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Rauch, Alexander, Giancarlo La Camera, Hans-Rudolf Lüscher,
Walter Senn, and Stefano Fusi. Neocortical pyramidal cells respond
as integrate-and-fire neurons to in vivo–like input currents.J Neuro-
physiol 90: 1598–1612, 2003. First published May 15, 2003;
10.1152/jn.00293.2003. In the intact brain neurons are constantly
exposed to intense synaptic activity. This heavy barrage of excitatory
and inhibitory inputs was recreated in vitro by injecting a noisy
current, generated as an Ornstein–Uhlenbeck process, into the soma of
rat neocortical pyramidal cells. The response to such in vivo–like
currents was studied systematically by analyzing the time develop-
ment of the instantaneous spike frequency, and when possible, the
stationary mean spike frequency as a function of both the mean and
the variance of the input current. All cells responded with an in
vivo–like action potential activity with stationary statistics that could
be sustained throughout long stimulation intervals (tens of seconds),
provided the frequencies were not too high. The temporal evolution of
the response revealed the presence of mechanisms of fast and slow
spike frequency adaptation, and a medium duration mechanism of
facilitation. For strong input currents, the slow adaptation mechanism
made the spike frequency response nonstationary. The minimal fre-
quencies that caused strong slow adaptation (a decrease in the spike
rate by more than 1 Hz/s), were in the range 30–80 Hz and depended
on the pipette solution used. The stationary response function has been
fitted by two simple models of integrate-and-fire neurons endowed
with a frequency-dependent modification of the input current. This
accounts for all the fast and slow mechanisms of adaptation and
facilitation that determine the stationary response, and proved neces-
sary to fit the model to the experimental data. The coefficient of
variability of the interspike interval was also in part captured by the
model neurons, by tuning the parameters of the model to match the
mean spike frequencies only. We conclude that the integrate-and-fire
model with spike-frequency–dependent adaptation/facilitation is an
adequate model reduction of cortical cells when the mean spike-
frequency response to in vivo–like currents with stationary statistics is
considered.

I N T R O D U C T I O N

Single neuron properties have been thoroughly investigated
in the past years showing that neural cells are rich in phenom-
enology and complex in their structure (see, e.g., Mainen and
Sejnowski 1996; McCormick et al. 1985; Rhodes 1999). Even
the most detailed state-of-the-art model is unable to capture the
entire phenomenology observed in the experiments. Such a
richness calls for a model reduction that could provide a
synthetic description of the response properties of the cells
under particular conditions. We studied in vitro those features

that are supposedly relevant when the cell is embedded in a
large network of interconnected neurons, as it would be in in
vivo conditions. The guidelines for selecting the relevant fea-
tures were dictated by the theoretical framework developed in
the last decade to study the dynamic properties of networks of
integrate-and-fire neurons (see Gerstner and Kistler 2002 for a
review). This approach was already successful in relating sin-
gle neuron properties to several in vivo phenomena (Amit and
Tsodyks 1991; Brunel 2000b) like the omnipresent spontane-
ous activity (Amit and Brunel 1997) or the persistent, selective
delay activity observed in many areas of the cortex in behaving
animals (Amit and Brunel 1997; Wang 2001; Yakovlev et al.
1998). In both cases the recorded spike activity is sustained
throughout long intervals: low, spontaneous activity is always
present, whereas elevated delay activity can last�30s (Fuster
1995). During these intervals the statistics of the total synaptic
input are likely to be stationary or quasi-stationary, that is, to
vary on time scales that are much longer than the “reaction”
time (Gerstner and Kistler 2002) of the assembly of neurons.

Despite the steadiness of the statistics, the total synaptic
current results from a considerably irregular synaptic activity,
and hence fluctuates all the time. Neurons on the presynaptic
side emit spikes spontaneously at a frequency of a few spikes
s�1 and the neocortical connectivity is rather high [approxi-
mately 104 synapses per neuron (Abeles 1991)]. As a conse-
quence, during the interval between two successive spikes,
every neuron integrates hundreds of excitatory and inhibitory
postsynaptic potentials that arrive at random times. If the spike
activities of the presynaptic neurons are statistically indepen-
dent (seeMETHODS) then the resulting total synaptic conduc-
tance can be described as a random walk with a Gaussian
distribution and finite time correlation length determined by the
time development of unitary synaptic events [an Ornstein–
Uhlenbeck process (Tuckwell 1988)]. Interestingly in vitro
neocortical neurons produce in vivo–like activity when noisy
current waveforms are injected (Destexhe et al. 2001; Mainen
and Sejnowski 1995), and there is some preliminary indirect
evidence, based on the analysis of the distribution of the
membrane potential recorded intracellularly in vivo, that so-
matic currents could be modeled as an Ornstein–Uhlenbeck
process (Destexhe and Pare´ 1999, 2000). The total synaptic
current is also approximately Gaussian (Amit and Tsodyks
1992) (also seeDISCUSSION and the APPENDIX) and, for fast
synaptic currents (AMPA or GABAA), the time correlation
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length is short compared with other inherent time constants of
the neuron (e.g., the membrane time constant). As a conse-
quence the total input current is practically white noise and can
be fully characterized by its average mI and SD sI.

In the present work we measured the response function of
neocortical pyramidal cells to such a noisy current with sta-
tionary statistics. We first studied the time development of the
neuronal response and characterized the functional role of the
adaptation/facilitation components that determine the statisti-
cal properties of stationary responses. These components act
on different time scales and, for some input currents, reach a
steady regime in which they either disappear or are combined
together to determine the stationary statistics of the train of
spikes generated by the neuron. We then analyzed quantita-
tively the stationary responses by exploring systematically the
whole parameter space {mI, sI} characterizing the input current
and determining the resulting spike frequency f. The measured
frequencies have been fitted by the theoretical response func-
tions of two simple models of integrate-and-fire neurons with
a single, effective component of adaptation/facilitation. These
response functions have been computed analytically (Fusi and
Mattia 1999; Ricciardi 1977) and have a relatively simple
form. The value of this data modeling is multiple: besides
providing a synthetic and efficient way of describing the whole
data set, it allows reliable prediction of the output rate in
response to currents not used in the experiment and, hence, to
cover a wide class of experiments that study the response of the
neuron when moving along some specific trajectory in the
parameter space of the input current (see e.g., Chance et al.
2002). Moreover, the choice of the response function of model
neurons instead of an arbitrary function gives a direct interpre-
tation of the estimated parameters: they are the effective pa-
rameters of a model neuron that can re-create the measured
response of pyramidal cells. The knowledge of these parame-
ters also allows one to make quantitative predictions about the
global dynamics of a network (in vivo) of this kind of cells. In
addition, the response function to inputs with stationary statis-
tics also gives important information about the reaction time of
the network (Fourcaud and Brunel 2002; Gerstner and Kistler
2002; Mattia and DelGiudice 2002). If the parameters are
tuned to reproduce the mean spike frequencies, the simulated
neurons can also re-create the higher-order statistics of the
interspike intervals expressing, for instance, the degree of
irregularity of the spike train (e.g., the coefficient of variability
of the interspike intervals). Finally, the statistics of the effec-
tive parameters across different cells provide a quantitative
estimate of the heterogeneity of the functional properties of the
cells.

M E T H O D S

Experimental preparation and recordings

Parasagittal slices of rat somatosensory cortex (300 �m thick) were
prepared from 15- to 40-day-old female and male Wistar rats accord-
ing to the institutional guidelines. The preparation was done in ice-
cold extracellular solution using a Campden vibratome (752M; Camp-
den Instruments, Loughborough, UK). Slices were incubated at 35°C
for 25 min and afterward left at room temperature until being trans-
ferred to the recording chamber. The cells were visualized by infrared
differential interference contrast videomicroscopy using a Newvicon
camera (C2400, Hamamatsu City, Japan) and an infrared filter (RG9,

Schott Mainz, Germany) mounted on an upright microscope (Axio-
scope FS, Zeiss, Germany).

We recorded in current-clamp whole cell configuration from the
soma of layer 5 regular spiking (McCormick et al. 1985) pyramidal
cells. Recordings and stimulations were made with an Axoclamp-2A
amplifier (Axon Instruments, Burlingame, CA) in combination with
Clampex 8 (Axon Instruments). The access resistance and the capac-
itance were compensated using the bridge balance and the capacitance
neutralization after having established the whole cell configuration.
The data were low-pass filtered at 2.5 kHz with sampling frequency
twice the filter frequency. The temperature of the external solution
was 31°C. Neurons were visually identified and some of them were
filled with biocytin and then stained according to the avidin–biotin–
peroxidase (ABC) procedure (Hsu et al. 1981).

Slices were continuously superfused with an artificial cerebrospinal
fluid containing (in mM): 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25
NaH2PO4, 2 CaCl2, 1 MgCl2, 25 glucose, gassed with 95% O2-
5% CO2.

The pipette solution for most of the analyzed cells contained (in
mM): 110 K-gluconate, 30 KCl, 10 EGTA, 10 HEPES, 4 Mg-ATP,
0.3 Na2-GTP, 10 Na2-phosphocreatine, pH adjusted to 7.3 with KOH.
This solution contains a relatively high concentration of EGTA, which
allowed long stable recordings and made the cells produce more
consistent responses (see Stimulation protocol and observables). We
tried to identify undesired artifacts introduced by EGTA by studying
the cell’s response when two other pipette solutions were used. In
what follows we will refer to the solution with high concentration of
EGTA as the EGTA pipette solution. The other two pipette solutions
were labeled KMeSO4 and KGluc and contained (in mM): KMeSO4:
135 K-methylsulfate, 20 KCl, 0.08 EGTA, 0.045 CaCl2, 10 HEPES,
4 Mg-ATP, 0.3 Na2-GTP, 10 Na2-phosphocreatine, pH adjusted to 7.3
with KOH. KGluc: 115 K-gluconate, 20 KCl, 10 HEPES, 4 Mg-ATP,
0.3 Na2-GTP, 10 Na2-phosphocreatine, pH adjusted to 7.3 with KOH.
Pipette solution KGluc was always used with 10 mM biocytin. The
measured osmolarity of all three pipette solutions was between 310
and 325 mOsm. Because pyramidal cells of the somatosensory cortex
in vitro showed virtually no spontaneous activity, we did not system-
atically block synaptic input mediated by ligand-gated channels. Con-
trol experiments with blocked synaptic inputs by adding 50 �M
D-APV, 10 �M CNQX, and 10 �M bicuculline to the extracellular
solution did not change the spike frequency.

The input resistance of the neurons was calculated from the voltage
transients in response to at least three different hyperpolarizing
(600-ms duration, average of the last 300 ms) current pulses (ampli-
tude, 0.05 nA). The membrane time constant �m was estimated by
injecting brief (0.5 ms) hyperpolarizing current pulses (�2.5 nA) into
the soma. From the decaying averaged (n � 50) voltage transient after
this current pulse, �m was obtained from the slope of a straight line
fitted through the tail portion of the semilogarithmic plot of the
membrane voltage against time (Iansek and Redman 1973).

Model of in vivo–like input current

We assume that a large number of presynaptic neurons emit spikes
at random times. On the postsynaptic side this heavy barrage is felt as
a total synaptic current I that evolves as a random walk. If the synaptic
currents are summed linearly and the different inputs are statistically
independent (i.e., the emission of a spike by one presynaptic neuron
does not affect or only slightly affects the initiation of an action
potential in another presynaptic neuron) then the random walk can be
replaced by a smoother version, the Ornstein–Uhlenbeck process
(Tuckwell 1988), characterized by a Gaussian distribution (mean mI,
SD sI) and by a time-correlation length �I. If the synaptic evoked
potentials sum linearly and there are Ne excitatory AMPA receptors,
each activated at a mean rate fe and Ni inhibitory GABAA receptors
( fi), then

mI � NeI�e fe�I � NiI�i fi�I (1)
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sI
2 � 1⁄2 NeI�e

2 fe�I � 1⁄2 NiI�i
2 fi�I (2)

For simplicity we assumed that the time courses of AMPA and
GABAA receptors are the same (�ampa � �gaba � �I). I�e (I�i) is the
average peak postsynaptic current evoked by the arrival of a single
excitatory (inhibitory) spike. The rise time to this peak current is zero,
and then the current decays exponentially: I(t) � I�e,ie

�t/�1. (See the
APPENDIX for more details on how these constants are related to the
mean synaptic conductances.) Slow NMDA components can be added
to mI only, given that they leave sI almost unaffected (Brunel and
Wang 2001). The total synaptic current I(t) can be generated with a
single equation

dI � �
I�t�

�I

dt � �Idt � �I�dt ��t� (3)

which is what was used in the experiment (�I � mI /�I, �I
2 � 2s I

2/�1).

Stimulation protocol and observables

The noisy input current was generated as an Ornstein–Uhlenbeck
stochastic process by iterating the following expression

I�t � �t� � I�t� �
I�t�

�I

�t � �I�t � �I��t���t (4)

where �t is a unitary Gauss distributed random variable, updated at
every time step. The process was generated and injected at a rate of 5
kHz (�t � 0.2 ms) and the correlation length �I was usually 1 ms (for
10 cells we also used �I � 5 ms). The resulting current I(t) has a
stationary Gauss distribution with mean mI � �I�I and variance
sI

2 � �I
2�1/2 (Cox and Miller 1965).

The space {mI, sI} was systematically explored as follows: data
points were collected at fixed sI (ranging from 0 to 500 pA), stepwise
increasing mI from a subthreshold value up to nonstationary frequen-
cies. This protocol was used to determine the threshold mean current
(the rheobase current). Then, the whole space {mI, sI} was discretized
and then explored in random order to prevent correlations between
time and one of the two parameters mI, sI. In both protocols, the
duration of the stimulation depended on the cell response: it was 10 s
long, or shorter if 	150 spikes were collected. For those cells used to
characterize the response over time (see RESULTS), a stimulus duration
of 10 s was always used. The first transient part of the neuronal
response (2 s if the stimulation time was longer than 4 s; 0.5 s
otherwise) was discarded when estimating the mean spike frequency
and the coefficient of variability (see following text). The intervals
between successive stimulations were 50–60 s (Fig. 1).

The mean spike frequency (response) was estimated as the ratio
between the total number of action potentials Nsp and the stimulus
duration T. The confidence intervals (68%) of the experimentally
measured frequencies were given by � � (�f� � �f�)/2, with (see,
e.g., Meyer 1965)

� f � �
1

T
� 1

2

 �Nsp �

1

4
� (5)

The coefficient of variability (CV) of the interspike interval was
estimated as the ratio between the SD and the mean of the interspike
intervals.

Particular care was taken to ensure that the response of the cell was
consistent throughout the whole recording session. Usually the cells
showed a transient phase at the beginning, followed by a long time
interval (10–90 min) during which the response was consistent (when

FIG. 1. Experimental procedure and stimulation protocol.
A: typical layer 5 pyramidal cell of rat somatosensory cortex,
filled with biocytin and stained according to ABC procedure
(Hsu et al. 1981). Noisy currents were injected into soma in
whole cell configuration. B: stimulation protocol is illustrated
by showing two typical successive stimulations. Beginning and
end of two stimulation currents are shown in lower traces and
corresponding voltage recordings in upper traces. Cell started
from resting potential (no stimulation) and was then driven by
noisy current to state of sustained activity. In vivo–like current
was generated as Ornstein–Uhlenbeck process (distributions of
currents are shown in between interrupted current traces).
Stimulation was 10 s long, or shorter if 	150 spikes were
collected (see METHODS). Each stimulation was followed by
recovery time of 	50 s. Early transient response (2 s) in which
cell was adapting was not included in computation of spike
frequency. Response function was calculated by measuring
number of spikes in response to large number of different noisy
currents. Two-dimensional space of parameters characterizing
noisy current (mI, sI) was discretized and then points were
explored in random order. C: response stability: input resis-
tance, mean spike frequency, and resting potential as function
of time. Data used for analysis were collected in period of
40–90 min (shaded region) during which mean spike fre-
quency in response to same probe current was consistent (i.e.,
differences were comparable to error). This period was usually
preceded by transient phase of several minutes of instability.
Resting membrane potential was constant throughout whole
session and hence is a bad indicator for checking response
consistency of cell.
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the same current was injected, the spike frequency did not change
within the statistical error of Eq. 5), and by a final unstable phase.
Cells with a stable period shorter than 40 min were not included in the
analysis. Response consistency depended on the pipette solution. The
cells were classified into three groups depending on the level of
consistency: 1) consistent cells: less than a third of the repeated
recordings were out of range; 2) poorly consistent cells: more than a
third of the repeated recordings were out of range; and 3) clearly
inconsistent cells: errors as for poorly consistent cells plus there were
clear inconsistencies at low frequencies (e.g., the frequency decreased
with sI for some points and increased for others). The number of
consistent or poorly consistent cells was (out of total number): 41/44
for EGTA pipette solution, 14/19 for KGluc pipette solution, 6/12 for
KMeSO4 pipette solution.

Model of the integrate-and-fire neurons

The subthreshold dynamics of the only dynamic variable, the mem-
brane voltage V, obey

C
dV

dt
� L�V� � I

where C is the membrane capacitance, L(V) is the leakage, and I is the
input current that is integrated until V is driven across the threshold �
and initiates an action potential. After the spike emission, Vr is reset
to some value Vr from which the neuron starts again integrating the
input current after a refractory period �r. For the leakage L(V) we
studied two models: 1) the classical leaky integrate-and-fire neuron
(LIF), which has a leakage proportional to the membrane depolariza-
tion L(V) � �VC/� (� is the membrane time constant); and 2) the
constant leakage integrate-and-fire neuron with a floor (CLIFF),
which has a constant leakage L(V) � ��. For this last neuron, to have
the same behavior as for the LIF neuron, it is necessary to impose a
rigid lower boundary for the depolarization, which we chose to be the
cell resting potential (see Response functions of the model neurons).

Adaptation/facilitation components

The stationary response results from the combination of several
dynamic processes occurring on different time scales. Some of them
are likely to be transient and to disappear in a few hundreds of
milliseconds (see RESULTS). Others are long-lasting and might reach a
steady state on time scales of the order of seconds. When the effects
of long-lasting processes merge together to produce a neuronal re-
sponse with stationary statistics, we model them by introducing an
additional current I proportional to the mean output spike frequency
f. This current is meant to imitate any combination of adaptation and
facilitation processes that determine the neuronal response in station-
ary condition. The linear dependency on f was suggested by the
discrepancies observed between the best-fit theoretical response with-
out adaptation/facilitation and the data. Moreover it is supported by
the experiments that focus on specific components of frequency-
dependent modifications of the input current. For example the cal-
cium-dependent potassium current, which is responsible for fast ad-

aptation, is usually modeled as a negative current proportional to the
intracellular calcium concentration [Ca2�]i, which in turn is propor-
tional to the spike frequency f. A possible implementation in terms of
a detailed spike driven dynamics is as follows (see also Ermentrout
1998; Fuhrmann et al. 2002; Liu and Wang 2001 for related models):
calcium (or whatever ion species is responsible for the phenomenon;
see Powers et al. 1999; Sanchez-Vives et al. 2000) concentration is
increased on every spike emission and then decays exponentially to its
resting value

�Ca

d�Ca2�	i

dt
� � �Ca2�	i � Ca �

k

��t � tk� (6)

where the sum extends over all the spikes emitted by the neuron up to
time t (tk is the emission time of the kth spike). If the dynamics of
[Ca2�]i are slow compared with the interspike intervals (i.e., �Ca 


1/f ), then [Ca2�]i � Ca f and the current turns out to be proportional
to the spike count in some temporal window, I � ��Ca f. Any other
model that, in stationary conditions, produces a negative current
proportional to the mean spike rate would be equivalent.

Theoretical response functions

If the input current I is Gauss distributed and delta-correlated, then
the equation for V can be written as

dV �
L�V�

C
dt � �dt � ��dt ��t�

where � is a unitary Gauss-distributed variable that is updated every
time step. For simplicity we focus on the CLIFF neuron, the same
considerations apply to the LIF neuron. � and �2 are the instantaneous
mean and variance of the change in V(t) per unit time and characterize
the statistics of V on short time scales (see, e.g., Cox and Miller 1965).
For a delta-correlated input current the variance of V grows linearly
with time on short time scales and is proportional to �2. For such an
input current, the response function can be computed analytically for
both models (Fusi and Mattia 1999; Ricciardi 1977) and the expres-
sions for the average firing rate f � �(mI, sI) is reported in Table 1.
The CV of the interspike intervals can also be computed analytically.
The expression can be found in Brunel (2000a) for the LIF neuron and
in Fusi and Mattia (1999) and Salinas and Sejnowski (2002) for the
CLIFF neuron.

The equations of Table 1 express the mean spike frequency f as a
function of the mean � and variance �2 in unit time of the input
current (erf � error function). These parameters are related to mI, sI

and the time correlation length �I as indicated in the bottom row: these
expressions are based on the assumption that the input current has
only fast synaptic components and hence the time correlation length �I

is much shorter than the typical interspike interval. Indeed when the
current of Eq. 3 is injected, the variance of V is (Cox and Miller 1965)

Var �V��t�	 �
�I

2�I
3

C2 ��t

�I

� 1 � e��t/�I�
TABLE 1. Analytical expressions for the mean frequency f as a function of the statistics of the current (mI, sI)
for the LIF neuron and the CLIFF neuron

LIF Neuron CLIFF Neuron

f � ��r � �m���
�Vr���m�/���m

�����m�/���m

ex2
�1 � erf �x�	 dx	�1

� �
mI

C
, � �

sI�2�I

C

f � 
�r �
� � Vr

�
�

�2

2�2 �e��2���/�2
� e��2�Vr�/�2

���1

� �
mI � �

C
, � �

sI�2�I

C
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which in the limit �t 

 �I scales as (�I
2 �I

2/C2) �t � �2�t, as expected
from a delta-correlated process. For a more detailed analysis of the
effects of time correlated currents on the response function see Brunel
and Sergi (1998) and Fourcaud and Brunel (2002). These effects can
be reabsorbed in an effective spike-emission threshold �, which de-
pends on �I.

The effects of adaptation/facilitation on the stationary response are
introduced as an extra current (mI 3 mI � f ) proportional to the
mean spike frequency. For each combination of mI, sI, the mean
output frequency determines the amount of negative current that
should be added to mI and that modifies the output frequency. The
process is iterated until the equation for the frequency becomes
self-consistent and the frequency that appears in the negative current
is the same as the output frequency

f � ��mI � f, sI�

The asymptotic stationary response function and the response func-
tion with  � 0 for the two model neurons are plotted in Fig. 5 and
discussed in Response functions of the model neurons.

Data analysis and fitting procedure

The theoretical f � mI curves have been fitted to the stationary data.
The fit was achieved through a Monte Carlo minimization (see e.g.,
Press et al. 1992) of the distance between the measured mean spike
frequency fk

ex and the theoretical spike frequency fk
th predicted by the

model

�2 � �
k

N �f k
exp � f k

th����2

�k
2 (7)

with respect to the set of parameters � � {�r, Vr, C, }, plus �m or
� in case of the LIF or CLIFF neuron, respectively. �k represents the
confidence intervals defined in Stimulation protocol and observables.
Because only 5 of the 6 parameters of the model neurons are inde-
pendent, we set the threshold arbitrarily at � � 20 mV. In fact, both
response functions (see Table 1) are invariant under the scaling � 3
��, Vr 3 �Vr, C 3 C/�, with � 
 0.

The minimum �min
2 of Eq. 7 with respect to the parameters set �

follows approximately a �2-distribution with N � M degrees of
freedom, where N is the number of experimental points, and M � 5 is
the number of free parameters. The fit was accepted whenever the
probability P(�N

2 � M 	 �min
2 was greater than 0.1 for consistent cells,

and greater than 0.01 for poorly consistent cells.
In some cases we also report the absolute discrepancy d, defined as

the average (across all points) absolute difference between the mea-
sured and the theoretical frequencies of the best-fit curves. This
number is not correlated with the goodness-of-fit test and gives a
useful indication of the error made in considering a theoretical re-
sponse function which does not strictly pass the least-squares test.

R E S U L T S

Time development of the neuronal response

We measured the cell mean spike frequency in response to
noisy currents with stationary statistics (see Fig. 1 and METHODS

for details about the protocol). We identified at least three
components of adaptation/facilitation, already known in the
literature, which determine the features of the stationary re-
sponse. What follows in this section is not meant to be an
extensive and systematic analysis of all the factors that deter-
mine the stationary response. The goal is rather to clearly
define what we mean by stationary response, to understand
when it is possible to have it, and to summarize euristically all

the observable mechanisms that affect the transient on different
time scales and that might contribute to determine the station-
ary response. Such stationary response was usually reached in
1–2 s and then sustained until the end of the stimulation. For
strong enough injected currents the cells were unable to sustain
the elevated activity imposed by the stimulation and no sta-
tionary response was possible. The three components are illus-
trated in Fig. 2. Their features depend on the pipette solution
and are summarized in Table 2. They are as follows.

● Initial adaptation (Schwindt et al. 1997): fast and invari-
ably present for all the different preparations, it manifests
itself for high enough spike frequencies: when the neuron
is injected with a constant current, the second and suc-
cessive interspike intervals are longer than the first one
(see Fig. 2, a3–a5). This component, known in the liter-
ature to be attributed to calcium-dependent potassium
current (see e.g., McCormick et al. 1985; Sah 1996),
reaches a steady state in a few spikes and it is usually
modeled as negative spike frequency–dependent current,
which clearly affects the stationary response. This adap-
tation component was present for all the cells and all the
preparations and in particular it was observed also in the
strong presence of EGTA, a calcium chelator. Buffering
of calcium concentration transients by EGTA is probably
not fast enough to disrupt fast initial adaptation (Smith et
al. 1984). The spike-frequency dependency was different
depending on the pipette solution. The same effect was
produced for lower currents in the case of EGTA pipette
solution when compared with the case of KGluc pipette
solution: 1.2 � 0.4 nA (KGluc pipette solution), 0.6 � 0.2
nA (EGTA pipette solution), corresponding to 36 � 10
Hz (EGTA pipette solution) and 21 � 8 Hz (KGluc
pipette solution). For KMeSO4 pipette solution: 0.8 � 0.2
nA and 24 � 7 Hz.

● Early facilitation: on a time scale of 1–2 s, the mean spike
frequency slowly increases. This form of relatively slow
facilitation was invariably present for the different prep-
arations and shown by all of the recorded cells and for all
the stimulation strengths (see Fig. 2). It is known in the
literature to be attributed to calcium accumulation (Pow-
ers et al. 1999) and its effects on the stationary response
compete with those of the late adaptation component
(described below) when the spike frequency is high
enough. For this reason it is difficult to isolate its effects
and to characterize its dependency on the preparation.
However, it was clear that early facilitation was mostly
prominent when KMeSO4 pipette solution was used and
this would be compatible with the known fact (Zhang et
al. 1994) that methylsulfate is the least disruptive to
intracellular structures of calcium homeostasis.

● Late adaptation: for strong enough input currents the cells
were unable to sustain the elevated activity imposed by
the stimulation. After 2–3 s, the mean spike frequency
estimated on a sliding temporal window was constantly
decaying. The threshold current for detecting late adap-
tation and the rate of frequency decay depended on the
preparation. In particular, the same effect (a frequency
decay of more than 0.5 spikes/s) required relatively low
currents in the case of EGTA pipette solution (0.8 � 0.3
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nA, corresponding on average to approximately 35 Hz for
the 12 out of 13 cells that showed the phenomenon),
higher for KGluc pipette solution (1.6 � 0.5 nA, 52 Hz,
all 19 cells), and much higher for KMeSO4 pipette solu-
tion (1.8 nA and 60 Hz) for the few (3/12) cells that
showed late adaptation. This kind of slow adaptation has
already been studied (Fleidervish et al. 1996; Powers et al.
1999; Sanchez-Vives et al. 2000; Sawczuk et al. 1997;
Schwindt et al. 1989) and it is hypothesized to be attrib-

uted to slow inactivation of sodium channels (Fleidervish
et al. 1996; Powers et al. 1999; Sawczuk et al. 1997) and
to an outward Na�-dependent K� current (Sanchez-Vives
et al. 2000; Schwindt et al. 1989). The spike frequency
decay was always accompanied by a progressive drift of
the maximal upstroke velocity of the membrane potential,
indicating that the spike shape was continuously and
slowly broadening. This phenomenon is best displayed by
using longer stimuli that elicit high initial spike rates. An

FIG. 2. Time course of neuronal response to dif-
ferent, increasing currents for two cells (with sI � 50
and 0 pA, respectively). For each cell response to 5
input currents is shown in each of 5 panels in three
ways: at top normalized instantaneous spike fre-
quency (inverse of interspike interval times first
interspike interval) as function of time (dots, when
displayed, correspond to 100%); below it, depolar-
ization trace and, at bottom, an enlargement of first
and last portion of trace. a6 and b6: mean spike
frequency as function of input current mI for 5 cases
illustrated in the other 5 panels (1–5). As input
current increases, both neurons show appearance of
fast initial adaptation (first interspike interval is
shorter than the second, starting from a3 and b4),
early facilitation, and slow adaptation (panels 3–5).
For small currents (a1 and b1) both neurons show
delayed response. Its link with early facilitation was
not investigated. First neuron responds with dou-
blets of spikes to strong enough currents (a4–a5).
Early facilitation can cause steady output rate higher
than that at beginning of spike train (b2–b4), and
competes with slow adaptation at higher output rates
(a3–a5, b5), where output rate at end of stimulation
is smaller than that at beginning, causing response to
be nonstationary in a4–a5 (speed of decrease in
spike rate of 1.66 Hz/s) and b5 (1.17 Hz/s). Pipette
solutions used were EGTA (cell a) and KGluc (see
METHODS).
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example is shown In Fig. 3B), where 60-s-long stimuli
were used.

Many of the recorded cells (19/44) showed an initial doublet
of spikes, resembling the beginning of a burst. This doublet
sometimes masks the initial adaptation component and makes
it difficult to analyze. Notice that all the recorded cells were
selected not to be inherently bursting. The doublet was ob-
served for all the preparations for strong enough stimulation
(usually stronger than the one that reveals fast spike adapta-
tion) and it is shown in Fig. 2, a4–a5. The threshold current
depended on the pipette solution: 1.2 nA for the 4/13 in EGTA
pipette solution, about 1.8 nA for 13/19 cells in KGluc pipette
solution and for 2/12 cells in KMeSO4 pipette solution. Be-
cause of its transitory nature, the mechanism responsible for
this doublet probably does not affect the stationary response.

Maximal stationary response

The late adaptation component makes the cell unable to
sustain a response with stationary statistics above a critical
output spike frequency, which depended on the cell and on the
pipette solution. Although the observed modifications in the
spike mean frequency and in the spike shape were usually quite
substantial at the end of long stimulations, all cells could
recover during the interstimulus intervals, indicating that the
phenomenon is reversible.

For most cells we did not stimulate for very long intervals
(�60 s) as for the cell shown in Fig. 3. Hence we do not have
enough data to determine the maximal stationary response for
all cells. This analysis would have required the injection of
several currents, strong enough to produce nonstationary re-

sponses, and it would have limited even further the number of
stationary data points. Nonstationary responses are not in-
cluded in the following analysis and are not modeled.

Usually we restricted the input currents to the range in which
the slow frequency decay was below 1 Hz/s. This criterion
restricted our analysis of the response function to a limited
range of frequencies that depended on the pipette solution. The
maximal frequency of this range could be determined for those
cells for which the stimulation was strong enough to reveal a
frequency decay above 1 Hz/s and it was (see Table 2): 44 �
12 Hz (n � 11/13) for EGTA pipette solution and 56 � 9 Hz
(n � 5/19) for KGluc pipette solution. In KMeSO4 pipette
solution the cells did not display maximal stationary response
with the exception of only one out of 12, in which case the
maximal stationary frequency was 64 Hz.

Experimentally measured response functions

In Fig. 4 we show the response function as measured in the
experiment. The measurements are shown in the form of f � mI
curves that represent the output frequency f (the response) as a
function of the mean current mI at constant SD sI. The CV of
the interspike interval is also reported in the same form. The
qualitative behavior was the same for all cells: for constant
currents (sI � 0), there is obviously no activity for average
inputs that are below the rheobase current (i.e., the minimal
constant current that makes the neuron fire), whereas the re-
sponse curve is approximately linear for supra-rheobase cur-
rents. For noisy inputs (sI 
 0) there are essentially two
regimes. 1) A sub-rheobase, fluctuation-dominated regime in
which the mean current mI is below the rheobase current and
hence not sufficient to drive the membrane voltage across the
threshold for emitting a spike. In this case the action potentials
are sporadically initiated by fluctuations and hence the spike
activity is very irregular and the CV is high (Fig. 4C). 2) A
supra-rheobase, drift-dominated regime, in which the mem-
brane potential fluctuates around a rising ramp that leads to the
emission threshold at a more regular pace (Fig. 4B). The
introduction of noise permits sub-rheobase activity, which in
turn smooths out the response curves at the rheobase. The
curves, convex for weak input currents, sometimes bend at
high frequencies (see e.g., Fig. 6, B and C) and hence change
curvature.

Response functions of the model neurons

The data points have been fitted by the response functions of
two simple model neurons sharing a similar qualitative behav-
ior (see METHODS). The two models differ in the form of the
leakage L(V): for the first, classical leaky integrate-and-fire
(LIF) neuron the leakage is proportional to V [L(V) � �VC/�m,
where �m is the membrane time constant], whereas for the
second model—the CLIFF neuron—the leakage is constant
[L(V) � ��] and the input current is integrated linearly. To
obtain two qualitatively similar response functions for the two
models, it is essential to limit the membrane potential from
below in the case of the CLIFF neuron (Fusi and Mattia 1999;
Salinas and Sejnowski 2002). Indeed, when both neurons are
injected with a sub-rheobase noisy current, the variance of the
fluctuations of the membrane voltage tends to increase linearly
with time. However, for the LIF neuron the leakage compen-

TABLE 2. Characteristics of the response over time: features of
initial adaptation, late adaptation and maximal stationary
response for EGTA pipette solution and for KGluc and
KMeSO4 pipette solutions for comparison

Pipette
Solution

Initial Adaptation

N I (nA) f (Hz)

EGTA 12/13 0.6 � 0.2 21 � 8
KGluc 19/19 1.2 � 0.4 36 � 10
KMeSO4 12/12 0.8 � 0.2 24 � 7

Late Adaptation

N I (nA) f (Hz)

EGTA 12/13 0.8 � 0.3 35 � 15
KGluc 19/19 1.6 � 0.5 52 � 11
KMeSO4 3/12 1.8 � 0.2 60 � 5

Max Stationary Frequency

N f (Hz)

EGTA 11/13 44 � 12
KGluc 5/19 56 � 9
KMeSO4 1/12 64

The onset currents and onset output frequencies are shown (values are
average � SD across different cells). Early facilitation (see text) is not
reported in the Table because its characteristics were the same for all cells: the
phenomenon was present for all output frequencies (i.e., the onset current was
invariably the rheobase) with time constants of 1–2 s (see Fig. 2).
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sates for this tendency, and, depending on the parameters of the
current, can lead to a stationary sub-rheobase regime in which
V fluctuates around an asymptotic value. For the CLIFF neuron

this is not possible because the current is integrated linearly
and all the fluctuations accumulate: for negative net currents
(mean synaptic current minus leakage) the mean voltage de-

FIG. 3. Response stationarity: example of stationary (A) and nonstationary (b) response of same cell to two different stimuli.
Stimulation was unusually long (60 s) to better expose difference in responses. a and b, top to bottom: voltage traces at beginning and
end of stimulation, peak membrane potential (triangles), peak upstroke velocity (circles), shape of action potential at beginning (thin line)
and at end (thick line) of stimulation (average across 20 spikes), and spike frequency estimated on a 1-s sliding time window as function
of time. a: response is stationary and statistics of all observed quantities did not change throughout long stimulation interval. When same
cell was injected with strong current (B), it showed a nonstationary response: elevated rate to which neuron would have been driven by
stimulation could not be sustained. Both peak upstroke velocity and peak membrane voltage decayed in time, indicating that continuous
decrease in mean spike frequency is accompanied by broadening of spike shape. Action potential almost completely disappeared over
time and could hardly be distinguished from large voltage fluctuations induced by current. Voltage deflection was considered as a spike
if peak upstroke velocity was greater than threshold value (50 mV/ms). Ultimately some fluctuations are not detected as spikes, and cell
stopped firing according to our criterion, but completely recovered in interstimulus interval.

FIG. 4. Experimentally measured response functions. Ex-
ample of response function as measured in experiment,
shown by f–mI (left plot) curves that represent output fre-
quency f (response) as function of mean current mI at con-
stant SD sI. Data points represent mean spike frequency in
stationary conditions (error bars estimated as in Eq. 5).
Corresponding coefficients of variability (CV) of interspike
intervals, measuring degree of irregularity of spike trains, are
plotted below. Membrane voltage traces for three points are
shown in right panel, together with enlargement (right in-
sets). Note that many frequencies have been measured twice,
at different times: responses to same current were consistent,
indicating that recordings were stable. Qualitative behavior
is same for all cells: for almost constant inputs (bottom
curve, sI � 50 pA), there is no activity for sub-rheobase
currents (i.e., mI � 150 pA), whereas response curve is
approximately linear for supra-rheobase currents. Spike train
is regular (A). For noisy currents (top curves, sI � 200 and
400 pA) there are two regimes: 1) supra-rheobase, drift-
dominated regime similar to case of constant current (b) and
2) sub-rheobase, fluctuation-dominated regime in which
spike activity is irregular (c).
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creases and the fluctuations increase boundlessly. In such a
sub-rheobase regime the average spike frequency of the CLIFF
neuron is always zero (Fusi and Mattia 1999; Gerstein and

Mandelbrot 1964). The rigid barrier that limits the membrane
voltage from below permits the neuron to fluctuate steadily
around a value near the lower barrier, waiting for a fluctuation

FIG. 5. Comparison between response functions of LIF
neuron (left) and of CLIFF neuron (right). Curves in plots:
output mean spike frequency f as function of mean current mI

at constant sI (as in Fig. 4). Insets: f is shown as function of sI

for constant mI (at rheobase mI � 250 pA). Thick lines: re-
sponse function to constant currents with (solid) or without
(dashed) frequency-dependent modification of input current.
Seven f–mI curves correspond (from bottom to top) to sI �
0–600 pA, at steps of 100 pA. Response functions are similar
to measured curves of Fig. 4. Thus same considerations apply
to theoretical response functions. Main qualitative difference
between responses of the two model neurons is exposed in
insets and resides in dependency on sI (see text). Note how
frequency-dependent term linearizes response at rheobase cur-
rent (vertical dashed line) (Ermentrout 1998).

  

  

  

  

FIG. 6. Fitting theoretical response functions to experi-
mental data. LIF (left) and CLIFF (right) response func-
tions (full lines) fitted to experimental mean frequencies
(diamonds) from 4 cells are shown (error bars as in Eq. 5).
Each row corresponds to a different cell. Response func-
tions are shown as f – mI curves at constant sI (sI � 50, 200,
400 for A and D, sI � 50, 200, 400, 500 for B, sI � 0, 200,
300 pA for C) as in Fig. 4. Top left part of each plot:
effective parameters resulting from fit. P expresses good-
ness-of-fit (see METHODS for exact definition): high values
indicate a good match between data and theoretical re-
sponse functions. For cells shown values above 0.1 indicate
that fit passed �2 test. D is absolute discrepancy, defined as
average (across all points) absolute difference between
measured and theoretical frequencies. This number is not
correlated with goodness-of-fit test, being below 2 Hz even
when fit was to be rejected. A: cell that can be fitted by both
models; B: cell that can be fitted by LIF response function
only; C: cell that can be fitted by CLIFF response function
only; D: cell that can be fitted with limit parameter values
only (see text): sensitivity to sI is high and the f – mI curves
do not tend to converge to common asymptotic value for
large mI. (All cells in EGTA pipette solution.)

1606 RAUCH, LA CAMERA, LÜSCHER, SENN, AND FUSI
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that drives V across the threshold. In this case a sub-rheobase
regime with nonzero frequency is possible.

In both neurons the adaptation/facilitation components
which determine the asymptotic stationary response were mod-
eled by assuming that the effective mean current driving the
cell is reduced by a term proportional to the cell’s own spike
frequency (mI 3 mI � f; see METHODS). There are several
simple and detailed biophysical models that correspond to this
phenomenological model: the simple models based on calcium
dependent potassium channels (see e.g., Wang 1998) and the
more realistic Hodgkin–Huxley type model in Traub and Miles
(1991) are but two examples (see also Ermentrout 1998). All
these models exploit the fact that the adaptation/facilitation
processes are slow compared with the average interspike in-
tervals. Note that these mechanisms do not account for the
nonstationarity observed in Fig. 3B, given that our model
neuron can always have a stationary response, no matter what
the intensity of stimulation.

The response functions corresponding to the two models are
plotted in Fig. 5 in the same way as the measured curves are
shown in Fig. 4. The main difference between the two model
neurons is in the dependency of the spike frequency on sI, the
fluctuations amplitude of the noisy current: the CLIFF neuron
is more sensitive to large sI and this fact manifests itself in a
progressively increasing distance between the f � mI curves.
This behavior can be exposed by plotting the spike frequency
as a function of sI at constant mI (insets in Fig. 5): the curvature
has a different sign for the two neurons. Moreover the response
function of the LIF neuron without adaptation/facilitation com-
ponents is highly nonlinear around the rheobase current for low
levels of noise and, for sI � 0, the derivative of the f � mI
curve is infinite. These nonlinearities are attenuated by the
frequency-dependent feedback (Ermentrout 1998).

The CV of the interspike intervals behave in the same way
for the two model neurons: in the sub-rheobase fluctuations
dominated regime the CV is close to 1 for a wide range of input
currents. This corresponds to the maximal irregularity and the
train of spikes has Poisson statistics. As the current drives the
neuron toward a drift-dominated regime, the CV approaches 0
with a speed that depends on sI (i.e., the fluctuations in the
input current).

Fitting the theoretical response functions to the data

Both models could faithfully reproduce most of the cells
stationary responses, at least for those neurons that had con-
sistent enough responses to allow for a quantitative analysis
(see METHODS). For each cell we fitted the theoretical response
functions to the data points by searching the space of the 5
independent parameters characterizing each model: the capac-
itance C, the refractory period�r, the reset potential Vr, the
adaptation/facilitation constant , and the time membrane con-
stant �m for the LIF neuron and C, �r, Vr, , and the leakage �
for the CLIFF neuron (see METHODS). We adopted a Monte
Carlo technique that minimizes the mean square distance be-
tween the data points and the predicted values, each point
being weighted by the inverse of the confidence interval. The
�2 test passed either with one model or with the other (or with
both) with a probability P 
 0.1 for 27 consistent cells out of
37. For all these cells, the EGTA pipette solution was used. For
other pipette solutions the consistency was usually poor and the

�2 test passed with a probability P 
 0.01 for 16 cells out of
24.1 The responses could anyway be well approximated by the
theoretical functions even when the models did not pass the
test: the average discrepancy between the measured and the
model frequencies were �2.5 Hz; �1.5 Hz if frequencies
below 50 Hz were considered. That is, the average difference
between a single data point and its theoretical match was below
3 Hz even when the test did not pass. Examples of fitted
response functions are shown in Fig. 6. The LIF model was
best suited to reproduce f � mI curves that were almost equally
spaced (Fig. 6B), whereas the CLIFF model could capture
better those cells that were less sensitive to low levels of noise
as in Fig. 6A.

Adaptation/facilitation components of the model dynamics
turned out to be essential to fit the response of the models to the
data. For the LIF neuron it is necessary to linearize the re-
sponse function at the rheobase. For the CLIFF neuron, which
already has an almost linear f � mI curve at the rheobase, one
might wonder if the fitting would have been possible without
adaptation/facilitation components. Increasing the membrane
capacity C as well as increasing  reduces the slope of the f �
mI curves. However, in contrast to adaptation/facilitation, an
increased capacity also reduces the effect of fluctuations on the
spike frequency and hence diminishes the sensitivity to sI. Thus
for the CLIFF neuron, adaptation/facilitation are the only
mechanisms that can change the slope of the f � mI curves
almost without affecting the distance between f � mI curves
that correspond to different values of sI (La Camera et al.
2002).

For high frequencies (
40–50 Hz) there is a preliminary
evidence of a phenomenon that is not captured by our model
neurons: the f � mI curves corresponding to different sI have a
slight tendency to diverge, as if the sensitivity to sI would
increase for strong enough stimulation (see, e.g., Fig. 6C). This
is not captured by our models of integrate-and-fire neurons for
which asymptotically the f � mI curves always tend to merge.
This divergence effect is a source of discrepancy that usually
does not compromise the �2 test, but that clearly indicates the
activation of an extra process that is not modeled. The in-
creased sensitivity to sI is usually accompanied by an increase
in the CV of the interspike intervals (see the previous section)
and it might be attributable to the activation of calcium spikes
in the distal dendrite (Larkum et al. 1999). The study of this
phenomenon will require further investigation.

Some cells (n � 6, all of them in EGTA pipette solution)
could be fitted only by searching a region of limit parameter
values, letting the reset potential be very close to the threshold.
This was the only way to capture sets of f � mI curves that do
not tend to converge to a common asymptotic value for ele-
vated currents (Fig. 6D). Although the response function could
be described by the theoretical response function, we do not
consider the model as appropriate for describing these cells.
The theoretical response functions are computed under the
assumption that the current is delta-correlated, and this is not a
good approximation when the reset potential is very close to
the threshold. Hence we consider these cells belong to a

1 For poorly consistent cells the purely statistical error underestimates the
error, and a lower threshold for P was chosen. This threshold corresponds in
average to multiplying the statistical error by a factor up to 1.25 at most.
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different class that the simple integrate-and-fire models are
probably inappropriate to describe.

We recorded the response of 10 cells to noisy currents with
a longer time correlation length (�I � 5 ms). The f � mI curves
were qualitatively the same as in the case of shorter �I and they
could be fitted by the theoretical response functions of Table 1
(not shown), even if they are valid only for delta-correlated
currents. A full account of the analysis of these cells will be
reported elsewhere.

Higher-order statistics of the interspike intervals

The main goal of this investigation was to study the neuronal
response in terms of mean spike rates. However, it is also
interesting to consider the higher-order statistics of the distri-
bution of the interspike intervals. A detailed and systematic
analysis would require more data to estimate the higher-order
moments of the distribution, although our preliminary analysis
of the variance of the interspike intervals already gives inter-
esting indications. In Fig. 7 we plotted, for two cells, the CV of
the interspike intervals as a function of the spike frequency.
Each curve is obtained by keeping sI fixed and then sweeping
along mI. The parameters of the model are tuned to fit only the
mean firing frequencies. Then, with the best-fit parameters we
computed the CV by means of simulations and compared it to
the measured one.

The cell in the top row of Fig. 7 represents the typical case,
whereas the one below is our best fit. The agreement between
the predictions and the data points is in general reasonably
good for most of the points and for most of the cells, even if it
would probably not pass a �2 test. The largest discrepancies are
observed at high firing frequencies, for elevated values of the
variance of the input current. There are at least two reasons for
these discrepancies. First, these points might not be completely
stationary, given that the firing frequency approaches the max-
imal allowed value for the cell. As expected, this produces a
higher CV than predicted by the theoretical models for which
the nonstationarity is not modeled. Second, at high frequencies
and high sI we often observed doublets or bursts of spikes (see
the bottom left inset in Fig. 7). This is also not captured by the
model and increases the measured CV.

Moreover there is often a large discrepancy around the
rheobase current, when the amount of noise in the current is
small. Near the threshold for spike emission, the response
sometimes consisted of sequences of tonic, regular firing in-
terrupted by periods of subthreshold activity (see the bottom
right inset in Fig. 7). This behavior, not captured by a simple
integrate-and-fire model, artificially increases the variability of
a train of spikes that otherwise would be rather regular.

Effective parameters

The parameters corresponding to the best fit must be con-
sidered as effective parameters, that is, as those parameters that
provide the best description of the stationary response function.
Other observables might not be captured by the same param-
eters (also see DISCUSSION). Fitting the f � mI curves for three
different values of sI was already restricting the model param-
eters to a small region of the parameter space (we had 3 to 5
f � mI curves for each cell). The range in which single
parameters can vary and the �2 test still passes depends on the
sensitivity of the spike frequency on the different parameters.
A rough estimate indicates that the least determined parameters
are �r (up to about �70% error) and Vr (about �25% error),
whereas the other parameters can vary at most in intervals of
the order of �20% (, CLIFF neuron), �5% (C, , �, LIF
neuron; C, �, CLIFF neuron). The refractory period is clearly
the effective parameter to which the response function is least
sensitive because it affects mostly the very high-frequency
region ( f  1/�r), usually beyond the observed range of output
rates.

The effective parameters for the two model neurons are
reported in Table 3 for all the cells that were consistent or
poorly consistent and that did pass the �2 test (the number of
cells is reported in column N). For the analysis of effective
parameters we mainly focused on the cells with EGTA pipette
solution because they were stable enough to give consistent
responses for a large number of data points. The parameters are
reported as an average across all cells with EGTA pipette
solution and separately for the other two pipette solutions.
Interestingly, the differences between different pipette solu-
tions were usually comparable to the differences across cells
(reported as SD).

Two passive parameters characterizing the cell (�m, C) could
be measured directly (see METHODS), and their values were in
general different from the effective parameters. The cross-
correlations were negligible for the CLIFF neuron and weak

FIG. 7. Higher-order statistics of interspike intervals: predicting coefficient
of variability (CV) for interspike intervals. Parameters of cells were deter-
mined by fitting mean firing rates and then used to predict CV for same
statistics of current. Two rows correspond to two different cells: top, a typical
cell; bottom, our best-fit cell. CV is plotted against mean spike frequency and
data points (different symbols, depending on sI) are compared with CV
predicted by LIF model (left) and to CLIFF model (right). Each curve in plot
is obtained by setting sI to a fixed value and then sweeping along mI. Values
of sI: 50, 200, and 400 pA. Only points corresponding to finite spike frequency
(i.e., larger than 0.2 Hz) were considered to avoid huge fluctuations of CVs,
which would make figure hardly readable. Although parameters were tuned to
capture mean frequency only, predicted CV is in good agreement with mea-
sured one for a wide range of frequencies. Insets: typical voltage traces
corresponding to 4 different statistics of input currents (corresponding CV
points are circled): top left: typical irregular response to noisy current; top
right: regular spike train in response to current with low sI; bottom left:
doublets and bursts of spikes for high and sI and mI; bottom right: response to
a current near rheobase for low sI.
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for the LIF neuron: the correlation between the directly mea-
sured capacitance and the effective capacitance of the LIF
neuron was 0.59 (0.03 for the CLIFF neuron), and the corre-
lation between the membrane time constants was 0.30. Because
real neurons are not integrate-and-fire neurons, such a mis-
match is not very surprising. Indeed, the effective parameters
provide a good fit to the mean spike frequencies, while the
passive membrane parameters are estimated from very differ-
ent observables (the subthreshold response to short pulses), in
different experimental conditions. No clear patterns between
effective or directly measured parameters and the model that
could fit the data emerged.

D I S C U S S I O N

The most prominent result of the present work is that simple
integrate-and-fire model neurons can faithfully recreate the
response of neocortical pyramidal cells to in vivo–like cur-
rents. We also gave a full account of the dependency of the cell
response on the fluctuations of the input current (sI), which has
usually been overlooked in previous studies of neural response
properties. This dependency was recently shown to play an

important role when the neuron works in a sub-rheobase re-
gime (Amit and Brunel 1997; Amit and Tsodyks 1991; Chance
et al. 2002; Fusi and Mattia 1999) or when a network of
interacting neurons has to respond fast to a time varying input
(Rudolph and Destexhe 2001; Silberberg, Bethge, Markram,
Tsodyks, and Pawelzik, unpublished observations, 2002).

The agreement between the theoretical and the measured
response function is remarkably good for a wide range of
statistics of the input currents, on the whole {mI, sI} space and
for all the sustainable spike frequencies of the analyzed cells.
Hence, our results cover a variety of physiological scenarios
that can be studied by measuring the neural response when
moving along specific trajectories in the {mI, sI} space. For
instance balanced synaptic input, as studied e.g., in Chance et
al. 2002, would correspond to increasing the variability of the
current sI, while keeping the mean current mI fixed, and the
outcome could be predicted by studying the theoretical re-
sponse function of integrate-and-fire neurons.

Moreover the knowledge of the response functions to in
vivo–like currents allows one to study many dynamic proper-
ties of networks of interacting neurons and to relate single
neuron properties to the activity observed in in vivo experi-

TABLE 3. Average parameters that best fit the model response functions to the data (effective parameters), together with the passive
parameters measured directly in the experiment (bottom)

Pipette
Solution

LIF Neuron

N �r (ms) C (nF) Vr (mV)  (pA � s) �m (ms)

EGTA 17/41 9.3 � 7.1 0.57 � 0.35 0.2 � 12.2 3.5 � 2.6 35.4 � 13.3
KGluc 4/14 9.4 � 6.5 0.53 � 0.29 9.9 � 10.2 10.8 � 6.3 26.3 � 13.2
KMeSO4 3/6 1.0 � 1.5 0.75 � 0.30 �10.1 � 20.0 4.8 � 4.2 38.4 � 3.0

CLIFF Neuron

N �r (ms) C (nF) Vr (mV)  (pA � s) � (nA)

EGTA 25/41 16.3 � 8.9 0.28 � 0.07 0.1 � 0.1 3.6 � 2.0 0.30 � 0.12
KGluc 6/14 16.6 � 6.7 0.22 � 0.04 0.2 � 0.6 4.5 � 3.5 0.41 � 0.07
KMeSO4 3/6 9.8 � 12.5 0.15 � 0.13 0.0 � 0.0 7.1 � 2.2 0.27 � 0.13

Directly Estimated Parameters (LIF-Fitted Cells)

N R (M�) C (nF) — �m (ms) Age

EGTA 17/41 41 � 14 0.46 � 0.32 — 16.4 � 5.8 20.8 � 7.9
KGluc 4/14 27 � 5 0.89 � 0.15 — 23.8 � 2.5 27.0 � 2.7
KMeSO4 3/6 23 � 1 1.03 � 0.21 — 23.7 � 5.3 25.7 � 3.2

Directly Estimated Parameters (CLIFF-Fitted Cells)

N R (M�) C (nF) — �m (ms) Age

EGTA 25/41 38 � 13 0.51 � 0.30 — 17.1 � 6.2 22.4 � 9.0
KGluc 6/14 24 � 3 1.00 � 0.05 — 23.8 � 2.9 27.0 � 2.1
KMeSO4 3/6 35 � 20 0.81 � 0.28 — 24.9 � 3.3 23.0 � 3.5

Directly Estimated Parameters (All Cells)

N R (M�) C (nF) — �m (ms) Age

EGTA 41 40 � 12 0.45 � 0.26 — 16.1 � 5.5 21.9 � 8.6
KGluc 19 24 � 7 0.99 � 0.20 — 23.1 � 2.6 27.0 � 2.3
KMeSO4 12 28 � 13 0.92 � 0.29 — 23.2 � 3.3 24.8 � 3.1

Values are average � SD. The parameters are reported for the EGTA pipette solution (mostly consistent responses) and, for comparison, for the other two
pipette solutions for which the statistics is poorer (the cells responses were less consistent). N is the fraction of cells used for determining the average parameters
(i.e., the cells which passed the �2 test with P 
 0.1 for consistent cells, and P 
 0.01 for poorly consistent cells. See Fig. 6 for a few examples). The parameters
of the two models are defined in the text. Note that the threshold � is set to 20 mV and the resting potential is 0 mV for both neurons (see METHODS).
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ments. For instance, imposing the stability of a network state,
like spontaneous activity (Amit and Brunel 1997), can con-
strain the possible architecture of the network, thus providing
an indirect measurement of the synaptic efficacies in vivo. This
will require a more extensive analysis of different types of
cells, in different layers and different areas. The analysis of the
dynamic states of a network of neurons will also require an
additional study of the dependency of the parameters mI, sI of
the current on the mean output rate of the presynaptic neurons.
This dependency can be quite complicated, involving for in-
stance the short-term dynamics of single synaptic responses
(Tsodyks et al. 1998), the effects of a particular morphological
structure (Rhodes 1999), or calcium dynamics (Larkum et al.
1999). So far the analysis of the in vivo phenomena based on
single neuron response functions has been successfully per-
formed with a simple linear relation between both mI and sI

2

and the spike frequency of the presynaptic neurons (Amit and
Brunel 1997; Brunel and Wang 2001; Fusi and Mattia 1999;
Yakovlev et al. 1998).

Besides these additional studies, many novel issues are
raised by this work and remain open for further investigation.
Here we focused on a specific observable, the mean spike
frequency, to conclude that pyramidal cells respond very much
like integrate-and-fire neurons. This is just a starting point and
there are other aspects and observables of the neural activity to
be investigated. The analysis of the CV that we present here
provides a preliminary indication that integrate-and-fire neu-
rons can capture more than the mean spike frequency. Because
the fluctuations play an important role in determining the exact
times of the initiation of the action potential (Mainen and
Sejnowski 1995), it would be interesting to see how well the
integrate-and-fire neuron (or related models) can describe the
exact spike times under noisy current injection (see Kistler et
al. 1997). This issue was beyond the scope of this report, but is
currently under investigation (R. Jolivet, A. Rauch, H. R.
Lüscher, and W. Gerstner, unpublished observations; M. Lar-
kum, W. Senn, and H. R. Lüscher, unpublished observations).

A more systematic analysis of higher-order statistics of the
spike trains and to what extent the exact timing of the spikes
can be reproduced by the same simple integrate-and-fire neu-
rons will be studied elsewhere and will probably require the
introductions of new elements in the neuron model. Besides,
such a study will certainly further constrain the effective pa-
rameters (e.g., the reset potential Vr can be determined more
precisely by fitting both the mean frequency and the CV). So
far, both the LIF and CLIFF neuron models with adaptation/
facilitation are good enough to describe the response function
of pyramidal cells, at least for the wide, biologically plausible
range of input currents that was investigated in our work. Other
observables might better expose the differences between the
two models.

The response of the cell under strong persistent stimulation
has not been modeled here. When neurons cannot sustain the
elevated rate to which they would be driven by the input
current, it is not possible to define a stationary response func-
tion. This behavior has to be incorporated in the model that, so
far, can reliably describe the response function of the neuron
only when sustained spike frequencies are below the threshold
frequencies indicated at the end of Maximal stationary re-
sponse (30–80 Hz depending on the pipette solution used).
Above these frequencies some other mechanism beside fast or

slow spike frequency adaptation should be invoked to capture
the effective reduction of the spike frequency. The activation
of such a mechanism cannot rely only on the number of emitted
spikes because this would not account for the behavior illus-
trated in Fig. 3b, where the cell eventually stops firing. There-
fore it is more likely to depend on some dynamic variable
related to the average depolarization of the cell. One possibility
is the inactivation of sodium channels, which has already been
identified as responsible for late adaptation in other works
(Fleidervish et al. 1996; Powers et al. 1999; Sawczuk et al.
1997).

An important element of realism that was not considered so
far concerns the way synaptic conductances are imitated by the
injection of a current into the soma. Generating real synaptic
inputs by activating presynaptic neurons is the most realistic
(and challenging) way of providing in vivo–like inputs to the
neurons. However, it is interesting to study intermediate steps
toward a realistic situation. Many investigators (see, e.g., Des-
texhe et al. 2001 and references therein) imitate synaptic con-
ductances by generating a somatic current that is a product of
a Gauss-distributed conductance multiplied by a voltage-de-
pendent driving force (the instantaneous membrane voltage
minus the reversal potential). We give in the APPENDIX a de-
tailed description of this procedure. This kind of time varying
current can be generated in an experiment by using dynamic
clamp techniques (see, e.g., Harsch and Robinson 2000). The
distribution of the injected current is not distorted much by the
voltage-dependent driving force, and thus the final total current
can still be reasonably approximated by an Ornstein–Uhlen-
beck process (see also Amit and Tsodyks 1992). However, to
study the effective response function of the neuron, the correct
scaling factors for both the mean and the variance of the
current should be introduced. These factors depend on the
average membrane voltage, which in turn depends on the
parameters of the current. As a consequence, the scaling factors
in principle might not be the same for all points of the f � mI

curves whose shape might be qualitatively different when
conductances are considered (Tiesinga et al. 2000). Moreover,
conductance-based inputs shorten the effective time correlation
length of the membrane depolarization (see, e.g., Paré et al.
1998), which in turn modifies the effective threshold for emit-
ting a spike (Brunel and Sergi 1998). However, the analysis
presented in the APPENDIX shows that even when a unique
scaling factor for all the input currents is chosen, the distortions
of the stationary response functions are negligible and the
neuron responds in a similar way to either current injection or
conductance drive. There is a preliminary evidence that also
transient responses are not substantially modified when the
voltage-dependent driving force is considered: the differences
are quantitative and not qualitative (Fourcaud and Brunel
2002). As a consequence, the effects of the voltage-dependent
driving force can be compensated by the introduction of some
constant factors that multiply the total excitatory and inhibitory
currents. These factors might change dramatically the relation
between the frequencies of the presynaptic neurons and the
statistics of the input current, but they do not affect the results
presented in this work, which are more related to the depen-
dency of the output spike frequency on the statistics of the
input current.
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A P P E N D I X

Conductance versus current injection

The response function studied in our experiments allows relating
the output spike frequency to the statistics of the input current—here
described by the pair {mI, sI}—that in turn depends on the mean
frequency of the input synaptic events and on their efficacy (see Eqs.
1 and 2). In particular, if the inputs can be grouped into two classes
(excitatory and inhibitory), then the pair depends on a quadruplet of
parameters: {Ne fe, I�e, Ni fi, I�i} (see METHODS for the definition of the
symbols). Given the response function f � �(mI, sI) and the relation
between {mI, sI} and the quadruplet mentioned above, one can study
the dynamic properties of an arbitrary number of homogeneous pop-
ulations of neurons. For instance the stability of a single recurrent
network of excitatory cells can be analyzed by imposing that the input
spike frequency f matches the output spike rate f of any of the cell: f �
�([mI( f ), sI( f )]. In general, what really matters is the relation be-
tween the output spike frequency and the input spike frequency of all
the presynaptic populations of neurons.

To have a more realistic synaptic drive, one may inject into the
soma a current Idc, which is a product of a Gauss-distributed conduc-
tance multiplied by a driving force that depends on the instantaneous
membrane depolarization (Chance et al. 2002; Destexhe et al. 2001;
Harsch and Robinson 2000)

Idc�t� � g� exe�t��Ve � V�t�� � g� ixi�t��Vi � V�t�� (A1)

where g�e, g� i (nS) are the excitatory and inhibitory peak conductances,
respectively; Ve and Vi are the reversal potentials for AMPA and
GABAA receptors (70 and �10 mV, respectively); xe,i(t) are Gauss-
distributed variables with average �xe,xi, variance �xe,xi

2 and time
correlation length of �x � 1 ms for both. xe,i(t) can be thought of as the
probability of ion channel openings (normalized from zero to g�e,i)
attributed to a large number of independent excitatory and inhibitory
postsynaptic potentials, each characterized by a sharp rise and an
exponential decay with a time constant �x. The current that then
actually flows into the cell depends on the depolarization V(t) as
expressed in Eq. A1 for Idc. The average and the variance of the
AMPA conductance drive are a function of the quadruplet of param-
eters {Ne fe,g�e,Ni fi,g� i}

�xe � Ne fe�x �xe
2 � 1⁄2 Ne fe�x

Analogous formulas were used for the inhibitory input (see also
METHODS).

In the case of conductance drive, what is relevant for exploring the
collective behavior of a population of neurons is the relation between
the output spike frequency and the quadruplet of parameters
{Ne fe,g�e,Ni fi,g� i}. Each quadruplet defines a possible statistics of the
input and the distribution of the current can be determined by running
a simulation of a LIF neuron in which the instantaneous current is
computed at each time step according to Eq. A1. Given the average m̃
and the SD s̃I of the input current Idc, it is not usually possible to
predict correctly the output spike frequency because: 1) the distribu-
tion of the current is slightly distorted by the driving force, which
depends on the depolarization and the Gaussian approximation is no
longer valid; 2) the temporal correlations introduced by the driving
force change the temporal statistics of the input current in a way that
depends on the neuronal activity (see, e.g., Tiesinga et al. 2000). This
means that if one injects a Gaussian current characterized by mI � m̃I

and sI � s̃I, in general one would not get the same spike rate as one
would in the full simulation with the conductance drive Idc.

However, for each quadruplet {Ne fe,g�e,Ni,fi,g� i} it is possible to
generate a Gaussian current characterized by a pair {mI, sI} that, when
injected into a neuron, produces the same spike frequency as in the
case of the conductance drive. The mean mI and the variance sI

2 of that
current are given by

mI � g� eNe fe�IVE,eff � g� iNi fi�IVI,eff (A2)

sI
2 � 1⁄2 g� e

2Ne fe�IUE,eff
2 � 1⁄2 g� i

2Ni fi�IUI,eff
2

where VE,I,eff and UE,I,eff
2 are four positive scaling parameters in units

of mV and mV2, respectively, which do not depend on the statistics of
the current determined by {Ne fe,g�e,Ni fi,g� i}, but only on the parame-
ters that characterize the neuronal dynamics. This means that the
scaling factors are unique for a wide range of inputs and that it is
possible to predict the spike frequency in the case of a conductance
drive for each quadruplet {Ne fe,g�e,Ni fi,g� i}. The recipe is simple: given
the quadruplet one can determine mI and sI according to Eq. A2 and
then use the response function measured in the experiment to deter-
mine the output firing rate.

To prove that this is possible for a wide range of input currents we
explored extensively the space of quadruplets {Ne fe,g�e,Ni fi,g� i} and
compared the output spike frequency in case of conductance drive and
in case of current drive for the same simulated neuron. The neuron’s
parameters were: �r � 0, C � 500 pF, � � 20 mV, Vr � 10 mV, � �
20 ms,  � 0, and resting potential Vrest � 0. Our strategy to explore
the input space was to keep constant g�e,i (nS) on each curve in Fig. A1
[values reported in the plot; the values for the rightmost curve corre-
spond roughly to those used for AMPA and GABAA conductances in
Harsch and Robinson (2000)], and then sweeping along the diagonal
of the {Ne fe, Ni fi} plane (i.e., Ne fe � Ni fi, frequency ranges reported
in the plot). For each quadruplet {Ne fe,g�e,Ni fi,g� i} we computed the
spike frequency in the case of conductance drive [the simulated
neuron was injected with Idc(t)] and in the case of the injection of a
Gaussian current with mI, sI given by Eq. A2. Note that sI is not
constant along each curve contrary to the plots shown in Fig. 6.

We show in Fig. A1 that it is possible to tune the four scaling
parameters VE,I,eff and UE,I,eff in such a way that the neuron responds
with the same mean spike frequency in the dynamic-clamp and in the
current-clamp modalities. The unique scaling factors for all the inputs
were: VE,eff � 51.1 mV, VI,eff � 27.1 mV, UE,eff � 24.7 mV, and
UI,eff � 30.2 mV.

FIG. A1. Comparison between dynamic clamp (symbols) and current
clamp (solid curves) driven LIF neuron after rescaling. Space of input currents
determined by quadruplet {Ne fe,g�e,Ni fi,g� i} is explored as explained in APPEN-
DIX, and for each input current mean spike frequency is plotted. Each curve is
generated by setting ge,i to values reported in top left of plot (nS), and then by
sweeping along diagonal of {Ne fe, Ni fi} plane. Ranges for Ne fe for each curve
are different and are reported in figure (Hz). For each quadruplet mean current
mI is computed according to Eq. A2 and reported on bottom axis. There are
only small discrepancies between solid curves (current clamp) and correspond-
ing symbols (dynamic clamp). Lifetime of simulation was 200 s; a transient of
4�m � 80 ms was discarded to allow current to reach its stationary behavior
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