the error ‍̄el‍. Plastic connections are denoted with a small red arrow and nudging with a dashed line. (b1) Simulated network with 784-300-10 pyramidal-
neurons and a population of 40 interneurons in the hidden layer used for the MNIST learning task where the handwritten digits have to be associated 
with the 10 fingers. (b2) Test errors for rt-DeEL with joint tabula rasa learning of the forward and lateral weights of the microcircuit. A similar performance 
is reached as with classical error backpropagation. For comparability, we also show the performance of a shallow network (dashed line). (b3) Angle 
derived from the Frobenius norm between the lateral pathway ‍WIP

lWPI
l‍ and the feedback pathway ‍BlWl+1‍. During training, both pathways align to 

allow correct credit assignment throughout the network. Indices are dropped in the axis label for readability.
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weight matrix (‍Bl = WT
l+1‍, Max et al., 2022), but for simplicity, we randomly initialized them and keep 

them fixed (Lillicrap et al., 2020). Besides the top-down projections, the apical dendrites also receive 
lateral input via an interneuron population in the same layer through synaptic weights ‍−WPI

l‍ that 
are plastic and will be learned to obtain suitable dendritic errors. The ‘-’ sign is suggestive of these 
interneurons to subtract away the top-down input entering through ‍Bl‍ (while the weights can still be 
positive or negative). Assuming again a conversion of rates to voltages, also for the inhibitory neurons 
that may operate in a linear regime, the overall apical voltage becomes

	﻿‍ ēA
l = Blul+1 − WPI

luI
l.‍� (10)

What cannot be explained away from the top-down input ‍Blul+1‍ by the lateral feedback, ‍−WPI
luI

l‍, 
remains as dendritic prediction error ‍̄e

A
l ‍ in the apical tree (Figure 5a). If the top-down and lateral 

feedback weights are learned as outlined next, these apical prediction errors take the role of the 
backpropagated errors in the classical backprop algorithm.

To adjust the interneuron circuit in each layer (‘area’), the synaptic strengths from pyramidal-to-
interneurons, ‍WIP

l‍, are learned to minimize the interneuron mismatch energy, ‍E
IP
l = 1

2∥uI
l − WIP

l r̄l∥2
‍. 

The interneurons, while being driven by the lateral inputs ‍WIP
l̄rl‍, learn to reproduce the upper-layer 

activity that also nudges the interneuron voltage. Learning is accomplished if the upper-layer activity, 
in the absence of an additional error on the upper layer, is fully reproduced in the interneurons by the 
lateral input.

Once the interneurons learn to represent the ‘error-free’ upper-layer activity, they can be used 
to explain away the top-down activities that also project to the apical trees. The synaptic strengths 
from the inter-to-pyramidal neurons, ‍WPI

l‍, are learned to minimize the apical mismatch energy, 

‍E
PI
l = 1

2∥ēA
l ∥

2 = 1
2∥Blul+1 − WPI

luI
l∥2

‍. While in the absence of an upper-layer error, the top-down 
activity ‍Blul+1‍ can be fully cancelled by the interneuron activity ‍WPI

luI
l‍, a neuron-specific error will 

remain in the apical dendrites of the lower-level pyramidal neurons if there is an error endowed in the 
upper-layer neurons. Gradient descent learning on these two energies results in the learning rules for 
the P-to-I and I-to-P synapses,

	﻿‍
ẆIP

l = ηIP
(

uI
l − WIP

l r̄l

)
r̄T

l and ẆPI
l = ηPI

(
Blul+1 − WPI

l uI
l

)
uIT

l .
‍� (11)

The following theorem on dendritic error learning tells that the plasticity in the lateral feedback 
loop leads to an appropriate error representation in the apical dendrites of pyramidal neurons.

Theorem 2 (real-time dendritic error learning, rt-DeEL)
Consider a cortical microcircuit composed of pyramidal and interneurons, as illustrated in Figure 5a, 
with more interneurons in layer (‘cortical area’) ‍l‍ than pyramidal neurons in layer ‍l+1‍, and with adapt-
able pyramidal-to-inhibitory weights ‍WIP

l‍ within the same layer that are nudged through top-down 
weights ‍BIP

l‍, see Methods, Sect. Proving theorem 2 (rt-DeEL). Then, for suitable top-down nudging, 
learning rates, and initial conditions, the inhibitory-to-pyramidal synapses ‍WPI

l‍ within each layer ‍l‍ 
(Equation 11) evolve such that the lateral feedback circuit aligns with the bottom-up-top-down feed-
back circuit,

	﻿‍ WPI
lWIP

l = BlWl+1.‍� (12)

After this horizontal-to-vertical circuit alignment, the apical voltages ‍̄e
A
l = Blul+1 − WPI

luI
l‍ of the 

layer-‍l‍ pyramidal neurons (Equation 13) represent the ‘‍B‍-backpropagated’ errors, ‍̄e
A
l = Bl ēl+1‍. When 

modulated by the postsynaptic rate derivatives, ‍̄r
′
l = ρ′(ūl)‍, the apical voltages yield the appropriate 

error signals

	﻿‍ ēl = ul − Wl̄rl−1 = r̄′l · ēA
l = r̄′l · Bl ēl+1‍� (13)

for learning the forward weights ‍Wl‍ according to ‍Ẇl ∝ ēl r̄T
l−1‍ Equation 8.

The back projecting weights can also be learned by a local real-time learning rule to become trans-
pose of the forward weights, ‍Bl = WT

l+1‍ (Max et al., 2022). In this case, the error signals ‍̄el‍ learned in 
the apical dendrites according to the above Theorem (Equation 13) represent the gradient errors ‍̄e‍ 
appearing in the real-time dendritic error propagation (rt-DeEP, Theorem 1). There, the errors ‍̄e‍ drive 
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the gradient plasticity of the general weight matrix ‍W ‍, split up here into the forward weights ‍Wl‍ to a 
layer ‍l‍ (for ‍l = 1, .., N ‍).

Simultaneously learning apical errors and basal signals
Microcircuits following these neuronal and synaptic dynamics are able to learn the classification of hand-
written digits from the MNIST dataset while learning the apical signal representation (Figure 5b1, b2). 
In this case, feedforward weights ‍Wl‍ and lateral weights ‍WPI

l‍ and ‍WIP
l‍ are all adapted simultaneously. 

Including the ‍Ẇ
IP
l ‍-plasticity (by turning on the interneuron nudging from the upper layer, ‍β

I >0‍ in 

Equation 9), greatly speeds up the learning.

With and without ‍Ẇ
IP
l ‍-plasticity, the lateral feedback via interneurons (with effective weight 

‍WIP
lWPI

l‍) learns to align with the forward-backward feedback via upper layer pyramidal neurons (with 
effective weight ‍BlWl+1‍, Figure 5b3). The microcircuit extracts the gradient-based errors (Equation 
13), while the forward weights use these errors to reduce these errors to first minimize the neuron-
specific mismatch errors, and eventually the output cost.

Since the apical voltage ‍̄e
A
l ‍ appears as a postsynaptic factor in the plasticity rule for the interneu-

rons (‍Ẇ
PI
l ‍), this I-to-P plasticity can be interpreted as Hebbian plasticity of inhbitory neurons, consis-

tent with earlier suggestions (Vogels et al., 2011; Bannon et al., 2020). The plasticity ‍Ẇ
IP
l ‍ of the 

P-to-I synapses, in the same way as the plasticity for the forward synapses ‍Ẇl‍, can be interpreted as 
learning from the dendritic prediction of somatic activity (Urbanczik and Senn, 2014).

Crucially, by choosing a large enough interneuron population, the simultaneous learning of the 
lateral microcircuit and the forward network can be accomplished without fine-tuning of parameters. 
As an instance in case, all weights shared the same learning rate. Such stability bolsters the biophysical 
plausibility of our NLA framework and improves over the previous, more heuristic approach (Sacra-
mento et  al., 2018; Mesnard et  al., 2019). The stability may be related to the nested gradient 
descent learning according to which somatic and apical mismatch errors in pyramidal neurons, and 
somatic mismatch errors in inhibitory neurons are minimized.

Finally, since errors are defined at the level of membrane voltages (Equation 11), synapses need 
a mechanism by which they can recover the presynaptic voltage errors from their afferent firing 
rates. While for threshold-linear transfer functions the backpropagated voltage errors translate into 
rate errors (Appendix 1), more general neuronal nonlinearities must be matched by corresponding 
synaptic nonlinearities. Pfister et al., 2010 have illustrated how spiking neurons can leverage short-
term synaptic depression to estimate the membrane potential of their presynaptic partners. Here, we 
assume a similar mechanism in the context of our rate-based neurons. The monotonically increasing 
neuronal activation function, ‍̄rl+1 = ρ(ul+1)‍, can be approximately compensated by a vesicle release 
probability that monotonically decreases with the low-pass filtered presynaptic rate ‍̄rl+1‍ (see Appendix 
1 and Appendix 1—figure 1). If properly matched, this leads to a linear relationship between the 
presynaptic membrane potential ‍ul+1‍ and the postsynaptic voltage contribution.

Discussion
We introduced a least-action principle to neuroscience for deriving the basic laws of the voltage and 
synaptic dynamics in networks of cortical neurons. The approach is inspired by the corresponding 
principle in physics where basic laws of motion are derived across the various scales. While in physics 
the action is defined as the time-integral of the kinetic minus potential energy, we define the action 
as the time-integral of instantaneous somatodendritic mismatch errors across network neurons plus 
a behavioral error. The ‘kinetics’ of a voltage trajectory only arises because we postulate that the 
action along a trajectory is minimized with respect to future voltages, not the instantaneous voltage, 
as would be done in physics. The postulate implies a prospective voltage dynamics that look ahead 
in time, together with prospective local errors, in order to minimize the action and hence the soma-
todendritic mismatch errors. The prospective errors nudge the firing of pyramidal neurons deep in 
the brain, so that motor neurons improve the output of the network right in time. A putative behav-
ioral error, encoded in the motor feedback, propagates back through the network and produces 
prospective corrections of the pyramidal neuron activities that effectively manifest in instantaneous 
corrections of the motor trajectory. Through this prospective coding, the sensory stream, the deep 
network activity, and the motor feedback are in sync at any moment in time. We formulated the 
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dynamic synchronization as a ‘moving equilibrium hypothesis’, referring to the classical equilibrium 
point hypothesis for motor control (Feldman and Levin, 2009; Latash, 2010). More generally, the 
brain activity formed by the prospective firing of cortical pyramidal neurons is in a moving equilib-
rium while converting sensory input streams into motor outputs, consistent with prospective sensory 
processing in the human cortex (Blom et al., 2020).

Because the neuronal dynamics derived from the global NLA principle is in a moving equilibrium, 
the prospective dendritic errors that globally correct the output trajectory are also suited to instruct 
local synapatic plasticity in the dendrites. In fact, working down the apical errors by adapting the 
sensory-driven synapses on the basal dendrites reduces the global output errors in real time. The 
apical errors are extracted from the top-down feedback via lateral ‘inhibition’ that tries to cancel 
the top-down signal. This top-down feedback includes activity from a putative erroneous motor 
output that was not foreseen by the local inhibition and thus survives as a local apical error. Given the 
prospective coding of the pyramidal neurons, the dendritic errors are also prospective and thus able 
to induce the correct error-minimizing plasticity online, while stimuli and targets continuously change.

The NLA principle as a bottom-up theory from neurons to behavior
To show that the NLA principle offers a viable program for a formalization of neuroscience following 
the example of physics, we exemplified its ramifications in dendritic computation, cortical microcir-
cuits, synaptic plasticity, motor control, and sensory-based decision-making. The crucial point of our 
axiomatization is that it connects the local neuronal errors to the global behavioral errors right in the 
formulation of the principle, eventually leading to local gradient-based plasticity rules. Because the 
formulation builds upon computations that can be realized in single neurons and dendrites to produce 
a behavioral output, the NLA principle can be seen as a bottom-up theory of behavior. It is articulated 
in terms of apical and basal dendrites, somatic firing, network connectivity and behavioral outputs that 
jointly minimize their errors. This contrasts the related free energy principle, for instance, that leads to 
a top-down theory of behavior by starting with the statistical, but the more universal, notion of a free 
energy. It postulates that any self-organizing system, that is at a statistical equilibrium with its environ-
ment, must minimize its free energy (Friston, 2010; Friston et al., 2022), and from there work down 
its way to neurons and dendrites (Bastos et al., 2012; Kiebel and Friston, 2011).

Starting with a single Lagrangian function that specifies the form of the somatodendritic predic-
tion errors leaves some freedom for the interpretation and the implementation of the emerging 
dynamical equations for the voltages. We interpret errors to be represented in the apical dendrites 
of pyramidal neurons while sensory input targets the basal dendrites, but other dendritic configura-
tions are conceivable (Mikulasch et al., 2023) that apply also to non-pyramidal neurons. We have 
chosen a specific interneuron circuitry to extract our apical errors, but other microcircuits or error 
representations might also be considered (Keller and Mrsic-Flogel, 2018). On the other hand, the 
derived gradient-based synaptic plasticity is tightly linked to the specific form of the somatodendritic 
prediction errors expressed in the Lagrangian and its interpretation, making specific predictions for 
synaptic plasticity (as outlined below). The ‘external’ feedback entering through the cost function 
offers additional freedom to model behavioral interactions. We considered an explicit time course of 
a target voltage in motor neurons, for instance imposed by the feedback from muscle spindles that are 
themselves innervated by a prospective top-down signal to control muscle lengths (Papaioannou and 
Dimitriou, 2021; Dimitriou, 2022). But the cost may also link to reinforcement learning and express 
a delayed reward feedback delivered upon a behavioral decision of an agent acting in a changing 
environment (Friedrich et al., 2011; Friedrich and Senn, 2012).

A fundamental difficulty arises when the neuronal implementation of the Euler-Lagrange equations 
requires an additional microcircuit with its own dynamics. This is the case for the suggested microcir-
cuit extracting the local errors. Formally, the representation of the apical feedback errors first needs to 
be learned before the errors can teach the feedforward synapses on the basal dendrites. We showed 
that this error learning can itself be formulated as minimizing an apical mismatch energy. What the 
lateral feedback through interneurons cannot explain away from the top-down feedback remains an 
apical prediction error. Ideally, while the network synapses targetting the basal tree are performing 
gradient descent on the global cost, the microcircuit synapses involved in the lateral feedback are 
performing gradient descent on local error functions, both at any moment in time. The simulations 
show that this intertwined system can in fact learn simultaneously with a common learning rate that 
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is properly tuned. The cortical model network of inter- and pyramidal neurons learned to classify 
handwritten digits on the fly, with 10-digit samples presented per second. Yet, the overall learning is 
more robust if the error learning in the apical dendrites operates in phases without output teaching 
but with corresponding sensory activity, as may arise during sleep (see e.g., Deperrois et al., 2022; 
Deperrois et al., 2024).

The NLA principle integrates classical theories for cortical processing 
and learning
The prospective variational principle introduced with the NLA allows for integrating previous ideas on 
formalizing the processing and learning in cortical networks. Four such classical lines of theories come 
together. (‍i‍) The first line refers to the use of an energy function to jointly infer the neuronal dynamics 
and synaptic plasticity, originally formulated for discrete-time networks (Hopfield, 1982; Ackley 
et al., 1985), and recently extended to continuous-time networks (Scellier and Bengio, 2017). (‍ii‍) The 
second line refers to understanding error-backpropagation in the brain (Rumelhart et al., 1986; Xie 
and Seung, 2003; Whittington and Bogacz, 2017; Whittington and Bogacz, 2019; Lillicrap et al., 
2020). (‍iii‍) The third line refers to dendritic computation and the use of dendritic compartmentaliza-
tion for various functions such as nonlinear processing (Schiess et al., 2016; Poirazi and Papoutsi, 
2020) and deep learning (Guerguiev et al., 2017; Sacramento et al., 2018; Haider et al., 2021). 
(‍iv‍) The fourth line refers to predictive coding (Rao and Ballard, 1999) and active inference (Pezzulo 
et al., 2022) to improve the sensory representation and motor output, respectively.

(i) With regard to energy functions, the NLA principle adds a variational approach to charac-
terize continuous-time neuronal trajectories and plasticity. Variational approaches are studied in 
the context of optimal control theory where a cost integral is minimized across time, constrained 
to some network dynamics (Todorov and Jordan, 2002; Meulemans et al., 2021). The NLA 
represents a unifying notion that allows us to infer both, the network dynamics and its optimal 
control from a single Lagrangian. The error we derive represents prospective control variables 
that are applied to the voltages of each network neuron so that they push the output neurons 
towards their target trajectory. The full expression power of this control theoretic framework 
has yet to be proven when it is extended to genuine temporal processing that includes longer 
time constants, for instance, inherent in a slow threshold adaptation (Bellec et al., 2020). The 
NLA principle can also treat the case of strong feedback studied so far in relaxation networks 
only (Meulemans et al., 2022; Song et al., 2024). Our rt-DeEP Theorem makes a statement 
for real-time gradient descent learning while the network is in a moving equilibrium, linking to 
motor learning in the presence of perturbing force fields (Herzfeld et al., 2014) or perturbing 
visual inputs (Dimitriou, 2016).
(ii) With regard to error-backpropagation, the NLA principle infers a local error that originates 
from the error in the output neurons. In the current version, the NLA relies on feedback align-
ment (Lillicrap et al., 2016) to obtain a local apical error without postulating plasticity in the 
top-down synapses. Other works have explored learning the feedback weights (Akrout et al., 
2019; Kunin et al., 2020), notably within a phase-less real-time learning framework as consid-
ered here (Max et al., 2022). It would be promising to combine these ideas to obtain a fully 
plastic microcircuit that adjusts from scratch to various real-time learning tasks.
(iii) With regard to dendritic computation, the NLA principle extends the idea of dendritic error 
representation (Sacramento et al., 2018; Mesnard et al., 2019) by the prospective coding 
of both errors and firing rates (Figure 2). As a consequence, the various dendritic delays are 
compensated and synaptic plasticity can operate at any moment, without need to wait for 
network relaxations (Scellier and Bengio, 2017; Song et al., 2024). In the present framework, 
the input rates are low-pass filtered by variable input time constants (‍τin‍) before the induced 
voltages are instantaneously processed in the network. While this offers the possibilities for a 
temporal processing of the inputs, step changes in the input rates cannot instantaneously prop-
agate as made possible in Haider et al., 2021. The dendritic error representation has also been 
applied to spike-based learning in recurrent networks (Mikulasch et al., 2021).
(iv) With regard to the principle of predictive coding (Rao and Ballard, 1999; Pezzulo et al., 
2022), the NLA offers a form of predictive error-coding in the apical tree of sensory pyram-
idal neurons that shapes the sensory representation. Both the predictive coding and the NLA 
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principle imply an error-based adaptation of the lower and higher cortical representations. 
However, while predictive coding is based on propagating errors, the NLA principle directly 
propagates the error-corrected representations. Based on the backpropagated activities, it 
extracts in each area the prospective errors to reshape the local representations and induce 
synaptic plasticity. Otherwise, the freedom in defining the cost function in the NLA, and the 
inclusion of active inference in predictive coding (Pezzulo et al., 2022), make the two frame-
works equally powerful. Both frameworks can explain the learning from motor and sensory 
prediction errors. In fact, our example of motor control minimizes the proprioceptive error 
formed by the target muscle lengths minus the effective muscle lengths. Active inference like-
wise minimizes the mismatch between an internal motor target and the proprioceptive inputs 
caused by the own actions. In turn, the cost function in the NLA principle may also capture the 
sensory prediction errors, where the ground truth lies in the external inputs that are learned 
to be matched by the sensory expectation. Hence, while being functionally equivalent, the 
neuronal interpretations are different: predictive coding focuses on the propagation of errors 
using the sensory- and motor representations as local auxiliary quantities, and the NLA principle 
directly integrates errors in ‘auxiliary dendrites’ to propagate sensory or motor representations.

The NLA integrates and predicts features of synapses, dendrites, and 
circuits
Motivated by the predictive power of the least-action principle in physics, we ask about experimental 
confirmation and predictions of the NLA principle. Given its axiomatic approach, it appears aston-
ishing to find various preliminary matches at the dendritic, somatic, interneuron, synaptic, and even 
behavioral levels. Some of these are:

1.	 the prospective coding of pyramidal neuron firing (Köndgen et al., 2008);
2.	 the prospective processing of apical signals while propagating to the soma (Ulrich, 2002);
3.	 the basal synaptic plasticity on pyramidal neurons and synaptic plasticity on interneurons, driven 

by the postsynaptic activity that is ‘unexplained’ by the distal dendritic voltage (Urbanczik and 
Senn, 2014) – while partly consistent with spike-timing dependent plasticity (Sjöström et al., 
2001; Spicher et al., 2017), the postulated dendritic voltage-dependence of the plasticity rules 
still awaits an experimental inspection;

4.	 the Hebbian homeostatic plasticity of interneurons targeting the apical dendritic tree of pyram-
idal neurons (Bannon et al., 2020);

5.	 the short-term synaptic depression at top-down synapses targetting inhibitory neurons and 
apical dendrites (akin to Abbott et al., 1997), but with a faster recovery time constant that 
invert the presynaptic activation function (see also Pfister et al., 2010);

6.	 the modulation of the apical contribution to the somatic voltage by the slope of the somatic 
activation function for instance by downregulating apical NMDA receptors with increasing rate 
of backpropagating action potentials, Theis et al., 2018; and

7.	 the involvement of muscle spindles in the prospective encoding of motor errors during motor 
learning, with the ‍γ‍-innervation setting the target length of the spindles (Dimitriou, 2016; 
Papaioannou and Dimitriou, 2021; Vargas et al., 2023).

More experimental and theoretical work is required to substantiate these links and test specific 
predictions, such as the apical error representation in cortical pyramidal neurons.

Overall, our approach adapts the least-action principle from physics to be applied to neuroscience, 
and couples it with a normative perspective on the prospective processing of neurons and synapses 
in global cortical networks and local microcircuits. Given its physical underpinnings, the approach may 
inspire the rebuilding of computational principles of cortical neurons and circuits in neuromorphic 
hardware (Bartolozzi et al., 2022). A step in this direction, building on the instantaneous computa-
tional capabilities by slowly integrating neurons, has made done by Haider et al., 2021. Given its aspi-
ration for a theoretical framework in neurobiology, a next challenge would be to generalize the NLA 
principle to spiking neurons (Gerstner and Kistler, 2002; Brendel et al., 2020) with their potential 
for hardware implementation (Zenke and Ganguli, 2018; Göltz et al., 2021; Cramer et al., 2022), 
to include attentional mechanisms in terms of dendritic gain modulation (Larkum et al., 2004) with 
a putative link to self-attention in artificial intelligence (Vaswani et al., 2017), to add second-order 
errors to cope with certainties (Granier et al., 2023), and to incorporate longer temporal processing 
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as, for instance, offered by neuronal adaptation processes (La Camera et al., 2006) or realistically 
modelled dendrites (Chavlis and Poirazi, 2021).

Methods
Euler-Lagrange equations as inverse low-pass filters
The theory is based on the look-ahead of neuronal quantities. In general, the look-ahead of a trajec-
tory ‍x(t)‍ is defined via lookahead operator applied to ‍x‍,

	﻿‍
(
1 + τ d

dt
)
x = x + τ ẋ.‍� (14)

The lookahead operator is the inverse of the low-pass filter operator denoted by a bar,

	﻿‍
x̄(t) = 1

τ

ˆ t

−∞
x(t′)e

−
t − t′

τ dt′ .
‍�

(15)

This low-pass filtering can also be characterized by the differential equation ‍τ ˙̄x(t) = −x̄(t) + x(t)‍, see 
Appendix 2. Hence, applying the low-pass filtering to ‍x‍ and then the lookahead operator ‍

(
1 + τ d

dt
)
‍ 

to ‍̄x(t)‍, and using the Leibnitz rule for differentiating an integral, we calculate ‍
(
1 + τ d

dt
)
x̄(t) = x(t)‍. In 

turn, applying first the lookahead, and then the low-pass filtering, also yields the original trace back, 

‍
(
1 + τ d

dt
)
x = x̄ + τ ˙̄x = x‍.

We consider an arbitrary network architecture with network neurons that are recurrently connected 
and that receive external input through an overall weight matrix ‍W = (Win, Wnet)‍, aggregated column-
wise. The instantaneous presnyaptic firing rates are ‍r = (rin, rnet)T

‍, interpreted as a single-column 
vector. A subset of network neurons are output neurons, ‍O ⊆ N ‍, for which target voltages ‍u∗‍ may 
be imposed. Rates and voltages may change in time ‍t‍. Network neurons are assigned a voltage ‍u‍, 
generating the low-pass filtered rate ‍̄rnet = ρ(u)‍, and a low-pass filtered error ‍̄e = u − Wr̄‍. We further 
define output errors ‍̄e∗o = u∗o − uo‍ for ‍o ∈ O‍, and ‍̄e

∗
i = 0‍ for non-output neurons ‍i ∈ N \ O‍. With this, 

the Lagrangian from Equation 3 takes the form

	﻿‍
L = 1

2
∥ē∥2 + β

2
∥ē∗∥2.

‍�
(16)

We next use that ‍u = ũ − τ ˙̃u‍, with the ‍̃. ‍ operator defined in Equation 4, to write out the Lagrangian 
‍L‍ in the canonical coordinates ‍(ũ, ˙̃u)‍ as (see also Equation 3)

	﻿‍
L = 1

2
∑
i∈N

[
ũi − τ ˙̃ui −

∑
jWijρ(ũj − τ ˙̃uj)

]2
+ β

2
∑
o∈O

[
u∗o − (ũo − τ ˙̃uo)

]2
.
‍�

(17)

The neuronal dynamics is derived from requiring a stationary action (see Equation 5), which is 
generally solved by the Euler-Lagrange equations 

‍
∂L
∂ũi

− d
dt

∂L
∂ ˙̃ui

= 0
‍
 (see Equation 6). Because ‍̃u‍ only 

arises in ‍L‍ in the compound ‍̃u − τ ˙̃u‍, the derivative of ‍L‍ with respect to ‍̃u‍ is identical to the derivative 
with respect to ‍τ ˙̃u‍,

	﻿‍

∂L
∂ ˙̃ui

= −τ
∂L
∂ũi

.
‍�

(18)

Using the lookahead operator Equation 14, the Euler-Lagrange equations can then be rewritten as

	﻿‍

∂L
∂ũi

+ τ
d
dt

∂L
∂ũi

=
(

1 + τ
d
dt

) ∂L
∂ũi

= 0.
‍�

(19)

Since ‍L(ũ, ˙̃u) = L(u)‍ and ‍u = ũ − τ ˙̃u‍, the derivative of ‍L‍ with respect to ‍̃u‍ is the same as the deriva-
tive of ‍L‍ with respect to ‍u‍,

	﻿‍

∂L
∂ũi

= ∂L
∂ui

.
‍�

Plugging this into Equation 19, the Euler-Lagrange equations become a function of ‍u‍ and ‍̇u‍,
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	﻿‍

(
1 + τ

d
dt

) ∂L
∂ui

= 0.
‍�

(20)

Notice that, if we had directly calculated 
‍
∂L
∂ũi

− d
dt

∂L
∂ ˙̃ui

= 0
‍
, the second-order time derivative ‍̈̃ui‍ of 

the discounted future voltage would be absorbed in a first-order time derivative of the voltage. The 
reason is that ‍̇̃ui − τ ¨̃ui = u̇i‍, and ‍̈̃ui‍ only arises in this combination because the Lagrangian ‍L = L(u)‍ is 
only a function of ‍u‍ and not of ‍̇u‍. Hence, the acceleration term ‍̈̃ui‍ disappears, while a voltage deriva-
tive ‍̇ui‍ appears.

The solution of this differential Equation 20 is ‍
∂L
∂ui

= ci e−
t−t0
τ

‍, and hence any trajectory ‍(ũi, ˙̃ui)‍ which 

satisfy the Euler-Lagrange equations will hence cause ‍
∂L
∂ui ‍ to converge to zero with a characteristic time 

scale of ‍τ ‍. Since we require that the initialisation is at ‍t0 =−∞‍, we conclude that ‍
∂L
∂ui

= 0‍, as required 
in the rt-DeEP Theorem. For a table with all the mathematical abbreviations see Methods-Table 1.

Deriving the network dynamics from the Euler-Lagrange equations
We now derive the equations of motion from the Euler-Lagrange equations. Noticing that ‍u‍ enters in 
‍̄e = u − Wr̄‍ twice, directly and through ‍̄rnet = ρ(u)‍, and once in the output error ‍̄e∗‍, we calculate from 
16, using ‍̄r(u) = (̄rin, ρ(u))T

‍ and ‍W = (Win, Wnet)‍,

	﻿‍
∂L
∂u

= ē − ϵ̄− βē∗ , with ϵ̄ = r̄′net·WT
netē.

‍�
(21)

Remember that for non-output neurons i no target exists, and for those we set ‍̄e
∗
i = 0‍. Next, we 

apply the lookahead operator to this expression, as required by the Euler-Lagrange Equation 19. In 
general ‍

(
1 + τ d

dt
)
x̄ = x̄ + τ ˙̄x = x‍, and we set for ‍̄x‍ the expression on the right-hand side of Equation 

21, ‍̄x = ē − ϵ̄− βē∗‍, which at the same time is ‍̄x = ∂L
∂u‍. Hence, the Euler-Lagrange equations in the 

form of Equation 20, ‍
(
1 + τ d

dt
)
x̄ = 0‍, translate into

	﻿‍

(
1 + τ

d
dt

)∂L
∂u

= 0 ⇐⇒ e − ϵ− βe∗ = 0 ⇐⇒ τ u̇ = −u + Wr + e.
‍�

(22)

To move from the middle to the last equality we replaced ‍e‍ with  ‍e =
(
1 + τ d

dt
)
ē = u + τ u̇ − Wr‍. 

In the last equality we interpret ‍e‍ as the sum of the two errors, ‍e = ϵ + βe∗‍, again using the middle 
equality. This proves Equation 7a, Equation 7b.

Notice that the differential equation ‍τ u̇ = ...‍ in Equation 22 represents an implicit ordinary differ-
ential equation as on the right-hand side not only ‍u‍, but also ‍̇u‍ appears (in ‍r‍ and ‍e‍). The uniqueness of 
the solution ‍u(t)‍ for a given initial condition is only guaranteed if it can be converted into an explicit 
ordinary differential equation (see Sect. Appendix 3).

In taking the temporal derivative we assumed small learning rates such that terms including ‍Ẇij‍ 
can be neglected. The derived dynamics for the membrane potential of a neuron ‍ui‍ in Equation 22 
show the usual leaky behavior of biological neurons. However, both presynaptic rates ‍̄ri‍ and predic-
tion errors ‍̄ei‍ enter the equation of motion with lookaheads, i.e., they are advanced (‍ri = r̄i + τ ˙̄ri‍ and 

‍ei = ēi + τ ˙̄ei‍), cancelling the low-pass filtering. Since ‍̄̇ri = ρ′(ui) u̇i‍, the rate and error, ‍ri‍ and ‍ei‍, can also 
be seen as nonlinear extrapolations from the voltage and its derivative into the future.

The instantaneous transmission of information throughout the network at the level of the voltages 
can now be seen by low-pass filtering Equation 22 with initialization far back in the past,

	﻿‍ u = u + τ u̇ = Wr + e = Wr̄(u) + ē ,‍� (23)

with column vector ‍̄r(u) = (̄rin, ρ(u))T
‍ and ‍̄e = r̄′net·WT

netē + βē∗‍. Hence, solving the voltage dynamics 
for ‍u‍ (Equation 7a), with apical voltage ‍e = ē + τ ˙̄e‍ derived from Equation 7b, yields the somatic 
voltage ‍u‍ satisfying the self-consistency Equation 23 at any time. In other words, ‍u‍ and ‍̄e‍‘propagate 
instantaneously’.

Deriving the error backpropagation formula
For clarity, we derive the error backpropagation algorithm for layered networks here. These can be 
seen as a special case of a general network with membrane potentials ‍u‍ and all-to-all weight matrix ‍W ‍ 
(as introduced in Appendix 8), where the membrane potentials decompose into layerwise membrane 

https://doi.org/10.7554/eLife.89674
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Table 1. Mathematical symbols.

Mathematical expression Naming Comment

‍ui‍ Instantaneous (somatic) voltage only for network neurons

‍ri = ρ(ui) + τ ρ̇(ui)‍
Instantaneous firing rate of neuron 
i that looks linearly ahead in time

‍
r̄(t) = 1

τ

ˆ t

−∞
r(t′)e

−
t − t′

τ dt′
‍ Definition of low-pass filtering See Equation 15

‍̄ri = ρ(ui) = ri + τ ṙi ‍ Low-pass filtered firing rate postulated to be a function of‍ui‍

‍r = r̄ + τ ˙̄r ‍ Self-consistency eq. for low-pass filtered rate

‍rin‍ Input rate vector, column projects to selected neurons

‍̄rin‍ Low-pass filter input rates instantaneously propagates

‍ei = (ui + τ u̇i) −
∑

jWijrj‍ Prospective error of neuroni in apical dendrite

‍̄ei = ui −
∑

jWijr̄j‍ Error of neuroni in soma

‍E
M

i = 1
2 ē 2

i = 1
2
(
ui −

∑
jWijr̄j

)2
‍ Mismatch energy in neuroni between soma and basal dendrite

‍u∗o‍ Target voltage for output neuron o
could impose target on‍ro‍ 
or‍̄ro‍

‍̄e∗o = u∗o − uo‍ Error of output neuron o also called target error

‍Co = 1
2 (ē∗o )2

‍

Cost contribution of output 
neuron o between soma and basal dendrite

‍L =
∑

i∈N EM
i + β

∑
o∈O Co‍ Lagrangian ‍output O ⊂ network N ‍

‍
ũ(t) = 1

τ

ˆ ∞

t
u(t′)e(t−t′)/τdt′

‍ Discounted future voltage prospective coordinates for NLA

‍u = ũ − τ ˙̃u‍ Self-consistency eq. for discounted future voltage

‍
A =
ˆ t2

t1
L
[
ũ(t), ˙̃u(t)

]
dt

‍ Neuronal Least Action (NLA) expressed in prospect. coordinates

‍

∂L
∂ũi

− d
dt

∂L
∂ ˙̃ui

=
(
1 + d

dt
)

∂
∂ui

L = 0
‍ Euler-Lagrange equations turned into lookahead operator

‍Win‍ weights from input neurons‍rin‍
‍dim(N ) × dim(rin)‍
, most0

‍Wnet‍ weights between network neurons ‍dim(N ) × dim(N )‍

‍W = (Win, Wnet)‍ total weight matrix ‍dim(N ) ×
(
dim(rin) + dim(N )

)
‍

‍r = (rin, rnet)T
‍ instantaneous firing rate vector column (indicated by transpose)

‍Ẇ ∝ ē r̄T‍ Plasticity of‍W ‍

‍̄e‍ 
is a column,‍̄rT‍ a row vector

‍u∗o (t) = F∗(rin(t))‍
Target function formulated 
for‍rin(t)‍ a functional of‍rin(t)‍

‍uo(t) = FW (̄rin(t), ē∗o (t))‍
Func. implemented by forward 
network

instant. func. of‍̄rin(t)‍
 , not‍rin(t)‍

‍N ‍ Layers in forward network, w/o‍rin‍ Last-layer voltages:‍uN = uo‍

‍W
IP
l ‍

Weights from pyr to interneurons lateral, within layer l

Table 1 continued on next page

https://doi.org/10.7554/eLife.89674


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Senn, Dold et al. eLife 2023;12:RP89674. DOI: https://doi.org/10.7554/eLife.89674 � 22 of 57

potential vectors ‍ul‍ and the weight matrix into according to block diagonal matrices ‍Wl‍ (with ‍Wl‍ being 
the weights that project into layer ‍l‍).

Assuming a network with ‍N ‍ layers, by low-pass filtering the equations of motion we get

	﻿‍ ul = Wlr̄l−1 + ēl,‍� (24)

for all ‍l ∈ 1, .., N ‍, with the output error ‍̄eo‍ of the general recurrent network becoming the error in the 
last layer, that itself is the target error, ‍̄eo = ēN = βē∗ = β

(
u∗

N − uN
)
‍. The error ‍̄e = ϵ̄ + βē∗‍, that we 

obtain from the general dynamics with ‍̄ϵ = r̄′net·WT
netē‍, see Equations 21 and 22, translates to an itera-

tive formula for the error at the current layer ‍l‍ given the error at the downstream layer ‍l+1‍, inherited 
from the drive ‍̄rl = ρ(ul)‍ of that downstream layer via ‍Wl+1‍,

	﻿‍ ēl = r̄′l·W
T
l+1ēl+1 for l < N.‍� (25)

and ‍̄eN = β ē∗‍ for the output layer. The learning rule that reduces ‍̄el‍ by gradient descent is proportional 
to this error and the presynaptic rate, as stated by Theorem 1, is

	﻿‍ Ẇl ∝
(
ul − Wl r̄l−1

)
r̄T

l−1 = ēl r̄T
l−1,‍� (26)

Mathematical expression Naming Comment

‍W
PI
l ‍ Weights from inter- to pyr’neurons lateral, within layer l

‍Wl‍
Bottom-up weights from layerl–1
 tol between pyramidal neurons

‍Bl‍
Top-down weights from layerl+1
 tol between pyramidal neurons

‍̄e
A
l = Blul+1 − WPI

luI
l‍

Low-pass filtered apical error in 
layerl top-down minus lateral feedback

‍̄el = r̄′l ·ē
A
l = r̄′l ·Bl ēl+1‍ Somato-basal prediction error is correct error for learning

‍E
IP
l = 1

2∥uI
l − WIP

l̄rl∥2
‍ Interneuron mismatch energy minimized to learn‍W

IP
l ‍

‍E
PI
l = 1

2∥Blul+1 − WPI
luI

l∥2
‍ Apical mismatch energy minimized to learn‍W

PI
l ‍

‍η , ηIP , ηPI
‍ Learning rates for plasticity of… …‍Wl ; WIP

l ; WPI
l ‍

‍
H = ∂2L

∂u2 = 1 − Wnetρ
′ − ē′

‍ Hessian,‍
∂2L
∂u2 = ∂f

∂u ‍. If pos. definite ⇒ stable dynamics

‍
f(u, t) = ∂L

∂u
= u − Wr̄(u) − ē(u)

‍ Corrected error
becomes0
 with‍τ ‍

‍f(u, t) + τ ḟ(u, t) = 0‍ Euler-Lagrange equations satisfy‍f(u, t) = f0 e−(t−t0)/τ
‍

‍f(u, t) = 0‍ Always the case after transient exponentially decaying with‍τ ‍

‍
u̇ = − 1

τ
H−1(u)

(
f(u) + τ

∂f
∂t

)

‍ Explicit diff. eq. obtained by solving for‍̇u‍

‍
g(u, t) = − 1

τ
H−1(u)

(
f(u) + τ

∂f
∂t

)

‍ Used to write the explicit diff. eq. ‍̇u = g(u, t)‍

‍
G(y, u̇) =

(
1 + τ d

dt
)∂L
∂u

= f + τ ḟ
‍

Used for contraction anaylsis, 
Equation 53 ‍y = (rin, u∗o , u)‍

‍M , K ‍ Used to iteratively converge to‍̇u‍ see Equation 46

‍̆u = u + τ u̇‍ Linear lookahead voltage Latent Equilibrium, Appendix 4

Table 1 continued
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for ‍l = 1...N ‍. Equations 25 and 26 together take the form of the error backpropagation algorithm, 
where an output error is iteratively propagated through the network and used to adjust the weights in 
order to reduce the output cost ‍C‍. From this, it is easy to see that without output nudging (i.e. ‍β = 0‍), 
the output error vanishes and consequently all other prediction errors vanish as well, ‍̄el = ul − Wlr̄l = 0‍ 
for all ‍l ≤ N ‍. This also means that in the absence of nudging, no weight updates are performed by 
the plasticity rule.

The learning rule for arbitrary connectivities is obtained in the same way by dropping the layer-wise 
notation. In this case, low-pass filtering the equations of motion yields ‍u = Wr̄ + ē‍, as calculated in 23, 
and the low-pass filtered error ‍̄e = ϵ̄ + βē∗ = r̄′net·WT

netē + βē∗‍, as inferred from Equations 21 and 22. 
Hence, the plasticity rule in general reads

	﻿‍ Ẇ ∝
(
u − W r̄

)
r̄T = ē r̄T , with ē = r̄′net·WT

netē + βē∗.‍� (27)

Proving theorem 1 (rt-DeEP)
The implicit assumption in Theorem 1 is that ‍̇u‍ exists in the distributional sense for ‍t > −∞‍, which is 
the case for delta-functions in ‍rin‍ and step-functions in ‍u∗‍. Both parts (i) and (ii) of the Theorem are 
based on the requirement of stationary action ‍δA = 0‍, and hence on ‍u‍ satisfying the Euler-Lagrange 

equations in the form of Equation 22, ‍
(
1 + τ d

dt
)
∂L
∂u = 0‍. From the solution ‍

∂L
∂ui

= c e−
t−t0
τ

‍ we conclude 
that for initialization at ‍t0 = −∞‍ we have ‍

∂L
∂u = 0‍ for all ‍t‍. It is the latter stronger condition that we 

require in the proof. With this, the main ingredient of the proof follows is the mathematical argument 
of Scellier and Bengio, 2017, according to which the total and partial derivative of ‍L‍ with respect to 
‍W ‍ are identical, and this in our case is true for any time ‍t‍,

	﻿‍
dL
dW

= ∂L
∂u

T du
dW

+ ∂L
∂W

= ∂L
∂W

,
‍�

(28)

For convenience we considered ‍
∂L
∂u‍ to be a column vector, deviating from the standard notations 

(see tutorial end of sec:Integration). Analogously to Equation 28, we infer ‍
dL
dβ = ∂L

∂β ‍. Reading Equa-

tion 28 from the right to the left, we conclude that the learning rule ‍Ẇ ∝ − ∂L
∂W = ē r̄T

‍ for all ‍β > 0‍ is 
gradient descent on ‍L‍, i.e., ‍Ẇ ∝ − dL

dW ‍. This total derivative of ‍L‍ can be analyzed for large and small ‍β‍.
(i) We show that in the limit of large ‍β‍, ‍Ẇ ‍ becomes gradient descent on the mismatch energy 

‍E
M = 1

2∥ē∥2
‍. For this we first show that there is a solution of the self-consistency equation 

‍u = F(u) = Wr̄ + r̄′net·WT
netē + β ē∗‍ that is uniformly bounded for all ‍t‍ and ‍β‍. For this we assume that 

the transfer function ‍ρ(u)‍ is non-negative, monotonically increasing, and bounded, that its deriva-
tive ‍ρ

′(u)‍ is bounded too, and that the input rates ‍rin‍ and the target potentials ‍u
∗
o ‍ are also uniformly 

bounded. To show that under these conditions we always find a uniformly bounded solution ‍u(t)‍, we 
first consider the case where the output voltages are clamped to the target, ‍uo = u∗

o ‍ such that ‍̄e∗ = 0‍. 
For simplicity, we assume that ‍ρ

′(u) = 0‍ for ‍|u| ≥ c0‍. For voltages ‍u‍ with ‍ui ≤ c0‍ the recurrent input 
current ‍Wr̄‍ is bounded, say ‍|(Wr̄)j| ≤ c1‍ for some ‍c1 > c0‍. When including the error term ‍̄r′net·WT

netē‍, the 
total current still remains uniformly bounded, say ‍|F(u)j| ≤ c2‍ for all ‍u‍ with ‍ui ≤ c0‍. Because for larger 
voltages ‍ui > c0‍ the error term vanishes due to a vanishing derivative ‍ρ

′(ui) = 0‍, the mapping ‍F(u)‍ 
maps the ‍c2‍-box ‍u‍ (for which ‍|ui| ≤ c2‍) onto itself. Brouwer’s fixed point theorem then tells us that 
there is a fixed point ‍u = F(u)‍ within the ‍c2‍-box. The theorem requires the continuity of ‍F‍, and this is 
assured if the neuronal transfer function ‍̄r = ρ(u)‍ is continuous.

We next relax the voltages of the output neurons from their clamped stage, ‍uo = u∗
o ‍. Remember 

that these voltages satisfy ‍uo = (Wr̄ + r̄′net·WT
netē + β ē∗)o = F(u)o‍ at any time ‍t‍. We determine the correc-

tion term ‍β ē∗o‍ such that in the limit ‍β → ∞‍ we get ‍uo = F(u)o = u∗
o‍. The correction remains finite, and 

in the limit must be equal to ‍limβ→∞ β ē∗o = u∗
o − (Wr̄ + r̄′net·WT

netē)o‍. For arbitrary large nudging strength 

‍β‍, the output voltage ‍uo‍ deviates arbitrary little from the target voltage, ‍uo = u∗
o + o(1/β)‍, with target 

error 
‍
ē∗o = 1

β

(
u − Wr̄ − r̄′net·WT

netē
)

o‍
 shrinking like ‍c2/β‍. Likewise, also for non-output neurons i, the self-

consistency solution ‍ui = F(u)i‍ deviates arbitrarily little from the solution of the clamped state. To 
ensure the smooth drift of the fixed point while ‍1/β‍ deviates from 0 we require that the Jacobian of ‍F‍ 
at the fixed point is invertible.

Because the output ‍̄e∗o‍ shrinks with ‍1/β‍, the cost shrinks quadratically with increasing nudging 
strength, ‍C = 1

2∥ē∗∥2 = o
( 1
β2

)
‍, and hence the cost term ‍

β
2 ∥ē∗∥2

‍ that enters in ‍L = EM + β
2 ∥ē∗∥2

‍ 
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vanishes in the limit ‍β → ∞‍. In this large ‍β‍ limit, where ‍̄e∗o = 0‍ and hence the outputs are clamped, 

‍uo = u∗
o‍, the Lagrangian reduces to the mismatch energy, ‍L = EM‍. Along the least-action trajectories, 

we, therefore, get ‍Ẇ ∝ − ∂L
∂W = − dL

dW = − dEM

dW ‍. The first equality uses Equation 28, and the second 
uses ‍L = EM‍ just derived for ‍β = ∞‍. This is a statement (‍i‍) of Theorem 1. In the case of successful 
learning, ‍EM = 0‍, we also conclude that the cost vanishes, ‍C = 0‍. This is the case because ‍EM = 0‍ 
implies ‍EM

o = 0‍ for all output neurons ‍o‍. Since ‍E
M

o = 1
2 ē2

o = 1
2 (̄r′net·WT

netē + β ē∗)2
o‍, we conclude that 

‍̄eo = 0‍, and if the output neurons do not feed back to the network (which we can assume without loss 
of generality), we conclude that ‍̄e∗o = 0‍.

(ii) To consider the case of small ‍β‍, we use that the cost ‍C‍ can be expressed as ‍C = ∂L
∂β ‍. This is a 

direct consequence of how ‍C‍ enters in ‍L = 1
2∥ē∥2 + β

2 C‍, see Equation 16 and Scellier and Bengio, 
2017. We now put this together with Equation 28 and the finding that ‍

∂L
∂β = dL

dβ ‍. Since for the Lipschitz 
continuous function ‍L‍ in ‍u‍, ‍W ‍, and ‍β‍ (‍L‍ is even smooth in these arguments), the total derivatives inter-
change (which is a consequence of the Moore-Osgood theorem applied to the limits of the difference 
quotients), we then get at any ‍t‍,

	﻿‍

dC
dW

= d
dW

∂L
∂β

= d
dW

dL
dβ

= d
dβ

dL
dW

= d
dβ

∂L
∂W

= − d
dβ

ē r̄T.
‍�

(29)

The last expression is calculated from the specific form of the Lagrangian Equation 17, using that 
by definition ‍̄e = u − Wr̄‍.

Finally, in the absence of output nudging, ‍β = 0‍, we can assume vanishing errors, ‍̄e = 0‍, as they 
solve the self-consistency equation, ‍̄e = r̄′net·WT

netē‍ for all ‍t‍, see Equation 27. For these solutions we have 

‍
ē r̄T

∣∣∣
β=0

= 0
‍
. Writing out the total derivative of the function ‍g(β) = ē r̄T

‍ with respect to ‍β‍ at ‍β = 0‍ as 

limit of the difference quotient, 
‍
dg(β)

dβ

���
β=0

= limβ→0
1
β

(
g(β) − g(0)

)
= limβ→0

1
β g(β)

‍
, using that ‍g(0)=0‍, 

we calculate at any ‍t‍,

	﻿‍

d ē r̄T

dβ

�����
β=0

= limβ→0
1
β

(
ē r̄T − ē r̄T

���
β=0

)
= limβ→0

1
β

ē r̄T.
‍�

(30)

Here, we assume that ‍̄e r̄T‍ is evaluated at ‍β > 0‍ (that itself approaches 0), while 
‍
ē r̄T

∣∣∣
β=0‍

 is evaluated 

at ‍β = 0‍. Combining Equations 29 and 30 yields the cost gradient at any ‍t‍,

	﻿‍
− dC

dW
= limβ→0

1
β

ē r̄T.
‍�

(31)

This justifies the gradient learning rule ‍Ẇ ‍ in Equation 27. Learning is stochastic gradient descent 
on the expected cost, where stochasticity enters in the randomization of the stimulus and target 
sequences ‍rin(t)‍ and ‍u∗(t)‍. For the regularity statement, see ‘From implicit to explicit differential equa-
tions’ in the sec:Integration. Notice that this proof works for a very general form of the Lagrangian ‍L‍, 
until the specific expression for ‍

∂L
∂W ‍. For a proof in terms of partial derivatives only, see Appendix 8, 

and for a primer on partial and total derivatives see Appendix 7.

Instantaneous gradient descent on ‍C(u∗
o , rin)‍

The cost ‍C = 1
2∥u∗

o − uo∥2
‍ at each time ‍t‍ is a function of the voltage ‍uo‍ of the output neurons and 

the corresponding targets. In a feedforward network, due to the instantaneity of the voltage propa-
gation Equation 23, ‍uo‍ is in the absence of output nudging (‍β = 0‍) an instantaneous function of the 

voltage at the first layer, ‍u1(t) = Winrin(t) + u1(t0) e−
t−t0
τ ‍. For initialisation at ‍t0 = −∞‍, the second term 

vanishes for all ‍t‍ and hence ‍u1(t) = Winrin(t)‍. The output voltage ‍uo(t)‍, therefore, becomes a func-
tion ‍FW ‍ of the low-pass filtered input rate ‍rin(t)‍ that captures the instantaneous network mapping, 

‍uo(t) = FW(rin(t))‍, and with this the cost also becomes an instantaneous function of ‍rin‍ and ‍u∗
o‍, namely 

‍C(t) = 1
2∥u∗

o (t) − uo(t)∥2 = 1
2∥u∗

o (t) − FW(rin(t))∥2
‍.

For a general network, again assuming ‍t0 = −∞‍, the voltage is determined by the vanishing 
gradient ‍

∂L
∂u = f(u, t) = u − Wr̄(u) − ē(u) = 0‍ with ‍̄e = ϵ̄− βē∗‍, see Equation 21. For the inclusive treat-

ment of the initial transient see Appendix 3 and Appendix 4. Remember that ‍̄r = (̄rin, r̄net(u))T
‍ and 

‍̄e∗ = u∗
o − uo‍. For a given ‍̄rin‍ and ‍u∗

o‍ at time ‍t‍, the equation ‍f(u, t) = 0‍ can be locally solved for ‍u‍ if the 

https://doi.org/10.7554/eLife.89674
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Hessian ‍H = ∂2L
∂u2 = ∂f

∂u = 1 − Wnetρ
′ − ē′‍ is invertible, ‍u = F(̄rin, u∗

o )‍. This mapping can be restricted to 
the output voltages ‍uo‍ on the left-hand side, while replacing ‍u∗

o = uo + ē∗o‍ in the argument on the right-
hand side (even if this again introduces ‍uo‍ there). With this, we obtain the instantaneous mapping 

‍uo(t) = FW(rin(t), ē∗o (t))‍ from the low-pass filtered input and the output error to the output itself. Notice 
that for functional feedforward network, the network weight matrix ‍Wnet‍ is lower triangular, and for 
small enough ‍β‍ the Hessian ‍H‍ is, therefore, always positive definite (see also Methods, Sect. From 
implicit to explicit differential equations).

Proving theorem 2 (rt-DeEL)
Here, we restrict ourselves to layered network architectures. To prove Theorem 2 first assume that 
interneurons receive no nudging (‍β

I = 0‍) and only the lateral interneuron-to-pyramidal weights ‍WPI
l‍ 

are plastic. This is already sufficient to prove the rt-DeEL theorem. Yet, simulations showed that 
learning the lateral pyramidal-to-interneuron weights ‍WIP

l‍ via top-down nudging, so that the inter-
neuron activity mimics the upper layer pyramidal neuron activity, helps in learning a correct error 
representation. We consider this case of learning ‍WIP

l‍ later.
If the microcircuits is ought to correctly implement error backpropagation, all local prediction errors 

‍̄el‍ must vanish in the absence of output nudging (‍β = 0‍) as there is no target error. Consequently, any 
remaining errors in the network are caused by a misalignment of the lateral microcircuit. We show how 
learning the interneuron-to-pyramidal weights ‍WPI

l‍ corrects for such misalignments.
To define the gradient descent plasticity of the weights ‍WPI

l‍ from the interneurons to the pyramidal 
neurons, we consider the apical error formed by the difference of top-down input and interneuron 
input, ‍̄e

A
l = Blul+1 − WPI

luI
l‍, and define the apical mismatch energy as ‍E

PI
l = 1

2∥ēA
l ∥

2
‍. Gradient descent 

along this energy with respect to ‍WPI
l‍ yields

	﻿‍
ẆPI

l = ηPIeA
l uI T

l = ηPI
(

Blul+1 − WPI
l uI

l

)
uI T

l ‍� (32)

evaluated online while presenting input patterns from the data distribution to the network. We assume 
that the apical contribution to the somatic voltage is further modulated by the somatic spike rate, ‍̄r

′
l·̄e

A
l ‍. 

After successful learning, the top-down input ‍Blul+1‍ is fully subtracted away by the lateral input in the 
apical compartment, and we have

	﻿‍ Blul+1 = WPI
luI

l.‍� (33)

Once this condition is reached, the network achieves a state where, over the activity space spanned 
by the data, top-down prediction errors throughout the network vanish,

	﻿‍
ēl = r̄′l·̄e

A
l = r̄′l·

(
Blul+1 − WPI

luI
l

)
= 0.

‍� (34)

We show that this top-down prediction error, after the successful learning of the microcircuit, shares 
the properties of error-backpropagation for a suitable backprojection weights ‍B‍.

Due to the vanishing prediction errors, pyramidal cells only receive bottom-up input ‍ul+1 = Wl+1r̄l‍. 
Using this expression as well as the expression for interneuron membrane potentials without top-
down nudging (‍β

I = 0‍ in Equation 9), ‍uI
l = WIP

lr̄l‍, and plugging both into Equation 33, we get

	﻿‍ BlWl+1r̄l = WPI
lWIP

lr̄l.‍� (35)

Assuming that ‍WIP
l‍ has full rank, and the low-pass filtered rates ‍̄rl‍ span the full ‍nl‍ dimensions of 

layer ‍l‍ when sampled across the data set, we conclude that

	﻿‍ BlWl+1 = WPI
lWIP

l.‍� (36)

In other words, the loop via upper layer and back is learned to be matched by a lateral loop 
through the interneurons.

Equation 36 imposes a restriction on the minimal number of interneurons ‍n
I
l‍ at layer ‍l‍. In fact, the 

matrix product ‍BlWl+1‍ maps a ‍nl‍-dimensional space onto itself via ‍nl+1‍-dimensional space. The maximal 
rank of the this matrix product is limited by the smallest dimension, i.e., ‍rank(BlWl+1) ≤ min(nl, nl+1)‍. 

https://doi.org/10.7554/eLife.89674
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Analogously, ‍rank(WPI
lWIP

l) ≤ min(nl, nI
l)‍. But since the two ranks are the same according to Equation 

36, we conclude that in general ‍n
I
l ≥ min(nl, nl+1)‍ must hold, i.e., there should be at least as many 

interneurons at layer ‍l‍ as the lowest number of pyramidal neurons at either layer ‍l‍ or ‍l+1‍. Note that by 
choosing ‍n

I
l = nl+1‍ as in Sacramento et al., 2018 (or ‍n

I
l > nl+1‍ as in this work), the conditions is fulfilled.

With ‍uI
l = WIP

lr̄l‍ and Equation 36, the top-down prediction error from Equation 34, in the pres-
ence of output nudging (‍β > 0‍), can be written in the backpropagation form

	﻿‍ ēl = r̄′l ·(Bl ul+1 − WPI
l uI

l ) = r̄′l ·(Bl ul+1 − WPI
l WIP

lr̄l)‍� (37a)

	﻿‍ = r̄′l ·(Bl ul+1 − Bl Wl+1r̄l ) = r̄′l ·Bl
(
ul+1 − Wl+1r̄l

)
‍� (37b)

	﻿‍ = r̄′l·Bl ēl+1 = r̄′l ·Bl r̄′l+1·ē
A
l+1.‍� (37c)

Finally, the simulations showed that learning the lateral weights in the microcircuit greatly 
benefits from also adapting the pyramidal-to-interneuron weights ‍WIP‍ by gradient descent on 

‍E
IP = 1

2
∑

l ∥uI
l − WIP

l̄rl∥2
‍, using top-down nudging of the inhibitory neurons (‍β

I > 0‍),

	﻿‍
ẆIP

l = ηIP
(

uI
l − WIP

l r̄l

)
r̄T
l .

‍� (38)

After learning we have ‍uI
l = WIP

l̄rl‍, and plugging in ‍uI
l = (1 − βI)WIP

lr̄l + βIBIP
lul+1‍ (Equation 9), 

we obtain ‍WIP
lr̄l = BIP

lul+1‍. Since ‍ul+1 = Wl+1r̄l‍, we conclude as before,

	﻿‍ WIP
l = BIP

l Wl+1.‍� (39)

The top-down weights ‍BIP
l‍ that nudge the lower-layer interneurons has randomized entries and 

may be considered as full rank. If there are less pyramidal neurons in the upper layer than interneurons 
in the lower layer, ‍BIP

l‍ selects a subspace in the interneuron space of dimension ‍nl+1 < nI
l‍. This seems 

to simplify the learning of the interneuron-to-pyramidal cell connections ‍WPI‍. In fact, this learning now 
has only to match the ‍nl+1‍-dimensional interneuron subspace embedded in ‍n

I
l‍ dimensions to an equal 

(‍nl+1‍-)dimensional pyramidal cell subspace emedded in ‍nl‍ dimensions.
Learning of the interneuron-to-pyramidal cell connections works with the interneuron nudging as 

before, and combining Equations 36 with 39 yields the ‘loop consistency’

	﻿‍ BlWl+1 = WPI
lBIP

l Wl+1.‍� (40)

The learning of the microcircuit was described in the absence of output nudging. Conceptually, this 
is not a problem as one could introduce a pre-learning phase where the lateral connections are first 
correctly aligned before learning of the feedforward weights begins. In simulations we find that both 
the lateral connections as well as the forward connections can be trained simultaneously, without the 
need for such a pre-learning phase. We conjecture that this is due to the fact that our plasticity rules 
are gradient descent on the energy functions ‍L‍, ‍EPI‍, and ‍EIP‍, respectively.

From implicit to explicit differential equations
The voltage dynamics is solved by a forward-Euler scheme ‍u(t + dt) = u(t) + u̇(t) dt‍. The derivative ‍̇u(t)‍ 
is calculated either through (i) the implicit differential Equation 7a yielding ‍τ u̇(t) = h(u(t), u̇(t − dt))‍, 
or (ii) by isolating ‍̇u(t)‍ and solving for the explicit differential equation ‍τ u̇(t) = g(u(t))‍, as explained in 
Appendix 3 (after Equation 51).

(i) The implicit differential equation, ‍τ u̇(t) = −u(t) + Wr(t) + e(t)‍, see Equation 22, is iteratively 
solved by assigning ‍r(t) = ρ

(
u(t)

)
+ ρ′

(
u(t)

)
·̇u(t − dt)‍ and calculating the error ‍e(t) = ē(t) + τ ˙̄e(t)‍ with 

‍̄e(u) = ρ′(u)·WT
net
(
u − Wnetρ(u) − Winr̄in

)
+ βē∗‍ and ‍̇̄e(t) = ē′(u(t))·̇u(t − dt)‍.

This iteration exponentially converges to a fixed point ‍̇u(t)‍ on a time scale ‍
dt

1−k‍, where ‍1 − k > 0‍ is 

the smallest Eigenvalue of the Hessian ‍H = ∂2L
∂u2 = 1 − Wnetρ

′ − ē′‍, see Appendix 3.
(ii) The explicit differential equation is obtained by eliminating the ‍̇u‍ from the right-hand 

side of the implicit differential equation. Since ‍̇u‍ enters linearly we get ‍τH u̇ = −f − τ ∂f
∂t ‍ 

with ‍f(u, t) = ∂L
∂u = u − Wr̄ − ϵ̄− βē∗‍. The explicit form is obtained by matrix inversion, 

‍
u̇ = g(u, t) = − 1

τ H−1
(

f + τ ∂f
∂t

)
‍
, as the Hessian is invertible if it is strictly positive definite (which is typi-

cally the case, see Appendix 3, after Equation 48). The external input and the target enter through 

https://doi.org/10.7554/eLife.89674
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‍
∂f
∂t = Win ˙̄rin + β u̇∗

o‍, where the derivative of the target voltage is only added for the output neurons ‍o‍. 
This explicit differential equation is shown to be contractive in the sense that for each input trajectory 

‍rin(t)‍ and target trajectory ‍u∗(t)‍, the voltage trajectory ‍u(t)‍ is locally attracting for neighbouring trajec-
tories. This local attracting trajectory is the vanishing-gradient trajectory ‍f(u, t) = 0‍, and the gradient 
remains 0 even if the input contains delta-functions, see Appendix 4.

Moving and latent equilibria: a formal definition
We showed that the motor output (‍uo‍), together with the low-pass filtered sensory input (‍̄rin‍) and the 
motor feedback (‍̄e∗o‍) is in a moving equilibrium, ‍uo = FW (̄rin, ē∗o )‍, see Figure 3a. In general, a dynam-
ical system in ‍u‍ that is given in an implicit form ‍G(x, ẋ, u, u̇) = 0‍ with external inputs ‍(x, ẋ)‍ is said to be 
in a moving equilibrium if the variable ‍u‍ is an instantaneous function of the input ‍x‍ at any point in 
time, ‍u = F(x)‍. The fact that the implicit differential equation ‍G = 0‍ represents a dynamical system in 
‍u‍ implies that, in principle, it has a representation in the explicit form ‍̇u = g(u, x, ẋ)‍, guaranteed by an 
invertible Jacobian ‍

∂G
∂u̇ ‍.

Our example is obtained from ‍G = (1 + τ·ddt )f ‍ with ‍f(u, x) = ∂L
∂u‍ and ‍x = (̄rin, ē∗o )‍, leading to 

‍x + τ·̇x = (rin, e∗o )‍. Given the paramterization of ‍G‍ by the weights, we get the parametrized function 

‍u = FW(x)‍, and this is restricted to the output components ‍uo‍ of ‍u‍. The condition on the Jacobian 

translates to ‍
∂G
∂u̇ = ∂f

∂u = ∂2L
∂u2 ‍ being invertible. Crucially, the description of the dynamics in the biolog-

ical or physical substrate is not given in its explicit form ‍̇u = g(u, x, ẋ)‍. However, it is given in an implicit 
form expressed as ‍̇u = h(x, ẋ, u, u̇)‍, where ‍̇u‍ still appears on the right-hand side. This ‘hybrid’ form is 
directly solved either in real time by the biophysical substrate itself, or by the forward-Euler scheme 
on clocked hardware, see (‍i‍) above. Notice that moving equilibria ‍u = FW(x)‍ with ‍x = (̄rin, ē∗o )‍ are able 
to capture complex temporal processing of the instantaneous input ‍rin‍. In fact, the low-pass filtering 

‍̄rin‍ can be obtained on various time scales through different ‍τin‍’s, and ‍FW ‍ for a general network ‍W ‍ 
can be arbitrary complex. The task is to adapt ‍W ‍ such that the ‘hybrid’ dynamical system eventually 
implements the target mapping ‍u∗

o = F ∗(x)‍.
The Latent Equilibrium (Haider et al., 2021) can be analogously formalized as a dynamical system in 

‍u‍, implicitly given by ‍G(x, u, u̇) = 0‍, and having a solution of the form ‍u + τ·̇u = F(x)‍. Abbreviating again 

‍f(u, x) = ∂L
∂u‍ with the same Lagrangian ‍L = 1

2∥u − Wρ(u)∥2 + β
2 C‍ as in the present NLA, the Latent Equi-

librium is obtained for ‍G(x, u, u̇) = f(u + τ·̇u, x)‍. The solution implies that the rate ‍r = ρ(u + τ·̇u) = ρ(F(x))‍ 
is an instantaneous function of ‍x = (rin, e∗o )‍, here without low-pass filtering. As for moving equilibria, 
the crucial point is that the biophysical substrate implements a hybrid form of the dynamical system, 
now ‍̇u = h(x, u, u̇)‍, that is implicitly solved by the analog substrate, and also allows for a solution in 
clocked hardware. For an extended stability analysis of the moving and latent equilibria see Appendix 
4.

Simulation details
Solving the explicit differential equation seems to be more robust when the learning rate for ‍Ẇ ‍ gets 
larger. The explicit form is also less sensitive to large Euler steps ‍dt‍, see Appendix 3. By this reason, 
the ordinary differential equations (ODE) were solved in the explicit form when including plasticity ‍Ẇ ‍. 
The algorithms are summarized as follows, once without interneurons (Algorithm 1), and once with 
interneurons (Algorithm 2):

https://doi.org/10.7554/eLife.89674
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Algorithm 1. with projection neurons only, for Figures 3 and 4 (using the explicit ODE, i.e., Step 12 instead 
of 11)

1: current state: ‍u(t)‍, ‍W(t)‍
2: # consider full vectors and matrices (padded with 0’s for feedforward networks)
3:# drop time argument ‍(t)‍ for convenience
4: ‍̄rnet ← ρ(u)‍, ‍̄r ←

(
r̄in, r̄net

)T
‍ , ‍W ←

(
Win, Wnet

)
‍

5: calculate weight derivatives
6: ‍Ẇ ← η(u − Wr̄)̄rT‍
7: calculate low-pass-filtered errors
8: ‍̄e∗o ← u∗o − uo‍, ‍̄e

∗
i = 0‍ for non-output neurons

9: ‍̄e ← r̄′net·WT
net(u − Wr̄) + βē∗‍

10: calculate temporal voltage derivatives either implicitly (11) or explicitly (12)
11: Implicit:  ‍τ u̇ ← −u + W(̄r + τ ˙̄r) + (ē + τ ˙̄e)‍
12: Explicit: ‍f ← u − Wr̄ − ē‍ , ‍H ← ∂f

∂u ‍ , ‍̇u ←‍ solve ‍τH(u) u̇ = −f − τ ∂f
∂t ‍ via Cholesky decomposition

13: update voltage and weights
14: ‍u ← u + u̇·dt‍, ‍W ← W + Ẇ·dt‍

Algorithm 2. including plastic interneurons, for Figure 5 (using the explicit ODE, i.e., Step 13 instead of 12)

1: current state: ‍u(t)‍, ‍W(t), uI(t), WPI(t), WIP(t)‍
2: # consider full vectors and matrices and drop time argument as in Algorithm 1
3: ‍̄r ←

(
r̄in, ρ(u)

)T
‍

4: calculate weight derivatives
5: ‍Ẇ ← η(u − Wr̄)̄rT‍
6: ‍ẆPI ← ηPI(Bu − WPIuI)uIT

‍
7: ‍ẆIP ← ηIP(uI − WIP r̄)̄rT‍
8: calculate low-pass filtered errors
9: ‍̄e∗o ← u∗o − uo‍ (‍̄e

∗
i = 0‍ for non-output neurons i)

10: ‍̄e ← Bu − WPIuI + βē∗‍ (‍Bo,: = WPI
o,: = 0‍ for output neurons o)

11: calculate temporal voltage derivatives either implicitly (12) or explicitly (13)
12: Implicit: ‍τ u̇ ← −u + W(̄r + τ ˙̄r) + (ē + τ ˙̄e)‍
13: Explicit: ‍f ← u − Wr̄ − ē‍ , ‍H ← ∂f

∂u ‍ , ‍̇u ←‍ solve ‍τH(u) u̇ = −f − τ ∂f
∂t ‍ via Cholesky decomposition

14: update network state \For‍X ∈ {u, W, WPI, WIP}‍
15: ‍X ← X + Ẋdt‍ End For
16: ‍uI ← (1 − βI)WIP r̄ + βIBIPu‍

Details for Figure 3b
Color coded snapshot of cortical local field potentials (LFPs) in a human brain from 56 deep iEEG 
electrodes at various locations, converted with the sigmoidal voltage-to-rate function ‍̄r(u) = 1

1+e−u ‍ 
and plotted onto a standard Talairach Brain (Talairach and Tournoux, 1988). The iEEG data is from 
a patient with pharmacoresistant epilepsy and electrodes implanted during presurgical evaluation, 
extracted from the data release of Burrello et al., 2019. The locations of the electrodes are chosen 
in accordance with plausibilty, as the original positions of the electrodes were omitted due to ethical 
standards to prevent patient identification.

Details for Figure 3c
Simulations of the voltage dynamics (Equation 7a) and weight dynamics (Equation 8), with learning 
rate ‍η = 10−3

‍, step size ‍dt =‍ 1ms for the forward Euler integration, membrane time constant  ‍τ = 10 ms‍ 
and logistic activation function. Weights were initialized randomly from a normal distribution ‍N (0, 0.12)‍ 
with a cut-off at ± 0.3. The number of neurons in the network ‍N ‍ was ‍n = 96‍, among them 56 output 
neurons ‍O ⊂ N ‍ that were simultaneously nudged, and 40 hidden neurons. During training, all output 
neurons were nudged simultaneously (with ‍β = 0.1‍), whereas during testing, only 42 out of 56 neurons 
were nudged, the remaining 14 left to reproduce the traces. Data points of the iEEG signal were 
sampled with a frequency of 512  Hz. For simplicity, we, therefore, assumed that successive data 
points are separated by 2ms, and up-sampled the signal via simple interpolation to 1 ms resolution as 
required by our integration scheme. Furthermore, the raw values were normalized by dividing them 
by a factor of 200 to ensure that they are approximately in a range of ±1–2. Training and testing was 
done on two separate 8 s traces of the iEEG recording. Same data as in Figure 3b1.

https://doi.org/10.7554/eLife.89674
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Details for Figure 4
Simulation of the neuronal and synaptic dynamics as given by Equation 8, Equation 7a, Equation 
7b. For 5 ms, 10 ms, and 50 ms presentation time, we used an integration step size of ‍dt = 0.05 ms‍, 
‍dt = 0.1 ms‍ and ‍dt = 0.5 ms‍, respectively (and ‍dt = 1 ms‍ otherwise). As an activation function, we used 
the step-linear function (hard sigmoidal) with ‍̄r(u) = 0‍ for ‍u ≤ 0‍, ‍̄r(u) = 1‍ for ‍u ≥ 1‍ and ‍̄r(u) = u‍ in 
between. The learning rate was initially set to ‍η = 10−3

‍ and then reduced to ‍η = 10−4
‍ after 22,000 s. 

The nudging strength was ‍β = 0.1‍ and the membrane time constant ‍τ = 10 ms‍. In these simulations 
(and only for these) we assumed that at each presynaptic layer ‍l = 0, 1, .., n − 1‍ there is a first neuron 
indexed by 0 that fires with constant rate ‍̄rl,0 = 1‍, effectively allowing the postsynaptic neurons ‍̄rl+1‍ 
to learn a bias through the first column of the weight matrix ‍Wl+1‍. Weights were initialized randomly 
from a normal distribution ‍N (0, 0.012)‍ with a cut-off at ±0.03. For an algorithmic conversion see the 
scheme below. In Figure 4c1, ‘rt-DeEP w/o lookahead’ is based on the dynamics ‍τ u̇ = −u + Wr̄ + ē‍. 
For ‘‍̇u‍ w/o error + backprop,’ we use ‍τ u̇ = −u + Wr‍ as the forward model (so without error terms on 
the membrane potential, but a prospective ‍r‍), and calculate weight updates using error backpropaga-
tion. In 4c2, we provide three controls: the test error for (i) a standard shallow artificial neural network 
trained on MNIST (black dashed line), (ii) rt-DeEP without prospective coding (as in Figure 4c1), but in 
Figure 4c2 with plasticity only turned on when the network is completely stationary, i.e., after waiting 
for several 100ms, such that synaptic weights are not changed during transients (orange dashed line, 
denoted by ‘w/o transients’), and (iii) an equivalent artificial neural network, ‍ul = Wlr̄l−1‍, trained using 
error backpropagation (black dashed line, ‘standard backprop’).

Details for Figure 5
Simulation of neuronal and synaptic dynamics with plastic microcircuit, i.e., the pyramidal-to-
interneuron and lateral weights of the microcircuit learned during training.

For the results shown in Figure 5c2, the following parameters were used. As an activation func-
tion, we used a hard sigmoid function and the membrane time constant was set to ‍τ = 10‍ ms. Image 
presentation time is 100ms. Forward, pyramidal-to-interneuron and interneuron-to-pyramidal weights 
were initialized randomly from a normal distribution ‍N (0, 0.012)‍ with a cut-off at ±0.03. All learning 
rates were chosen equal ‍η = 10−3

‍ and were subsequently reduced to ‍η = 10−4
‍ after 22,000 s training 

time. The nudging parameters were set to ‍β = 0.1‍ and ‍β
I = 0.1

1.1‍. The feedback connections ‍Bl‍ and the 
nudging matrices ‍B

IP
l ‍ were initialized randomly from a normal distribution ‍5·N (0, 0.012)‍ with a cut-off 

at ±0.15. The used integration step size was ‍dt = 0.25‍ ms. All weights were trained simultaneously. For 
an algorithmic conversion see the scheme below. The interneuron membrane potential was calculated 
by Equation 9 with a linear transfer function.
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Appendix 1
Extracting the presynaptic voltage error

Threshold-linear transfer functions
There is an important special case where the presynaptic voltage error can directly be extracted 
from presynaptic firing rates, without need to invert the transfer function via synaptic depression 
as shown below. This is the case when voltage errors in the upper layers are small, and the voltage-
to-rate transfer function has derivatives ‍ρ

′ = 0‍ or 1, so that ‍̄r
′
l+1 = (̄r′l+1)2

‍. The condition is satisfied, 
for instance, for a doubly threshold-linear function (a ‘doubly rectified linear unit’, ReLu) defined by 
‍ρ(ŭ) = 0‍ for ‍̆u < 0‍ and ‍ρ(ŭ) = ŭ‍ for ‍0 ≤ ŭ ≤ rmax‍, while ‍ρ(ŭ) = rmax‍ for larger voltages. In this case we 
calculate

	﻿‍ ēl+1 = r̄′l+1·̄e
A
l+1 = (̄r′l+1)2·̄eA

l+1 = r̄′l+1·̄el+1 = r̄′l+1·
(
ul+1 − Wl+1r̄l

)
‍� (41a)

	﻿‍ ≈ ρ(ul+1) − ρ(Wl+1r̄l) = r̄l+1 − ρ(Wl+1r̄l).‍� (41b)

The approximation uses the Taylor expansion in ‍ul+1‍ and assumes that ‍̄el+1‍ is small. The crucial 
point of Equation 41a is that the mismatch error defined on the voltage, ‍̄el+1 = ul+1 − Wl+1r̄l‍, can be 
factorized into a product of the postsynaptic rate derivative, ‍̄r

′
l+1‍, and the apical error, and hence 

it can be expressed as an error defined on the rate. Restricted to the segment ‍0 ≤ ūl+1 ≤ rmax‍ 
where the transfer function is linear and errors do not vanish, the same microcircuit delivers the 
feedback ‍Blr̄l+1‍ to the apical tree through the top-down projections, and ‍−Bl ρ(Wl+1r̄l)‍ through the 
lateral connections from the interneurons. While the plasticity rules for ‍WPI

l‍ and ‍WIP
l‍ stay the same, 

the top-down nudging of the interneurons, see Equation 9, can then be formulated based on the 
rate instead of the upper layer voltage, ‍uI

l = (1 − βI)WIP
lr̄l + βIBIP

lr̄l+1‍, with transfer function of the 
interneuron again the (doubly) threshold-linear ‍ρ(uI

l)‍. Since voltages and rates are identical in the 
segment ‍0 ≤ ūl+1 ≤ rmax‍ for each component, Equations 36 with 39 can still be inferred.

Rate-to-voltage inversion by short-term synaptic depression
We wish to readout the voltage error also for other nonlinear transfer functions than clipped ReLu’s. 
To do so, we take inspiration from the classical short-term synaptic depression model (Tsodyks 
and Markram, 1997; Abbott et al., 1997; Varela et al., 1997), see also Appendix 1—figure 1a1 
(that deviates from the release-independent synaptic depression, see Campagnola et al., 2022). 
We consider a dynamic vesicle release probability that is proportional to the pool size of available 
vesicles, ‍v(̄r)‍, and this pool size is postulated to depend on past presynaptic rates,

	﻿‍
p(release | r̄) ∝ v(̄r) = 1 + a

1 + d r̄
,
‍� (42)

where ‍̄r‍ is the low-pass filtered presynaptic rate, ‍a‍ and ‍d‍ are constants. The proportionality factor 
is ‍

1
1+a‍, making a probability out of the vesicle pools size. The effective synaptic strength ‍B‍ of a 

‘backprojecting top-down’ connection is the product of the absolute synaptic strength ‍B◦‍ and the 
vesicle pool size ‍v‍, i.e., ‍B = B◦ v(̄r)‍. The contribution to the postsynaptic current of the synapse is ‍Wr‍, 
and the contribution to the postsynaptic voltage is ‍Wr̄‍.

We search for an activation function ‍̄r(u)‍ such that the postsynaptic voltage contribution is 
the scaled presynaptic potential, ‍B r̄(u) = B◦u‍. Plugging in the above expression for ‍B‍ yields 

‍B r̄(u) = B◦v(̄r) r̄(u) = B◦u‍, and dividing ‍B◦‍ out, ‍v(̄r) r̄(u) = u‍, see Appendix 1—figure 1a2. With the 
expression for ‍v(̄r)‍ in Equation 42 we obtain a quadratic equation in ‍̄r‍ that is solved by the non-
negative and monotonically increasing function

	﻿‍
r̄ = 1

2

(
u−θ +

√
(u−θ)2 + 4u/d

)
≥ 0 , for u ≥ 0,

‍�
(43)

with ‘smooth’ threshold ‍θ = (1 + a)/d‍ and asymptote ‍̄r ≈ u − θ‍. This gives us a transfer function 
‍̄r(u)‍ that qualitatively matches those observed for pyramidal neurons recorded in the steady state 
(Anderson et al., 2000; Rauch et al., 2003), see Appendix 1—figure 1a3.

The approach generalizes to other pairs of strictly monotonic neuronal activation and depression 
functions ‍{r̄(u), v(̄r)}‍, as long as ‍u‍ is not driven below some minimal value, here ‍urest = 0‍, corresponding 

https://doi.org/10.7554/eLife.89674
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to ‍̄r = 0‍. The last requirement can, for instance, be accomplished by offsetting the activation function 
into a regime that guarantees that ‍u‍ stays positive.

In our simulations for Figure 5, we did not explicitly implement a dynamic vesicle pool, i.e., the 
right-hand side of ‍v(̄r) r̄ = u‍, but instead directly used the recovered membrane potentials ‍u‍.

Appendix 1—figure 1. Recovering presynaptic potentials through short term depression. (a1) Relative voltage 
response of a depressing cortical synapse recreated from Abbott et al., 1997, identified as synaptic release 
probability ‍p‍. (a2) The product of the low-pass filtered presynaptic firing rate ‍̄r(u)‍ times the synaptic release 
probability is ‍p(̄r)‍ proportional to the presynaptic membrane potential, ‍p(̄r)̄r ∝ u‍. (a3) Average in vivo firing rate 
of a neuron in the visual cortex as a function of the somatic membrane potential recreated from Anderson et al., 
2000, which can be qualitatively identified as the stationary rate ‍̄r(u)‍ derived in Equation 43.

https://doi.org/10.7554/eLife.89674
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Appendix 2
Looking back and forward in time with derivatives
Since dealing with extrapolations into the future is a crucial notion of the paper we present here 
some of the calculations. The discounted future voltage was introduced in Equation 4 as

	﻿‍
ũ(t) = 1

τ

ˆ ∞

t
u(t′)e

−
t′ − t
τ dt′ .

‍�

To show that ‍̃u‍ satisfies ‍u = ũ − τ ˙̃u‍, we need to apply the Leibniz integral rule in calculating the 
derivative ‍̇̃u‍. This leads to

	﻿‍

dũ
dt

(t) = − 1
τ

u(t) + 1
τ

ˆ ∞

t
u(t′) 1

τ
e
−

t′ − t
τ dt′ .

‍�

Multiplying this equation by ‍τ ‍ and using the definition of ‍̃u‍ yields ‍τ ˙̃u(t) = −u(t) + ũ(t)‍, or ‍u = ũ − τ ˙̃u‍.
By applying the Leibniz integral rule one also shows that ‍̄x‍, defined in Equation 15,

	﻿‍
x̄(t) = 1

τ

ˆ t

−∞
x(t′)e

−
t − t′

τ dt′ ,
‍�

solves ‍τ ˙̄x(t) = −x̄(t) + x(t)‍. This differential equation can be written as ‍
(
1 + τ d

dt
)
x̄ = x‍, with lookahead 

operator ‍
(
1 + τ d

dt
)
‍ defined in Equation 14. To show that ‍

(
1 + τ d

dt
)
x = x̄ + τ ẋ = x‍, one applies partial 

integration to ‍̇x(t)‍. Note that the equality ‍̄x + τ ẋ = x̄ + τ ˙̄x = x‍ only holds if we integrate from ‍−∞‍, and 
hence if the initialization of the trajectory is far back in the past as compared to the time constant ‍τ ‍.

Uniqueness of the rate function
In the main text we concluded from the postulate ‍r = ρ(u) + τ ρ̇(u)‍ and the general relation ‍r = r̄ + τ ˙̄r‍ 
that ‍̄r(t) = ρ(u(t))‍. This conclusion is a consequence of the uniqueness of a solution of an ordinary 
differential equation for a given initial condition that may include delta-functions on the right-hand 
side, see e.g., Nedeljkov and Oberguggenberger, 2012. In fact, we may consider both variables ‍ρ‍ 
and ‍̄r‍ as solutions of the differential equation ‍τ ẋ = −x + r‍, with ‍x‍ either ‍ρ‍ or ‍̄r‍. Because the solution 
is unique, we conclude that ‍ρ = r̄‍.

Learning the input time constants
In our applications we assumed that the input rates in the original mapping ‍u∗

o (t) = F ∗ (̄rin(t))‍ are low-
pass filtered by a common time constant ‍τ

∗
in(t),i = τ ‍ that is also shared as membrane time constant of 

the neurons. But in general, we may consider a subclass of network neurons (with voltage vector ‍u1‍) 
that receive exclusively input rates ‍rin‍ and integrate these rates with corresponding time constants 
‍τ in‍. The prospective rates of these neurons, ‍r1 = ρ(u1) + τ ρ̇(u1)‍, are then produced by the same 
voltage time constant ‍τ ‍ of the down-stream neurons. The downstream voltage integration then 
cancels the presynaptic look-ahead in the presynaptic firing rate, leading again to an instantaneous 
voltage propagation across the entire network.

The general setting of learning to map time series is that input time series, ‍rin(t)‍ are low-pass 
filtered with given time constants ‍τ

∗
in‍, and the target output time series ‍u∗

o (t)‍ are a function of these 

low-pass filtered inputs, ‍u
∗
o (t) = F∗

o (rτ
∗
in

in (t))‍. In the student network, the input time constants appear 
as parameters that can be learned by gradient descent to match the output of the teacher network, 
just as the synaptic weights are learned.

We ask for a learning rule so that the student network can extract the input time constants ‍τ
∗
in‍ 

used by the teacher network. For this, we assume that only the neurons ‍u1‍ obtain the external input 
and hence carry the time constant ‍τ in‍. Because ‍r

τ in
in = rin − τ in·̇r

τ in
in ‍, the gradient rule for the input 

time constant is

	﻿‍
τ̇ in = − ∂L

∂τ in
= − ∂L

∂rτ in
in

T ∂rτ in
in

∂τ in
= −WT

in
(
u1 − Winrτ in

in
)T ·̇rτ in

in .
‍� (44)
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This local learning rule also globally reduces the Lagrangian, and in the limits of ‍β → ∞‍ it is 
gradient descent on the mismatch energy, while in the limit ‍β → 0‍ it is gradient descent on the cost. 
The proof works as in Theorem 1. To learn a more complex mapping of time series that includes more 

complex temporal processing beyond a function of merely ‍u
∗
o (t) = F∗

o (rτ
∗
in

in (t))‍, additional variables 
need to be introduced that form memories (see Appendix 6).

https://doi.org/10.7554/eLife.89674
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Appendix 3
From the implicit to the explicit differential equation
Global convergence to a moving equilibrium (i.e. to ‍∂L

∂u = 0‍)
The original Euler-Lagrange equation is ‍(1 + τ d

dt )
∂L
∂u = 0‍, 20, with Jacobian 

‍
∂L
∂u = f(u, t) = u − Wr̄ − ϵ̄− βē∗‍. Remember the definition of ‍̄ϵ = r̄′net·WT

netē‍ given in 21. While ‍̄e = u − Wr̄‍ 
is an error that may not vanish, the ‘corrected error’ ‍f = ∂L

∂u‍ is shown to vanish exponentially quick, 
leading to the moving equilibrium with ‍u = Wr̄ − ϵ̄− βē∗‍. In fact, ‍

(
1 + τ d

dt
)
∂L
∂u = f + τ ḟ = 0‍, has the 

general solution

	﻿‍ f(u(t), t) = f(u0, t0) e
−

t − t0
τ −→ 0‍�

(45)

as an exponentially decaying function in ‍t‍ with ‍u(t0) = u0‍. Note that the argument ‍u‍ of the function 
‍f(u, t) = u − Wr̄ − ϵ̄− βē∗‍ does apriori not depend on time. It only becomes a function of time, 
‍u(t)‍, by requiring that ‍f + τ ḟ = 0‍. The voltage ‍u(t)‍ becomes a non-trivial function of time because 
the time-dependence of the function ‍f(u, t)‍, that apriori enters only through the second argument, 
expresses the temporally varying input ‍̄rin(t)‍, including a possible target output ‍u∗

o (t)‍.

Implicit differential equation
To make the dependence of ‍̇u‍ on the right-hand-side of the implicit differential Equation 22 more 
transparent, we rewrite this in the form

	﻿‍
u̇ = − f

τ
− ∂f

∂t
+ ∂

∂u
(Wr̄ + ϵ̄ + βē∗) u̇ = − f

τ
− ∂f

∂t
+ Mu̇ = K(rin, u∗

o , u, u̇) .
‍�

(46)

The partial derivative of ‍f(u, t)‍ with respect to time, ‍
∂f
∂t ‍, captures the external drive from the inputs 

and output targets that do not depend on ‍u‍, but may directly depend on time. In fact, instead of the 
argument ‍t‍ of ‍f ‍, we could consider the two arguments ‍̄rin‍ and ‍u∗

o‍, so that the partial derivative of 

‍f(u, t) = f(u, r̄in, u∗
o )‍ with respect to ‍t‍ can be written as

	﻿‍

∂fi
∂t

= ∂fi
∂r̄in

˙̄rin + ∂fi
∂u∗

o
u̇∗

o = Wi,in ˙̄rin + β δio u̇∗
o ,

‍�
(47)

where ‍δio‍ is the Kronecker delta that is equal to 1 if ‍i‍i is an output neuron, and 0 else. The 
partial derivatives of ‍f ‍ with respect to ‍u‍ represents the (symmetric) Hessian of the Lagrangian, 

‍Hij = ∂fi
∂uj

= ∂2L
∂ui∂uj

= δij − ∂
∂uj

(Wr̄ + ϵ̄ + βē∗)i‍, with ‍δij‍ being the Kronecker-delta, ‍̄ϵ‍ defined in 21 and ‍̄e∗‍ 
defined above 16. Remember that ‍W = (Win, Wnet)‍ and ‍̄r = (̄rin, r̄net) = (̄rin,ρ(u))‍. In vectorial notation 
the Hessian of the Lagrangian is

	﻿‍
H(u) = ∂f

∂u
= ∂2L

∂u ∂u
= 1 − Wnet diag

(
ρ′(u)

)
− ∂

∂u
(ϵ̄ + βē∗)(u),

‍�
(48)

where 1 is the identity matrix. This Hessian is ‘typically’ positive definite, as we argue next. For a 
functionally feedforward network, the weight matrix ‍Wnet‍ is lower triangular, and for small enough 
‍β‍ (for which ‍̄ϵ‍ is small) the diagonal elements are all positive and hence the Hessian ‍H‍ is invertible. 
Since ‍H‍ is also symmetric, it is, therefore, positive definite. In the general case, we require that ‍Wnet‍ 
has Eigenvalues smaller than 1, since otherwise the recurrent network dynamics may explode. If ‍ρ

′(u)‍ 
is also smaller than 1, and ‍β‍ still small enough, we conclude again that the Hessian is invertible (and 

hence positive definite). Notice that the property of ‍H = ∂2L
∂u ∂u‍ being symmetric is a general property 

of differentiable functions and ways weaker than the requirement that the recurrent weight matrix 
‍Wnet‍ is symmetric, as classically required for fixed point convergence in Hopfield-type networks.

Since in the implicit differential equation of Equation 46 the ‍̇u‍ also arises on the right-hand-side, 
we need to show that this Equation 46, for fixed ‍(rin, u∗

o , u)‍, can be solved for ‍̇u‍. To find the solution 
‍̇u‍ for given arguments ‍(rin, u∗

o , u)‍ in ‍K‍, we search for a fixed point of the mapping ‍̇u(i+1) = K(u̇(i))‍. In 
the argument ‍̇u‍, the mapping is affine, ‍̇u

(i+1) = − f
τ − ∂f

∂t + Mu̇(i)
‍, with matrix ‍M(u) = ∂

∂u (Wr̄ + ϵ̄ + βē∗)‍ 
appearing in Equation 46. The Banach fixed point theorem asserts that if ‍K(u̇)‍ is strictly contracting 
with ‍k‍, i.e., if ‍∥K(u̇(2)) − K(u̇(1))∥2 ≤ k∥u̇(2) − u̇(1)∥‍ for all pairs of inputs and ‍0 ≤ k < 1‍, then the 
iteration (here with iteration time step ‍dt‍) locally converges to a fixed point ‍̇u = K(u̇)‍. Because 

https://doi.org/10.7554/eLife.89674
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‍K(u̇(2)) − K(u̇(1)) = M(u̇(2) − u̇(1))‍, the mapping is ‍k‍-contractive if the eigenvalues of ‍M‍ have absolute 
value smaller than ‍k‍. This is the case if the Hessian ‍H(u) = 1 − M(u) = 1 − Wnetρ

′(u) − ē′(u)‍, with 

‍̄e = ϵ̄− βē∗‍, is strictly positive definite (which is ‘typically’ the case, see above).

Stable solution of the implicit differential equation
According to the above reasoning, the Banach fixed point theorem asserts (for the typically positive 
Hessian) that during convergence of the mapping ‍̇u(i+1) = K(u̇(i))‍ the distance to the fixed point is 

bounded by a constant times ‍e−i 1−k
dt ‍, with iteration index ‍i‍ and ‘virtual’ Euler step ‍dt‍. Formally,

	﻿‍ ∥K(u̇(i+1)) − K(u̇(i))∥ = ∥M(u̇(i+1) − u̇(1))∥ ≤ k∥u̇(i+1) − u̇(i)∥ ≤ c0 e
−i

1 − k
dt −→ 0.‍�

(49)

Crucially, because the mapping is affine in ‍̇u‍, the convergence is global in ‍̇u‍ while fixing the other 
arguments ‍(rin, u∗

o , u)‍ of ‍K‍.
In an analog physical device that implements exactly this feedback circuit in continuous time, 

the ‍dt‍ becomes truly infinitesimal and in this sense the convergence is instantaneous. If ‍dt‍ remains 
finite, ‍̇u(i)‍ converges to a moving target because the mapping ‍̇u(i+1) = K(u̇(i))‍ changes with time. The 
target should not move quicker than the time scale ‍

dt
1−k‍ of the ‍̇u(i)‍ convergence (but, fortunately, 

this convergence time-scale can be made arbitrarily quick by reducing ‍dt‍). Given a time course 
of the input rate ‍rin(t)‍ and target ‍uo

∗(t)‍ that has bounded variation, the ‍dt‍ can be chosen so that 
convergence becomes arbitrary quick, and in the limit instantaneous. As a consequence, for small 
enough ‍dt‍, the ‍̇u‍ becomes the same on the left- and right-hand side of the implicit differential 
Equation 46.

If ‍rin(t)‍ contains well-separated delta-functions, while otherwise still having bounded variations, 
the reasoning still applies since at any point in time, except at the time points of the isolated delta-
function, ‍f(u, t) = 0‍. This statement is proven in the Appendix 4.

In practical simulations, a caveat is in place when the learning rate becomes too big and ‍Ẇ ‍ starts to 
change the neuronal dynamics. In this case, the Hessian becomes ‍H = 1 − (Wdiag(ρ′) + Ẇdiag(ρ)) − ē′‍, 
and the Eigenvalues may become negative due to the ‍Ẇ ‍ term. Simulations can in fact become unstable 
with a big learning rate, and this is more pronounced if also the Euler ‍dt‍ is large. The explicit differential 
equation avoids the fast iteration towards a moving target and hence allows for larger ‍dt‍. This in 
particular pays out in the presence of a high learning rate (although the Cholesky decomposition 
also requires positive definiteness). For this reason, the large-scale simulations involving plasticity are 
performed with the explicit form described next.

Explicit differential equation
To isolate ‍̇u‍ in the implicit differential equation, we rewrite ‍

(
1 + τ d

dt
)
f = 0‍ again as

	﻿‍

τ ḟ = τ

(
∂f
∂u

u̇ + ∂f
∂t

)
= −f , or τ

dfi
dt

= τ


∑

j

∂fi
∂uj

u̇j + ∂fi
∂t


 = −fi .

‍�
(50)

Plugging the Hessian ‍H(u) = ∂f
∂u‍ from Equation 48 into Equation 50, we obtain the voltage 

dynamics from Equation 22 in the equivalent form

	﻿‍
τH(u) u̇ = −f − τ

∂f
∂t

.
‍�

(51)

In our applications, the Hessian ‍H‍ appears to be invertible (although this may not be the 
case for arbitrary networks), and Equation 51 can be solved for the unique ‍̇u‍ using the Cholesky 
decompositions. In fact, if ‍H‍ is invertible, the system implicit ordinary differential equations from 
Equation 51 can be converted into a system of explicit ordinary differential equations (with 

‍f(u, t) = ∂L
∂u = u − Wr̄ − ϵ̄− βē∗‍ and ‍H‍ given in Equation 48),

	﻿‍
u̇ = g(u, t) = − 1

τ
H−1(u)

(
f(u) + τ

∂f
∂t

)
,
‍� (52)

https://doi.org/10.7554/eLife.89674
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and as such it has a unique solution for any given initial condition. Equation 52 represents the 
explicit solution of the iteration ‍̇u(i+1) = K(u̇(i))‍ after the convergence to the fixed point ‍̇u = K(u̇)‍. The 
condition for the convergence is the same as the condition for solving for ‍̇u‍, namely an invertible 
(and hence positive definite) Hessian.

Because ‍
∂fi
∂t = Wi,in ˙̄rin + β δiou̇∗

o‍, see Equation 47, the regularity requirement for ‍τ u̇‍ to be 
integrable is satisfied even if ‍̄rin(t)‍ and ‍u∗

o (t)‍ contain step functions (and ‍rin(t)‍ delta-functions), see 
Appendix 4 for details.

Even in the presence of such step-functions, the Euler-Lagrange equations ‍
(
1 + τ d

dt
)
f = 0‍ lead 

to an ‍f ‍ that is a decaying exponential, ‍fi(u(t), t) = ci e−
t−t0
τ ‍, see Equation 45. For initialization 

at ‍t0 = −∞‍ we have ‍f = ∂L
∂u = 0‍ at any time. In fact, Equation 52 is equivalent to ‍

(
1 + τ d

dt
)
f = 0‍, 

and hence any solution of Equation 52, even if ‍
∂f
∂t ‍ contains a delta-function, is also a solution of 

‍
(
1 + τ d

dt
)
f = 0‍. Possible jumps in ‍̄rin‍ or ‍u∗

o‍ are compensated by the jumps they induce in ‍u‍ (see below 
for the full mathematical description with a simple example). To give an intuition, we assume that a 
recurrent network of our prospective neurons has separate fixed points for the two constant input 
currents ‍r

(1)
in ‍ and ‍r

(2)
in ‍. This network still shows an overall relaxation time of ‍τ in‍ (but not longer!) when 

the input rates instantaneously switch from ‍r
(1)
in ‍ to ‍r

(2)
in ‍. Nevertheless, at any moment during this 

relaxation process, gradient learning of the mapping ‍uo(t) = Fo (̄rin(t))‍ towards ‍u∗
o (t) = F∗

o (̄rin(t))‍ is still 
guaranteed (Theorem 1).

Link to time-varying optimal control
The explicit differential equation, Equation 52, is a special case of the one in Simonetto et al., 2020, 
Equation 20, where the function to be minimized (their ‍f ‍) can take a general (Lipschitz continuous) 
form (hence their ‍f ‍ is our Lagrangian, ‍f ≡ L‍). To avoid inverting the Hessian, an iteration algorithm 
can be applied similar to our implicit form, although more involved to deal with the more general 
form of ‍L‍ (Simonetto and Dall’Anese, 2017). The idea of tracking the solution of a time-varying 
optimization problem with a linear look-ahead in time has been introduced introduced in Zhao and 
Swamy, 1998.

The NLA keeps stability as compared to an infinitesimally fast (‍τ → 0‍) 
equilibrium propagation
What have we gained as compared to making the time constant in Equilibrium propagation 
very small? The answer lies in the stability. To make the comparison explicit, we remind us of the 
Equilibrium Propagation which we formulate in terms of a Lagrangian. In both cases, the NLA and the 
Equilibrium Propagation, the Lagrangians are identical. We have chosen the notation ‍̄r = (̄rin, ρ(u))‍ 
to express that the quantities can be interpreted as a low-pass filtering of ‍r + τr‍. In the Equilibrium 
propagation, they are called ‍r = (rin, ρ(u))‍, but this only represents a renaming of the input rates 
(and a notation change from ‍̄r‍ to ‍r‍). Hence, the Lagrangian ‍L = 1

2∥u − Wr̄∥2 + βC‍ in the NLA with 
‍̄r = (̄rin, ρ(u))‍ is rewritten by ‍L = 1

2∥u − Wr∥2 + βC‍ with ‍r = (rin, ρ(u))‍.
The only true difference is that in the NLA we apply the combined lookahead operator 

‍
(
1 + τ d

dt
)

∂
∂u‍ to the Lagrangian ‍L‍, while in the Equilibrium Propagation one applies the reduced 

operator ‍
∂
∂u‍ to ‍L‍. We claim that the lookahead makes the difference for ‘living’ systems that 

learnt to optimize in-time with respect to future quantities. The Euler-Lagrange equations for the 
Equilibrium Propagation reduce to ‍

∂L
∂u = u − Wr − ρ′(u)·WTe − βe∗ = 0‍, where now ‍e = u − Wr‍. Since 

these are not differential equations (no ‍̇u‍ in there), one introduces the gradient descent dynamics 

‍τ u̇ = −∂L
∂u = −u + Wr + ρ′(u)·WTe + βe∗‍ and waits for convergence for fixed input and fixed target. If 

‍τ = 0‍ in both the NLA and the Equilibrium propagation, we obtain the same implicit and stationary 
equations in ‍u‍.

Because the equation is implicit in ‍u‍, it has to be solved first for ‍u‍. While the Equilibrium propagation 
suggests to keep the inputs constant until a fixed point is reached, the NLA dynamically moves 
along the trajectory of fixed points while the inputs are changing. In the Equilibrium propagation we 
cannot simply take the limit ‍τ → 0‍ since then the dynamics either disappears (when ‍τ ‍ remains on 
the left, ‍τ∆u → 0‍) or explodes (when ‍τ ‍ is moved to the right, ‍

dt
τ → ∞‍), leading to either too small 

or too big jumps.

https://doi.org/10.7554/eLife.89674
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Appendix 4
Contraction analysis and delta-function inputs
Contraction property
We next show when the voltage dynamics obtained from ‍

(
1 + τ d

dt
)
∂L
∂u = 0‍ is locally contracting, i.e., 

when neighboring trajectories of the explicit differential equations, for given inputs and targets, 
locally converge. This is a different stability property as compared to the (global) convergence 
properties for the implicit differential equation stated in Equations 45 and 49.

For the contraction analysis we rewrite Equation 51 in the form ‍G(y, u̇) =
(
1 + τ d

dt
)
∂L
∂u = f + τ ḟ = 0‍, 

where the explicit time dependence of ‍E‍ and ‍f ‍ is a short-cut to express the dependence on ‍y = (rin, u∗
o , u)‍. 

According to the implicit function theorem, at any point in time when ‍
∂G
∂u̇ ‍ is invertible, we can locally 

write ‍̇u = g(y)‍. When absorbing the dependence of ‍̇u‍ on ‍(rin, u∗
o )‍ into an explicit time dependence, 

we can rewrite this differential equation as ‍̇u = g(u, t)‍, see Equation 52, when explicitly expressing 
the dependency of ‍g‍ on ‍u‍ only (instead of all the variables ‍y‍). This differential equation is contractive 
and thus stable if the Jacobian of ‍g‍ with respect to ‍u‍ is uniformly negative definite (Lohmiller and 
Slotine, 1998). The contraction analysis tells that locally, where ‍

∂G
∂u̇ ‍ is invertible, we can express ‍̇u‍ as a 

function ‍̇u = g(y)‍, that has derivative 
‍
∂g
∂y = −

(
∂G
∂u̇

)−1
∂G
∂y ‍

 according to the implicit function theorem. 

Restricted to the ‍u‍-component of ‍y‍ we get the Jacobian

	﻿‍

∂g
∂u

= −
(
∂G
∂u̇

)−1
∂G
∂u

= − 1
τ

1 − H−1 ∂H
∂u

u̇ = − 1
τ

1 − d log H
dt

.
‍�

(53)

To prove Equation 53 we note that according to Equation 51 we have 

‍G(y, u̇) = f + τ·H(u) u̇ + τ ∂f
∂t = 0‍, and with this calculate ‍

∂G
∂u̇ = τH‍, with ‍Hij = ∂fi

∂uj ‍ specified 
above. Since according to Equation 47 the term ‍

∂f
∂t ‍ does not depend on ‍u‍, we also calculate 

‍
∂G
∂u = H + τ ∂H

∂u u̇ = H + τ dH
dt ‍. Hence, 

‍
∂g
∂u = − 1

τ H−1
(

H + τ dH
dt

)
= − 1

τ 1 − d log H
dt ‍

.

If we had ‍
∂g
∂u = − 1

τ 1‍ alone, ‍
∂g
∂u‍ would be obviously negative definite, guaranteeing the local 

contraction property (Lohmiller and Slotine, 1998). To understand this statement, we consider 
the local representation of neighboring trajectories. The linear approximation of the voltage 
dynamics ‍u(t)‍, starting with ‍u(t◦)‍ in a dim-‍u‍-dimensional neighbourhood around some point ‍u◦(t◦)‍, 
is ‍

d
dt (u − u◦) = ∂g(u◦,t)

∂u (u − u◦) = − 1
τ (u − u◦)‍. While ‍u(t)‍ is the linear approximations of the original 

voltage dynamics starting at ‍u(t◦)‍, the trajectory ‍u◦(t)‍ is the true voltage dynamics starting at the 
‘center’ ‍u◦(t◦)‍ of the neighborhood. This shows the exponential local contraction of surrounding 
trajectories to ‍u◦‍ at times ‍t‍ around ‍t◦‍, would we have ‍

∂g
∂u = − 1

τ 1‍.
The additional log-term in Equation 53 may cause a local violation of this contraction property. 

However, the additional term in Equation 53 becomes small for large or small voltages for which we 
assume that the curvature of the transfer function also becomes small, ‍ρ

′′(u) ≈ 0‍. In fact, based on 
Equation 48 we calculate ‍

∂H
∂u ‍ being a function of ‍ρ

′′(u)‍ that vanishes with vanishing ‍ρ
′′(u)‍,

	﻿‍
∂H(u)
∂u

= −Wnet diag
(
ρ′′(u)

)
− ∂2

∂u2 (ϵ̄ + βē∗)(u) = o(ρ′′(u)).
‍�

(54)

Plugging Equation 54 into Equation 53 we conclude that ‍
∂g
∂u ≈ − 1

τ 1‍ where the curvature of the 
transfer function vanishes, ‍ρ

′′(u) ≈ 0‍. Yet, ‍ρ
′′
‍ may strongly deviate from 0 for intermediate values of 

‍u‍. For a rectified linear unit (ReLu), ‍ρ(u) = u‍ for ‍u ≥ 0‍ and 0 else, for instance, ‍ρ
′′
‍ is a delta-function 

at 0. Even if the deviation from ‍ρ
′′(u) = 0‍ in this case is on a set of measure 0, integrating across 

voltages ‍u = 0‍ can cause a jump in the voltage dynamics, preventing a strict local contraction property 
everywhere. The contraction property, in the example of a ReLu, only holds almost everywhere. 
Because the ReLu is an important transfer function in practical applications, we elaborate on this 
example further.

Comparison of the NLA with the latent equilibrium
Here, we point out that the appearance of a delta-function for ReLu’s in the NLA may represent a 
technical challenge, that this specific challenge is tamed in the simpler version of the NLA principle 

https://doi.org/10.7554/eLife.89674
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formulated as Latent Equilibrium (Haider et al., 2021), and that the Latent Equilibrium may represent 
a viable new approach for time-varying optimization in general.

The Euler-Lagrange equation for the presented NLA, ‍(1 + τ d
dt )

∂L
∂u = 0‍, Equation 20, with Jacobian 

‍
∂L
∂u = f(u, t) = u − Wr̄ − ϵ̄− βē∗‍, implies second-order derivatives with respect to the voltage ‍u‍. This 
is the case because the total derivative with respect to time, ‍

d
dt‍, applied to the error ‍̄ϵ = r̄′net·WT

netē‍ 

contained in ‍f(u, t)‍, implies the expression ‍
d
dt r̄

′
net = ρ′′(u) u̇‍, with ″ equivalent to ‍

∂2

∂u∂u‍. These second-
order derivatives enter both in the implicit form (Equations 46 and 51) and the explicit differential 
Equation 52. When integrating these equations across the components ‍u = 0‍, a jump in ‍u‍ emerges 
that must be explicitly included in the simulations. It is the same jump that may transiently violate the 
contraction property as shown above (Equations 53 and 54, but does not violate the exponential 
convergence from Equation 45, see below).

In the Latent Equilibrium, our Lagrangian ‍L = 1
2∥u − Wr̄∥2 + βC‍ with ‍̄r = (̄rin, ρ(u))‍ is replaced by 

‍L(u, u̇) = 1
2∥ŭ − Wr∥2 + βC‍ with ‍r = (rin, ρ(ŭ))‍ and ‍̆u = u + τ u̇‍. If we were asking for stationary trajectories 

‍u(t)‍ of ‍
´

L(u, u̇)dt‍ with respect to variations in ‍u‍, we would obtain the unstable Euler-Lagrange equations 

‍
∂L
∂u − d

dt
∂L
∂u̇ = (1 − τ d

dt )
∂L
∂u = 0‍, solved by an exponentially growing function of time, ‍

∂L
∂u = c e

t−t0
τ ‍, unless 

‍c = 0‍. To force the trajectory moving along ‍
∂L
∂u = 0‍, one again requires that variations of the action ‍

´
L dt‍ 

are stationary with respect to a prospective voltage, this time with respect to ‍̆u = u + τ u̇‍. Because the 
Lagrangian for the Latent Equilibrium can be expressed as a function ‍L(ŭ)‍ of ‍̆u‍ only, not of ‍̇̆u‍, the Euler-
Lagrange equations becomes ‍

∂L
∂ŭ = ŭ − Wr − ρ′(ŭ)·WTe − βe∗ = 0‍, where now ‍e = ŭ − Wr‍.

The Latent Equilibrium is consistent with the central idea of the NLA to deal with future quantities. 
While the presented version of the NLA deals with the discounted future voltage ‍̃u‍ (leading to 
the operator ‍

(
1 + τ d

dt
)

∂
∂u‍ applied to the Lagrangian), the Latent Equilibrium deals with the linear 

approximation ‍̆u‍ of the future voltage (leading to the operator ‍
∂
∂ŭ‍ applied to the Lagrangian). Both, 

the NLA and the Latent Equilibrium differ in this crucial aspect from the Equilibrium Propagation that 
deals with the current voltage ‍u‍ (leading to the operator ‍

∂
∂u‍ applied to the Lagrangian ‍L(u)‍, without 

appearance of ‍̇̆u‍, and hence without intrinsic dynamics, see above).
For the Latent Equilibrium, it is not obvious to find global convergence properties as expressed 

in Equations 45 and 49 for the presented version of the NLA. However, the Latent Equilibrium 
satisfies the strict local contraction property ‍

∂g
∂u = − 1

τ 1‍. In fact, writing the Euler-Lagrange equations 
as ‍G(y, u̇) = ∂L

∂ŭ = 0‍ with the abbreviation ‍y = (rin, ṙin, u∗
o , u̇∗

o , u)‍, leads to ‍
∂G
∂ŭ = ∂G

∂u = 1
τ
∂G
∂u̇ ‍, and the 

linear approximation obtained from plugging these partial derivatives into Equation 53 yields the 
claimed contraction property ‍

∂g
∂u = − 1

τ 1‍ for the Latent Equilibrium. The Jacobian ‍
∂G
∂u̇ ‍ is invertible if 

the Hessian ‍H = ∂2L
∂ŭ∂ŭ‍ is (that looks as in Equation 48, but with ‍u‍ replaced by ‍̆u‍).

Crucially, for the Latent Equilibrium, the analogous theorems on real-time dendritic error 
propagation and learning (rt-DeEP and rt-DeEL) hold. The key property is that the trajectories of the 
Latent Equilibrium are stationary solution of the corresponding action ‍A =

´
L dt‍, so that the variation 

of ‍A‍ induced by ‍W ‍ reduces to the partial derivative of ‍L‍ with respect to ‍W ‍.
The above strict contraction property that for non-vanishing errors only holds for the Latent 

Equilibrium, but not for the NLA, may be a reason why the simulations of the error-based updates 
in our hands seem to be more stable for the Latent Equilibrium as compared to the NLA. This 
does not withstand the fact that the NLA equations are used in the context of time-varying optimal 
control (see above). It would be interesting to consider also the Latent Equilibrium as a tool for non-
stationary, time-varying optimization (Simonetto et al., 2020).

Delta-function inputs keep ‍∂L
∂u = 0‍

We next explain in more details why delta-functions in the input rates ‍rin(t)‍ for the NLA the stationarity 
(‘equilibrium’) condition ‍

∂L
∂u = 0‍ is always satisfied (the delta-function in ‍rin‍ for the NLA corresponding 

to step-function in ‍rin‍ for the Latent Equilibrium). We reconsider the explicit differential equation 

‍
u̇ = g(u, t) = − 1

τ H−1
(

f + τ ∂f
∂t

)
‍
 given in Equation 52, with ‍f(u, t) = ∂L

∂u = u − Wr̄ − ϵ̄− βē∗‍ and ‍H‍ 

given in Equation 48.
To simplify matters, we consider a single delta-function at ‍t = 0‍ as input in the absence of output 

nudging. In this case, we get ‍
∂f
∂t = ∂f

∂ r̄in
˙̄rin + ∂f

∂ r̄in
u̇∗

o = Winδin(t)‍, where the input matrix ‍Win‍ is typically 
sparse (not all network neurons receive external input), and ‍δin(t)‍ is a vector of delta-functions 
restricted to the input neurons. Following (Nedeljkov and Oberguggenberger, 2012), Proposition 
2.1, we can then write the explicit differential equation, Equation 51, in the form

https://doi.org/10.7554/eLife.89674
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	﻿‍ u̇ = g(u, t) = ǧ(u, t) + H(u)−1Winδin(t),‍� (55)

where ‍̌g(u, t)‍ is globally Lipschitz continuous. Due to the Lipschitz continuity the change in ‍u‍ evoked 
by ‍̌g(u, t)‍ during a small time interval ‍[−ε, ε]‍ around ‍t = 0‍ vanishes when this interval shrinks, ‍ε → 0‍. To 
quantify the change in ‍u‍ during these intervals it is, therefore, enough to consider ‍̇u = H(u)−1Winδin(t)‍, 
or equivalently ‍H(u)u̇ = Winδin(t)‍. To estimate the jump induced by the delta-functions, we consider 
some mollifier ‍ϕε(t) = ε−1ϕ(t/ε)‍, where ‍ϕ(t)‍ is a smooth function on the interval ‍[−1, 1]‍ with integral 1. 
By ‍ϕin,ε(t)‍ we denote the vector of mollifiers centered at the delta-functions of the input neurons. We 
now consider the two differential equations, with the second approximating the first on the interval 
‍[−ε, ε]‍, but without regular term ‍̌g(u, t)‍,

	﻿‍ τH(uε) u̇ε = τH(uε)ǧ(u, t) + Winϕin,ε(t)‍� (56a)

	﻿‍ τH(ǔε) ˙̌uε = Winϕin,ε(t) , ǔε(−ε) = uε(−ε).‍� (56b)

We assume that for all ‍t ∈ [−ε, ε]‍ the matrices ‍H(uε(t))‍ and ‍H(ǔε(t))‍ are invertible, so that 
the two Equation 56a, Equation 56b can be turned into an explicit differential equations. 
Analogously to the 1-dimensional case (Nedeljkov and Oberguggenberger, 2012), we conclude 
that the solution of Equation 56a, Equation 56b on the interval ‍[−ε, ε]‍ converge to each other, 

‍supt∈[−ε,ε] |uε(t) − ǔε(t)| → 0‍ for ‍ε → 0‍. As a consequence, the jump of ‍̌uε‍ at ‍t = 0‍ converges to the 
corresponding jump of ‍uε‍ in the various dimensions.

To calculate the jump of ‍̌uε‍ we have to integrate ‍τH(ǔε) ˙̌uε‍ across the time interval ‍[−ε, ε]‍. Instead 
of integrating ‍̇̌uε‍, we first integrate ‍τH(ǔε) ˙̌uε‍ given in Equation 56b. Moving from right to left yields

	﻿‍
WinIin =

ˆ ε

−ε
Winϕin,ε(t) dt = τ

ˆ ε

−ε
H(ǔε(t)) v̇ε(t) dt = τ

ˆ ǔε(ε)

ǔε(−ε)
H(ǔε) dǔε ,

‍�
(57)

where ‍Iin‍ is the index vector of the input neurons having a delta-function, i.e., ‍Iin,j = 1‍ if there is 

a delta-input, and else 0. Note that ‍̇vε,j dt = dvε,j‍. Because ‍H‍ is itself a derivative, ‍H = ∂f
∂u‍, we can 

explicitly calculate the latter integral (also for ‍β > 0‍, but for clarity here only done for ‍β = 0‍). The last 
integral in Equation 57 is defined as a vector with ‍i‍-th component being

	﻿‍

(ˆ ǔε(ε)

ǔε(−ε)
H(ǔε) dǔε

)

i

=
N∑

j=1

ˆ ǔε,j(ε)

ǔε,j(−ε)
Hij(uj) duj =

N∑
j=1

(δijui − Wijρ(uj))
��ǔε,j(ε)
ǔε,j(−ε) =

(
vε(ε) − vε(−ε)

)
i ,

‍
� (58)

where in the second last equality we used that ‍Hij(u) = δij − Wijρ
′(uj)‍ does only depend on the 

component ‍uj‍, see Equation 48. In the last equality we introduced the ‘network voltage error’ 
‍̌vε = ǔε − Wnetρ(ǔε)‍. Following the 1-dimensional case treated in Equation 66, Proposition 1.2 we 
introduce the ‘jump function’ (called ‍G(y)‍ in the cited work)

	﻿‍ J(ǔε) = τ (v̌ε − v̌◦) ,‍� (59)

with ‍̌v◦‍ thought to represent ‍̌vε(t◦)‍ at some time ‍t◦‍ before the delta-kick sets in. With this setting, 
Equation 57 turns into

	﻿‍ WinIin = J(ǔε(ε)) − J(ǔε(−ε)).‍� (60)

In the limit ‍ε → 0‍ we get a relation between ‍u(t)‍ immediately before and after the jump, ‍u(−0)‍ and 

‍u(+0)‍, using that in this limit the boundary points of the trajectories also converge, ‍̌uε(±ε) → u(±0)‍,

	﻿‍ J(u(+0)) = J(u(−0)) + WinIin.‍� (61)

We now assume that the function ‍J(u) = τ (v − v◦)‍ is invertible around the jump. This is the case if 
the Jacobian ‍

∂J(u)
∂u ‍ is invertible, and because ‍v = u − Wnetρ(u)‍, we require invertability of ‍

∂J(u)
∂u = τH(u)‍, 

with Hessian defined in Equation 48.
In the case of invertability we get the voltage after the jump as

	﻿‍ u(+0) = J−1(J(u(−0)) + WinIin
)
.‍� (62)
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We next calculate the jump in ‍v‍. This is easy since ‍v = u − Wnetρ(u)‍ linearly enters in the 
function ‍J(u) = τ (v − v◦)‍. Plugging the explicit expression for ‍J‍ into Equation 61 we get 

‍τ (v(+0) − v◦) = τ (v(−0) − v◦) + WinIin‍, or

	﻿‍
v(+0) = v(−0) + 1

τ
WinIin.

‍�
(63)

Knowing the jump in ‍v‍ helps to show that the equilibrium condition ‍
∂L
∂u = 0‍ is always satisfied, even 

immediately after the delta-in put, provided the initialization is at ‍t0 = −∞‍. To show this, remember 
that in the absence of nudging we have ‍

∂L
∂u = f(u, t) = u − Wr̄ = u − Wnetρ(u) − Winr̄in = v − Winr̄in‍. 

The jump size of ‍̄rin‍ for a delta-function at ‍t=0‍, ‍rin(t) = δin(t)‍ is ‍
1
τ ‍. This is because ‍̄rin‍ satisfies the 

differential equations ‍̇̄rin(t) = − 1
τ r̄in(t) + 1

τ δin(t)‍, provided that ‍t0 = −∞‍. Hence,

	﻿‍
r̄in(+0) = r̄in(−0) + 1

τ
Iin.

‍�
(64)

With Equations 63 and 64 we conclude that ‍
∂L
∂u = v − Winr̄in = 0‍ throughout.

https://doi.org/10.7554/eLife.89674
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Appendix 5
Example of a single recurrently connected neuron
To get an intuition for the instantaneity in the recurrent case we consider the example of a single, 
recurrently connected neuron. We also put this into the context of the Latent Equilibrium (Haider 
et  al., 2021). Consider the weight vector ‍W = (Win, Wnet)‍ with an input rate ‍rin(t)‍ driving the 
postsynaptic voltage ‍u‍. The postsynaptic rate is ‍r = ρ(u) + τ ρ̇(u)‍, and its low-pass filter with respect 
to ‍τ ‍ is ‍̄r = ρ(u)‍. As always, the low-pass filtering reaches back to an initialization at ‍t0 = −∞‍, see 
Equation 15. The Lagrangian has the form

	﻿‍
L = 1

2
ē2 + β

2
ē∗

2
= 1

2
(
u − (Wnetρ(u) + Winrin)

)2 + β

2
(u∗ − u)2 .

‍�
(65)

The Euler-Lagrange equations ‍
(
1 + τ d

dt
)
∂L
∂u = 0‍ are derived from ‍

∂L
∂u = ē − ρ′(u)Wnetē − βē∗‍. 

Applying the look-ahead operator ‍
(
1 + τ d

dt
)
‍ (Equation 14), and abbreviating ‍̄ϵ = ρ′(u)Wnetē‍, the Euler-

Lagrange equations deliver the voltage dynamics,

	﻿‍ τ u̇ = −u + Wnet
(
ρ(u) + τ ρ̇(u)

)
+ Winrin + ϵ + βe∗ .‍� (66)

To simplify matters, we consider the nudging-free case, ‍β = 0‍. This implies that ‍̄e = ϵ̄ = 0‍. With 

‍ρ̇(u) = ρ′(u)u̇‍, we obtain the differential equation

	﻿‍ τ
(
1 − Wnetρ

′(u)
)

u̇ = −u + Wnetρ(u) + Winrin .‍� (67)

Abbreviating ‍v = u − Wnetρ(u)‍ as ‘network voltage error,’ the above differential equation reads as

	﻿‍ τ v̇ = −v + Winrin .‍� (68)

Integrating the effective voltage dynamics (Equation 68), assuming initialization infinitely far in the 
past, is equal to ‍v = Winrin‍. This equation is equivalent to the Euler-Lagrange equation ‍

(
1 + τ d

dt
)
∂L
∂u = 0‍ 

being integrate, and because the solution of the Euler Lagrange equation is ‍
∂L
∂u = c e−

t−t0
τ ‍, we have 

(using ‍t0 = −∞‍)

	﻿‍
∂L
∂u

= v − Winrin = 0 .
‍�

(69)

Voltage dynamics for a delta-function input
We next apply a delta-function in the input rate, say ‍rin(t) = δ(t)‍ and consider the dynamics at the level 
of the voltage, Equation 67. As in Equation 66, Proposition 1.2 we introduce the ‘jump function’ 
(called ‍G(y)‍ in the cited work)

	﻿‍
J(u) = τ

´ u
u◦

(
1 − Wnetρ

′(y)
)

dy = τ
((

u − Wnetρ(u)
)
− v◦

)
= τ (v − v◦) .

‍� (70)

As in Nedeljkov and Oberguggenberger, 2012, Proposition 1.2, we show that the voltage ‍u‍ 
makes a unique jump at the moment of the delta function that ‍J(u)‍ is invertible around the jump.

We set ‍v◦ = u◦ − Wnetρ(u◦)‍. Here, ‍u◦‍ is some voltage before the jump, say ‍u◦ = u(−1)‍ evaluated at 
time ‍t=−1‍, when the jump is at ‍t=0‍. When ‍u

−
0 = u(−0)‍ is the voltage immediately before the jump, 

the voltage immediately after the jump is ‍u
+
0 = u(+0)‍ specified by

	﻿‍ J(u+
0 ) = J(u−0 ) + Win .‍� (71)

The reason is that the ‍Win‍-scaled delta-function triggers a step of size ‍Win‍ when integrating over 
it as done in Equation 70. The new value ‍u

+
0 ‍ is unique if ‍J ‍ is invertible, and looking at the defining 

integral in Equation 70, this is the case if ‍1 − Wnetρ
′(u+

0 ) ̸= 0‍.
The jump in ‍u‍ translates into a jump in ‍v = u − Wnetρ(u)‍ from ‍v

−
0 ‍ to ‍v

+
0 = u+

0 − Wnetρ(u+
0 )‍. This 

endpoint can also be expressed as

	﻿‍
v+

0 = v−0 + Win
τ

.
‍� (72)

https://doi.org/10.7554/eLife.89674


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Senn, Dold et al. eLife 2023;12:RP89674. DOI: https://doi.org/10.7554/eLife.89674 � 47 of 57

To check this, we assume without loss of generality that ‍v◦ = u◦ − Wnetρ(u◦) = 0‍. Then 

‍J(u) = τ (u − Wnetρ(u)) = τv‍ and ‍J(u+
0 ) = J(u−0 ) + Win = τv−0 + Win‍ according to Equation 71. Since also 

‍J(u+
0 ) = τv+

0 ‍, we conclude that ‍τv+
0 = τv−0 + Win‍, as claimed above.

We finally show that even far away from the initialization, the stationarity condition ‍
∂L
∂u = 0‍ holds 

before and immediately after the jump. In fact, for ‍t0 = −∞‍, the evolution of the ‘network voltage 
error’ becomes

	﻿‍
v(t) = 0 for t ≤ 0 , and v(t) = Win

τ
e
−

t
τ for t > 0 .

‍�
(73)

Here, we used that ‍v
−
0 = 0‍ and according to Equation 72 the ‍v‍ jumps to ‍v

−
0 = Win

τ ‍. Remember, 
that for initialization far in the past, ‍

∂L
∂u = 0‍ is equivalent to ‍v = Winrin‍, see Equation 69. We, 

therefore, have to calculate the jump in ‍rin‍ induced by the delta-input. Since ‍rin(t)‍ is the solution of 

‍τ ṙin(t) = −rin(t) + δ(t)‍ for ‍t0 = −∞‍, we find that

	﻿‍
rin(t) = 0 for t ≤ 0 , and rin(t) = 1

τ
e
−

t
τ for t > 0 .

‍�
(74)

Combing the two Equations 73 and 74 proves that ‍
∂L
∂u = v − Winrin = 0‍ holds true any moment in 

time, provided the initialization is far in the past.
One may ask why the delta-kink is different from resetting ‍v‍ at a new initialization off from 0. The 

reason is that at ‍t = 0‍ there is a cause for the jump in ‍r(0)‍, while at ‍t0‍ there is no cause in ‍r(t0)‍. In fact, 
there is no jump initially, just the start of ‍v‍ at some initial condition. Differently from the initialization 
at ‍t0‍, where ‍v(t0) > 0‍ implies ‍

∂L
∂u (t) > 0‍ for finite ‍t − t0 > 0‍, the jump of ‍v(0)‍ at ‍t = 0‍ to a positive value 

does leave ‍
∂L
∂u (t) = 0‍ for all ‍t > 0‍, provided ‍t0 = −∞‍.

Linear transfer function
We first consider the case of a linear transfer-function ‍ρ(u) = 0‍ (or threshold linear, being in the linear 
regime). Then the differential equation becomes

	﻿‍
τ u̇ = −u + Win

1 − Wnet
rin .

‍�
(75)

With initialization at ‍t = −∞‍ and low-pass filtering ‍r
τ
in‍ defined in Equation 15 the solution is

	﻿‍ u(t) = Win
1−Wnet

rτin(t) .‍� (76)

The point is that the time constant is ‍τ ‍ and is not ‍
τ

1−Wnet ‍, as this would be the case without 
prospective firing rate. In fact, for the ‘classical’ differential equation,

	﻿‍ τ u̇ = −u + Wnetρ(u) + Winrin ,‍� (77)

and ‍ρ‍ the identity, we obtain the differential equation ‍τeff u̇ = −u + Win
1−Wnet

rin‍ with ‍τeff = τ
1−Wnet ‍ and 

solution ‍u = Win
1−Wnet

rτeff
in ‍ that is now the low-pass filtering with respect to the effective time constant.

Sigmoidal transfer function
For a sigmoidal transfer function ‍ρ(u) = r̄max

1+eϑ−u ‍, a positive feedback weight ‍Wnet > 0‍, and a constant 
external input ‍rin‍, say, the solutions ‍u(t)‍ of Equation 66 either converge to a fixed point or diverge. 
When converging, the voltage satisfies the fixed point condition

	﻿‍ u = Wnetρ(u) + Winrin .‍� (78)

This fixed point equation can be numerically solved by time-discrete iteration process. But it can 
also be solved by a time-continuous process that underlies a neural or neuromorphic implementation. 
The prospective firing rate introduced in the NLA can be seen as a method to quickly find the fixed 
point in continuous time. When directly solving the implicit differential equation (as opposed to 
convert this into an explicit differential equation using e.g., the Cholesky decomposition), the fixed 
point is potentially found with a fewer number of steps.

https://doi.org/10.7554/eLife.89674
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To estimate the speed of convergence, we look at the initial speed when taking off at initial 
condition ‍u(0)‍ between the unstable and stable fixed point. The initial speed for the classical 
differential equation, Equation 77, and the NLA version, Equation 66, are, respectively,

	﻿‍
u̇(0) = ∆u(0)

τ
,
‍�

(79a)

	﻿‍
u̇(0) = ∆u(0)

τ (1 − Wnetρ′(u(0)))
,
‍�

(79b)

where we set ‍∆u(0) = −u(0) + Wnetρ(u(0)) + Winrin(0)‍. As ‍Wnetρ
′ > 0‍, the initial convergence speed of 

the NLA solution is larger. The scheme has some resemblance to the Newton algorithm of finding 
zero’s of a function by using its derivative.

https://doi.org/10.7554/eLife.89674
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Appendix 6
NLA for conductance-based neurons and least-action principle in 
physics
The mismatch energies and costs can be generalized in different ways. Here, we focus on a biophysical 
version of the mismatch energy that includes conductance-based neurons. This also relates to the 
least-action principle in physics. But the NLA can also be generalized to include other dynamica 
variables such as adaptive thresholds or synaptic short-term plasticity.

Equivalent somato-dentritic circuit
For conductance based synapses, the excitatory and inhibitory conductances, ‍gE‍ and gI, are driven 
by the presynaptic firing rates and have the form ‍gE(t) = WE r(t)‍, and analogously ‍gI(t) = WI r(t)‍. The 
dynamics of a somatic voltage ‍u‍ and a dendritic voltage ‍v‍ reads as

	﻿‍ c u̇ = gL(EL − u) + gsd(v − u),‍� (80)

	﻿‍ cd v̇ = gL(EL − v) + gE(EE − v) + gI(EI − v) + gds(u − v)‍� (81)

where ‍c‍ and ‍cd‍ are the somatic and dendritic capacitances, ‍EL/E/I‍ the reversal potentials for the leak, 
the excitatory and inhibitory currents, ‍gsd‍ the transfer conductance from the dendrite to the soma, 
and ‍gds‍ in the other direction.

We consider the case when the dendritic capacitance ‍cd‍ is small as compared to the sum of 
conductances ‍gd‍ on the right-hand-side of Equation 81, yielding a fast dendritic time constant. In 
this case we can solve this equation in the steady state for ‍v‍, plug this into Equation 80, and get

	﻿‍ c u̇ = g (V − u),‍� (82)

with effective reversal potential ‍V = (gLEL + gsd
gff

gff+gds
vff)/g‍, total conductance ‍g = gL + gsd

gff
gff+gds ‍, 

feedforward dendritic voltage ‍vff = (gLEL + gEEE + gIEI)/gff ‍ and feedforward dendritic conductance 

‍gff = gL + gE + gI‍. Because ‍gE/I = WE/I r(upre, u̇pre)‍, the conductance depends on the presynaptic 
voltage and its derivative. Equation 82 describes the effective circuit that has the identical voltage 
time course as Equations 80 and 81 with ‍̇v = 0‍, but with a single time-dependent ‘battery voltage’ 
‍V ‍ and Ohmic resistance ‍R = 1/g‍.

Somato-dentritic mismatch power and action
The synaptic inputs ‍gE(t)‍ and ‍gI(t)‍ are continuously driving ‍V(t)‍, and the best what one can hope for 
the dynamics of ‍u‍ is that it traces ‍V ‍ with some integration delay determined by the time constant 
‍τ = c/g‍. In fact, if ‍u‍ follows the dynamics of Equation 82, then ‍u‍ becomes the low-pass filtered target 
potential, ‍u = V ‍, where ‍V(t)‍ is filtered with the dynamic time constant ‍τ (t)‍. The defining equations 
for the low-pass filtering is

	﻿‍ ū + τ ˙̄u = u,‍� (83)

and this self-consistency equation is equivalent to the explicit form

	﻿‍
ū(t) =

ˆ t

−∞
dt′ u(t′)

τ (t′)
e
−
´ t

t′ dt′′
1

τ (t′′) .
‍�

(84)

To capture the voltage dynamics with our NLA principle we recall that the somatic voltage ‍u‍ can 
be nudged by an ‘apical voltage’ ‍̄e‍ that causes a somatic voltage error ‍̄e = u − V ‍. The voltage error 
drives a current ‍I = gē‍ through the conductance ‍g‍. The electrical power of this current ‍I ‍ driven by the 
voltage ‍̄e‍ is ‍P = Iē2‍. This motivates the definition of the mismatch power in a network of ‍N ‍ neurons 
by

	﻿‍
P =

N∑
i

gi
2

(ui − Vi)2 = 1
2

gT(u − V)2 .
‍� (85)

https://doi.org/10.7554/eLife.89674
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‍P ‍ is a virtual power that, nevertheless, is related to some physical flow of ions. Assume we could 
measure all the ions flowing in the original circuit of Equations 80 and 81 (in the limit of small ratio 

‍Cd/gd‍). From this flow, delete the ion flow that cancels at the level of electrical charge exchange due 
to the counter directed flow. The remaining effective ion flow defines an effective current flowing 
through the conductance ‍g‍ with driving force ‍(V − u)‍, Equation 82. If it were only this effective current 
in the reduced circuit, the voltage ‍u(t)‍, starting at ‍u(0)‍, would converge with time-constant ‍τ ‍ to the 
low-pass filtering ‍V ‍. Without additional ‘hidden’ current, the voltage ‍u‍ would then instantaneously 
follow ‍V ‍ that is itself given by the forward dendritic input conductances. The deviation of ‍u‍ from ‍V ‍, 
caused by some initial conditions in ‍u‍ or by a feedback current from the network affecting ‍u‍, builds 
the mismatch power ‍P ‍. The feedback may originate from a target imposed downstream, and the 
neuron is ‘free’ in how to dynamically match ‍u‍ and ‍V ‍. It is, therefore, tempting to see ‍P ‍ as a ‘free 
power’, and the NLA principle as minimizing the corresponding ‘free energy’. In fact, the free-energy 
principle says that any self-organizing system that is in a dynamic equilibrium with its environment 
(here ‍u = V ‍ in the absence of output nudging) must minimize its free energy (that here builds up by 
imposing a target; Friston, 2010).

The NLA principle states that the time-integral of ‍P ‍ is minimized with respect to the look-ahead 
voltage ‍̃u‍. We, therefore, define the physical mismatch energy as

	﻿‍
A =
ˆ t2

t1
P dt ,

‍�
(86)

that has the units of energy. ‍EM‍ takes the role of our neural action (‍A‍ in the main text) for conductance-
based neurons.

Euler-Lagrange equations for conductance-based neurons
The NLA for conductance-based neurons seeks to minimize ‍A =

´
P(u) dt‍ with respect to variations 

of ‍u‍, such that ‍
δA
δu = 0‍. In the simplest example of the main text we considered prospective rates, 

‍r = ρ(u) + τ ρ̇(u)‍, so that the low-pass filtered rates become a function of the instantaneous voltage, 
‍̄r = ρ(u)‍. These low-pass filtered presynaptic rates, ‍̄r‍, determine the postsynaptic voltage ‍u‍. 
Analogously, the low-pass filtered reversal potential, ‍V ‍, determines the postsynaptic voltage ‍u‍, and 
we again postulate that ‍V ‍ is an instantaneous function of the presynaptic voltage, ‍V = ϕ(u)‍. Here, 
we argue that active dendritic mechanisms advance to postsynaptic reversal potential ‍V ‍, so that 
the delayed ‍V ‍ again becomes instantaneous, similarly to the advancement of the apical dendritic 
potential observed in cortical pyramidal neurons (Ulrich, 2002), see also Figure  2b. With this 
instantaneity, the stationarity of the action with respect to generalized (compact and non-compact) 
variations, ‍

δA
δu = 0‍, translates to the condition ‍

∂P
∂u = 0‍.

Calculating ‍
∂P
∂u = 0‍ with ‍P ‍ given in Equation 85 and ‍τ = c/g‍ for the total conductance 

‍g(u)‍ specified after Equation 82 is a bit more demanding. For a probabilistic version, 
where ‍P ‍ is derived from the negative log-likelihood of a Gaussian density of the voltage, 

‍P = − log p(u|V) = 1
2 gT(u − V)2 − 1

2 log g + const‍, the calculation is done in Jordan et al., 2022. In this 
probabilistic version, there is an additional normalization term that enters as ‍log g‍. In the deterministic 
version considered here, this log term is not present and we calculate

	﻿‍
∂P
∂u

= g·
(
u − V

)
− ϵ̄ with ϵ̄ = r̄′ · WT

net

(
(u − V)·(EE/I − V) − 1

2 (u − V)2
)

.
‍�

(87)

Notice that the transpose ‍WT
net‍ selects the downstream network neuron to backpropagate from 

there the first- and second-order errors. From ‍
∂P
∂u = 0‍ and ‍τ = c/g‍ we conclude that

	﻿‍
c
τ
·
(
u − V

)
− ϵ̄ = 0 or u = V + τ

c ·̄ϵ.
‍� (88)

We next apply the look ahead operator to the expression in this Equation 88. Assuming an initialization at 

‍t0 = −∞‍, the condition ‍
∂P
∂u = 0‍ becomes equivalent to ‍

(
1 + τ d

dt
)
∂P
∂u = 0‍, and hence Equation 88 becomes 

equivalent to‍g (u − V) − ϵ̄ + τ g (u̇ − V̇) − τ ˙̄ϵ + τ ġ (u − V) = c u̇ − g·(V − u) − ϵ + τ ġ (u − V) = 0‍, and 
with the total conductance ‍g(u)‍ specified after Equation 82 this is calculated to become (see Jordan 
et al., 2022).

https://doi.org/10.7554/eLife.89674
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	﻿‍ c u̇ = g·(V − u) + ϵ + τ̇·̄ϵ.‍� (89)

A learning rule of the form ‍Ẇ ∝ ∂P
∂W = ēpost r̄T

‍ with an appropriate postsynaptic error ‍̄epost‍ can 
again be derived (see Jordan et al., 2022) for a single neuron in the probabilistic framework.

Generalizations: Long memories, reinforcement learning
One could also extend the NLA principle by adding e.g., threshold adaptation that endows the 
dynamics with additional and longer time constants. For this, the rate function is parametrized by 
an additional threshold, ‍̄r = ρ(u − ϑ)‍, an the Lagrangian is added by an error term on the threshold. 
Such an error addition can take the form ‍L = ... + 1

2∥ϑ− rτϑ∥2
‍, where ‍rτϑ‍ now represents a low-

pass filtering of the rate with a long threshold adaptation time constant ‍τϑ‍. Neurons that show an 
additional threshold adaptation will still be able to instantaneously transmit a voltage jump through 
a prospective firing rate, but this will now also depend on the neuron’s history. Short-term plasticity 
may be included in the same way. Due to the history dependence, the stationarity of the action 
‍δA = 0‍ cannot anymore be reduced to the stationarity of the Lagrangian at any moment in time. As a 
consequence, the errors will look-ahead into to future more than only based on the local derivatives.

Generalizations are further possible for the cost function that favor voltage regions with high cost, 
say corresponding to punishment, or negative cost, corresponding to punishment to reward. These 
extensions will be considered in future work.

Voltage dynamics from the least-action principle in physics
We have shown that through the look-ahead in Hamilton’s least-action principle, the notion of friction 
enters through the backdoor. In the least-action formalism in physics, friction is directly introduced 
by extending the Hamiltonian principle to a generalized D’Alembert principle, where at the level of 
the Euler-Lagrange equations the generalized force is equated to the dissipation force (Flannery, 
2005). For an introduction to the least-action principle in physics see e.g., (Feynman et al., 2011), 
and for an introduction to the calculus of variation in general with a derivation of the Euler-Lagrange 
equation see e.g., (Chachuat, 2007).

The electro-chemical properties of a membrane can be captured by an equivalent circuit 
consisting of a battery voltage ‍V ‍, a capacitance ‍C‍ and a resistance ‍R‍, arranged in parallel. The 
voltage dynamics is derived from the Euler-Lagrange equations that are added by a dissipative force.

Formally, in the absence of an inductance defining the kinetic energy, the Lagrangian ‍L‍ becomes 
identical to the potential energy ‍U ‍ that itself is

	﻿‍ L = U = QV − Q2/(2C) ,‍� (90)

where ‍Q‍ represents the charge across the membrane. Looking for stationary trajectory of the action 
(time integral of the Lagrangian) with only the potential energy in the Lagrangian would not give 
any dynamics. In fact, the Euler-Lagrange equation ‍∂QL − dt∂Q̇L = 0‍ yields ‍Q = C V ‍. The potential 
energy is, therefore, extended by the dissipative Rayleigh energy ‍F ‍ that introduces friction,

	﻿‍ F = RQ̇2/2 .‍� (91)

According to D’Alembert’s principle, the Rayleigh energy enters as a gradient at the level of the 
Euler-Lagrange equation. At this point, the theory steps out from the original principle by adding 
the Rayleigh gradient ‘by hand’ to the Euler-Lagrange equation (different from the NLA, see below). 
Otherwise, no first order differential equation with friction in the desired form would be obtained 
from the least-action principle in physics (if we were adding ‍F ‍ to ‍L‍, for instance, the ‍dt∂Q̇L‍-term 
in the Euler-Lagrange equations would yield the term ‍RQ̈‍ instead of ‍RQ̇‍). Hence, with D’Alembert’s 
patch the dynamics is characterized by the Euler-Lagrange equation added by a dissipative force,

	﻿‍ ∂QL − dt∂Q̇L + ∂Q̇F = 0 ,‍�

and this equation reduces to ‍−V + Q/C + RQ̇ = 0‍. Identifying the charge by means of voltage across 
the capacitance, ‍Q = Cu‍, this equation can also be written as ‍−V + u + RCu̇ = 0‍, or

	﻿‍ τ u̇ = −u + V,‍� (92)

with ‍τ = RC‍, similarly as derived in Equation 89.

https://doi.org/10.7554/eLife.89674
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The link to our NLA principle is most easily made by assuming that the ‘membrane’ conductance 

‍g = 1/R‍ does not depend on the voltage ‍u‍ (of the post- or presynaptic neuron, as this is the case in 
general, see explanation after Equation 82). In this simplified case, the Lagrangian from Equation 
86 becomes the power

	﻿‍ P = (u − V)2/(2R).‍� (93)

The Euler-Lagrange equation with respect to ‍̃u‍, applied to the action ‍A =
´
P dt‍ is then calculated 

by

	﻿‍

∂P
∂ũ

− d
dt

∂P
∂ ˙̃u

=
(

1 + τ
d
dt

)
∂P
∂u

= 1
R
(
u + τ u̇ − (V + τ V̇)

)
= 0, or

‍�
(94)

	﻿‍ τ u̇ = −u + V.‍� (95)

We used that ‍τ = RC‍ while ‍u = ũ − τ ˙̃u‍ and ‍V = V + τ V̇ ‍.
The dynamics derived from the NLA Equation 95 is identical to the dynamics derived from the 

least-action principle with friction in physics (Equation 92). Hence, the minimization of the energy (i.e. 
the time-integral of the power, ‍A =

´
P dt‍) by looking ahead in time is equivalent to the stationarity 

of the physical action without looking ahead, but by taking account of the Rayleigh dissipation. The 
trick of looking ahead in time generates a dynamics out of an action ‍A‍ that encompasses only a 
potential energy, no kinetic energy. Without looking ahead, no dynamics would emerge from such 
an action. Notice, though, that the NLA action has units of energy (the time-integral of a power), 
while the physical action has units of energy times time (the time-integral of energies).

https://doi.org/10.7554/eLife.89674
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Appendix 7

A tutorial on total and partial derivatives as used in the paper
The proof of Theorem 1 given in the Methods (Sect. Proving theorem 1 (rt-DeEP)) makes use of 
partial and total derivatives and follows the notation of Scellier and Bengio, 2017 and Meulemans 
et al., 2022. As there is some variability (and community-dependent sloppiness) in the notation of 
partial and total derivatives here and in general, we provide some explanations on how this notation 
is interpreted, and why, for instance, total derivatives commute with each other, and also partial with 
each other (although not total with partial). For a standard basic textbook introducing the concepts 
of partial derivatives, total differentials, the implicit function theorem etc., see Stewart, 2010, being 
historically based on the classics of Courant, 1934.

i.	 In a differential geometric setting, the derivative of real-valued function ‍E(u)‍ on a point ‍u‍ of 
a manifold (like the flat Euclidean space) is considered as a mapping of tangent vectors at ‍u‍ 
to the real numbers. When interpreting the derivative as mapping, the ‍

∂E
∂u ‍ is living in the dual 

space of ‍u‍ and is, therefore, a row vector if is a column vector. If a function ‍f(u)‍ of ‍u‍ is a vector 

valued, then its derivative is a matrix with entries 
‍

(
∂f
∂u

)
ij

= ∂fi
∂uj ‍

, where ‍i‍ is indexing the rows (i.e. 

running down) and ‍j‍ is indexing the columns (i.e. running right). When ‍r = ρ(u)‍ is a column 
vector with ‍ρ‍ applied to each component of ‍u‍, we consider the (partial) derivative ‍r′ = ρ′(u)‍ 
for convenience as column vector with components ‍ρ

′(ui)‍. To strictly follow the formalism, it 
should be a diagonal matrix.

ii.	 Because we introduced the error vector ‍̄e‍ as column vector, it is easier to write ‍
∂L
∂u = ē + ...‍, 

where now ‍
∂L
∂u‍ is also considered as column vector. To be consistent with the above, we should 

have written ‍
∂L
∂u

T
= ē + ...‍. The ‍.T‍ appeared us as too heavy so that we neglected it, where it did 

not have further mathematical consequences (hoping it does not cause confusions). Sticking 
here to a column vector also renders the backpropagation error to be a column vector in 
Equation 21. This error then gets the classical form with the weight transpose, ‍̄ϵ = r̄′net·WT

netē‍.
iii.	 We typically have real-valued functions of the form ‍E(uθ , θ)‍, with ‍θ = (W,β)‍ being a vector 

of parameters, and ‍u‍ being a function of ‍θ‍. To get the total derivative of ‍E‍ with respect 
to ‍θ‍ we consider the values ‍E‍ as a function of ‍θ‍. This can be done by introducing a new 
function ‍E(θ)‍ defined as ‍E(θ) = E(uθ , θ)‍, where the components ‍θi‍ are considered as inde-
pendent variables. The total derivative of ‍E‍ with respect to ‍θ‍ is then defined as vector-

valued function 
‍
dE
dθ =

(
dE
dθ1

, ..., dE
dθn

)
=
(

dE
dθ1

, ..., dE
dθn

)
= ∂E

∂θ ‍
 for a ‍n‍-dimensional ‍θ‍. It can be 

helpful to think of the components of this total derivative as a (total) directional derivatives 
in the unit directions. For the last (‍n‍-th) unit direction ‍∆θ(n) = (0, .., 0, 1)‍, for instance, we have 

‍
dE
dθn

= limε→0
1
ε

(
E(uθ+ε∆θ(n) , θ + ε∆θ(n)) − E(uθ , θ)

)
‍
.

iv.	 The cost gradient, ‍
dC
dW ∝ (u − Wr̄) r̄T

‍ has the same dimension as ‍W ‍. Recall that by the cost 
gradient we mean ‍

dC
dW = ∂C

∂W ‍, where ‍C‍ is defined as ‍C(W) = C(uo(W), u∗
o )‍, with the voltage ‍uo‍ of 

the output neurons being itself a function of ‍W ‍.
v.	 To calculate the partial derivative ‍

∂
∂θ E(u, θ)‍ with respect to ‍θ‍, we fix the first argument ‍uθ‍, even 

if for ‍u‍ we often plugged in the components of the trajectory ‍u = uθ(t)‍ that now does depend 
on ‍θ‍. In contrast, the total derivative is ‍

d
dθ E(u, θ) = ∂E(u,θ)

∂u
du
dθ + ∂E(u,θ)

∂θ ‍. Here, ‍
∂E(u,θ)

∂u ‍ is a row 
vector, as also ‍

∂E(u,θ)
∂θ ‍, consistent with the convention (that we have broken in Equation 28 to 

keep vectors as columns). When ‍u‍ is considered as trajectory, ‍
du
dθ‍ does not vanish in general, 

but it does when ‍u‍ is simply considered as independent variable.
vi.	 When replacing the argument ‍u‍ in ‍E(u, θ)‍ by ‍u = ũ − τ ˙̃u‍ we get the ‘Lagrangian’ 

‍L(ũ, ˙̃u, θ) = E(ũ − τ ˙̃u, θ)‍. The partial derivative of ‍L‍ with respect to ‍̃u‍, for instance, is then 

‍
∂
∂ũ L(ũ, ˙̃u, θ) = ∂

∂u E(u, θ)∂u
∂ũ = ∂

∂u E(u, θ)‍. The partial derivative ‍
∂
∂ũ L‍ considers ‍L‍ as a function of 

independent arguments ‍̃u‍, ‍̇̃u‍ and ‍θ‍.
vii.	 We also used that the total derivatives commute, in the current example ‍

d
dW

d
dβ E = d

dβ
d

dW E‍. 
This is generally true for derivatives of Lipschitz continuous functions, for which derivatives 
exist almost everywhere. The total derivatives (where they exist) then commute because the 
difference quotients in ‍W ‍ and ‍β‍ are uniformly bounded. The Moore-Osgood theorem tells 
that two limits, of which at least one is uniform in the other, can be commuted. This also 
applies to the double difference quotients involved in the definition of ‍

d
dW

d
dβ ‍. Remember 

https://doi.org/10.7554/eLife.89674
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that the total derivative, for instance with respect to the ‍n‍-th parameter, can be written as 

‍
dE
dθn

= limε→0
1
ε

(
E(uθ+ε∆θ(n) , θ + ε∆θ(n)) − E(uθ , θ)

)
‍
. But note again that, while for Lipschitz 

functions partial derivatives commute among themselves, and total derivatives commute 
among themselves, partial and total derivatives in general do not commute (not even with 
additional smoothness conditions)!

https://doi.org/10.7554/eLife.89674
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Appendix 8
Proof of theorem 1, part (ii), using only partial derivatives
This section proves Equations 29–31 in terms of only partial derivatives, banning nested functions 
and banning the main theorem to calculate total derivatives in higher dimensions as presented in 
item ‍(v)‍ of the above Tutorial. While a reduction to partial derivatives only may represent a conceptual 
simplification, it requires many more additional (unnested) functions to be defined (and in fact being 
the reason why in mathematics the concept of a total differential / total derivative is introduced, 
see e.g. Courant, 1934). – The cited three equations are also the core for the proof for Equilibrium 
Propagation (Scellier and Bengio, 2017), although there only applied in the steady state after the 
network converged to a constant activity.

We assume a network of ‍d‍ neurons whose membrane potential is given by ‍u ∈ Rd‍ and which are 
connected via weights ‍W ∈ Rd×d‍. By ‍∇u‍, we denote the gradient with respect to the membrane 
potentials, i.e., ‍∇u = ( ∂

∂u1
, ... , ∂

∂ud
)‍. Similarly, ‍∇W ‍ is a matrix containing the derivatives with respect 

to the weights, ‍(∇W)ij = ∂
∂Wij ‍.

To prove the rt-DeEP theorem 1, we first have to make a few definitions and observations:

1.	 For a given ‍(W,β)‍, the dynamics yield certain membrane potentials ‍fu ∈ Rd
‍. Formally, we define 

this as

	﻿‍ fu : Rd×d × R → Rd , (W,β) �→ fu(W,β) .‍� (96)

The ith element of ‍fu‍ is denoted by ‍fui‍ and hence 
‍
∇fu = ( ∂

∂fu1
, ... , ∂

∂fud
)
‍
.

2.	 We define the following functions:

•	 the mismatch energy 
‍
EM : Rd × Rd×d → R , (u, W) �→ EM(u, W) = 1

2
∑d

i=1

[
ui −

∑
j Wijr̄j

]2

‍
 ,

•	 the cost function ‍C : Rd → R , u �→ C(u) = 1
2
∑

k∈O ∥u∗k − uk∥
2
‍ ,

•	 the Lagrangian ‍L : Rd × Rd×d × R → R , (u, W,β) �→ L(u, W,β) = EM(u, W) + βC(u)‍ . To make 
the dependency of the cost and energies on ‍β‍ and ‍W ‍ explicit, we further introduce three 
auxiliary functions ‍FM‍, ‍FC‍ and ‍FL‍ :

•	 for the mismatch energy ‍FM : Rd×d × R → R , (W,β) �→ FM(W,β) = EM (
fu(W,β), W

)
‍ ,

•	 for the cost function ‍FC : Rd×d × R → R , (W,β) �→ FC(W,β) = C
(
fu(W,β)

)
‍ ,

•	 for the Lagrangian ‍FL : Rd×d × R → R , (W,β) �→ FL(W,β) = FM(W,β) + βFC(W,β)‍
3.	 The Euler-Lagrange equations can be written as ‍τ

d
dt∇uL = −∇uL‍.

Hence, far enough away from initialization and for smooth enough input (and targets) we have 

‍∇fu L = 0‍ at all times, even when changing the network input continuously. Note that both the 
cost and the mismatch energies are defined on low-pass-filtered signals, and it is with respect 
to the low-pass filtered external input that the low-pass-filtered output error is minimized.

4.	 Without output nudging (i.e. ‍β = 0‍), the output error vanishes and consequently all other 
prediction errors vanish as well, ‍̄e = u − Wr̄ = 0‍. This can be easily shown for layered network 
architectures and holds true for arbitrary connections (e.g. recurrent networks) as long as ‍fu‍ 
uniquely exists, i.e., ‍u = Wr̄‍ has a unique solution for ‍u‍. From the form of the mismatch energy, 
we then get

	﻿‍ ∇WEM��
β=0 =

(
W r̄ − u

)
r̄T��

β=0 = 0.‍� (97)

Since we are assuming smooth functions, this also implies that

	﻿‍
limϵβ→0 ∇WEM∣∣

β=ϵβ
= 0.

‍� (98)

5.	 From the assumption of well-behaved (smooth) functions, it also follows that partial derivatives 
commute ‍∇W

∂
∂β = ∂

∂β∇W ‍.

Our goal is to find a plasticity rule that minimizes the cost ‍C‍, which we do by calculating ‍∇WFC
∣∣
β=0‍. 

Similar to Scellier and Bengio, 2017, to achieve this, we first calculate the partial derivatives of ‍FL‍ 
with respect to the nudging strength ‍β‍

	﻿‍

∂FL
∂β

= ∂FM
∂β

+ β
∂FC
∂β

+ FC
‍� (99a)

https://doi.org/10.7554/eLife.89674


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Senn, Dold et al. eLife 2023;12:RP89674. DOI: https://doi.org/10.7554/eLife.89674 � 56 of 57

	﻿‍
=

d∑
i=1

(
∂EM

∂fui

∂fui

∂β
+ β

∂C
∂fui

∂fui

∂β

)
+ C

‍�
(99b)

	﻿‍

=
d∑

i=1

∂
(

EM + βC
)

∂fui� �� �
=0

∂fui

∂β
+ C

‍�

(99c)

	﻿‍ = C,‍� (99d)

and the weights ‍W ‍

	﻿‍

∂FL
∂Wij

= ∂FM
∂Wij

+ β
∂FC
∂Wij ‍�

(100a)

	﻿‍

d∑
k=1

(
∂EM

∂fuk

∂fuk

∂Wij
+ β

∂C
∂fuk

∂fuk

∂Wij

)
+ ∂EM

∂Wij ‍�
(100b)

	﻿‍

=
d∑

k=1

∂
(

EM + βC
)

∂fuk� �� �
=0

∂fuk

∂Wij
+ ∂EM

∂Wij

‍�

(100c)

	﻿‍
= ∂EM

∂Wij
,
‍�

(100d)

or in vectorized form

	﻿‍ ∇WFL = ∇WEM.‍� (101)

With these identities in place, we can calculate the plasticity rule:

	﻿‍ − limϵβ→0 ∇WFC = limϵβ→0 ∇W
∂FL
∂β ‍� (102a)

	﻿‍
limϵβ→0

∂

∂β
∇WFL

‍�
(102b)

	﻿‍
= limϵβ→0 limδ→0

1
δ

(
∇WFL

��
β=ϵβ+δ −∇WFL

��
β=ϵβ

)
‍�

(102c)

 

	﻿‍
= limδ→0

1
δ

limϵβ→0

(
∇WEM��

β=ϵβ+δ −∇WEM��
β=ϵβ

)
‍�

(102d)

	﻿‍

= limδ→0
1
δ


limϵβ→0 ∇WEM∣∣

β=ϵβ+δ − lim
ϵβ→0

∇WEM∣∣
β=ϵβ

︸ ︷︷ ︸
=0 from (equation 98)




‍� (102e)

	﻿‍
= limδ→0

1
δ
∇WEM∣∣

β=δ‍� (102f)

 

	﻿‍
≈ 1

δ
∇WEM∣∣

β=δ for δ ≪ 1.
‍� (103g)
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where we used that limits can be exchanged for smooth functions. Using the definition of ‍EM‍, we 
obtain a plasticity rule that minimizes the cost function

	﻿‍
− limϵβ→0 ∇WC

��
β=ϵβ

≈ − 1
ϵβ

∇WEM��
β=ϵβ

= 1
ϵβ

(
u − W r̄

)
r̄T��

β=ϵβ
for ϵβ ≪ 1.

‍�
(103)

In practice, the prefactor ‍
1
ϵβ ‍ is absorbed into the learning rate.
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	﻿﻿A neuronal least-­action principle for real-­time learning in cortical circuits
	eLife assessment
	Introduction
	Results
	Somato-dendritic mismatch errors and the Lagrangian of cortical circuits
	The least-action principle expressed for prospective firing rates
	Prospective coding in neurons and instantaneous propagation
	Prospective control and the moving equilibrium hypothesis
	Local plasticity at basal synapses minimizes the global cost in real time
	Theorem 1 (real-time dendritic error propagation, rt-DeEP)
	Reproducing intracortical EEG recordings and recognizing handwritten digits
	Implementation in cortical microcircuits
	Theorem 2 (﻿﻿real-time dendritic error learning, rt-DeEL)
	Simultaneously learning apical errors and basal signals

	Discussion
	The NLA principle as a bottom-up theory from neurons to behavior
	The NLA principle integrates classical theories for cortical processing and learning
	The NLA integrates and predicts features of synapses, dendrites, and circuits

	Methods
	Euler-Lagrange equations as inverse low-pass filters
	Deriving the network dynamics from the Euler-Lagrange equations
	Deriving the error backpropagation formula
	Proving theorem 1 (rt-DeEP)
	Instantaneous gradient descent on ﻿‍￼‍﻿
	Proving theorem 2 (rt-DeEL)
	From implicit to explicit differential equations
	Moving and latent equilibria: a formal definition

	Simulation details
	Details for ﻿Figure 3b﻿
	Details for ﻿Figure 3c﻿
	Details for ﻿Figure 4﻿
	Details for ﻿Figure 5﻿


	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Peer review material

	Additional files
	Supplementary files

	References
	Appendix 1
	Extracting the presynaptic voltage error
	Threshold-linear transfer functions
	Rate-to-voltage inversion by short-term synaptic depression


	Appendix 2
	Looking back and forward in time with derivatives
	Uniqueness of the rate function
	Learning the input time constants


	Appendix 3
	From the implicit to the explicit differential equation
	Global convergence to a moving equilibrium (i.e. to ﻿‍￼‍﻿)
	Implicit differential equation
	Stable solution of the implicit differential equation
	Explicit differential equation
	Link to time-varying optimal control

	The NLA keeps stability as compared to an infinitesimally fast (﻿‍￼‍﻿) equilibrium propagation

	Appendix 4
	Contraction analysis and delta-function inputs
	Contraction property
	Comparison of the NLA with the latent equilibrium
	Delta-function inputs keep ﻿‍￼‍﻿


	Appendix 5
	Example of a single recurrently connected neuron
	Voltage dynamics for a delta-function input
	Linear transfer function
	Sigmoidal transfer function


	Appendix 6
	NLA for conductance-based neurons and least-action principle in physics
	Equivalent somato-dentritic circuit
	Somato-dentritic mismatch power and action
	Euler-Lagrange equations for conductance-based neurons
	Generalizations: Long memories, reinforcement learning
	Voltage dynamics from the least-action principle in physics


	Appendix 7
	A tutorial on total and partial derivatives as used in the paper

	Appendix 8
	Proof of theorem 1, part (﻿ii﻿), using only partial derivatives



