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Abstract
In the last decade dendrites of cortical neurons have been shown to nonlinearly combine

synaptic inputs by evoking local dendritic spikes. It has been suggested that these nonline-

arities raise the computational power of a single neuron, making it comparable to a 2-layer

network of point neurons. But how these nonlinearities can be incorporated into the synaptic

plasticity to optimally support learning remains unclear. We present a theoretically derived

synaptic plasticity rule for supervised and reinforcement learning that depends on the timing

of the presynaptic, the dendritic and the postsynaptic spikes. For supervised learning, the

rule can be seen as a biological version of the classical error-backpropagation algorithm

applied to the dendritic case. When modulated by a delayed reward signal, the same plas-

ticity is shown to maximize the expected reward in reinforcement learning for various coding

scenarios. Our framework makes specific experimental predictions and highlights the

unique advantage of active dendrites for implementing powerful synaptic plasticity rules

that have access to downstream information via backpropagation of action potentials.

Author Summary

Error-backpropagation is a successful algorithm for supervised learning in neural net-
works. Whether and how this technical algorithm is implemented in cortical structures,
however, remains elusive. Here we show that this algorithm may be implemented within a
single neuron equipped with nonlinear dendritic processing. An error expressed as mis-
match between somatic firing and membrane potential may be backpropagated to the
active dendritic branches where it modulates synaptic plasticity. This changes the classical
view that learning in the brain is realized by rewiring simple processing units as formalized
by the neural network theory. Instead, these processing units can themselves learn to
implement much more complex input-output functions as previously thought. While the
original algorithm only considered firing rates, the biological implementation enables
learning for both a firing rate and a spike-timing code. Moreover, when modulated by a
reward signal, the synaptic plasticity rule maximizes the expected reward in a reinforce-
ment learning framework.
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Introduction
One of the fascinating and still enigmatic aspects of cortical organization is the widespread
dendritic arborization of neurons. These dendrites have been shown to generate dendritic
spikes [1–3] that support local dendritic processing [4–7], but the nature of this computation
remains elusive. An interesting view is that the dendritic nonlinearities endow the neuron with
the structure of a 2-layer neural network of point neurons, in particular if the dendrites show
themselves step-like dendritic spikes, but also if the dendritic nonlinearities remain continuous
[8–11]. Here we show that the dendritic morphology actually offers a substantial additional
benefit over the 2-layer network. This is because it allows for the implementation of powerful
learning algorithms that rely on the backpropagation of the somatic information along the den-
drite that, in a network of point neurons, would not be possible in this form.

Error-backpropagation has become the classical algorithm for adapting the connection
strengths in artificial neural networks [12, 13]. In this algorithm, an error at an output unit is
assessed by comparing the self-generated activity with a target activity. Plasticity in hidden
units is driven by this error that propagates backwards along the connections of the network.
Synapses, however, transmit information just in one direction, making it difficult to implement
error-backpropagation in biological neuronal circuitries. But this is different for dendritic
trees. In the 2-layer structure of a dendritic tree information at the output site may be physi-
cally backpropagated across the intermediate computational layer to the synapses targeting the
tree.

While the suggested dendritic error-backpropagation is a plasticity rule for supervised
learning, it is also suitable for reinforcement learning. Instead of imposing the somatic spiking
to learn pre-assigned target spike timings, the somatic spikes can be generated by the dendritic
inputs alone, while learning is driven by a delayed reward signal. The synapse itself can be
agnostic about the coding and the learning scenario; it learns by continuously adapting synap-
tic strength according to molecular mechanisms that are identical in the different scenarios.

Various experimental work revealed that synaptic plasticity depends on the precise timing
between pre- and postsynaptic action potentials [14, 15] and the postsynaptic voltage [16]. It
has further been shown that the specific form of this spike-timing-dependent plasticity (STDP)
may vary with the synaptic location on the dendritic tree [17–19], and that synaptic plasticity
in general is modulated by dendritic spikes [20–22]. Yet, no coherent view on the impact of
dendritic nonlinearities on plasticity has emerged. Correspondingly, beside an early attempt to
assign a fitness score to dendritic synapses [23] and the suggestion of a Hebbian-type plasticity
rule for synapses on active dendrites [24], no computational framework for synaptic plasticity
with regenerative dendritic events exists that would guide its experimental exploration. In our
previous study, we derived a reward-maximizing plasticity rule that incorporates dendritic
spikes, but no online implementation was presented [25]. Here, starting from biophysical prop-
erties of NMDA conductances [26], we consider an integrated somato-dendritic spiking model
that captures the main biological ingredients of dendritic spikes and that is simple enough to
derive an online plasticity rule for different coding schemes in the context of both supervised
and reinforcement learning.

Results

Neuron model
Wemodel a multi-compartment neuron with several active dendritic branches, each directly
linked to a somatic compartment (Fig 1A1). The subthreshold dendritic voltage in branch d is
the weighted sum of normalized postsynaptic potentials (PSPs) triggered by the presynaptic
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spikes in the afferents projecting to that branch, ud
dðtÞ ¼

P
iwdi PSPiðtÞ. Here, wdi represents

the synaptic strength of the synapse from afferent i onto branch d that scales the PSP ampli-
tude. The dendritic branches can generate temporally extended NMDA-spikes of a fixed ampli-
tude, similar to experimental observations in vitro [1, 3, 5] and in vivo [7]. In our model an
NMDA-spike is represented by a square voltage pulse of amplitude a and duration Δ = 50 ms
(Fig 1A2–1A3). It is stochastically elicited with a rate that is an increasing function of the local

Fig 1. Neuronmodel, synaptic plasticity rule and learning of spike timings. A: Synaptic inputs targeting dendritic NMDA activation zones (A1, red
endings with enlargement) propagate, together with possible NMDA-spikes, to the somatic spike trigger zone (A1, blue). Individual postsynaptic potentials in
a dendritic branch (PSPs, arriving e.g. at time tprei , A2), may trigger NMDA-spikes, e.g. at time tdd ¼ 5ms (solid) or 15 ms (dashed) after tprei , forming a local
dendritic plateau potential of 50 ms duration (A3). A somatic spike triggered at ts during the ongoing NMDA-spike (A4) causes a synaptic weight change Dwsds

di

that is large/small depending on whether the NMDA-spike was triggered 5/15 ms after the presynaptic spike (A5, solid/dashed circle, respectively). A5: Dwsds
di

as a function of ts � tprei for a NMDA-spike at 5 (solid) and 15 ms (dashed).B: Raster plots of freely generated somatic spikes from test trials that are
interleaved with learning trials. For the full somato-dendritic synaptic plasticity rule (sdSP) the somatic spikes converge to the 3 target times with a precision
of ±3 ms (top), while the rule neglecting the dendritic spikes (i.e. suppressing the term _w_sds

di ) achieves a precision of only ±14 ms (bottom).C: The two spike
distributions from C after 3000 presentations.

doi:10.1371/journal.pcbi.1004638.g001
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subthreshold membrane potential ud
d and, implicitly, of the local glutamate level. In fact, in an

in vivo scenario the joint voltage and glutamate condition for triggering an NMDA-spike effec-
tively reduces to a single condition on the local voltage alone. This is because the depolarization
required to activate the NMDA receptors is only reached when enough glutamate was released,
making the glutamate condition automatically satisfied at high enough voltages (see S1 Text).

The subthreshold dendritic voltage ud
dðtÞ and the dendritic spike train NMDAd(t) in branch

d propagate with some attenuation factor α to the soma where they add up with inputs from
other branches to form the somatic voltage us ¼ P

daðud
d þ NMDAdÞ � k. This voltage is also

modulated by a spike reset kernel κ(t) incorporating the transient hyperpolarisation caused by
each somatic spike (Fig 1A4). For supervised learning, the somatic spikes S(t) are imposed by
an external input, whereas in reinforcement learning they are stochastically triggered with an
instantaneous rate ρs(t) that is an increasing function of the somatic potential us (Online
Methods).

Learning rule
We first consider a supervised learning scenario where somatic spikes S are enforced by one
modality (e.g. a visual stimulus) while the synaptic inputs to the dendritic branches are caused
by another modality (e.g. representing an auditory stimulus [27]). The strengths of the synap-
ses on the dendrites, wdi, are adapted in order to reproduce the somatic spike train S(t) from
just the dendritic input alone, without direct somatic drive. This can be achieved by ongoing
synaptic weight changes, _wdi, that together maximize the likelihood of observing S in response
to this dendritic input. According to the two types of contributions to the somatic voltage, the
sub- and supra-threshold dendritic voltages, ud

d and NMDAd, the synaptic weight change can
also be decomposed into a sub- and suprathreshold contribution, _wdi ¼ _wss

di þ _wsds
di , that take

into account the subthreshold somato-synaptic (ss) and the suprathreshold somato-dendro-
synaptic (sds) drive. We also refer to _wdi as somato-dendritic synaptic plasticity (sdSP).

The somato-synaptic contribution is proportional to the postsynaptic error term (S − ρs)
times the local postsynaptic potential PSPi induced by synapse i on that dendritic branch,

_wss
di / ðS� rsÞ � PSPi : ð1Þ

This corresponds to the gradient learning rule that was previously derived for a single com-
partment neuron [28] and that was shown to be consistent with the experimentally observed
STDP (see e.g. [29]). The error term in the rule ensures that if the rate ρs is too small for gener-
ating S, the weight is increased, and if the rate is too high, the weight is decreased, eventually
leading in average to hSi = ρs.

The main sdSP-effect stems from the somato-dendro-synaptic contribution _wsds
di . The

instantaneous synaptic weight change at time t is induced by the dendritic activity Dend in
branch d during the interval Δ prior to t. Any NMDA-spike elicited in this interval will affect
the somatic voltage at time t, and the likelihood of a dendritic spike is itself influenced by the
local synaptic potentials PSPi arriving in this interval and a few milliseconds before (Fig 1A2–
1A5). Overall, we obtain an expression of the form

_wsds
di / ðS� rs

ndÞ � Dend�PSPi ; ð2Þ

where Dend � PSPi captures the impact of synapse i on the triggering of an NMDA-spike in the
preceding interval Δ, and rs

nd represents the instantaneous somatic firing rate in the absence of

a dendritic spike in branch d (see Online Methods). A positive error term ðS� rs
ndÞ tells the

synapses on branch d how worth it is to increase their weights in order to trigger a local
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NMDA-spike; a negative error term suggests to rather decrease the weights since even without
NMDA-spike from that branch the somatic firing rate, in average, is too high. When only den-
dritic nonlinearities without spiking are present, the rule Eq (2) simplifies to a pure 3-factor
rule composed of a somatic difference factor, a dendritic factor, and a presynaptic factor that
can be applied to dendrites showing supra- or sublinear dendritic summations (see Eq (9) in
Online Methods).

The learning rule of Eq (2) can be interpreted as error-backpropagation for spiking neurons
where a somatic error signal is propagated back to the dendrites that represent the nonlinear
hidden units. These hidden units further modulate the error signal depending on their impact
on the output unit. Classical error-backpropagation would also adapt the weights from the hid-
den units to the output unit. This would correspond to adapting the impact of NMDA spikes
on the somatic voltage and could be modeled as dendritic branch strength plasticity [24, 30].
For conceptual clarity we discard from this extension, but the gradient calculations could also
be applied to infer an optimal learning rule for these branch strengths.

Supervised learning with active dendrites
The overall synaptic modification, Δwdi, induced by sdSP is obtained by integrating the instan-

taneous changes _wdi over the stimulus duration, Dwdi ¼
R T

0
_wdiðtÞ dt. Using the decomposition

_wdi ¼ _wss
di þ _wsds

di we may also write Dwdi ¼ Dwss
di þ Dwsds

di and have a closer look to the somato-
dendro-synaptic contribution Dwsds

di (Fig 1A2–1A5). We fixed a presynaptic spike at time tprei ¼
0 and plotted Dwsds

di as a function of the somatic spike time ts for the case of a NMDA-spike at
td = 5 ms and 15 ms. The dendritic spike immediately after a presynaptic spike considerably
extends the classical time window for causal ‘pre-post’ potentiation to a ‘pre-dend-post’ poten-
tiation. In fact, a presynaptic spike that was taking part in triggering a NMDA-spike may indi-
rectly contribute also to a postsynaptic spike more than 50 ms later. In turn, synaptic
depression is induced in an a-causal configuration where the somatic spike comes either before
the presynaptic spike or after the NMDA-spike has already decayed.

Endowed with sdSP a neuron is able to learn precise output spike-timings as shown in Fig
1B and 1C; blue) where 3 somatic spike times were imposed during the learning. The dendritic
input consisted of 100 frozen presynaptic Poisson spike trains with frequency 6Hz and dura-
tion T = 500 ms. The dendritic tree had 20 branches, each being targeted by a random subset of
the 100 afferents with a connection probability of 0.5. After repeated pattern presentations
with somatic output clamped to the target spikes, the neuron learned to generate the target out-
put from the synaptic input alone with a precision of a few milliseconds. The high spike-time
precision is lost when synapses are modified only by the somato-synaptic contribution _wss

di (Fig
1B and 1C; pink). Because this plasticity contribution is blind to dendritic activity, small synap-
tic weight changes may cause undesired appearance or disappearance of NMDA-spikes. In this
case dendritic spikes arise as unpredicted knock-on effects of synaptic plasticity. Note that the
somato-synaptic contribution alone, being identical to the gradient rule [28], would be able to
learn the precise spiking (as would also the rules in [29, 31]) if the neuron were note endowed
with the dendritic spiking mechanism and instead would only show linear summation with
passive voltage propagation.

Reward-modulated somato-dendritic plasticity
We next considered a reinforcement learning scenario where synaptic modifications are modu-
lated by a binary feedback signal R = ±1 that is applied at the end of the stimulus presentation
and that assesses the appropriateness of the somatic firing pattern. While this feedback is itself
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an external quantity, it is assumed to induce an internal signal, e.g. in the form of a neuromo-
dulator, that globally modulates the previously induced synaptic changes. To control the bal-
ance between reward and punishment, the internal feedback modulates the past plasticity
induction by a factor (R − R�) with a constant reward bias R�.

When deriving a plasticity rule that maximizes the expected reward we again obtain the
same sdSP (see Eqs (1) and (2)), but now integrated across the stimulus interval and then mod-
ulated by the feedback signal,

Dwdi / ðR� R�Þ
Z T

0

ð _wss
di þ _wsds

di Þ dt ; ð3Þ

see S1C Text. We refer to this rule as reward-modulated somato-dendritic synaptic plasticity
(R-sdSP). Due to the term _wsds

di it is effectively a 4-factor rule of the form ‘Δw =
Rwrd�som�dend�pre’. The intuition is that the intrinsic neuronal stochasticities generate fluctua-
tions in the somatic spiking that deviate from the prediction made by the dendritic input and
cause an ‘error’ expressed in the somatic factor ðS� rs

ndÞ of the rule. These fluctuations will be
reinforced or suppressed by the feedback signal. As before, the synaptic modification will be
strengthened if a presynaptic spike contributed to a dendritic NMDA-spike that in turn affects
the somatic voltage.

Reinforcement learning with active dendrites
We tested R-sdSP for various coding schemes. First, we considered a standard binary classifica-
tion of frozen Poisson spike patterns by a postsynaptic spike- / no-spike code (Fig 2A). Each
input pattern is defined as above (6Hz in 100 afferents for 500 ms) and belongs to one of two
classes. For one class the soma is required to fire at least one spike while for the other class it
should be silent. After repeated presentations followed by a reward signal, R-sdSP perfectly
learned the correct classification of 4 random patterns. In contrast, reward-modulated STDP
(R-STDP, [32]) implemented in its best performing version (see Online Methods and [33]) did
not (Fig 2B). To achieve an appropriate alignment of dendritic spikes (Fig 2C and 2D), any suc-
cessful learning rule needs to take account of the causal chain linking presynaptic spikes to den-
dritic and somatic spikes, the latter deciding upon reward or punishment. R-sdSP derived from
maximizing the expected reward captures this causal relationship, but R-STDP does not, nei-
ther with a 10 ms (Fig 2B) nor with a 50 ms learning window (S2 Fig), and hence fails. Interest-
ingly, R-STDP improves when the NMDA-spike generation is suppressed (Fig 2B, dashed).
This shows that the increased flexibility in neuronal information processing provided by den-
dritic nonlinearities will in fact impede learning when a rule is used that does not take the non-
linearities into account.

R-sdSP is still able to correctly learn the classification even when the spike timings were
noisy with a jitter up to 100 ms, or when the somatic voltage modulating the synaptic plasticity
(via ρs and rs

nd) was low-pass filtered to mimic the dilution of information back-propagating to

the synaptic site (S2 Fig).
Incidentally, the same task from Fig 2 can also be solved in a supervised scenario e.g. with

the tempotron where, beside telling a neuron whether it should spike or not spike in response
to a stimulus, the neuron is supposed to have access to the time of the voltage maximum within
the stimulus interval [0, T], see e.g. [34, 35]. Although with these additional assumptions learn-
ing in principle becomes faster, the rules will again suffer from the ignorance about NMDA
spikes and the possible acausality between a presynaptic spike and an immediately following
somatic spike.
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Learning direction selectivity and nonlinear separation
To apply the dendritic learning to a biological example we consider the direction selectivity of
pyramidal neurons that was found to be mediated by nonlinear dendritic processing in vitro
[5] and in vivo [7]. To mimick directional inputs moving in the stimulus space from right to
left and left to right, we randomly enumerated the synapses across the whole dendritic tree and
stochastically activated these synapses once in increasing and once in decreasing order (Fig
3A). After the stimulation, a positive reward signal was applied to the synapses when at least
one somatic spike was elicited during the left-to-right patterns, or no somatic spike was elicited

Fig 2. Binary classification of frozen input spike patterns by a somatic spike / no-spike code for the reward-modulated somato-dendritic synaptic
plasticity (R-sdSP). A: Four input patterns, the two patterns in the top row should elicit no somatic spikes; the patterns in the bottom row should.B: R-sdSP
perfectly learns the classification after roughly 1000 presentations (blue solid). In contrast, classical R-STDP fails when applied to the presynaptic–somatic
(‘pre-som’, solid black) or the presynaptic–dendritic (‘pre-den’, gray) spike pairs. R-STDP improves when the dendritic spike generation is suppressed (black
dashed), although it does not reach the high performance of R-sdSP.C,D: Dendritic and somatic voltages in response to an input pattern that requires
spiking, before (C) and after (D) learning. The initially sparse dendritic spikes (NMDAd(t), red bars, overlaid on a ud

dðtÞ intensity plot) becomemore numerous,
co-align and sum up in the soma to enable the somatic firing. Yellow indicates depolarization. Bottom: Time course of the somatic voltage us(t) (blue) with the
contribution of the NMDA-spikes and the somatic spike reset kernel (red).

doi:10.1371/journal.pcbi.1004638.g002
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Fig 3. R-sdSP can exploit the representational power endowed by active dendrites. A: Example of presynaptic firing pattern that requires the neuron to
be silent (green) or to elicit at least one somatic spike (red). B: R-sdSP (blue), but not R-STDP, learns to become direction selective (black: ‘pre-som’; grey:
‘pre-den’). C, D: The subthreshold dendritic voltages ud

dðtÞ and NMDA traces NMDAd(t) in response to the two input patterns shown in A (color code as in Fig
2). Individual branches developed direction selectivity (green). Bottom: action potentials are only generated for one direction. E: The 4 input patterns of the
linearly non-separable feature-binding problem combine one of two shapes (‘circle’ or ‘diamond’) with one of two fill colors (‘blue’ or ‘black’). Each of the four
features is represented by 25 afferents (next to the corresponding symbol on the y-axes) that encode its presence or absence by a high (40Hz) or low (5Hz)
Poisson firing rate, respectively. F: R-sdSP learns the correct response to the 4 inputs, R-STDP does not (line code as above). Inset: average performance of
each run after learning.

doi:10.1371/journal.pcbi.1004638.g003
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during a right-to-left pattern. A negative reward signal was applied in the other cases. R-sdSP,
but not R-STDP, could learn such direction selectivity (Fig 3B). Individual dendritic branches
may become selective to the synaptic activation order and learn to generate NMDA-spikes
that, after summation in the soma, eventually trigger somatic action potentials (Fig 3C and
3D). Hence, the neuron learned to employ the dendritic nonlinearities to achieve direction
selectivity, even though solving the task does not require them.

A classical task that exceeds the representational power of a point neuron is the XOR (exclu-
sive-or) problem that is equivalent to the linearly non-separating feature binding problem [24].
In this task, the neuron has to respond exclusively to two disjoint pairs of features (e.g. to black
& circle and to blue & diamond), but not to the cross combinations of these features (black &
diamond and blue & circle). The presence and absence of a feature was encoded in a high and
low Poisson firing rate, respectively, of a subpopulation of afferents projecting to our classifying
neuron (Fig 3E). R-sdSP on the active dendrites could learn the correct responses, although
due to the intrinsic stochasticity failures occurred in some cases. Classical R-STDP failed also
in solving the feature binding problem problem on the dendritic tree, whether applied to pre-
dend or to pre-som spike pairings (Fig 3F).

Learning spike timings with delayed reward
Besides learning a spike / no-spike code or a firing rate code, R-sdSP can also learn a spike tim-
ing code, i.e. to fire only at specific times. In a first task showing this, the neuron had to learn to
spike at a target time ttarg = 250 ms in response to a frozen Poisson spike pattern. Deviations
from this time were punished at the stimulus ending, using a graded feedback signal that
increases with the magnitude of the deviation (Online Methods). During repeated pattern pre-
sentations, while applying R-sdSP and the delayed punishing signal, the postsynaptic spiking
becomes concentrated in a narrow time window around the target spike (Fig 4A–4C). To
understand the role of the active dendrites we separated the time course of the somatic voltage
into the contribution from the subthreshold dendritic potentials and the NMDA-spikes (Fig
4D and 4E). After successful learning, the averaged NMDA-spikes form a broad ridge around
ttarg on top of which the subthreshold dendritic voltages act as ‘scorers’. Before and immedi-
ately after ttarg the subthreshold voltage is hyperpolarized to prevent somatic spikes from com-
ing too early or too late. Notice that in an individual run the summed NMDA-spikes can form
plateaus that are much shorter than the NMDA-spike duration of 50 ms. In the example
shown, this arises because just 5 ms after the initiation of an NMDA-spike in one branch
another NMDA-spike ends in a second branch, cutting the somatic plateau short to 5 ms (Fig
4D). By virtue of the backpropagated somatic activity, R-sdSP learns to coordinate the timing
of the NMDA-spikes in the different branches, creating a narrow window for a somatic spike
around the target time.

Learning a spike-timing code is also possible if the rewarding / punishing signal is binary
and is potentially delayed by several stimulus durations. We conceived a spatial navigation task
where 7 positions on a circle are encoded each by a frozen 500 ms spike pattern in 100 afferents
projecting to the dendritic branches of the model neuron as before. The task is to jump to posi-
tion 0 when being in one of the other 6 positions and, after reaching position 0, staying there
(Fig 5A). Actions consisted in either no jump or jumps of 1, 2 or 3 steps clock or counter clock-
wise. No jump is encoded by no somatic spikes, and a jump of n steps in the clock or counter-
clockwise direction is encoded by the first somatic spike arising in the n’th time bin to the left
or right from the center (Fig 5A, inset). A positive reward signal R = 1 is delivered when the
agent, being in a non-target position, directly jumps to the target, or when it is at the target
position and stays there; else R = −1. After an initial average of 20 random actions needed to
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reach the target position, the R-sdSP modulated agents learned to eventually reach the target
with a single action and stay there (Fig 5B and 5C). While initially the first somatic spike times
of our model neuron were uniformly distributed across the 500 ms stimulus interval, the neu-
ron eventually learned to respond in the appropriate time bin of 83 ms duration that encoded
the correct jumps (Fig 5D). During learning, the dendritic branches develop a shared selectivity
for the patterns and until the first NMDA-spikes become properly aligned in the correct time
bin (Fig 5E).

Discussion
We derived a synaptic plasticity rule for synapses on active dendrites that minimizes errors in
the supervised and maximizes reward in the reinforcement learning scenario. More precisely,
the rule follows the gradient of (a lower bound of) the log-likelihood of reproducing a given
spike train for supervised learning, and the gradient of the expected reward for reinforcement
learning. The rule specifies the optimal timing between the presynaptic, dendritic and somatic
spikes, including the time course of the postsynaptic voltages. We showed that neurons can
only exploit the increased representational power of active dendrites when synaptic plasticity is
modulated by both the somatic and the dendritic spiking. The suggested somato-dendritic
spike-dependent synaptic plasticity (sdSP) learns to correctly respond to synaptic input pat-
terns coding by either frozen spikes times or firing rates, while classical STDP fails. It is
remarkable that the same plasticity induction that supports the learning of precise spiking in
the supervised learning scenario also maximizes the expected reward when modulated by an

Fig 4. R-sdSP learns exact somatic spike timing. A: Somatic spike trains during 20000 trials in a reward based scenario. B: The distribution of somatic
spikes after learning of the target time at 250 ms has a Gaussian half-width of 18 ms.C: Evolution of the width (σ) of the spike-time distribution during training.
D,E: Separation of the somatic voltage into a contribution from the NMDA-spikes (red) and the subthreshold dendritic potentials (blue) for a single run (D) and
averaged across 20 runs (E). Note that after learning the summed NMDA-spikes can form a narrow depolarizations at the target time beyond the duration of
an individual spike (arrow in D).

doi:10.1371/journal.pcbi.1004638.g004
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Fig 5. R-sdSP learns the correct spike-timing in a navigational task with binary and delayed feedback. A: At each position a fixed spike pattern is
presented, and the timing of the first somatic spike tells how many steps in the clock (−) or counter clock (+) direction are taken. Color code of the time bin
indicates the preferred spike timing for directly jumping to target position 0 when being at the correspondingly colored circle position (see text).B: Evolution of
the mean number of jumps needed from a randomly chosen circle position until 0 is reached.C: Performance Index defined as the probability of directly
jumping from any of the 6 circle positions to the target, and staying there if already at 0. Before learning this probability is 0.13, after learning it is 0.78. D:
Histogram of first somatic spikes at the various positions before and after learning, averaged across patterns and learning runs (color code as in A). (E)
Timing of the first NMDA spike in each of the 20 branches (upper panel) and the first somatic spike (lower panel) when stimulated with the patterns
associated to the 6 circle positions (colors encode positions as in A). After learning, NMDA-spikes in 2-4 branches co-align and trigger somatic spike timing
the appropriate time bin.

doi:10.1371/journal.pcbi.1004638.g005
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internal and possibly delayed reward signal, irrespective of whether the postsynaptic code is
based on spike times or firing rates.

The neuron model for which we derived the gradient rules considered dendritic spikes as
saturating square-shaped depolarizations triggered by the crossing of a dendritic voltage
threshold. We showed that the dual voltage-glutamate criterion for NMDA spikes reduces in
the presence of balanced excitation and inhibition to a pure voltage criterion. This is because
the glutamate condition is always satisfied when reaching the voltage threshold. This leads to a
dendritic spike scenario that also includes dendritic sodium [36] or calcium spikes [37] differ-
ing in their voltage threshold, duration and amplitude. In the supervised learning scenario, the
general plasticity rule we derived consists of a somatic error term that measures the difference
between the actual spiking and the instantaneous spike rate, a dendritic rate- and spike-term,
and a presynaptic spike term. Potentiation is triggered if the presynaptic spike is followed by a
postsynaptic spike within roughly 10 ms, and this time window is stretched to roughly 50 ms if
between the pre- and postsynaptic spike an additional dendritic spike occurs. Plasticity, be it
potentiation or depression, can also be boosted by a mere nonlinear dendritic depolarizations
without dendritic spikes, linking the rule also to computational models considering nonlinear
but continuous dendritic processing [8–11, 24]. In the reinforcement learning scenario, the
same plasticity rule is modulated by a global reward signal.

As learning is driven by a somatic error term, the synapses must be able to readout this
error by disentangling the backpropagating spike and the somatic voltage (or at least a low-
pass filtered version of it, see S2C–S2F Fig). Synapses must also read out the local dendritic
spike and potential, and the synapse-specific postsynaptic potential (PSP). The PSP may be
inferred from the concentration of the local glutamate released by the presynaptic bouton. The
somatic and dendritic spikes may be determined from their characteristic voltage upstrokes
and sustained depolarizations, and the NMDA spike can be further detected by a rapid increase
in the local calcium concentration. Finally, the (subthreshold) somatic and dendritic depolari-
zation may be distinguished by co-sensing local ion concentrations. In fact, the synaptically
induced dendritic depolarization goes together with an increased local sodium concentration
while the backpropagating somatic voltage does not cause such a ion influx. We assume that
synapses developed a molecular machinery to extract these quantities and infer approximate
estimates for the terms occuring in our plasticity rules.

Our computational framework for active dendrites contributes to the debate whether plas-
ticity on dendritic branches should depend on the dendritic rather than the somatic spike [38],
or whether it subserves synaptic clustering [23, 39] or a homeostatic adaptation [40]. In fact,
when seen in the light of learning, synaptic plasticity is predicted to depend on all the postsyn-
aptic quantities. Based on the model of dendritic NMDA receptor conductances in an in vivo
stimulation scenario, the learning rule yields a guideline for experimental testings. For instance,
it is in line with the observed synaptic depression induced by a synaptically generated dendritic
spike alone ([41], but see [42]), or with the extended time window for plasticity induction
involving NMDA-spikes [21]. It predicts that an NMDA-spike within roughly 50 ms after an
excitatory synaptic input always enhances the synaptic modification. While the sign of the syn-
aptic modification is determined by the presence or absence of a somatic spike following the
synaptic input, an additional synaptically evoked NMDA-spike will only enhance it, never
revert this sign.

Dendritic structures that have been suggested to form a 2-layer network [8] offer the addi-
tional advantage of easily backpropagating the information of the output to the synaptic sites 2
layers upstream. From a computational perspective it is interesting to note that, one the one
hand, 2-layer networks represent an universal function approximator [43] while, on the other
hand, networks with more than two layers are difficult to be trained [13]. For the dendritic
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implementation this suggests to limit the internal nonlinearities to a single layer of active den-
dritic branches. Because stacking dendritic nonlinearities across multiple layers would cause
additional cross-talk, the restriction to a single dendritic nonlinearity may just be nature’s solu-
tion to the trade-off between achieving more representational power and paying the associated
signaling costs required for efficient learning.

Online Methods
Neuron parameters. The postsynaptic potentials are defined by PSPiðtÞ ¼

P
�ðt � tprei Þ,

where the sum extends across all presynaptic spike times tprei of afferent i. The spike reset is
defined by κ(t) = ∑ts κ�(t − ts), where the sum extends across all somatic spike times ts. The two
kernels are defined as

�ðtÞ ¼ YðtÞ
tm � ts

ðe�t=tm � e�t=tsÞ ; k�ðtÞ ¼ YðtÞe�t=tm ;

with τm = 10 ms and τs = 1.5 ms. Here, Θ(t) = 1 for t� 0 and Θ(t) = 0 for t< 0. The instanta-
neous rate for generating a NMDA-spike in dendrite d is rd

dðtÞ � rdðud
dðtÞÞ, and the instanta-

neous rate of generating a somatic spike is ρs(t)�ρs(us(t)) with

rdðuÞ ¼ rD=ð1þ exp ð�bDðu� yDÞÞÞ ; rsðuÞ ¼ exp ðbsðu� ysÞÞ : ð4Þ

This model of NMDA-spike generation can be deduced from the biophysical properties of
NMDA receptors in a roughly balanced input scenario where the glutamate level required to
activate the NMDA receptors is always reached for those voltages that also relieve their magne-
sium block (see S1A Text). The choice of the saturating rate function for the NMDA generation
was motivated both by stability reasons, and also because the dendritic nonlinearities are satu-
rating [11].

The neuronal parameters are rD = 5, βD = βs = 5, θs = 2 and θD = 2.4. We considered n = 20
branches and a dendritic attenuation factor α = 0.06. The probability that one out of the 100
afferents is connected to a given branch was p = 0.5. The amplitude of the dendritic NMDA-
spike is a = 6, its duration Δ = 50 ms. Different NMDA-spikes in the same branch add in time
but not in amplitude, yielding a dendritic plateau potential in branch d of the form NMDAd(t)
= a if at least one NMDA-spike was triggered in the interval Δ before t and NMDAd(t) = 0 else.
For simplicity we assumed the two parameters α and a to be identical for all branches, but they
may vary across branches or even be treated as adaptable dendritic ‘coupling strengths’ that
could be learned by analogous gradient rules as suggested by experimental work [30].

The learning rule. To obtain an online rule that is identical in the supervised and rein-
forcement scenarios up to reward modulation, we consider an additional low-pass filtering of
the instantaneous synaptic changes. Plasticity is then triggered when either the stimulus ends
or when reward is applied. We introduce the instantaneous synaptic eligibility for somato-syn-
aptic and the somato-dendro-synaptic contribution, respectively, by

essdiðtÞ ¼ ðSðtÞ � rsðtÞÞPSPiðtÞ ð5Þ

esdsdi ðtÞ ¼ ðSðtÞ � rs
ndðtÞÞDend�PSPiðtÞ ð6Þ

with S(t) = ∑ts δ(t − ts) representing the somatic spike train and rs
ndðtÞ the instantaneous

somatic escape rate without contribution of the putative NMDA-spike from branch d at time t,

rs
ndðtÞ ¼ c rsðusðtÞ � aNMDAdðtÞÞ : ð7Þ
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Here, c ¼ ðeaabs � 1Þ=ðaabsÞ. Note that a low-pass filtered version of ρs and rs
nd could be

extracted at the synaptic site by using the local ionic concentrations to disentangle the local,
synaptically generated voltage and NMDA-spike from the backpropagated somatic voltage (see
also Discussion). The factor Dend�PSPi expresses a modulation of the synaptic signal PSPi by
the presence or absence of an NMDA-spike in branch d before t, i.e. within the time interval t
− Δ to t. If there is such a spike, the last NMDA-spike initiation time at branch d in the interval
[t − Δ, t] is denoted by tdd . We then set

Dend�PSPiðtÞ ¼
1

rd
dðtddÞ

rd0
d ðtddÞPSPiðtddÞ if t within NMDA�spike triggered at tdd ;

R t

t�D r
d0
d ðt0ÞPSPiðt0Þdt0 else ;

ð8Þ

8>><
>>:

where rd0
d ¼ bD

rD
rd
dðrD � rd

dÞ represents the derivative of rd
dðuÞ with respect to u ¼ ud

d .

The upper line in Eq (8) can be understood as a sampling version of the lower line: Let Dd(t)
be the sum of delta-functions centered at the triggering times of NMDA-spikes in branch d. In
the case that the NMDA-spikes in the same dendritic branch would add up, the upper line

becomes
R t

t�D
Ddðt0Þ
rd
d
ðt0Þ r

d0
d ðt0ÞPSPiðt0Þdt0, and this averages out to yield the lower line. Since in our

case the NMDA-spike triggerings are rare, the two versions for the upper line are roughly
equal. We further approximated the integral in the lower line by Bdi defined as low-pass filtered
version of the integrand, _Bdi ¼ �Bdi=Dþ rd0

d PSPi with filtering time constant D ¼ D=2. It is
also possible to define Dend�PSPi(t) by any convex combination of the two lines in Eq (8), but
an equal weighting of them yielded best performances in our simulations.

It is illustrative to deduce from the above formulas the limit when the dendritic spiking dis-
appears and merely a dendritic nonlinearity remains. Remember that in deriving these formu-
las we allowed the NMDA spikes to add up, and since for biological frequences NMDA spikes
rarely overlap, this assumption is justified. If NMDA spikes are still allowed to add up
(although not to infinity), we may formally scale the NMDA amplitude, the NMDA duration

and the NMDA rate function by a factor λ! 0, i.e. replacing a! λa, Δ! λΔ and rd
d ! rd

d=l
2

and take the limit of λ converging to 0. The time course of the dendritic spikes in branch d,
NMDAd(t), is then replaced by the nonlinearly summed dendritic voltage rd

dðtÞ ¼ rd
dðud

dðtÞÞ,
and the somato-dendro-synaptic contribution for synapse i on branch d (Eqs (2) and (6),
respectively) becomes the 3-factor rule

esdsdi ðtÞ ¼ ðSðtÞ � rsðtÞÞ rd0
d ðtÞ PSPiðtÞ : ð9Þ

This rule could be seen as a gradient version of the pair-based rule in [24] and applies to the
dendritic nonlinearities considered in [8–10]. An alternative derivation of the rule Eq (9) is to
consider the deterministic somatic voltage us ¼ P

daðud
d þ rd

dðud
dÞÞ � k and derive the learning

rule as in [28] for the case of the exponential somatic spike rate ρs(us) defined in Eq (4). The
direct gradient calculation leads to the two plasticity components in Eqs (5) and (9), respec-
tively, corresponding to the linear and nonlinear summation of the dendritic potentials ud

d.
Coming back to the case with dendritic spikes, the two instantaneous eligibilities for sdSP

(Eqs (5) and (6)) are again weighted and low-pass filtered,

_EdiðtÞ ¼ �EdiðtÞ=tE þ �a esdsdi ðtÞ þ essdiðtÞ ; ð10Þ

with �a ¼ a=2 and filtering time constant τE = T/2, T = 500 ms. The supervised learning rule
(sdSP) is obtained by clamping the somatic output to the target spike train and updating the
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weights after each stimulus by the synaptic eligibility trace at that time,

DwdiðTÞ ¼ Z EdiðTÞ ;
with optimized learning rate η (see below). In reinforcement learning the synaptic weights are
updated at the times tRew when a reward signal is applied, i.e. when a stimulus ends (tRew = T in
Figs 2–5). For R-sdSP we obtain

DwdiðtRewÞ ¼ ZðR� R0ÞEdiðtRewÞ :

The reward signal R depends on the input spike pattern and somatic spike train S, and R0 is a
baseline set to R0 = 1 for all simulations with R-sdSP. Setting R0 to a running average of the
reward would speed up learning, but for simplicity we refrained from this optimization (see, how-
ever, the implementation of R-STDP in Eq (11), where R0 must even depend on the stimulus).
For a derivation of the sdSP and R-sdSP as gradient of a target function see S1C Text and [25].

Simulation details. For all tasks and learning rules we optimized the learning rate η
such that the performance for the optimized value η = η� is better than for the adjacent values
η = 1.5 η� and η = η�/1.5. In all the simulations involving R-sdSP we used the binary reward sig-
nal R = ±1, except for learning the very precise spike timing in Fig 4 that required a graded

reward. There, R = 1 − ∑tsom g(t
som − ttarg) with ttarg = 250 ms, gðdÞ ¼ 1� exp � jdj

T=2

� �
, and the

sum extending across all somatic spike times tsom (setting tsom = 0 when no somatic spike was
emitted).

The R-STDP plasticity rule was implemented in its best performing version found in [33].
More precisely, Frémaux et al. defined the eligibility

eSTDPdi ðtÞ ¼ Aþ SðtÞ
Z t

�1
xiðsÞ eðs�tÞ=tþdsþ A� xiðtÞ

Z t

�1
SðsÞ eðs�tÞ=t�ds

with xiðsÞ ¼
P

tpre
i
dðs� tprei Þ being the presynaptic spike train in afferent i. They set A− = 0, A+

= 1, and τ+ matched the synaptic time constant τs = 10 ms. In our case the postsynaptic signal
post(s) is either the somatic spike train S(t) or the local dendritic spike train Dd(t) in branch d.
As pointed out in [33], the constant baseline reward R0 used in gradient rules must be replaced
by a running mean across pattern presentations that depends on the identity of the input pat-

tern x, ~RðxÞ ¼ 1
tp
RðxÞ þ 1� 1

tp

� �
~RðxÞ. Here, the history length constant is here set to τp = 5.

The weight update after each stimulus presentation is

DwSTDP
di ðtRewÞ ¼ Z R� ~RðxÞ� �

ESTDP
di ðtRewÞ : ð11Þ

where ESTDP
di is a low-pass version of the eligibility eSTDPdi with time constant τE (see Eq (10)).

Supporting Information
S1 Text. Supplementary Information. A: From the biophysics to a stochastic NMDA-spike
model. B: Additional analysis and simulation results. C: Mathematical derivations.D: Appendix.
(PDF)

S1 Fig. For balanced synaptic inputs, the NMDA-spike probability becomes a function of
the voltage alone. A: Top: AMPA (full line), NMDA (dashed) and GABAA (dotted) currents,
at the peak conductance level, as a function of u defined in Eqns S1 and S2 of the Supporting
Information (α = β = 0.05; excitatory currents with positive sign). Bottom: Voltage traces u(t)
for 6 different synaptic drives g� = 0,25,50,75,100,125nS (curves from light to dark, Eq S3),
with NMDA-spikes elicited by the 2 strongest g�. B: I(u) (‘I–V curves’) defined by the right-
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hand-side of Eq S4 for the 6 synaptic drives g� used in A. C: Zero crossings I(u) = 0 of the fam-
ily of curves parametrized by g� and 6 of with shown in B, for different inhibitory-excitatory
balancing ratios β = 0.05 (red), β = 0.10 (blue) and β = 0.15 (green); AMPA/NMDA ratio: α =
0.05.D: The 6 voltage traces u(t) from A plotted against the glutamate time course at the
NMDA receptors, g� ε

NMDA(t), overlaid on the red zero-crossing curve shown in C. E: When-
ever the Gaussian noise (red cloud) added to the mean (g�, u) on the red line (center of cloud)
drops into the green area, a NMDA-spike is elicited. F: The probability of eliciting a NMDA-
spike at a given voltage (P(spike|u), top) is almost the same for the three different balancing
ratios β that vary by a factor of 3; it is therefore roughly proportional to the instantaneous spike
rate φ(u)/ P(spike|u) that is a function of u alone. Yet, because u as a function of g� saturates
(C), plotting P(spike|u) versus g� may still give deviating curves (bottom).
(EPS)

S2 Fig. Robustness of R-sdSP against noise and imperfect voltage readout. A, B: When
introducing a Gaussian jitter in the spike timings of the 4 frozen 6 Hz Poisson spike patterns
(A) their classification into a spike / no spike code only smoothly degrades (B). Standard devia-
tion of spike jitter: 10 ms (blue), 20 ms (red), 50 ms (green) and 100 ms (brown). C: The classi-
fication is still learnable by R-sdSP when the somatic voltage us(t) is low pass filtered with
different time constants: 5 ms (blue), 10 ms (red), 20 ms (green) and 40 ms (brown).D: The
performance barely changes when only considering the somato-dendro-synaptic contribution
_w sds
di of the rule (Eq (5) in Online Methods, blue dashed). On the other hand, when learning is

only based on the somo-synaptic contribution ( _w ss
di, Eq (4) in Online Methods) the perfor-

mance degrades (magenta). Inset: performances over the first 1000 presentations. E, F: Learn-
ing curves for R-STDP when the time constant τ+ matches the NMDA-spike duration Δ =
50 ms. E: Still, R-STDP cannot learn a binary classification of 4 randomized spatio-temporal
spike patterns, both when applied to the presynaptic–somatic spikes (solid black; dashed: per-
formance when the NMDA-spikes are suppressed) or the presynaptic–dendritic spikes (gray).
F: Similarly, R-STDP is not able to learn the XOR-problem (curve legend as in E). Inset: aver-
age performance after each of the 20 runs.
(EPS)
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S1A From the biophysics to a stochastic NMDA-spike model

This Section shows that the simplified NMDA-spike model described in the main text
represents a viable approximation of the full conductance-based NMDA model in the
presence of an in vivo-like input scenario. In this scenario the AMPA and GABAA con-
ductances are assumed to be roughly balanced, say with GABA/AMPA ratios varying
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between 1 to 3. This implies that the high voltages where the NMDA-receptors are un-
blocked from the magnesium can only be reached when there is also enough glutamate
present to activate them. As a consequence, the voltage alone becomes the criterium
for triggering an NMDA-spike (see Fig. S1F, top).

S1A.1 Biophysical model of NMDA-spikes

Here we describe the state-of-the art biophysical model of NMDA-spike generation
[1, 2, 3]. The NMDA conductance gN depends on the peak conductance of a unit
NMDA receptor ḡN (= 3.9 [nS], see [4]), the released glutamate, and the postsynaptic
voltage u. The voltage dependence is modeled by the sigmoidal function

σ(u) =
1

1 + exp
(
−
u−V N

1/2

V N
spread

)

with V N
1/2 = −20mV and V N

spread = 12.5mV [1]. The time dependence of the NMDA
conductance on the glutamate released at t = 0, is modeled by the kernel function

εN(t) = Θ(t)BN
(
e−t/τ

N
1 − e−t/τN2

)
where Θ(t) is the Heaviside step function (= 0 for t < 0 and 1 else), the constants
τN

1 = 40ms and τN
2 =3ms determine the rise and fall of the kernel, and the factor

BN = 1.33 that normalizes the peak amplitude of εN [5]. The NMDA conductance
induced by the glutamate release becomes

gN = g◦ ε
N(t)σ(u) .

Since g◦ is proportional to the peak glutamate level and as such will also scale the
AMPA currents, and since in a balanced input scenario it will further be proportional
to the peak inhibitory current, we will term g◦ below as synaptic drive.

Glutamate is also assumed to activate AMPA receptors that generate a total AMPA
conductance proportional to the synaptic drive, gA = α g◦, with proportionality factor
α = 0.05. The AMPA kernel is given by the alpha-function

εA(t) = Θ(t)
t

τA e
e−t/τ

A

with time constant τA =5ms. The total excitatory synaptic input current to the den-
dritic compartment for a given peak glutamate level then becomes the sum of the
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AMPA and NMDA current,

IE
syn(t) = g◦ α ε

A(t)(EA − u) + g◦ε
N(t)σ(u)(EN − u) (S1)

where EA = EN = 0 represent the reversal potentials for the AMPA and NMDA
receptors.

We assume that the excitatory synaptic input to some degree is balanced by inhibitory
synaptic input I I

syn. The GABAergic conductance strength gG is proportional to the
synaptic drive for a specific glutamate level, gG = βg◦, and some balancing factor
β = 0.05. The GABA kernel is given by an alpha function

εG(t) = Θ(t)
t

τG e
e−t/τ

G

with τG =5ms [6]. The inhibitory current then becomes

I I
syn(t) = g◦ β ε

G(t) (EG − u) , (S2)

where EG = −70 is the reversal potential of the GABAA conductance. Note that for a
AMPA/NMDA ratio α = 0.05 and GABA/NMDA ratio β = 0.05 the AMPA/GABA
ration becomes 1.

Besides the synaptic input to the dendritic compartment, its membrane potential is
modulated by a constant leak conductance, ḡL, and an additional voltage-dependent
potassium conductance resulting in the K+ inward rectifying (KIR) current [2, 3].
The KIR voltage-dependence is modeled by a sigmoidal function that monotonically
decreases with increasing voltage, with half activation at V KIR

1/2 = −70mV and spread
V KIR

spread =12.5 [3],

κ(u) =
1

1 + exp
(
u−V KIR

1/2

V KIR
spread

) .
Overall, the membrane potential u of the dendritic compartment is governed by the
dynamics

Cmu̇ = ḡL (EL − u) + ḡKIRκ(u) (EK − u) + IE
syn(t) + I I

syn(t) , (S3)

where EL = −65mV and EK = −80mV denote the leak and potassium reversal po-
tentials, ḡL = 7nS is the leak conductance, ḡKIR = 8 ḡL is the KIR peak conduc-
tance [3], and Cm = 70nF is the membrane capacitance (yielding a time constant of
τm = Cm/ḡL = 10ms).
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S1A.2 Reduced model of the NMDA-spike generation

We next show how the biophysical model described above can be reduced to a model
in which the generation of an NMDA-spike only depends on voltage (Fig. S1), with the
glutamate dependence being negligible. To justify this simplification we note that for
balanced input the NMDA-spikes are triggered at roughly the same voltage indepen-
dently of the glutamate level. In fact, an NMDA-spike is triggered if the voltage is high
enough to unblock the magnesium, provided enough glutamate is present. Crucially,
for balanced excitation and inhibition this minimal glutamate level is always reached at
the unblocking voltage, and more glutamate only marginally increases the amplitude of
the NMDA-spike. This limited amplitude is due to the saturation of the driving force
at high voltages.

To formalize the reasoning we insert the expressions for the excitatory (S1) and in-
hibitory current (S2) into the dynamics for the voltage (S3). We assume that the
synaptically driven input currents are all proportional to the same synaptic drive g◦
and consider the stationary solutions of

Cmu̇ = ḡL (EL − u) + ḡKIRκ(u) (EK − u) + g◦β(EG − u) +

+ g◦α(EA − u) + g◦σ(u)(EN − u) .
(S4)

Abbreviating the right-hand-side of S4 by I this translates to Cmu̇ = I (with a positive
I leading to a depolarization). For each value of u plugged into the right-hand-side of S4
this gives a total current I(u). When identifying the voltage with the symbol V ≡ u we
obtain the classical I–V curves for different values of synaptic drives g◦. The I–V curves
for the individual, synaptically driven currents AMPA, NMDA and GABAA currents
are displayed in Fig. S1A, top. Together with the leak and KIR current the form a
N-shaped the overall I–V curve (Fig. S1B) that underlies the generation of the NMDA-
spikes (Fig. S1A, bottom; Eq. S3). The zero-crossings of these curves, I(u) = 0, give the
sustained voltage u for a given drive g◦ (i.e. for which u̇ = 0). These stationary voltages
as a function of g◦ form the S-shaped curves in Fig. S1C, with colors indicating different
balancing ratios β of excitation and inhibition. For low and high synaptic drives there
is a unique stable u, but for intermediate values of g◦ two stable solutions with an
intermediate unstable solution coexist.

When plotting the voltage trajectories u(t) of panel A (bottom) against the time-
dependent synaptic NMDA drive, g◦ εN(t), into the (g◦, u) phase plane, the trajectories
showing an NMDA-spike make the turn around the S-shaped steady-state curve (Fig.
S1, D). For a given pair synaptic drive and stationary voltage, (g◦, u), we may ask
for the likelihood that a NMDA-spike is elicited, given some Gaussian noise ξg◦ and
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u[mV]
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C D (
ḡ0 ε
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E F
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Figure S1. For balanced synaptic inputs, the NMDA-spike probability becomes a function of
the voltage alone. A: Top: AMPA (full line), NMDA (dashed) and GABAA (dotted) currents,
at the peak conductance level, as a function of u defined in Eqns S1 and S2 (α = β =0.05;
excitatory currents with positive sign). Bottom: Voltage traces u(t) for 6 different synaptic
drives g◦ = 0, 25, 50, 75, 100, 125 nS (curves from light to dark, Eq. S3), with NMDA-spikes
elicited by the 2 strongest g◦. B: I(u) (‘I–V curves’) defined by the right-hand-side of Eq.
S4 for the 6 synaptic drives g◦ used in A. C: Zero crossings I(u) = 0 of the family of curves
parametrized by g◦ and 6 of with shown in B, for different inhibitory-excitatory balancing
ratios β = 0.05 (red), β = 0.10 (blue) and β = 0.15 (green); AMPA/NMDA ratio: α =0.05 .
D: The 6 voltage traces u(t) from A plotted against the glutamate time course at the NMDA
receptors, g◦εN(t), overlaid on the red zero-crossing curve shown in C. E: Whenever the
Gaussian noise (red cloud) added to the mean (g◦, u) on the red line (center of cloud) drops
into the green area, a NMDA-spike is elicited. F: The probability of eliciting a NMDA-spike at
a given voltage (P (spike|u), top) is almost the same for the three different balancing ratios β
that vary by a factor of 3; it is therefore roughly proportional to the instantaneous spike rate
φ(u) ∝ P (spike|u) that is a function of u alone. Yet, because u as a function of g◦ saturates
(C), plotting P (spike|u) versus g◦ may still give deviating curves (bottom).
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ξu) added to g◦ and u, respectively (Fig. S1, E; with standard deviation σu = 8 and
σg◦ = 3). This likelihood is given by the probability that a point (g◦ + ξg◦ , u + ξu) of
the red cloud falls into the green area on the right part in panel E. When plotting the
likelihood for an NMDA-spike as a function of the mean voltage that moves along the
stable branch (and jumps up at the lower knee along the red line in Fig. S1E) we obtain
a sigmoidal function that is roughly independent of the balancing factor β (Fig. S1F,
top). Nevertheless, the same likelihood as a function of the synaptic drive (reflecting
the total glutamate) yield strongly differing curves (Fig. S1F, bottom). Hence, while
different balancing ratios lead to different glutamate concentrations that are required
to trigger an NMDA-spike, these spikes are triggered with roughly the same likelihood
at the same voltages. This justifies the stochastic NMDA-spike generation model that
produces NMDA-spikes with instantaneous rate φ(u), see Fig. S1F top, as a function
of the membrane potential, independently of the glutamate level.

S1B Additional analysis and simulation results

S1B.1 Robustness against noise and errors in the voltage readout

We further analyzed the robustness of the suggested reward-modulated synapto-denritic
synaptic plasticity (R-sdSP) based on the classification of the 4 spatio-temporal spike
patterns (as presented in Fig. 2 of the Main Text). As we have shown, the learning
rule is able to classify spike patterns with frozen presynaptic spike timings and random
frozen spike timings which were generated by Poisson processes with specific rates. To
interpolate between these two extreme coding scenarios we also considered presynaptic
spike-patterns that show stochastic spike-timings of varying degrees of stochasticity.
Starting with the 4 frozen spike patterns generated once with a 6 Hz Poisson pro-
cess, we perturbed each of these spike-times by a Gaussian of mean 0 and standard
deviation σ (Fig. S2A, B). The learning performance shows a high robustness against
these perturbations. The mean inter-spike interval for the original and perturbed spike
trains are 167ms. Even when the spike-time jitter has a width of 2σ = 200ms was the
learning rule able to classify the patterns with an average performance of ∼ 90% (Fig.
S2B).

To explore the robustness against a dilution of the backpropagated voltage we low-pass
filtered the somatic voltage us(t) with different time constants up to 40ms. Learning is
still possible, although it slows down with increasing filtering time constant (Fig. S2C).
Note that from the low-pass filtered version ũs of the somatic voltage the synapse could
calculate ρs

\d(t) since it has access to the local NMDA-spike in branch d and hence could
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subtract the contribution from the own branch. Moreover, since the passive backpropa-
gation of the somatic voltage, the synaptic input currents and the NMDA-spikes involve
different changes in ionic concentrations, a synapse sensing these concentrations may
in principle disentangle the various contributions to the local voltage.

S1B.2 Dendritic contribution to R-sdSP and comparison with R-STDP

Next, we investigated the learning based on the individual components of R-sdSP. Re-
call that the weight change ∆wdi of the reward gradient rule R-sdSP is composed of
two components, a somato-synaptic contribution R∆wss

di originating from the forward
propagated subthreshold dendritic potential, and a somato-dendro-synaptic contribu-
tion R∆wsds

di originating from the supra-threshold dendritic plateau potentials sus-
tained by the NMDA-spikes (Eq. 3 in the Main Text). As expected, learning based on
the supra-threshold component R∆wsds

di alone is equally fast as learning based on the
full R-sdSP, but the subthreshold component R∆wss

di alone is considerably slower as it
does not take account of the crucial dendritic spiking (Fig. S2D).

In the Main Text we have shown that ‘classical’ reward-modulated spike-timing de-
pendent plasticity (R-STDP) [7, 8] does not reach the performance of R-sdSP (Fig. 2B
and 3B,C). Here we further show that R-STDP does not perform better in the classifi-
cation of the frozen spike patterns when the time constant τ+ matches the duration of
a NMDA-spike (∆ =50ms, Fig. S2E). In contrast to the gradient rule, R-STDP is not
able to learn more than 75% in the presence of the dendritic spikes. The performance
improves but remains below the gradient rules when the dendritic spikes are suppressed
in the neuronal processing. The wider learning window in R-STDP is neither helping
to improve learning for the XOR-problem that is encoded in mean firing rates (Fig.
S2F).

S1B.3 Additional simulation details

In all simulations initial weights were picked independently from a Gaussian distribu-
tion with mean 0. The variance was set such that at least one somatic spike was elicited
for half of the pattern presentations.

Input patterns were defined for 100 afferents. For the tasks involving temporal codes, a
pattern was generated once with a constant Poisson rate of 6Hz for each afferent and the
spike timings were then frozen. For the rate tasks (XOR and direction selectivity, Fig.
3 of the Main Text) each presentation was using a new realization of the pattern. For
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Figure S2. Robustness of R-sdSP against noise and imperfect voltage readout. A, B: When
introducing a Gaussian jitter in the spike timings of the 4 frozen 6 Hz Poisson spike patterns
(A) their classification into a spike / no spike code only smoothly degrades (B). Standard
deviation of spike jitter: 10ms (blue), 20ms (red), 50ms (green) and 100 ms (brown). C: The
classification is still learnable by R-sdSP when the somatic voltage us(t) is low pass filtered
with different time constants: 5ms (blue), 10ms (red), 20ms (green) and 40 ms (brown). D:
The performance barely changes when only considering the somato-dendro-synaptic contri-
bution ẇsds

di of the rule (Eq. 5 in Online Methods, blue dashed). On the other hand, when
learning is only based on the somo-synaptic contribution (ẇss

di, Eq. 4 in Online Methods)
the performance degrades (magenta). Inset: performances over the first 1000 presentations.
E, F: Learning curves for R-STDP when the time constant τ+ matches the NMDA-spike
duration ∆ =50ms. E: Still, R-STDP cannot learn a binary classification of 4 randomized
spatio-temporal spike patterns, both when applied to the presynaptic–somatic spikes (solid
black; dashed: performance when the NMDA-spikes are suppressed) or the presynaptic–den-
dritic spikes (gray). F: Similarly, R-STDP is not able to learn the XOR-problem (curve legend
as in E). Inset: average performance after each of the 20 runs.
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the XOR problem the afferents had low (5Hz) or high (40Hz) Poisson firing rates that
were again constant during the whole stimulus duration. For the direction selectivity
task afferents had a low background firing rate (5Hz) replaced by a moving high firing
rate interval (100Hz) of 15ms duration. An input pattern had a duration of 500ms for
all tasks except the direction selectivity task which learns patterns with a duration of
100ms.

To obtain a learning curve, a running mean of the performance across presentations
was computed with exponential decay constant 0.2/p, where p denotes the number of
patterns to be learned. These running means were again averaged across 20 runs of the
full learning for different weight and pattern initializations.

S1C Mathematical derivation of the learning rules

S1C.1 Derivation of the error-minimizing supervised learning rule (sdSP)

The aim of the supervised plasticity rule is to learn stimulus-response pairs (x, z) where
x denotes a full set of presynaptic spike trains and z is the somatic spike train as a sum
of delta functions (z(t) =

∑
ts δ(t− ts), denoted as S(t) in the Online Methods). Each

pair (x, z) is drawn from a target distribution P ∗(z,x). Here we show that learning
with the supervised plasticity rule maximizes a cost function. This cost function is a
lower bound on the log-likelihood

L(w) = 〈logPw(z|x)〉P ∗(z,x) =
∫

dxdz P ∗(z,x) logPw(z|x).

Note that maximizing L(w) is equivalent to minimizing the Kullback-Leibler divergence
of the learned distribution P to the target distribution P ∗.

In our 2-layer architecture, the conditional probability Pw(z|x) is not analytically
tractable since the activity of dendritic branches acts as hidden variables. We de-
note by yi the NMDA-spike timings of the i-th branch. In addition, the entire set of
NMDA-spikes trains is denoted by y = (y1, . . . , yN). To compute the log-likelihood, we
marginalize out the hidden variables y in the expression,

L(w) =
〈

log
∫

dyPw(z|x,y)Pw(y|x)
〉
P ∗(z,x)

.
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We apply Jensen’s inequality to show that the cost function

C(w) =
〈∫

dyPw(y|x) logPw(z|x,y)
〉
P ∗(z,x)

= 〈logPw(z|x,y)〉P ∗(z,x)Pw(y|x) .

bounds the log-likelihood from below (L(w) > C(w)). In the sequel, the notation 〈·〉
alone means that the expression is averaged over P ∗(z,x)Pw(y|x). The cost function
C(w) is maximized via a stochastic gradient algorithm. The derivative of C(w) with
respect to the synaptic weight wdi is

∂
∂wdi
C(w) =

〈
∂
∂wdi

logPw(z|x,y)
〉

+
〈
logPw(z|x,y) ∂

∂wdi
logPw(y|x)

〉
. (S5)

As computed in [9], the gradient of the first term on the RHS is expressed as (see Eq.
(4) in Online Methods)

∂
∂wdi

logPw(z|x,y) =
∫ T

0
dt βs (αPSPi(s)) (z(t)− ρs(t))

=
∫ T

0
dt βs α e

ss
di(t).

(S6)

In addition, we can manipulate the second term of the RHS to exhibit a efficient
gradient estimator [10]. The procedure consists in averaging the term that accounts for
the neuronal output logPw(z|x,y) over the hidden variable yd at each point in time.

Let y\d denote the vector of all NMDA-spike trains but the d-th and w\d the col-
lection of synaptic weights in all but the d-th dendritic branch. Conditioned on the
input stimulus x, each dendritic spike train is generated independently (Pw(y|x) =
Pw\d(y\d|x)Pw·d(yd|x)), thus we write〈

logPw(z|x,y) ∂
∂wdi

logPw(y|x)
〉

=
∫

dxdzdy\d P ∗(z,x)Pw\d(y\d|x) c′d(w·,d)

with c′d(w·d) =
∫

dyd logPw(z|x,y\d, yd) ∂
∂wdi

Pw·d(yd|x) .
(S7)

In the definition of c′d, we can regard x and y\d as fixed and suppress them in the nota-
tion. To shorten the notation we use y, w· and w instead of yd, w·d and wdirespectively.
We now replace the Poisson process generating y (= yd) by a discrete time process
with step-size δ > 0. The time interval [0, T ] is divided into K intervals of length δ.
The probability to trigger a spike in interval k is

Pw·(Yk = 1) = 1− e−δρd(tk) (S8)

where tk = k δ. Here the bold notation Y = (Y1, . . . , YK) denotes the full series of
discrete binary events in the dendritic branch. With this definition, we can recover
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the original Poisson process by taking the limit δ → 0+. We denote by Ỹ the set of
NMDA-spike timings in Y, i.e. Ỹ = {tk|Yk = 1}. Therefore, we can regard c′d(w) as
the limit

c′d(w) = lim
δ→0+

∑
Y

logPw(z|Ỹ) ∂
∂w
Pw·(Y)

where the sum runs over the set {0, 1}K . Since the local firing rate ρd(tk) in eq. (S8) (see
the Online Methods) depends only on the input x (y is generated by an inhomogeneous
Poisson process), each Yk are independently generated. We can express Pw·(Y) as the
product Pw·(Y\k)Pw·(Yk) where Y\k denotes the full set of discrete events (spikes) but
the k-th (k = 1, . . . , K). Therefore, we can express the function c′d(w) as

c′d(w) = lim
δ→0+

K∑
k=1

gradk,

with

gradk =
∑
Y

logPw(z|Ỹ)Pw·(Y
\k) ∂

∂w
Pw·(Yk) .

We analytically compute the average of gradk over the two outcomes Yk = 1, spike at
time bin k, and Yk = 0, stay quiescent at time bin k. We obtain

gradk =
∑
Y\k

Pw·(Y
\k)

∑
Yk

logPw(z|Ỹ) ∂
∂w
Pw·(Yk)

=
∑
Y\k

Pw·(Y
\k)

[
logPw(z|Ỹ ∪ {tk}] ∂∂wPw·(Yk = 1)

+ logPw(z|Ỹ \ {tk}) ∂∂wPw·(Yk = 0)
]

=
∑
Y\k

Pw·(Y
\k)

[
logPw(z|Ỹ ∪ {tk}] ∂∂wPw·(Yk = 1)

− logPw(z|Ỹ \ {tk}) ∂∂wPw·(Yk = 1)
]
,

where the last line follows from the identity ∂
∂w
Pw·(Yk = 1) = − ∂

∂w
Pw·(Yk = 0). We

introduce the notation

γỸ(tk) = logPw(z|Ỹ ∪ {tk})− logPw(z|Ỹ \ {tk}). (S9)

The function γỸ(tk) quantifies the impact that the initiation of a NMDA spike at tk
would lean on the somatic output. Since Yk is a binary variable, the identity ∂

∂w
Pw·(Yk =

11



1) = (2Yk − 1) ∂
∂w
Pw·(Yk) holds independently of the value of Yk. We deduce

gradk =
∑
Y\k

Pw·(Y
\k)γỸ(t) (2Yk − 1) ∂

∂w
Pw·(Yk)

=
∑
Y\k

Pw·(Y
\k)γỸ(t)

1

2

∑
Yk

(2Yk − 1) ∂
∂w
Pw·(Yk)

=
∑
Y

Pw·(Y)
γỸ(t)

2
(2Yk − 1) ∂

∂w
logPw·(Yk),

and
K∑
k=1

gradk =
∑
Y

Pw·(Y)
K∑
k=1

γỸ(t)

2
(2Yk − 1) ∂

∂w
logPw·(Yk).

From the definition (S8), we have

∂
∂w

logPw·(Yk = 1) =
d

dud
ρd(tk)

ρd(tk)
PSP(tk) +O(δ)

∂
∂w

logPw·(Yk = 0) =−δ d
dud

ρd(tk)PSP(tk).

So, taking the limit δ → 0+ and the original notation (the calculation is for the i-th
synapse located in the d-th dendritic branch, see Eq. S7), we obtain

c′d(w, z) =
∫

dyd Pw·d(yd|x)

T∫
0

dt
[

1
2
γyd

(t) d
dud

d

log ρd
d(t)

(
yd(t) + ρd

d(t)
)

PSPi(t)
]

︸ ︷︷ ︸
eSL
di

(t):=

, (S10)

where yd(t) denotes the δ-function representation of the set yd, yd(t) =
∑
s∈yd δ(t−s). We

obtain a gradient estimate where hidden variables are partially averaged. In particular,
the second term of the RHS in the equation (S5) is (see Eq. S7)

〈
logPw(z|x,y) ∂

∂wdi
logPw(y|x)

〉
=

〈∫ T

0
dt eSL

di (t)

〉

and it follows that

∂
∂wdi
C(w) =

〈∫ T

0
dt
(
βs α e

ss
di(t) + eSL

di (t)
)〉

. (S11)

This term in the brackets is our unbiased gradient estimate for the cost function C(w).
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S1C.2 Online version of the gradient estimate

Here we show how an approximated version of the gradient estimate (S11) can be
computed online. The central idea is to rewrite the exact gradient estimate (Eq. (S11))
with integrals that could then be implemented by low-pass filtered version. We therefore
replace the rectangular integration window in the Eq. S11 by an exponential one.
First, we introduce the inactivation function Ψyd(t) that depends on the dendritic
spike timings yd and that is 0 during an ongoing NMDA-spike and 1 elsewhere. Note
that Ψyd(t) is related to the NMDA-spikes response function NMDAd(t) via NMDAd(t) =
a (1−Ψyd(t)). As computed in [10], the function γyd

(t) (Eq. S9) is given by

γyd
(t) = aα βs

min(T,t+∆)∫
t

dsΨ
y
\t
d

(s)
(
z(s)− ρs

\d(s)
)

where y\td is the set yd with no spike timing at t (y\td = {s ∈ yd|s 6= t}). In its current
form, it is impossible to compute eSL

di (t) (Eq. S10) online, since the integration of γyd
(t)

extends from the current time t into the future up to t+ ∆. We therefore permute the
integration order to turn the integration into the future to an integration across the
past (see Appendix),

∫ T

0
dt eSL

di (t) =

T∫
0

dt d
dud

d

log ρd
d(t)

(
yd(t) + ρd

d(t)
)

PSPi(t)

min(T,t+∆)∫
t

dsΨ
y
\t
d

(s) fd(s)

=

T∫
0

ds fd(s)

s∫
max(0,s−∆)

dtΨ
y
\t
d

(s) d
dud

d

log ρd
d(t)

(
yd(t) + ρd

d(t)
)

PSPi(t)

︸ ︷︷ ︸
ξN
di

(s):=

,
(S12)

with

fd(t) = aαβs
2

(
z(s)− ρs

\d(t)
)
.

Here the stimulus started at 0, therefore the synaptic signal PSPi(t) vanishes for t < 0
and we can set s−∆ instead of max(0, s−∆) as a lower bound for the second integral.
Our aim is to encode each integral by a low pass filter (see below). Since the function
Ψ
y
\t
d

(s) depends on the variables t and s, the function ξN
di(s) is generally not computable

by an online procedure. In the sequel, we will see that we can drop the dependence
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with respect to t in the function Ψ
y
\t
d

(s). We start to decompose ξN
di(s) as follows:

ξN
di(s) =

s∫
s−∆

dtΨ
y
\t
d

(s) d
dud

d

ρd
d(t) PSPi(t)

+

s∫
s−∆

dtΨ
y
\t
d

(s) yd(t)
d

dud
d

log ρd
d(t) PSPi(t) .

(S13)

For a given s, the functions Ψ
y
\t
d

(s) and Ψyd(s) are equal on the set [s−∆, s]\yd. Since
yd is a set of zero measure, we can replace Ψ

y
\t
d

(s) by Ψyd(s) in the first integral in
Eq. S13. The inactivation function Ψyd(s) vanishes if there is an ongoing NMDA spike
at time s and so does the first integral in Eq. S13. Otherwise we have Ψyd(s) = 1
which implies that the second integral in Eq. S13 vanishes since this integral runs only
over the different NMDA-spike timings in the interval [s − ∆, s]. We introduced the
function yd(t) as the δ-function representation constructed from the set of individual
spike times yd and hence, if the inactivation function is 1, no NMDA-spike was initiated
in [s−∆, s]. These two observations allow us to rewrite ξN

di(s) as

ξN
di(s) =


∫ s
s−∆ Ψ

y
\t
d

(s) d
dud

d

log ρd
d(t) yd(t) PSPi(t)dt if s within a NMDA-spike,

∫ s
s−∆

d
dud

d

ρd
d(t) PSPi(t)dt else .

(S14)

In our model, spikes are triggered by point processes, a point event is called a spike
timing. When two NMDA-spikes are triggered in a short interval they do not add up in
amplitude but instead the second one extends the duration of the first one (see Online
Methods). This renders the evaluation of Ψ

y
\t
d

(s) complicated. In order to simplify the
calculation, we assume that NMDA-spike timings are sparse. More precisely, we assume
that each rectangular NMDA spike is triggered by a unique point event. Therefore, if
we assume the presence of a NMDA-spike at time s which was initiated at tdd then the
top integral in (S14) is d

dud
d

log ρd
d(t

d
d) PSPi(t

d
d) since the inactivation function Ψ

y
\td

d
d

(s) is

1 when the unique point event which causes the current dendritic spike is removed. To
summarize, we showed that

ξN
di(s) =


d

dud
d

log ρd
d(t

d
d) PSPi(t

d
d) if s within a NMDA-spike triggered at tdd,∫ s

s−∆
d

dud
d

ρd
d(t) PSPi(t)dt else .

(S15)
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Note that in the Online Methods we put Dend ∗ PSPi(s) = ξN
di(s). Therefore, Eq. (S11)

becomes (see Eq. (S12))

∂
∂wdi
C(w) =

〈∫ T

0
dt
[
aαβs

2

(
z(s)− ρs

\d(t)
)

Dend ∗ PSPi(t) + βs α e
ss
di(t)

]〉

=

〈
αβs

∫ T

0
dt
[
a
2
esds
di (t)(t) + ess

di(t)
]〉

.

In a stochastic ascent algorithm, the term in brackets defines the synaptic update

∆wdi = η
∫ T

0
dt
[
a
2
esds
di (t)(t) + ess

di(t)
]
,

where η denotes the learning rate. We could eliminate the constants α and βs in the
plasticity rule since as a multiplicative constant it can be absorbed by the learning rate
η. The previous update is roughly equivalent to the sdSP plasticity rule in the Main
Text since the low-pass filter Edi(t) (Eq. 8 in Online Methods) at time t represents the
integration of a

2
esds
di (t) + α ess

di(t) from the past to t with an exponential window (the
time constant is τE).

S1C.3 Derivation of the gradient-based reinforcement learning rule (R-sdSP)

Here we show that the rule R-sdSP approximates an online estimate of the gradient of
the expected reward

R̄(w) =
∫

dxdz Pw(z,x)R(z,x)

We maximize R̄ through a stochastic gradient ascent algorithm. We start to marginalize
out y

R̄(w) =
∫

dxdydz Pw(z,x,y)R(z,x)

=
∫

dxdydz Pw(z|x,y)Pw(y|x)P (x)R(z,x) .

The derivative of R̄ with respect to the synaptic weight wdi is

∂
∂wdi

R̄(w) =
〈
R(z,x) ∂

∂wdi
logPw(z|x,y)

〉
Pw(z,x,y)

+
〈
R(z,x) ∂

∂wdi
logPw(y|x)

〉
Pw(z,x,y)

.

(S16)
The first term on the RHS of (S16) is computed in Eq. (S6) and represents the classical
reward maximizing rule [9]. As previously introduced [10], we consider an alternative
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gradient estimator based on the following identity

〈
R(z,x) ∂

∂wdi
logPw(y|x)

〉
Pw(z,x,y)

=

〈
R(z,x)

T∫
0

dt eR
di(t)

〉
Pw(z,x,y)

where
eR
di(t) = tanh

(
1
2
γyd

(t)
)

d
dud

d

log ρd
d(t)

(
yd(t) + ρd

d(t)
)

PSPi(t).

More precisely, we have shown in [10] that eR
di(t) is an appropriate gradient estimator

for the second term on the RHS of (S16). Thus, the gradient of the expected reward
can be written as

∂
∂wdi

R̄ =

〈
R(z,x)

∫ T

0
dt
(
αβs e

ss
di(t) + eR

di(t)
)〉

Pw(z,x,y)

,

We observe that if we perform a linear approximation of the hyperbolic tangent then
we obtain eR

di(t) ≈ eSL
di (t). As a result, we can apply the calculation of the previous

section (see Online version of the gradient estimate), it leads to

∂
∂wdi

R̄ ≈
〈
R(z,x)

∫ T

0
dt
(
eSL
di (t) + αβs e

ss
di(t)

)〉
Pw(z,x,y)

=

〈
αβsR(z,x)

∫ T

0
dt
(
a
2
esds
di (t)(t) + ess

di(t)
)〉

Pw(z,x,y)

.

(S17)

and the update rule

∆wdi = η (R−R0)
∫ T

0
dt
[
a
2
esds
di (t)(t) + ess

di(t)
]
,

where η is the learning rate and R0 is a baseline. The constant R0 can be introduced
since the update is roughly a gradient rule [11] and so the following identity holds〈
R0 αβs

∫ T

0
dt
(
a
2
esds
di (t)(t) + ess

di(t)
)〉

Pw(z,x,y)

≈ R0

〈∫ T

0
dt
(
eR
di(t) + αβs e

ss
di(t)

)〉
Pw(z,x,y)

= R0

∫
dxdydz ∂

∂wdi
Pw(z,x,y)

= R0
∂
∂wdi

∫
dxdydz Pw(z,x,y)︸ ︷︷ ︸

=1

= 0.

where the approximation sign accounts for the linear approximation of tanh in the
definition of eR

di(t). As observed at the end of the previous section, the integral of the
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update rule is roughly equal to the value of the low pass-filter Edi(t) (Eq. 8 in Online
Methods) at time T , yielding the plasticity rule cited in the Main Text.

Overall, we made two approximations: (1) The NMDA spikes were supposed to be
sparse in time such that they do not overlap and we could neglect the voltage saturation.
With an NMDA spike duration of 50ms the approximation error is small if the NMDA
spike rate is smaller than 20Hz. (2) The symmetric tanh has been linearized around 0.
Importantly, both approximations never change the sign of any component of the true
gradient vector. Hence, although after the approximations the learning rule may deviate
from the true gradient, it will still be hill climbing. Note that both target functions, the
lower bound of the log-likelihood for supervised learning and the expected reward for
reinforcement learning, are everywhere continuous (in fact differentiable, but in general
not convex), so that learning with these approximations still smoothly maximizes these
target functions (locally).

S1D Appendix

Here we detail the steps from the first to the second line in the formula (S12).

We rewrite the equation (S12) in a form that allows the permutation of the integration
order,

T∫
0

dt eSL
di (t) =

T∫
0

dt ζdi(t)

T∫
0

ds χ[t,t+∆](s) Ψ
y
\t
d

(s) fd(s),

with
ζdi(t) = d

dud
d

ρd
d(t)

(
yd(t) + ρd

d(t)
)

PSPi(t),

and where χ[t,t+∆](s) denotes the indicator function

χ[t,t+∆](s) =

1 if s ∈ [t, t+ ∆]

0 else
.

Now we change the integration order

eCaus

di (z,y,x) =

T∫
0

ds fd(s)

T∫
0

dt χ[t,t+∆](s) Ψ
y
\t
d

(s) ζdi(t).

The inequalities s 6 t 6 s+∆ is equivalent to t−∆ 6 s 6 t, therefore the two functions
χ[t,t+∆](s) and χ[s−∆,s](t) too. As initially, the action of χ[s−∆,s](t) is equivalent to change
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the boundaries of the second integral, we deduce

T∫
0

dt eSL
di (t) =

T∫
0

ds fd(s)

T∫
0

dt χ[s−∆,s](t) Ψ
y
\t
d

(s) ζdi(t)

=

T∫
0

ds fd(s)

s∫
max(0,s−∆)

dt Ψ
y
\t
d

(s) ζdi(t).
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