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In recent years, the machine learning landscape has been domi-
nated by deep learning methods. Among the benchmark prob-
lems they have managed to crack, some remained elusive for a 

long time1–3. It is thus not an exaggeration to say that deep learning 
dominates our understanding of ‘artificial intelligence’4–8.

Compared to the abstract neural networks used in deep learning, 
the more biological archetypes—spiking neural networks—still lag 
behind in terms of performance and scalability9. The reasons for 
this difference in success are numerous; for example, unlike abstract 
neurons, even an individual biological neuron represents a com-
plex system, with finite response times, membrane dynamics and 
spike-based communication10,11, making it more challenging to find 
reliable coding and computation paradigms12–14. Furthermore, one 
of the major driving forces behind the success of deep learning, the 
backpropagation of errors algorithm15–17, has remained incompat-
ible with spiking neural networks until only very recently18,19.

Despite these challenges, spiking neural networks promise to 
present some important advantages. The time information inher-
ent to spikes allows a coding scheme for spike-based communica-
tion that utilizes both spatial and temporal dimensions20, unlike 
spike-count-based approaches21–24, where the information of spike 
times is at least partially diluted due to temporal or population aver-
aging. Owing to the inherent parallelism of all biological, as well 
as many biologically inspired, spiking neuromorphic systems25, this 
promises fast, sparse and energy-efficient information processing, 
and provides a blueprint for computing architectures that could one 
day rival the efficiency of the brain itself9,25–27. This makes spiking 
neural networks implemented on specialized neuromorphic devices 
potentially more powerful—at least in principle—than the ‘con-
ventional’, simple machine learning models currently used on von 
Neumann machines, even though this potential still remains mostly 
unexploited9.

Many attempts have been made to reconcile spiking neural net-
works with their abstract counterparts in terms of functionality, for 

example, by featuring spike-based inference models28–36 and deep 
models trained on target spike times by shallow learning rules37,38 
or using spike-compatible versions of the error backpropagation 
algorithm39–41. Especially for tasks operating on static informa-
tion, a particularly elegant way of utilizing the temporal aspect of 
exact spike times is the time-to-first-spike (TTFS) coding scheme42. 
Here, a neuron encodes its real-valued response to a stimulus as the 
time elapsed before its first spike in reaction to that stimulus. Such 
single-spike coding enables fast information processing by explicitly 
encouraging the emission of as few spikes as early as possible, which 
meets the physiological constraints and reaction times observed in 
humans and animals42–45. Apart from biological plausibility, such  
a fast and sparse coding scheme is a natural fit for neuromorphic 
systems that offer energy-efficient and fast emulation of spiking 
neural networks46–52.

For hierarchical TTFS networks, a gradient-descent-based learn-
ing rule was proposed in refs. 53,54, using error backpropagation on a 
continuous function of output spike times. However, this approach 
is limited to a neuron model without leak, which is neither biologi-
cally plausible nor compatible with most analogue very-large-scale 
integration (VLSI) neuron dynamics25. We propose a solution for 
leaky integrate-and-fire (LIF) neurons with current-based (CuBa) 
synapses—a widely used dynamical model of spiking neurons with 
realistic integration behaviour55–57. An early version of this work was 
presented in ref. 58.

For several specific configurations of time constants, we provide 
analytical expressions for first-spike timing, which, in turn, allow 
the calculation of exact gradients of any differentiable cost function 
that depends on these spike times. In hierarchical networks of LIF 
neurons using the TTFS coding scheme, this enables exact error 
backpropagation, allowing us to train such networks as universal 
classifiers on both continuous and discrete data spaces.

As our algorithm only requires knowledge about the afferent 
and efferent spike times of all neurons, it lends itself to emulation 
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on neuromorphic hardware. The accelerated, yet power-efficient 
BrainScaleS-2 platform48,59 pairs especially well with the sparseness 
and low latency already inherent to TTFS coding. We show how 
an implementation of our algorithm on BrainScaleS-2 can obtain 
similar classification accuracies to software simulations, while dis-
playing highly competitive time and power characteristics, with a 
combination of 48 μs and 8.4 μJ per classification.

By incorporating information generated on the hardware for 
updates during training, the algorithm automatically adapts to 
potential imperfections of neuromorphic circuits, as implicitly 
demonstrated by our neuromorphic implementation. In further 
software simulations, we show that our model deals well with vari-
ous levels of substrate-induced distortions such as fixed-pattern 
noise and limited parameter precision and control, thus providing 
a rigorous algorithmic backbone for a wide range of neuromor-
phic substrates and applications. Such robustness with respect to 
imperfections of the underlying neuronal substrate represents an 
indispensable property for any network model aiming for biological 
plausibility and for every application geared towards physical com-
puting systems33,34,60–64.

In the following, we first introduce the CuBa LIF model and  
the TTFS coding scheme, before we demonstrate how both infer-
ence and training via error backpropagation can be performed  
analytically with such dynamics. Finally, the presented model is  
evaluated both in software simulations and neuromorphic emula-
tions, before studying the effects of several types of substrate-induced 
distortion.

Results
Leaky integrate-and-fire dynamics. The dynamics of an LIF neu-
ron with CuBa synapses is given by

Cmu̇(t) = gℓ[Eℓ − u(t)] +
∑

i
wi

∑

ti

θ(t− ti) exp
(

−
t− ti

τs

)

,

(1)

with membrane capacitance Cm, leak conductance gℓ (from which 
the membrane time constant τm = Cm/gℓ follows), weights wi and 
spike times ti of presynaptic neuron i, synaptic time constant τs and 
where θ is the Heaviside step function. The first sum runs over all 
presynaptic neurons and the second over all spikes for each pre-
synaptic neuron. The neuron elicits a spike at time T when the pre-
synaptic input pushes the membrane potential above a threshold ϑ. 
After spiking, a neuron becomes refractory for a time period τref, 
which is modelled by clamping its membrane potential to a reset 
value ϱ: u(t′) = ϱ for T ≤ t′ ≤ T+ τref . For convenience and with-
out loss of generality, we set the leak potential Eℓ = 0. Equation (1) 
can be solved analytically and yields subthreshold dynamics as 
described by equation (9). The choice of τm and τs ultimately influ-
ences the shape of a postsynaptic potential (PSP), starting from a 
simple exponential (τm ≪ τs), to a difference of exponentials (with 
an alpha function for the special case of τm = τs) and to a graded 
step function (τm ≫ τs) (Fig. 1a). Note that all of these scenarios  
are conserved under exchange of τs and τm, as is apparent from the 
symmetry of the analytical solution (equation (9)).
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Fig. 1 | Time-to-first-spike coding and learning. a, Postsynaptic potential (PSP) shapes for different ratios of time constants τs and τm for single neurons. 
The finiteness of time constants causes the neuron to gradually forget prior input. b, One key challenge of this finite memory arises when small variations 
of the synaptic weights result in disappearing/appearing output spikes, which elicits a discontinuity in the function describing output spike timing. Plots 
for single neurons are shown in a and b. c,d, Application to feedforward hierarchical networks. c, Network structure. The geometric shape of the neurons 
represents a notation of their respective types (input, squares; hidden, circles; label, triangles). The shading of the input neurons (black, grey and white 
squares) represents the corresponding data, such as pixel brightness. The colour of the label neurons represents their respective class (blue, red, green 
triangles). d, TTFS coding exemplified in a raster plot. As an example of input encoding, the brightness of an input pixel is encoded in the lateness of 
a spike. Note that, in our framework, TTFS coding simultaneously refers to two individual aspects, namely the input-to-spike-time conversion and the 
determination of the inferred class by the identity of the first label neuron to fire (red triangle). a.u., arbitrary units.
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The first two cases with finite membrane time constant τm 
are markedly different from the last one, which is also known 
as either the non-leaky integrate-and-fire (nLIF) or simply the 
integrate-and-fire (IF) model and was used in previous work53. In 
the nLIF model, input to the membrane is never forgotten until a 
neuron spikes, as opposed to the LIF model, where the PSP reaches a 
peak after finite time and subsequently decays back to its baseline. In 
other words, presynaptic spikes in the LIF model have a purely local 
effect in time, unlike in the nLIF model, where only the onset of a 
PSP is localized in time, but the postsynaptic effect remains forever, 
or until the postsynaptic neuron spikes. A pair of finite time con-
stants thus assigns much more importance to the time differences 
between input spikes and introduces discontinuities in the neuronal 
output that make an analytical treatment more difficult (Fig. 1b).

First-spike times. Our spike-timing-based neural code follows an 
idea first proposed in ref. 53. Unlike coding in artificial neural net-
works (ANNs), and different from spike-count-based codes in spik-
ing neural networks (SNNs), this scheme explicitly uses the timing 
of individual spikes for encoding information. In TTFS coding, the 
presence of a feature in a stimulus is reflected by the timing of a 
neuron’s first spike after the onset of the stimulus, with earlier spikes 
representing a more strongly manifested feature. This has the effect 
that important information inherently propagates quickly through 

the network, with potentially only few spikes needed for the  
network to process an input. Consequently, this scheme enables 
efficient processing of inputs, both in terms of time-to-solution 
and energy-to-solution (assuming the latter depends, in general on 
the total number of spikes and the time required for the network  
to solve, for example, an input classification problem).

To formulate the optimization of a first-spike time T as a 
gradient-descent problem, we derive an analytical expression 
for T. This is equivalent to finding the time of the first threshold 
crossing by solving u(T) = ϑ for T. Even though there is no general 
closed-form solution for this problem, analytical solutions exist for 
specific cases. For example, we show that (Methods)

T = τs
{

b
a1

−W

[

−
gℓϑ
a1

exp
(

b
a1

)]}

for τm = τs (2)

and

T = 2τsln
[

2a1
a2 +

√

a22 − 4a1gℓϑ

]

for τm = 2τs, (3)

where W  is the Lambert W function and using the shorthand nota-
tions an and b for sums over the set of causal presynaptic spikes 
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Fig. 2 | Classification of the Yin-Yang dataset. a, Illustration of the Yin-Yang dataset. The samples are separated into three classes, Yin (blue circles), Yang 
(red circles) and Dot (green circles). The yellow symbols (square, triangle and diamond) mark samples for which the training process is illustrated in b. Input 
times tx and ty correspond to the spike time of the inputs associated with the x and y coordinates of individual samples. Units of τs indicate times that are 
measured in multiples of the synaptic time constant, τs. b, Training mechanism for three example data samples (cf. a). For the first three rows, the left and 
middle columns depict voltage dynamics in the label layer before and after training for 300 epochs, respectively. The voltage traces of the three label neurons 
are colour-coded according to their corresponding class as in a. Before training, the random initialization of the weights causes the label neurons to show 
similar voltage traces and almost indistinguishable spike times. After training, there is a clear separation between the spike time of the correct label neuron 
and all others, with the correct neuron spiking first. The evolution of the label spike times during training is shown in the right column for the first 70 epochs. 
Bottom row: spike histograms over all training samples. Our learning algorithm induces a clear separation between the spike times of correct and wrong label 
neurons. c, Training progress (validation loss as given in equation (6) and error rate) over 300 epochs for 20 training runs with random initializations (grey). 
The run shown in b and d–f is plotted in blue. d, Classification result on the test set (1,000 samples). The colour of each sample indicates the class determined 
by the trained network. The wrongly classified samples (marked with black X) all lie very close to the border between classes. e, Spike times of the Yin, Yang 
and Dot neurons for all test samples after training. For each sample, spike times were normalized by subtracting the earliest spike time in the label layer. Bright 
yellow denotes zero difference, that is, the respective label neuron was the first to spike and the sample was assigned to its class. The bright yellow areas 
resemble the shapes of the Yin, Yang and Dot areas, reflecting the high classification accuracy after training. f, Confusion matrix for the test set after training.

Nature Machine Intelligence | VOL 3 | September 2021 | 823–835 | www.nature.com/natmachintell 825

http://www.nature.com/natmachintell


Articles NATure MAcHine InTelligence

C = {i∣ti < T} (equations (11) and (12)). We note that, when calcu-
lating the output spike time for a large number of input neurons, 
determining C can be computationally intensive (Methods). One 
inherent advantage of physical emulation is the reduction of this 
calculational burden.

The above equations are differentiable with respect to synaptic 
weights and presynaptic spike times. As will be shown in the follow-
ing, this directly translates to solving the credit assignment prob-
lem and thus allows exact error propagation through networks of 
spiking neurons. For easier reading, we focus on one specific case 
(τm = τs), but the others can be treated analogously.

Exact error backpropagation with spikes. Learning in SNNs 
requires the ability to relate efferent spiking to both afferent weights 
and spike times. For the output spike time of a neuron k with pre-
synaptic partners i, the first relationship can be formally described 
by the derivative of the output spike time with respect to the pre-
synaptic weights (equation (22)). Using certain properties of W , we 
can find a simple expression that can also be made to depend on the 
output spike time tk itself:

∂tk
∂wki

= −
1
a1

exp
(

ti
τs

)

W(z) + 1 (tk − ti) , (4)

with a1 and z representing functions of wki and ti as defined in equa-
tions (11) and (18). Using the output spike time as additional infor-
mation optimizes learning in scenarios where the exact neuron 
parameters are unknown and the real output spike time differs from 
the one calculated under ideal assumptions, as discussed later.

Second, the capability to relate errors in the output spike time 
to errors in the input spike times allows us to recursively propagate 
changes from neurons to their presynaptic partners:

∂tk
∂ti

= −
1
a1

exp
(

ti
τs

)

W(z) + 1
wki
τs

(tk − ti − τs) . (5)

Together, equations (4) and (5) effectively and exactly solve the 
credit assignment problem in appropriately parametrized LIF  
networks of arbitrary architecture.

We can now apply the findings above to study learning in  
a layered network. Figure 1c shows a schematic of our feedforward 
networks and their spiking activity. The input uses the same  
coding scheme as all other neurons: more prominent features  
are encoded by earlier spikes. The output of the network is defined 
by the identity of the label neuron that spikes first (Fig. 1d).

We denote by t(l)k  the output spike time of the kth neuron in the 
lth layer. For example, in a network with N layers, t(N)

n  is the spike 
time of the nth neuron in the label layer. The weight projecting to 
the kth neuron of layer l from the ith neuron of layer l − 1 is denoted 
by w(l)

ki .
To apply the error backpropagation algorithm15,17, we choose 

a loss function that is differentiable with respect to synaptic  
weights and spike times. During learning, the objective is to  
maximize the temporal difference between the correct and all 
other label spikes. The following loss function fulfils the above 
requirements:

L[t(N), n∗] = dist
(

t(N)
n∗ , t(N)

n̸=n∗
)

= log
[

∑

n
exp

(

−
t(N)n −t(N)n∗

ξτs

)]

,
(6)

where t(N) denotes the vector of label spike times t(N)
n , n* the index of 

the correct label and ξ ∈ R
+ is a scaling parameter. This loss func-

tion represents a cross entropy between the true label distribution 
and the softmax-scaled label spike times produced by the network 
(Methods). Reducing its value therefore increases the temporal dif-
ference between the output spike of the correct label neuron and 
all other label neurons. Notably, it only depends on the spike time 
difference and is invariant under absolute time shifts, making it 
independent of the concrete choice of the experiment start, which 
defines t = 0. In the case of a non-spiking label neuron, we treat its 
spike time as t(N)

n = ∞. In this case, however, equation (2) is not 
defined and neither are its derivatives. We therefore introduce a 
simple, local heuristic to encourage spiking behaviour in large por-
tions of the network (Methods). In some scenarios, learning can be 
facilitated by the addition of a spike-time-dependent regularization 
term (Methods).

Gradient descent on the loss function equation (6) can now  
be easily performed by repeated application of the chain rule.  
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Using the exact derivatives, equations (4) and (5), this yields the 
synaptic plasticity rule

Δw(l)
ki ∝ −

∂L[t(N) ,n∗]
∂w(l)

ki

= −
∂t(l)k
∂w(l)

ki

∂L[t(N) ,n∗]
∂t(l)k

︸ ︷︷ ︸

δ(l)k

= −
∂t(l)k
∂w(l)

ki

∑

j

∂t(l+1)
j

∂t(l)k
δ(l+1)
j . (7)

A compact formulation for hierarchical networks that highlights the 
backpropagation of errors can be found in equations (38) to (40). In 
either form, only the label layer error and the neuron spike times are 
required for training, which can either be calculated using equation 
(2) or by simulating (or emulating) the LIF dynamics (equation (1)).

The computational complexity of the synaptic plasticity rule—a 
potential limiting factor for on-chip implementations—can be dras-
tically reduced by appropriate approximations. In Supplementary 
Section D we present early results using such an approach. Note that 
the simplification is only used in Supplementary Section D and all 
other results we report in the following were produced using the full 
analytical equations (4) and (5).

Simulations. After deriving the learning algorithm in the previous 
chapter, we show its classification capabilities in software simula-
tions. In these simulations we demonstrate successful learning 
and provide a baseline for the hardware emulations that follow. 
We use two datasets that emphasize different aspects of interesting 
real-world scenarios. As an example for low-dimensional, ‘continu-
ous’ data spaces, in which points belonging to different classes can be 
arbitrarily close together (thus making separation particularly chal-
lenging), we chose the Yin-Yang dataset65. For higher-dimensional, 
discrete input, we used the MNIST dataset66 as a small-scale image 
classification scenario.

The results in this section are based on equation (2) for calcu-
lating the spike times in the forward pass, and equation (40) for 
calculating weight updates. Details regarding implementation are 
provided in the Methods. For the hyperparameters of the discussed 
experiments, see Supplementary Tables F1 and F2.

Yin-Yang classification task. The first dataset consists of points in the 
yin-yang figure (Fig. 2a). Each point is defined by a pair of Cartesian 
coordinates (x, y) ∈ [0, 1]2. To build in redundancy and capture the 
intrinsic symmetry of the yin-yang motive, the dataset is augmented 
with mirrored coordinates (1 − x, 1 − y), enabling networks of neu-
rons without trainable bias to learn the task65. The three classes are 
labelled according to the respective area they occupy, that is, Yin, 
Yang or Dot. This augmented dataset was specifically designed to 
require latent variables for classification: a shallow non-spiking 
classifier reaches (64.3 ± 0.2)% test accuracy, an ANN with one hid-
den layer of size 120 typically around (98.7 ± 0.3)%. Because of this 
large gap, our Yin-Yang dataset represents an expressive test of error 
backpropagation in our hierarchical spiking networks. At the same 
time, it can be learned by networks that are compatible in size with 
the current revision of BrainScaleS-2 67.

After translation of the four features to spike times (Fig. 1 and 
Methods), they were joined with a bias spike at fixed time, and these 
five spikes served as input to a network with 120 hidden and three 
label neurons. We illustrate the training mechanism with voltage 
traces for three samples belonging to different classes (Fig. 2b). The 
algorithm changes the weights to create a separation in the label 
spike times (cf. the left and middle column) that corresponds to cor-
rect classification. Note that the voltage traces were just recorded for 
illustration, as only spike times are required for calculating weight 
updates. After 300 epochs our networks reached (95.9 ± 0.7)% test 
accuracy for training with 20 different random seeds (Fig. 2c). The 
classification failed only for samples that were extremely close to 
the border between two classes (Fig. 2d). Figure 2e shows the spike 
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times of the label neurons. These vary continuously for inputs 
belonging to other classes, but drop abruptly at the boundary of 
the area belonging to their own class, which denotes a clear separa-
tion—see, for example, the abrupt change from red (late spike time) 
to yellow (early spike time) of the Yin neuron when moving from 
Yang to Yin (Fig. 2e, left).

MNIST classification task. To study the scalability of our approach  
to larger and more high-dimensional datasets, we applied it to the 
classification of MNIST handwritten digits66. Figure 3 shows training 
results for networks with 784-350-10 neurons (input-hidden-label 
layer size), where pixel intensities were translated to spike times. 
During training, noise was added to the input samples to aid  
generalization, but no bias spikes were used. As seen in Fig. 3a,  
training converges for 10 different initial random seeds, reaching a 
final test accuracy of (97.1 ± 0.1)%. Similar results are also achieved 
for deeper architectures with multiple hidden layers (Supplementary 
Table B1 provides additional simulation runs with different network 
architectures).

For reference, we consider several other results obtained with 
spiking-time coding. In ref. 53, a maximum test accuracy of 97.55% 
using a network with a hidden layer of 800 neurons is reported. 
Note that this work uses non-leaky neurons with effectively infi-
nite membrane memory. Also for non-leaky neurons, but using an 
approximative approach for calculating gradients, Kheradpisheh 
and Masquelier54 report 97.4% using 400 hidden neurons. In ref. 68,  
a maximum test accuracy of 97.96% was achieved using 340 hidden  
neurons, supported by a regular spike grid and extensive hyper
parameter search.

We note that there also exist trial-averaging and spike-count-based 
approaches that have the benefit of more straightforward learning 
rules, but these approaches sacrifice precision, neuronal real-estate 
or time-to-solution in comparison to frameworks based on the 
precise timing of single output spikes. For example, Esser et al.61 
report 92.7% using 512 neurons, while Tavanaei et al.69 require 1,000  
hidden neurons to achieve 96.6%.

Fast neuromorphic classification. In our framework, the time to 
solution is a function of the network depth and the time constants 
τm and τs. Assuming typical biological timescales, most input pat-
terns in the above scenario are classified within several millisec-
onds. By leveraging the speedup of neuromorphic systems such 
as BrainScaleS46,67, with intrinsic acceleration factors of 103 to 104, 

the same computation can be achieved within microseconds. In 
the following, we present an implementation of our framework 
on BrainScaleS-2 and discuss its performance in conjunction with 
the achieved classification speed and energy consumption. For a 
proof-of-concept implementation on its predecessor BrainScaleS-1, 
see Supplementary Section A.

The advantages of such a neuromorphic implementation come at 
the cost of reduced control. Training needs to cope with phenomena 
such as spike jitter, limited weight range and granularity, as well as 
neuron parameter variability, among others. In general, an impor-
tant aspect of any theory aiming for compatibility with physical sub-
strates, be they biological or artificial, is its robustness to substrate 
imperfections; our results on BrainScaleS-2 implicitly represent a 
powerful demonstration of this property. To further substantiate the 
generalizability of our algorithm to different substrates, we comple-
ment our experimental results with a simulation study of various 
substrate-induced distortive effects.

Learning on BrainScaleS-2. BrainScaleS-2 is a mixed-signal acceler-
ated neuromorphic platform with 512 physical neurons, each being 
able to receive inputs via 256 configurable synapses. These neurons 
can be coupled to form larger logical neurons with a correspond-
ingly increased number of inputs. At the heart of each neuron is an 
analogue circuit emulating LIF neuronal dynamics with an accelera-
tion factor of 103 to 104 compared to biological timescales.

Owing to variations in the manufacturing process, the real-
ized circuits systematically deviate from each other (fixed-pattern 
noise). Although these variations can be reduced by calibrating each 
circuit70, considerable differences remain (standard deviation on 
the order of 5% on BrainScaleS-2) and pose a challenge for possible 
neuromorphic algorithms—along with other features of physical 
model systems such as spike time jitter or spike loss33,34,63,71.

The chip’s synaptic arrays were configured to support arbitrary 
fully connected networks of up to 256 emulated neurons with a 
maximum of 256 inputs per neuron. Each such logical connection 
was realized via two physical synapses to allow transitions between 
an excitatory and an inhibitory regime. Synaptic weights on the chip 
are configurable with 6-bit precision. More details about our set-up 
are available in the Methods.

We used an in-the-loop training approach23,33,72, where inference 
runs emulated on the neuromorphic substrate were interleaved with 
host-based weight update calculations. For emulating the forward 
pass, the spike times for each sample in a mini-batch were joined 
sequentially into one long spike train and then injected into the 
neuromorphic system via a field-programmable gate array (FPGA). 
The latter was also used to record the spikes emitted by the hidden 
and label layers.

Figure 4a–d shows the results of training a spiking network  
with 120 hidden neurons on BrainScaleS-2 on the Yin-Yang dataset. 
The system quickly learned to discriminate between the presented 
patterns, with an average test accuracy of (95.0 ± 0.9)%.

The hardware emulation performs similarly to the software 
simulations (Fig. 2), with the wrong classifications still only hap-
pening along the borders of the areas with different labels (Fig. 4c). 
The remaining difference in performance after training is attribut-
able to the substrate variability (cf. Fig. 4h). Considering that one  
of the specific challenges built into the Yin-Yang dataset resides  
in the continuity of its input space and abrupt class switch between 
bordering areas, this result highlights the robustness of our 
approach.

To classify the MNIST dataset using the BrainScaleS-2 system,  
we emulated and trained a network of size 256-246-10 (Fig. 4f–h). 
Owing to the restrictions imposed by the hardware on the input 
dimensionality, we used downsampled images of 16 × 16 pixels.  
Across multiple initializations, we achieved a test accuracy of 
(96.9 ± 0.1)%; similarly to the Yin-Yang dataset, this is only slightly 

Table 1 | Summary of the presented results

Dataset Hidden
neurons

Accuracy (%)

Test Train

Yin-Yang

In SW 120 95.9 ± 0.7 96.3 ± 0.7

On HW 120 95.0 ± 0.9 95.3 ± 0.7

MNIST

In SW 350 97.1 ± 0.1 99.6 ± 0.1

In SW (τs = 2τm) 350 97.2 ± 0.1 99.7 ± 0.1

MNIST 16 × 16

In SW 246 97.4 ± 0.2 99.2 ± 0.1

On HW 246 96.9 ± 0.1 98.2 ± 0.1

Accuracies are given as mean and standard deviation. Results are distinguished between software 
simulations (SW) and hardware emulations (HW). For comparison, on the Yin-Yang dataset 
a linear classifier achieves (64.3 ± 0.2)% test accuracy, while a (non-spiking, not particularly 
optimized) ANN with 120 hidden neurons achieves (98.7 ± 0.3)%. As a reference for the MNIST 
dataset we trained a 784-350-10 fully connected ANN, which reached an average test accuracy of 
(98.2 ± 0.1)%. The results in this table were obtained without extensive hyperparameter tuning.
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lower than in software simulations of equally sized networks (Table 1).  
The ability of our framework to achieve reliable classification 
despite such substrate-induced distortions is well illustrated by 
post-training membrane dynamics measured on the chip (Fig. 4h). 
In all cases shown here, the correct label neuron spikes before 10 μs 
and is clearly separable from all other label neurons.

Because of its short intrinsic time constants and overall 
energy efficiency, the BrainScaleS-2 system enables very fast and 
energy-efficient acquisition of classification results. Classification 
of the 10,000 MNIST test samples takes a total of 0.937 s, including  
data transmission, emulation of dynamics and return of the  
classification results. The total time on the BrainScaleS-2 chip was 
480 ms (a detailed breakdown of the execution time is shown in 
Supplementary Section E). The power consumption of the chip, 
measured during runtime, including all chip components needed 
for spike generation and processing (that is, excluding the host  
and FPGA) amounted to 175 mW. For measurement details and 
scalability considerations we refer to Supplementary Section E.  
This results in an average energy consumption of 8.4 μJ per clas-
sification. Table 2 provides a comparison to other neuromorphic 
platforms.

Note that the networks on the other neuromorphic platforms 
differ in their architectures, coding schemes and training methods,  
and while we list some of these differences in the table, a direct  
comparison in terms of individual numbers remains difficult.

This table only includes references in which measurements for 
both classification rate and energy are reported. A more compre-
hensive overview, including studies that lack some of the above 
measurements, is provided in Supplementary Table F3.

Our current experimental set-up leaves room for substantial 
optimization. For an estimation of possible improvements and their 
potential effect on classification rate and energy consumption, see 
Supplementary Section E and ref. 72. With these improvements we 
expect to increase the classification rate by up to a factor of four 
while simultaneously decreasing the energy-per-classification value 
by up to a factor of three.

Robustness of time-to-first-spike learning. As noted earlier, a 
learning scheme operating only on spike times combined with our 
coding represents a natural fit for neuromorphic hardware, both for 
requiring commonly accessible observables (that is, spike times, as 

opposed to, for example, membrane potentials or synaptic currents)  
and due to its intrinsic efficiency, as it emphasizes few and early 
spikes. An important indicator of a model’s feasibility for neuro-
morphic emulation is its robustness towards substrate-induced 
distortions. By experimentally demonstrating its capabilities on 
BrainScaleS-2, we have implicitly provided one substantive data 
point for our framework. Here, we present a more comprehensive 
study of the robustness of our approach.

Most physical neuronal substrates have several forms of variabil-
ity in common (chapter 5 in ref. 73). In both digital and mixed-signal 
systems, synaptic weights are typically limited in both range and 
resolution. Additionally, the parameters of analogue neuron and 
synapse circuits exhibit a certain spread. To study the impact of 
these effects, we included them in software simulations of our 
model applied to the Yin-Yang classification task.

In this context, we highlight the importance of a detail men-
tioned in the derivation of equation (4). The output spike time given 
in equation (2) depends only on neuron parameters, presynaptic 
spike times and weights, so its derivatives share the same depen-
dencies (equations (22) and (23)). With some manipulations, the 
equation for the actual output spike time can be inserted (equations 
(24) and (25)), producing a version of the learning rule that directly 
depends on the output spike time itself. This version thus allows the 
incorporation of additional information gained in the forward pass 
and is therefore expected to be substantially more stable, which is 
confirmed below.

Using dimensionless weight units (scaled by the inverse thresh-
old), we observe that an upper weight limit of ~3 is sufficient for 
achieving peak performance (Fig. 5a). This weight value is equiva-
lent to a PSP that covers the distance between leak potential and 
firing threshold.

If this is not achievable within the typical parametrization range 
of a neuromorphic chip, the effective maximum weight to the  
hidden layer can be increased by multiplexing each input into the 
network (Methods).

In the experiments with limited weight resolution (both in  
software and on hardware), a floating-point-precision ‘shadow’ 
copy of synaptic weights was kept in memory. The forward  
and backward pass used discretized weight values, while the  
calculated weight updates were applied to the shadow weights74. 
Our model shows approximately constant performance for weight 

Table 2 | Comparison of pattern recognition models on the MNIST dataset emulated on neuromorphic back-ends, sorted by 
classification speed

Platform Type Technology Coding Input 
resolution

Network 
size/
structure

Data augmentation/
regularization

Energy per 
classification

Classifications 
per seconda

Test 
accuracy 
(%)

Ref. (year)

Nvidia Tesla  
P100

Digital 14 nm ANN 28 × 28 CNNb Dropout 852 μJ 125,000 99.2 Supplementary 
Section SI.E.2

SpiNNaker Digital 130 nm Rate 28 × 28 784-600- 
500-10

Noisy input encoding 3.3 mJ 91 95.0 82 (2015)

True North Digital 28 nm Rate 28 × 28 CNN Noisy input encoding 0.27 μJ 1,000 92.7 61 (2015)

True North Digital 28 nm Rate 28 × 28 CNN Noisy input encoding 108 μJ 1,000 99.4 61 (2015)

Loihi Digital 14 nm Bin. rate (20 × 20)c 400-400-10 Not available 2.5 μJ 5,917 96.2 83 (2021)

Unnamed 
(Intel)

Digital 10 nm Temporal (28 × 28)d 236-20 Stochastic spike loss 1.0 μJ 6,250 88.0 84 (2018)

BrainScaleS-2 Mixed 65 nm Temporal 16 × 16 256-246-10 Input noise 8.4 μJ 20,800 96.9 This work; 
Supplementary 
Section SI.E.1

aNote that some platforms achieve a high number of classifications per second simply by processing a large number of samples in parallel, while other platforms rely on the sequential (but fast) processing 
of individual samples. bStandard architecture given as an example in the PyTorch repository, for details see Supplementary Section SI.E.2. cFour (empty) pixels on each margin are cropped to yield the 
20 × 20 centre from the 28 × 28 image. dThe 28 × 28 image is preprocessed using 5 × 5 Gabor filters and 3 × 3 pooling before being sent into the chip. For reference, an ANN running on a graphics processing 
unit is included in the top row. Note that we include only references that present measurements for both energy and throughput in addition to accuracy. An extended table containing results with partial or 
estimated measurements is provided as Supplementary Table F3.
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resolutions down to 5 bit, followed by gradual degradation below 
(Fig. 5b).

Interestingly, adding variability to the synapse and membrane 
time constants has no discernible effects (Fig. 5c). This is a direct 
consequence of having used the true output spike times for the 
learning rule in the backward pass. A comparison to ‘naïve’ gra-
dient descent without this information is shown in Fig. 5d. These 
simulations show that the algorithm can be expected to adequately 
cope with a large amount of fixed-pattern noise on the time con-
stants if the mean of the distributions for τm and τs match reasonably 
well with the values assumed by the learning rule (up to 10–20% 
difference).

Additionally, in Supplementary Section C we investigate trained 
networks regarding their robustness to adverse effects that appear 
only after training, such as temperature-induced parameter varia-
tions or inactivation of neurons. Our simulations show that trained 
networks can cope with such effects, suggesting that our training 
algorithm develops network structures robust even to distortions 
not present during training.

Finally, we note that all of the effects addressed above also have 
biological correlates. Although not directly reflecting the variability 
of biological neurons and synapses, our simulations do suggest that 
biological variability does not present a fundamental obstacle to our 
form of TTFS computation.

Discussion
We have proposed a model of first-spike-time learning that builds 
on a rigorous analysis of neuro-synaptic dynamics with finite time 
constants and provides exact learning rules for optimizing first-spike 
times. The resulting form of synaptic plasticity operates on pre- and 
postsynaptic spike times and effectively solves the credit assignment 
problem in spiking networks. For the specific case of hierarchical feed-
forward topologies, it yields a spike-based form of error backpropaga-
tion. In this Article, we have applied this algorithm to networks with 
one and two hidden layers. Given the reported results, we are con-
fident that our approach scales to even larger and deeper networks.

Although TTFS coding is an exceptionally appealing paradigm 
for reasons of speed and efficiency, our approach is not restricted 
to this particular coding scheme. Our learning rules enable a rigor-
ous manipulation of spike times and can be used for a variety of 
loss functions that target other relationships between spike timings. 
The time-to-first-spike scenario studied here merely represents the 
simplest, yet arguably also the fastest and most efficient paradigm 
for spike-based classification of static patterns. Additionally, our 
derived theory is applicable to more complex, for example, recur-
rent, network structures and multi-spike coding schemes, which are 
needed for processing temporal data streams.

First-spike coding schemes are particularly relevant in the  
context of biology, where decisions often have to be taken under 
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pressure of time. The action to be taken in response to a stimulus 
can be considerably sped up by encoding it in first-spike times. In 
turn, such fast decision making on the order of ~100 ms (refs. 42,43) 
will have a particularly sensitive dependence on exact spike times 
and thus require a corresponding precision of parameters.

At first glance, demands for precision appear at odds with the 
imperfect, variable nature of microscopic physical substrates, both 
biological and artificial. We met this challenge by incorporating 
output spike times directly into the backward pass. With this, the 
theoretical requirement of exact ratios of membrane to synaptic 
time constants is substantially softened, which greatly extends the 
applicability of our framework to a wide range of substrates, includ-
ing, in particular, BrainScaleS-2.

By requiring only spike times, the proposed learning framework 
has minimal demands for neuromorphic hardware and becomes 
inherently robust towards substrate-induced distortions. This further  
enhances its suitability for a wide range of neuromorphic platforms.

Bolstered by the design characteristics of the BrainScaleS-2 sys-
tem, our implementation achieves a time to classification of ~10 μs 
after receiving the first spike. Including relaxation between pat-
terns and communication, the complete MNIST test set with 10,000 
samples is classified in less than 1 s with an energy consumption 
of ~8.4 μJ per classification, which compares favourably with other 
neuromorphic solutions for pattern classification. The time char-
acteristics of this implementation do not deteriorate for increased 
layer sizes because neurons communicate asynchronously and their 
dynamics are emulated independently. For the current incarnation 
of BrainScaleS-2, an increase in spiking activity only has a negligible 
effect on power consumption. Furthermore, for larger numbers of 
neurons we would expect only a weak increase of the power drain.

We also stress that, in contrast to, for example, graphics process-
ing units, our system was used to process input data sequentially. 
Our reported classification speed is thus a direct consequence of our 
coding scheme combined with the system’s accelerated dynamics. 
Further increasing the throughput by parallelization (simultane-
ously using multiple chips) is straightforward and would not affect 
the required energy per classification.

Due to the complexity of our exact gradient-based rules, our 
hardware networks were trained using updates calculated off-chip 
based on emulated spike times. Early, promising simulations using a 
substantially simplified learning rule, however, suggest the possibil-
ity of an on-chip implementation of our framework. Furthermore, 
we note that our learning rules require three components that can 
all be made available at the locus of the synapse: pre- and postsyn-
aptic spikes, as in classical spike-timing-dependent plasticity, and 
an error term, which could be propagated by mechanisms such as 
those proposed in, for example, refs. 75,76. This raises the intriguing 
possibility for our framework to help explain learning in biological 
substrates as well.

Because, compared to the von Neumann paradigm, artificial 
brain-inspired computing is only in its infancy, its range of possible 
applications still remains an open question. This is reflected by most 
state-of-the-art neuromorphic approaches to information processing, 
which, to accommodate a wide range of spike-based computational 
paradigms, aim for a large degree of flexibility in network topology 
and parametrization. Despite the obvious efficiency trade-off of such 
general-purpose platforms, we have shown that an embedded ver-
sion of our framework can achieve a powerful combination of per-
formance, speed, efficiency and robustness. This gives us confidence 
that a more specialized neuromorphic implementation of our model 
represents a competitive alternative to current solutions based on 
von Neumann architectures, especially in edge computing scenarios.

Methods
Preliminaries. In this section we derive the equations from the main Article, 
starting with the learning rule for τm → ∞, then τm = τs, equation (2) and finally 

τm = 2τs, equation (3). The case τm → ∞ has already been discussed in ref. 53 and was 
reproduced here for completeness and comparison. Owing to the symmetry in τm and 
τs of the PSP (equation (14)), the τm = 2τs case describes the τm = 1

2 τs case as well.
For each, a solution for the spike time T, defined by

u(T) = ϑ, (8)

has to be found, given LIF dynamics

u(t) =
1
Cm

τmτs
τm − τs

∑

spikes ti

wiκ(t − ti), (9)

κ(t) = θ(t)
[
exp

(
−

t
τm

)
− exp

(
−

t
τs

)]
, (10)

with membrane time constant τm = Cm/gℓ and the PSP kernel κ given by a difference 
of exponentials. Here we already assumed our TTFS use case in which each neuron 
only produces one relevant spike and the second sum in equation (1) reduces to a 
single term.

For convenience, we use the following definitions:

an :=
∑

i∈C
wi exp

(
ti
nτs

)
, (11)

b :=
∑

i∈C
wi

ti
τs

exp
(

ti
τs

)
, (12)

with summation over the set of causal presynaptic spikes C = {i∣ti < T}.
In practice, this definition of the causal set C is not a closed-form expression 

because the output spike time T depends explicitly on C. However, it can be 
computed straightforwardly by iterating over the ordered sets of input spike 
times (for n presynaptic spikes there are n sets C̃i each comprising the i first input 
spikes). For each set C̃i one calculates an output spike time Ti and determines if this 
happens later than the last input of this set and before the next input (the i + 1th 
input spike). The earliest such spike Ti is the actual output spike time and the 
corresponding C̃i is the correct causal set. If no such causal set C̃i exists, the neuron 
did not spike and we assign it the spike time T = ∞.

The nLIF learning rule for τm → ∞. With this choice of τm, the first term in 
equation (10) becomes 1 and we recover the nLIF case discussed in ref. 53. Given 
the existence of an output spike, in equation (8) the spike time T appears only in 
one place and simple reordering yields

T
τs

= ln
[

a1
a∞ − ϑCm/τs

]
, (13)

where we used equation (11) for n = 1 and n = ∞, the latter being the sum over the 
weights.

The learning rule for τm = τs. According to l’Hôpital’s rule, in the limit τm → τs, 
equation (9) becomes a sum over α-functions of the form

u(t) =
1
Cm

∑

i
wiθ(t − ti)(t − ti) exp

(
−

t − ti
τs

)
. (14)

Using these voltage dynamics for the equation of the spike time equation (8), together 
with the definitions of equations (11) and (12) and τm = Cm/gℓ, we get the equation

0 = gℓϑ exp
(

T
τs

)
+ b − a1

T
τs︸ ︷︷ ︸

=: y

. (15)

The variable y is introduced to bring the equation into the form

h exp (h) = z (16)

which can be solved with the differentiable Lambert W function h = W(z). 
The goal is now to bring equation (15) into this form, and this is achieved by 
reformulation in terms of y:

0 = gℓϑ exp
(

b
a1

)
exp

(
−

y
a1

)
+ y (17)

y
a1︸︷︷︸

=: h

exp
(

y
a1

)
= −

gℓϑ

a1 exp
(

b
a1

)

︸ ︷︷ ︸
=: z

. (18)
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With the definition of the Lambert W function the spike time can be written as

T
τs

=
b
a1

− W

[
−

gℓϑ
a1

exp
(

b
a1

)]
. (19)

Branch choice. Given that a spike happens, there will be two threshold crossings: 
one from below at the actual spike time and one from above when the voltage 
decays back to the leak potential (Supplementary Fig. F1a,b). Correspondingly, the 
Lambert W function (Supplementary Fig. F1c,d) has two real branches (in addition 
to infinite imaginary ones), and we need to choose the branch that returns the 
earlier solution. In case the voltage is only tangent to the threshold at its maximum, 
the Lambert W function only has one solution.

For choosing the branch in the other cases we need to look at h from the 
definition, that is

h =
y
a1

=
b
a1

−

T
τs
. (20)

In a setting with only one strong enough input spike, the summations in an and b 
reduce to yield h = (ti − T)/τs. Because the maximum of the PSP for τm = τs occurs at 
ti + τs, we know that the spike must occur at T ≤ ti + τs and therefore

−1 ≤

ti − T
τs

= h. (21)

This corresponds to the branch cut of the Lambert W function, meaning we must 
choose the branch with h ≥ −1. For a general setting, if we know a spike exists, 
we expect an and b to be positive. To get the earlier threshold crossing, we need 
the branch that returns the larger W (Supplementary Fig. F1d), that is, where 
W = h > −1.

Derivatives. The derivatives for ti in the causal set i ∈ C come down to

∂T
∂wi

(w, t) =
τs
a1

exp
(

ti
τs

)[
zW′

(z) +
(

ti
τs

−

b
a1

)(
1 − zW′

(z)
)]

, (22)

∂T
∂ti

(w, t) =
wi

a1
exp

(
ti
τs

)[
1 +

(
ti
τs

−

b
a1

)(
1 − zW′

(z)
)]

. (23)

A crucial step is to reinsert the definition of the spike time where possible (cf. Fig. 5d).  
For this we need the derivative of the Lambert W function zW′(z) =

W(z)
W(z)+1 

that follows from differentiating its definition equation (16) with h = W(z) with 
respect to z. With this equation one can calculate the derivative of equation (19) 
with respect to incoming weights and times as functions of presynaptic weights, 
input spike times and output spike time:

∂T
∂wi

(w, t, T) = −

1
a1

1
W(z) + 1 exp

(
ti
τs

)
(T − ti) , (24)

∂T
∂ti

(w, t, T) = −

1
a1

1
W(z) + 1 exp

(
ti
τs

)
wi

τs
(T − ti − τs) . (25)

These equations are equivalent to equations (4) and (5) shown in the main text.

The learning rule for τm = 2τs. Inserting the voltage (equation (9)) into the spike 
time (equation (8)) yields

gℓϑ = exp
(
−

T
τm

) ∑
i∈C

wi exp
(

ti
τm

)

− exp
(
−

T
τs

) ∑
i∈C

wi exp
(

ti
τs

)
.

(26)

Reordering and rewriting this in terms of a1, a2 and τs (with τm = 2τs) we get

0 = −a1
[
exp

(
−

T
2τs

)]2
+ a2 exp

(
−

T
2τs

)
− gℓϑ . (27)

This is written such that its quadratic nature becomes apparent, making it possible 
to solve for exp(−T/2τs) and thus

T
τs

= 2ln
[

2a1
a2 +

√
a22 − 4a1gℓϑ

]
. (28)

Branch choice. The quadratic equation has two solutions that correspond to the 
voltage crossing at spike time and relaxation towards the leak later; again, we want 
the earlier of the two solutions. It follows from the monotonicity of the logarithm 

that the earlier time is the one with the larger denominator. Due to an output spike 
requiring an excess of recent positively weighted input spikes, an are positive and 
the + solution is the correct one.

Derivatives. Using the definition x =
√

a22 − 4a1gℓϑ for brevity, the derivatives of 
equation (28) are

∂T
∂wi

(w, t) = 2τs
[ 1
a1

+
2gℓϑ

(a2 + x)x

]
exp

(
ti
τs

)
−

2τs
x

exp
(

ti
2τs

)
, (29)

∂T
∂ti

(w, t) = 2wi

[ 1
a1

+
2gℓϑ

(a2 + x)x

]
exp

(
ti
τs

)
−

wi

x
exp

(
ti
2τs

)
. (30)

Again, inserting the output spike time yields

∂T
∂wi

(w, t, T) =
2τs
a1

[
1 +

gℓϑ
x

exp
(

T
2τs

)]
exp

(
ti
τs

)
−

2τs
x

exp
(

ti
2τs

)
, (31)

∂T
∂ti

(w, t, T) =
2wi

a1

[
1 +

gℓϑ
x

exp
(

T
2τs

)]
exp

(
ti
τs

)
−

wi

x
exp

(
ti
2τs

)
. (32)

Error backpropagation in a layered network. Our goal is to update the network’s 
weights such that they minimize the loss function L[t(N), n*]. For weights projecting 
into the label layer, updates are calculated via

Δw(N)
ni ∝ −

∂L[t(N), n∗]
∂w(N)

ni
= −

∂t(N)n

∂w(N)
ni

∂L[t(N), n∗]
∂t(N)n

. (33)

The weight updates of deeper layers can be calculated iteratively by application of 
the chain rule:

Δw(l)
ki ∝ −

∂L[t(N), n∗]
∂w(l)

ki

= −

∂t(l)k

∂w(l)
ki

δ(l)
k , (34)

where the second term is a propagated error that can be calculated recursively with 
a sum over the neurons in layer (l + 1):

δ(l)
k :=

∂L[t(N), n∗]
∂t(l)k

=
∑

j

∂t(l+1)
j

∂t(l)k

δ(l+1)
j . (35)

In the following we treat the τm = τs case, but the calculations can be performed 
analogously for the other cases. Rewriting equations (24) and (25) in a layer-wise 
setting, the derivatives of the spike time for a neuron k in arbitrary layer l are

∂t(l)k

∂w(l)
ki

(w, t(l−1), t(l)) = −

1
a1

exp
(

t(l−1)
i
τs

)
1

W(z) + 1

(
t(l)k − t(l−1)

i

)
, (36)

∂t(l)k

∂t(l−1)
i

(w, t(l−1), t(l)) = −

1
a1

exp
(

t(l−1)
i
τs

)
1

W(z) + 1
w(l)
ki
τs

(
t(l)k − t(l−1)

i − τs
)
.

(37)

Inserting equations (35) to (37) into equations (33) and (34) yields a synaptic 
learning rule that implements exact error backpropagation on spike times.

This learning rule can be rewritten to resemble the standard error backpropa
gation algorithm for ANNs:

δ(N)
=

∂L
∂t(N) , (38)

δ(l−1)
=

(
B̂(l)

− 1
)
⊙ ρ(l−1)

⊙

(
w(l),Tδ(l)

)
, (39)

Δw(l)
= −ητs

(
δ(l)ρ(l−1),T

)
⊙ B̂(l), (40)

where ⊙ is the element-wise product, the T superscript denotes the transpose of a 
matrix and δ(l − 1) is a vector containing the backpropagated errors of layer (l − 1). 
The individual elements of the tensors above are given by

ρ(l)
i = −

1
a1

exp
(

t(l)i
τs

)
1

W(z) + 1 , (41)

B̂(l)
ki =

t(l)k − t(l−1)
i

τs
. (42)
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BrainScaleS-2. The application-specific integrated circuit (ASIC) is built around 
an analogue neuromorphic core that emulates the dynamics of neurons and 
synapses. All state variables, such as membrane potentials and synaptic currents, 
are physically represented in their respective circuits and evolve continuously 
in time. Considering the natural time constants of such integrated analogue 
circuits, this emulation takes place at 1,000-fold accelerated timescales compared 
to the biological nervous system. One BrainScaleS-2 chip features 512 adaptive 
exponential leaky integrate-and-fire (AdEx) neurons, which can be freely 
configured; these circuits can be restricted to LIF dynamics as required by our 
training framework77. Both the membrane and synaptic time constants were 
calibrated to 6 μs.

Each neuron circuit is connected to one of four synapse matrices on the chip, 
and integrates stimuli from its column of 256 CuBa synapses59. Each synapse 
holds a 6-bit weight value. Its sign is shared with all other synapses located on the 
same synaptic row. The presented training scheme, however, allows weights to 
continuously transition between excitation and inhibition. We therefore allocated 
pairs of synapse rows to convey the activity of single presynaptic partners, one 
configured for excitation and the other one for inhibition.

Synapses receive their inputs from an event routing module allowing to 
connect neurons within a chip as well as to inject stimuli from external sources. 
Events emitted by the neuron circuits are annotated with a time stamp and 
then sent off-chip. The neuromorphic ASIC is accompanied by an FPGA to 
handle communication with the host computer. It also provides mechanisms for 
low-latency experiment control, including the timed release of spike trains into 
the neuromorphic core. The FPGA is also used to record events and digitized 
membrane traces originating from the ASIC. BrainScaleS-2 only permits recording 
one membrane trace at a time. Each membrane voltage shown in Fig. 4h therefore 
originates from a different repetition of the experiment.

The ASIC is controlled by a layered software stack78 that exposes the necessary 
interfaces to a high-level user via Python bindings. These were used in our 
framework, which is described in the following.

Simulation software. Our experiments were performed using custom modules for 
the deep learning library PyTorch79. The network module implements layers of LIF 
neurons whose spike times are calculated according to equation (2). This method 
of determining the spike times of the neurons is fastest, but also memory-intensive. 
An alternative implementation integrates the dynamical equations of the LIF 
neurons in a layer, which also yields the neuron spike times. Even though both 
approaches are technically equivalent, this method is slower and should only be 
employed if the computing resources are limited.

The activations passed between the layers during the forward pass are the spike 
times. The equations describing the weight updates for the network (equation (40)) 
are realized in a custom backward-pass module for the network.

Training and regularization methods. To train a given dataset using our learning 
framework, the input data have to be translated into spike times first. We do this 
by defining the times of the earliest and latest possible input spike tearly and tlate and 
mapping the range of input values linearly to the time interval [tearly, tlate].

If the dataset requires a bias to be solvable, our framework allows its addition. 
These bias spikes essentially represent additional input spikes for a layer, which 
have the same spike time for any input. The weights from the neurons to these 
‘bias sources’ are learned in the same way as all the other synaptic weights. For 
the Yin-Yang dataset, the addition of a bias spike facilitated training. For some 
samples, due to the low number of inputs, the relatively low activity that is received 
by the network is spread out over a long time interval. The additional spike in the 
middle of the available interval decreases the maximum distance between input 
spikes for the hidden layer. In contrast, the MNIST dataset has a much higher input 
dimensionality and the spikes are more distributed over the input time interval. 
Therefore, the activity provided to the hidden layer at any point in time is high, 
even without additional bias.

Implementing our learning algorithm as custom PyTorch modules allows 
us to use the training architecture provided by the library. The simulations 
were performed using mini-batch training in combination with with the Adam 
optimizer80 and learning rate scheduling (the parameters are provided in 
Supplementary Tables F1 and F2).

To assist learning we employ several regularization techniques. The term 
+α

[
exp

(
t(N)n∗ /βτs

)
− 1

]
 with scaling parameters α, β ∈ R

+, can be added to the 
loss in equation (6). This regularizer further pushes the correct neuron towards 
earlier spike times.

Gaussian noise on the input spike times can be used to combat overfitting. This 
proved beneficial for the training of the MNIST dataset.

Weight updates Δw with absolute value larger than a given hyperparameter are 
set to zero to compensate divergence for vanishing denominator in equation (40).

As noted previously, the weight update equations are only defined for neurons 
that elicit a spike. To prevent fully quiescent networks we add a hyperparameter 
that controls how many neurons without an output spike are allowed. If the portion 
of non-spiking neurons is above this threshold, we increase the input weights 
of the silent neurons. In the case of multiple layers where this applies, only the 
first such layer with insufficient spikes is boosted. If neurons in a layer are too 

inactive multiple times in direct succession, the boost to the weights increases 
exponentially.

Training on hardware. In principle, our training framework can be used to train 
any neuromorphic hardware platform that (1) can receive a set of input spikes 
and yield the output spike times of all neurons in the emulated network and (2) 
can update the weight configuration on the hardware according to the calculated 
weight updates. In our framework, the hardware replaces the computed forward 
pass through the network. For the calculation of the loss and the following 
backward pass, the hardware output spikes are treated as if they had been produced 
by a forward pass in simulation. The backward pass is identical to pure simulation.

As accessible value ranges of neuron parameters are typically determined by the 
hardware platform in use, a translation factor between the neuron parameters and 
weights in software and the parameters realized on hardware needs to be determined. 
In our experiments with BrainScaleS-2, the translation between hardware and 
software parameter domain was determined by matching of PSP shapes and spike 
times predicted by a software forward pass to the ones produced by the chip.

The implicit assumption of having only the first spike emitted by every neuron 
be relevant for downstream processing can effectively be ensured by using a long 
enough refractory period. Because the only information-carrying signal that is not 
reset upon firing is the synaptic current, which is forgotten on the timescale of τs, 
we found that, in practice, setting the refractory time τref > τs leads to most neurons 
eliciting only one spike before the classification of a given input pattern.

For training the Yin-Yang dataset on BrainScaleS-2, having only five inputs 
proved insufficient due to the combination of limited weights and neuron 
variability. We therefore multiplexed each logical input into five physical spike 
sources, totalling 25 inputs spikes per pattern. Adding further copies of the inputs 
effectively increased the weights for each individual input. This method has the 
added benefit of averaging out some of the effects of the fixed-pattern noise on the 
input circuits as multiple of them are employed for the same task.

Data availability
We used the MNIST66 and the Yin-Yang dataset65. For the latter, see https://github.
com/lkriener/yin_yang_data_set.

Code availability
Code for the simulations81 is available at https://github.com/JulianGoeltz/
fastAndDeep.
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