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Fig. 1: Biological deep learning - neurophysiology, mathematics and silicon 

How can the brain learn a functional, efficient, hierarchical representation of information? 
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Abstract: 

In CDP5, HBP researchers from several SPs collaborate on the topic of biological and 
artificial intelligence. A key requirement for being classified as “intelligent” is a 
system’s ability to learn. In the course of the last year, important insights have been 
gained into the computational principles underlying biological learning and their 
application to the neuromorphic and neurorobotic platforms developed in the HBP. 
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NOTE: 

Components: a full list of Components will be included in the SGA2 Periodic Report. 

Dissemination: dissemination actions to promote specific Key Results and the Outputs that contribute 
to them will be documented in the SGA2 Periodic Report. 
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1 Introduction 
To successfully deal with novel situations, adaptation is necessary. This nearly tautological 
statement holds irrespective of whether we consider biological or artificial problem-solving 
machines. When the machines in question are neuronal networks, this adaptation usually refers to 
gradual modifications in the interaction between neurons that lead to a better performance of the 
network on relevant tasks. As inter-neuron interactions are mediated by synapses, learning in 
neuronal network models thus boils down to synaptic plasticity. Since the ability to adapt to novel 
situations in order to achieve a given goal is, arguably, the defining characteristic of intelligence, 
the study of synaptic plasticity is one of the most interesting and prominent topics in both 
neuroscience and machine learning. 

Spanning both these realms, CDP5 addresses the question of plasticity under two investigative 
paradigms. Firstly, we operate under a so-called normative approach. This means that we start from 
what a network “should” do (find an optimal statistical representation of sensory data, assign objects 
to categories, move in a way that minimizes energy expenditure and/or maximizes reward) and 
derive biologically plausible plasticity rules that enable the network to achieve its goals given 
specific natural constraints. Secondly, we assume that it is helpful for networks to represent 
information hierarchically, that is, different layers (or modules) of a network represent different 
aspects of the information they are manipulating. A classic example would be the explicit 
representation of objects in one part of the network and the categories to which they belong in 
another, separate part. Such an information hierarchy lies behind some of the most exciting recent 
advances in machine learning, while also matching well-established knowledge about cortical 
anatomy. However, efficient learning in such networks is not easily reconciled with biological 
constraints such as locality (neurons and synapses can essentially only access information from their 
immediate vicinity), which raises the fundamental research question addressed by our project: how 
can biologically constrained neuronal networks learn to solve tasks that profit from a hierarchical 
organization of information within them? 

2 Overview 
Interestingly, the recent explosion in deep-learning-related research was fuelled less by theoretical 
breakthroughs rather than, to a much larger extent, by advances in computing hardware and the 
increasing availability of large sets of labelled data. Many of the core underlying architectures 
(hierarchical networks) and algorithms (backpropagation of errors) are decades-old and, to some 
extent, inspired by neuroanatomy and physiology. However, deep learning has quickly left behind 
the realm of biological plausibility in favour of raw performance, leading many to believe that what 
started out as a brain-inspired computational paradigm has since become fundamentally 
incompatible with its biological archetype (see, e.g., Crick, Nature 1989). 

It is only very recently that computational neuroscience has begun reassessing this assumption, with 
CDP5 researchers spearheading this endeavour and successfully solving many of the issues pointed 
out by Crick thirty years earlier (Richards et al., Nature 2019). New theoretical insights developed 
in the HBP have made significant strides in reuniting the previously diverging worlds of biological 
and artificial neural networks, with important implications for understanding cortical processing, 
while bolstering the range of applications for neuromorphic hardware. 

CDP5 spans a broad range of topics related to biologically plausible learning across information 
hierarchies in neuronal 1  networks. Many important contributions have been carried over and 
developed from CDP5 research in SGA1 and, naturally, the first half of SGA2. One of our core lines 
of research concerns the development of cortical microcircuit models, theories and EBRAINS 
implementations capable of learning hierarchical representations of visual data (Outputs 8, 9, 11 
and 14). The underlying neuron and synapse models carry further computational properties useful 

                                            

1 We use “neuronal” as opposed to “neural” to emphasize biological plausibility. 
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for spatiotemporal learning and Bayesian computation (Outputs 2 and 10); importantly, they were 
also found to represent local optima of interpretable metalearning (Output 16). Continuing work 
that goes back as far as the RUP, we have made significant developments in the field of spike-based 
sampling (Outputs 3, 4, 5, and 6), as well as within the context of computation during sleep, with 
interesting convergence between initially separate lines of research (Outputs 3, 12, 13). Last but 
not least, the collaborations fostered by CDP5 have enabled the realization of many of our models 
within neuromorphic and neurorobotic platforms (Outputs 1, 5, 6, 7, 14, 15, 17). 

In this document, we provide a brief description of our most recent results, organized along the five 
Key Results defined in our research plan for SGA2. We address the impact and significance of our 
research and provide a selection of publications for some of our more mature lines of work. Beyond 
the advancement of our scientific understanding, the collaborative work performed under the aegis 
of CDP5 has also allowed important insights about how funding body policies and incentives interact 
with the modus operandi and outcomes of science in large but diverse collaborations, which we 
address at the end of the document. 

Table 1: Summary of Output-related links 

C No. Component Name Link to URL 

C0001 
SP9 BrainScaleS-1 Neuromorphic 
Computing System (version 1 = 
NM-PM1) 

Technical 
Documentation 

https://flagship.kip.uni-
heidelberg.de/jss/FileExchange/D9.7.1_Neu
romorphic_Platform_Specification_-
_public_version.pdf?fID=1887&s=qqdXDg6HuX
3&uID=65  

User 
Documentation 

http://electronicvisions.github.io/hbp-sp9-
guidebook/  

C0209 NEST - The Neural Simulation 
Tool 

Software 
Repository 

https://github.com/nest/nest-simulator and 
P2517  
https://nest-
simulator.readthedocs.io/en/stable/#how-
the-documentation-is-organized  

User 
Documentation 

C0349 PyNN 

Technical 
Documentation 

http://neuralensemble.org/docs/PyNN/deve
lopers_guide.html 

User 
Documentation http://neuralensemble.org/docs/PyNN/ 

C0457 BrainScaleS 2 Neuromorphic 
Computing System 

User 
Documentation 

https://electronicvisions.github.io/hbp-sp9-
guidebook/ 

C1032 
Plasticity: dendritic predictive 
plasticity that reproduces STDP 
data (Algo STDPpredictive) 

User 
Documentation N/A (manuscript in preparation) 

C1788 

T3.2.1 (2) Multipurpose 
simplified neuronal network 
model of different cortical areas 
matching SWA/wake transitions 

User 
Documentation 

https://collab.humanbrainproject.eu/#/coll
ab/67068/nav/455631 

C2060 
T3.3.3 (1) Multi-area ensemble 
mechanisms of multi-feature 
detection in rodents 

Documentation Partially under Embargo, related 
publications: P2345, P2129 

C2061 
T3.3.3 (2) Multi-area ensemble 
mechanisms of object 
recognition in rodents 

Documentation Partially under Embargo, related 
publications: P2345, P2129 

C2193 
T3.5.2 (1) Cortical spiking model 
of the interplay between sleep 
and plasticity 

Documentation https://github.com/PierStanislaoPaolucci/2
019thalCort-SNN-SO-AW-mem  

C2226 
T3.5.3 (1) Generative model of 
sensory cortical hierarchy and 
corticohippocampal network 

Documentation 

Partially under Embargo, related 
publications: P843, P2241, P1360, P1447, 
P2345, P2129 
Related code: 
https://zenodo.org/record/3675212  

https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
http://electronicvisions.github.io/hbp-sp9-guidebook/
http://electronicvisions.github.io/hbp-sp9-guidebook/
https://github.com/nest/nest-simulator%20and%20P2517
https://github.com/nest/nest-simulator%20and%20P2517
https://nest-simulator.readthedocs.io/en/stable/#how-the-documentation-is-organized
https://nest-simulator.readthedocs.io/en/stable/#how-the-documentation-is-organized
https://nest-simulator.readthedocs.io/en/stable/#how-the-documentation-is-organized
http://neuralensemble.org/docs/PyNN/developers_guide.html
http://neuralensemble.org/docs/PyNN/developers_guide.html
http://neuralensemble.org/docs/PyNN/
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://github.com/PierStanislaoPaolucci/2019thalCort-SNN-SO-AW-mem
https://github.com/PierStanislaoPaolucci/2019thalCort-SNN-SO-AW-mem
https://zenodo.org/record/3675212
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C No. Component Name Link to URL 

C2228 
T3.5.3 (3) Comparison with 
physiological data and related 
models 

Documentation Partially under Embargo, related 
publications: P2345, P2129 

C2321 
T3.5.3 (4) Integration of 
corticohippocampal network in 
Cognitive Architecture 

Documentation Partially under Embargo, related 
publications: P2345, P2129 

C2419 SP4 SGA2 Plasticity: algorithms 
for multi-compartment models Documentation N/A (Journal paper in preparation) 

C2420 
Prototype implementations of 
rules and testing within and 
without the SP9 platforms 

Documentation Related publications: P2241, P1360, P1447, 
P2020, P2241, P2239 

C2439 
SP9 Methods for hierarchical 
neural sampling in networks of 
spiking neurons 

Documentation Related publication: P843, P2241, P1360, 
P1447 

C2547 SP9 Computing with structured 
neurons Documentation Related publications: P253, P1905, P2536, 

P1999, P23584 

C2696 

Prototype implementation of 
framework and numerics for 
phenomenological neuron model 
with compartmentalized third 
factor plasticity 

Technical 
Documentation 

https://github.com/nest/nest-
simulator/pull/1095 and 
https://github.com/nest/nest-
simulator/pull/1257  

User 
Documentation https://nest-simulator.readthedocs.io/  

C2704 
SGA2-C10.2.1.4 Scene 
Representation and 
Understanding 

Documentation Related publications: P2519, P1836 

C2719 SGA2-C10.2.1.3 Learning object 
affordances Documentation Related publications: P2519, P1836 

C2722 T3.5.4 (2) Multicompartmental 
pyramidal neuron models Documentation Related publication: P2534, P1905, P2536, 

P1999, P2538 

3 Key Result KRc5.1: Closed-loop navigation 

3.1 Overview of Outputs 
• Output 1: Insect-inspired navigation 

3.2 Insect-inspired navigation 
Korbinian SCHREIBER, Sebastian BILLAUDELLE, Yannik STRADMANN, Benjamin CRAMER, Andreas 
BAUMBACH, Dominik DOLD, Julian GÖLTZ, Akos F KUNGL, Timo C WUNDERLICH, Andreas HARTEL, 
Eric MÜLLER, Oliver BREITWIESER, Christian MAUCH, Mitja KLEIDER, Andreas GRÜBL, David STÖCKEL, 
Christian PEHLE, Arthur HEIMBRECHT, Philipp SPILGER, Gerd KIENE, Vitali KARASENKO, Walter SENN, 
Mihai A PETROVICI, Johannes SCHEMMEL, Karlheinz MEIER 

CDP5 collaboration between SP9 (UHEI, P47) and SP4 (UBERN, P71). Both partners have jointly 
developed exploitation strategies of the BSS-2 platform, in particular regarding experiments on the 
BSS-2 prototype, which led to a joint publication. UHEI has developed the specific implementation 
of the insect experiment on the BSS-2 prototype and has performed the associated emulations. 

A virtual insectoid agent uses path integration to navigate back home after spreading out 
randomly. Both the navigating neural network emulations and the environment and agent 
simulations are carried out on a BrainScaleS-2 prototype chip. This experiment highlights the 
versatility of the plasticity processing unit implemented in the BrainScaleS-2 architecture. 

https://github.com/nest/nest-simulator/pull/1095
https://github.com/nest/nest-simulator/pull/1095
https://github.com/nest/nest-simulator/pull/1257
https://github.com/nest/nest-simulator/pull/1257
https://nest-simulator.readthedocs.io/
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3.2.1 Research and Infrastructure 

Based on physiological data from the bee's central complex, we emulated a network for path 
integration that reproduces bees' ability to return to their nest's location after exploring the 
environment for sources of food. Each experiment started with a spread-out phase, in which a virtual 
insect performed a random walk starting from a certain origin. In the second part, the return phase, 
the insect's motion was determined by the emulated neural network. 

The plasticity processor handled multiple tasks: the processing of synaptic modulations for short-
term memory neurons, the simulation of the 2D-environment, an emulation of all sensors including 
the corresponding spike stimuli, the translation of neuronal data into actions of motion, and the 
entire experiment control. The total flight duration was set to 200 ms on the hardware, which 
emulates 200 s in biology. In that time, sensory information and steering signals were exchanged 
between body and brain every 100 μs. During the first 50 ms, the insect performed its random 
outbound journey, after which it returned to the nest. The average spike rate of all neurons and 
spike generators was 300 kHz (30 Hz bio), which is in good agreement with experimental data from 
drosophila or locusts. Apart from the setup and readout phase, the experiment ran entirely self-
contained on the BrainScaleS-2 system. 

 
Fig. 2: Insect-inspired navigation 

(A) Schematic network topology and neural activity of an entire experimental run. (B, C) Sample trajectories. 

3.2.2 Impact and significance 

Developing this experiment challenged the computational performance of the digital co-processor 
of the BrainScaleS-2 prototype chip to its current limit. Features like timed interrupts were used 
and tested for the first time and revealed certain aspects that led to further improvement of the 
cross-compiler. This experiment is the first real-time closed-loop robotic experiment to run entirely 
on a neuromorphic chip. Moreover, it is one of the first biologically plausible neural models of 
behaviour to be implemented on neuromorphic hardware. 

3.2.3 Components 

C0209, C0457, C2420 

3.2.4 Publications 

Sebastian Billaudelle, Yannik Stradmann, Korbinian Schreiber, Benjamin Cramer, Andreas Baumbach, 
Dominik Dold, Julian Göltz, Akos F Kungl, Timo C Wunderlich, Andreas Hartel, Eric Müller, Oliver 
Breitwieser, Christian Mauch, Mitja Kleider, Andreas Grübl, David Stöckel, Christian Pehle, Arthur 
Heimbrecht, Philipp Spilger, Gerd Kiene, Vitali Karasenko, Walter Senn, Mihai A Petrovici, Johannes 
Schemmel, Karlheinz Meier. Versatile emulation of spiking neural networks on an accelerated 
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neuromorphic substrate. https://arxiv.org/abs/1912.12980, accepted at the International 
Symposium of Circuits and Systems 2020, to appear in IEEE Xplore (2019) (P2241). 

4 Key Result KRc5.2: Deep spatiotemporal 
prediction 

4.1 Overview of Outputs 
• Output 2: Sequence learning by shaping hidden connectivity 
• Output 3: Slow waves as tempering 
• Output 4: Deterministic networks for probabilistic computing 
• Output 5: Accelerated physical emulation of spike-based Bayesian inference 
• Output 6: Stochasticity from function in spiking sampling networks 
• Output 7: Fast and deep neuromorphic learning with time-to-first-spike coding 

4.2 Sequence learning by shaping hidden connectivity 
Kristin VÖLK, Walter SENN, Mihai A. PETROVICI 

CDP5 collaboration between SP4 (UBERN, P71) and SP9 (UHEI, P47). Both partners contributed to 
the design of the model and simulation scenarios. The simulations were performed at UBERN. 

We continued work on cortical development and learning for memorization and replay of spatio-
temporal patterns based on 2-compartment neuron models and dendritic plasticity. The model 
shapes an appropriate connectivity pattern in a pool of hidden neurons that allows the 
memorization of non-Markovian sequences in visible neurons. The model is portable to the 
neuromorphic hardware currently developed in the HBP. 

4.2.1 Research and Infrastructure 

In the previous CDP5 Deliverables, we showed how a sparse scaffold of somato-somatic connections, 
formed during network development, can guide the learning of dense somato-dendritic connections. We 
showed how this enables learning of non-Markovian patterns and illustrated some benefits of learning in 
the hidden pool by contrasting it with having only somato-somatic connections and no learning in the 
hidden population. We showed how this learning in the hidden population leads to the network being 
robust to “deletion” of partial sequences and, under certain circumstances, to “deletion” of the 
complete pattern. Importantly, the neuron and synapse model used here can be derived within a 
normative framework and carries relevance for several other outputs (8, 9, 10 and 11). 

Since the last reporting period, we investigated the importance of learning in the hidden pool 
further. The first step here was to make the network even more biologically realistic by introducing 
random transmission delays between somato-somatic and somato-dendritic synapses. In the previous 
model, the somato-somatic delays were all 10ms and somato-dendritic transmission was 
instantaneous. Now the delay for each synapse is drawn randomly from a uniform distribution 
between 5ms and 15ms. With the introduction of these random delays, sequence states and somato-
somatic delays are no longer matched. Furthermore, we introduced a more complex pattern, namely 
we took a snippet from a midi-file representing the piano piece for “Für Elise” (Fig 3(a-b)). 

With this mismatch between sequence timing and synaptic transmission delays, the importance of 
learning in the hidden pool is even more apparent. Where there is no somato-dendritic learning (Fig 
3 (a)) in the hidden population, the complex pattern is not even learned correctly and the 
performance of pattern replay decreases rapidly (Fig 3(a) and Fig 3(c)). However, once we introduce 
somato-dendritic learning among the neurons in the hidden population, the pattern can be learned 
correctly (Fig 3(b)) and pattern replay performance stays at a generally high level (Fig 3(b) and Fig 
3(c)) over 55 cycles. Given these findings, we conclude somato-dendritic learning is not only vital 

https://arxiv.org/abs/1912.12980
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for achieving robustness to pattern disruptions, but also for general learning when pattern delays 
and synaptic delays are mismatched, which is the case in most realistic learning scenarios. It also 
shows that somato-dendritic learning is capable of reordering the given somato-somatic scaffold in 
a way that aids the learning of the desired pattern. 

 
Fig. 3: Sequence learning by shaping hidden connectivity 

(a) Raster-rate plot of network with random dendritic delays (both somato-somatic and somato-dendritic). The hidden 
neurons are simulated as point neurons only governed by their somatic inputs. Hence, there is no learning in the 
hidden pool. The visible neurons are two-compartment neurons with somato-dendritic learning. Consequently, the 
only learning happens among visible neurons and between hidden-to-visible connections. On the left side of the violet 
vertical line the last training cycle (after 7,000 cycles) is shown. On the right side three consecutive replay cycles 
after the end of training are shown. (b) The same as in (a) but here the hidden neurons are modelled as two-
compartment neurons and hence somato-dendritic learning is activated among all neurons, including the hidden-to-
hidden connections. (c) Comparison of the ongoing performance during pattern replay after learning measured as 
correlation between the desired pattern and the actual produced pattern. In orange the mean performance of 
networks with hidden somato-dendritic learning is shown (as in (b)). In blue the mean performance of networks 
without hidden somato-dendritic learning is shown (as in (a)). Shading represents the standard deviation of the mean. 

4.2.2 Impact and significance 

This work addresses the interplay between stereotypical (genetically imprinted) structure and 
learning in a reservoir computing scenario. The contrast between absence and existence of error-
driven learning in different somato-dendritic projections (hidden-hidden and visible-hidden) within 
the network at the behavioural level is of general interest for research and applications of reservoir 
computing. 

4.2.3 Components 

C2226, C2419, C2420, C2547, C2722  
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4.2.4 Publications 

Journal paper in preparation. 

4.3 Slow waves as tempering 
Agnes KORCSAK-GORZO, Luziwei LENG, Andreas BAUMBACH, Oliver J. BREITWIESER, Sacha J. VAN 
ALBADA, Walter SENN, Karlheinz MEIER, Mihai A. PETROVICI 

CDP5 collaboration between SP4 (UBERN, P71, JUELICH, P20) and SP9 (UHEI, P47). All three partners 
contributed to the design of the model and simulation scenarios. The simulations were performed 
at UHEI and JUELICH. 

It is well-known that slow waves appear during sleep and have thus been hypothesized to play a 
role in memory formation. We propose a mechanism by which slow waves can improve the 
generative properties of neural sampling networks, thereby enabling the replay of a more 
diverse set of memories. 

4.3.1 Research and Infrastructure 

Under the hypothesis of neural sampling, aspects of cortical spiking activity can be interpreted as 
sampling from some underlying distribution that represents the space of possible realities that are 
compatible with sensory information. However, all sampling methods suffer from the fundamental 
problem that the dynamics of the sampling system might not reach all relevant parts of the tested 
distribution within a reasonable amount of time, a difficulty often referred to as “the mixing 
problem”. 

The dynamics in our hierarchical network models of LIF neurons performing Bayesian inference 
essentially implement such a sampling method (see also Outputs 4, 5 and 6). As an example of the 
mixing problem, we can see that, especially when trained to a high degree of classification accuracy, 
model networks tend to generate images from few or even only a single mode (for example, a single 
MNIST digit class). As reported previously (CDP5/SP9 in SGA1), mixing can be improved by employing 
short-term plasticity, but without the guarantee of conserving the target distribution. 

Here, we turn our attention to another ubiquitous aspect of cortical dynamics: population-level 
oscillatory activity, which is particularly pronounced during slow-wave sleep (see also Outputs 12 
and 13). We propose that these slow oscillations implement a tempering scheme, similar to the 
adaptive simulated tempering (AST) algorithm. Modulating the intensity of the background activity 
effectively changes the Boltzmann temperature at which the system operates. Increasing this 
temperature suppresses the correlations that keep the system in its old dynamic state and thereby 
limit the reach of the dynamics within the system’s state space. Doing the opposite, namely 
decreasing the temperature, freezes out variations, enabling the system to settle on a distinct mode. 
Slow waves naturally implement a sequence of these two phases, thereby allowing the networks to 
jump quickly between different imprinted memories. 

Effective tempering hinges on a careful balance between background excitation and inhibition. In 
such a regime, the entropy of the resulting distribution matches the oscillatory background 
behaviour, increasing for high temperatures and decreasing for low temperatures. The resulting 
sampling mechanism exhibits significantly improved mixing behaviour, as indicated by the faster 
switching between modes. 
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Fig. 4: Slow waves and tempering 

(A) Hierarchical spiking network with label (left), hidden (middle) and visible (right) layer; exemplary membrane 
traces and associated state assignment (z=1 for refractory neurons, z=0 otherwise) for 3 visible neurons. Neurons are 
connected layer-wise and receive excitatory and inhibitory stochastic noise spikes. (B) Exemplary response functions 
of a LIF neuron for different background noise configurations. The red, orange and blue curves are obtained for well-
balanced excitation and inhibition. (C) Tempering schedule (crosses) and resulting entropy of the sampled distribution 
(colour shade). Increased temperature (noise level) leads to higher-entropy distributions. (D) Mean and (E) width of 
the neuron response function. Coloured crosses correspond to the exemplary functions from B. Arbitrary changes can 
induce shifts of the response function (e.g. green and purple), while increased noise activity widens the response 
function (increased effective temperature). (F) Visible layer activation probabilities under static noise. Consecutive 
samples are drawn 10 s apart, the network is stuck in the “zero” mode. (G) Like (F) for tempered noise with a 
schedule period of 400 ms. Consecutive samples drawn at the cold-hot T=1 transition point, the network quickly 
switches through different modes (digits), while generating clearly discernible digits. 

4.3.2 Impact and significance 

In this work, we address a fundamental issue of the neural sampling hypothesis, namely the apparent 
adversity of precision and diversity, which are both required for agents to build good internal models 
of their surroundings based on prior experience. By linking the well-established phenomenon of 
cortical waves to classical tempering studied in physics and machine learning, we propose a 
functional role for slow waves during memory formation and retrieval. This work therefore carries 
relevance for both the neuroscience community and for the development of in-silico 
implementations of brain-inspired computing paradigms.  

4.3.3 Components 

C0209, C0349, C1788, C2193, C2226, C2439  

4.3.4 Publications 

Journal paper in preparation. Code released under: 

• https://github.com/unibe-cns/spike-based-sampling/  
• https://zenodo.org/record/3675212 (P2517) 

https://github.com/unibe-cns/spike-based-sampling/
https://zenodo.org/record/3675212
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4.4 Deterministic networks for probabilistic computing 
Jakob JORDAN, Mihai A. PETROVICI, Oliver BREITWIESER, Johannes SCHEMMEL, Karlheinz MEIER, 
Markus DIESMANN & Tom TETZLAFF 

CDP5 collaboration between SP7 (JUELICH, P20), SP9 (UHEI, P47) and SP4 (UBERN, P71). All three 
partners contributed to the theoretical approach, the design of the model, the execution of 
simulations and the evaluation of data. 

Neuronal network models of high-level brain functions such as memory recall and reasoning 
often rely on the presence of some form of noise. The majority of these models assumes that 
each neuron in the functional network is equipped with its own private source of randomness, 
often in the form of uncorrelated external noise. However, it was unclear what constitutes a 
suitable noise source for stochastic computations in vivo. We demonstrate how deterministic 
recurrent neuronal networks can be used as sources of uncorrelated noise, exploiting the 
decorrelating effect of inhibitory feedback.  

4.4.1 Research and Infrastructure 

In vivo, synaptic background input has been suggested to serve as the main source of noise in 
biological neuronal networks. However, the finiteness of the number of such noise sources 
constitutes a challenge to this idea. We demonstrated that shared-noise correlations resulting from 
a finite number of independent noise sources can substantially impair the performance of stochastic 
network models. We showed that this problem is naturally overcome by replacing the ensemble of 
independent noise sources by a deterministic recurrent neuronal network. By virtue of inhibitory 
feedback, such networks can generate small residual spatial correlations in their activity which, 
counter to intuition, suppress the detrimental effect of shared input. We exploited this mechanism 
to show that a single recurrent network of a few hundred neurons can serve as a natural noise source 
for a large ensemble of functional networks performing probabilistic computations, each comprising 
thousands of units (see also Outputs 3, 5, and 6). 

Fig. 5: Recurrent neuronal networks can 
serve as a suitable source of noise for 

stochastic computations. 
(a) Sampling error as measured by Kullback-Leibler 
divergence between the empirical state distribution p 
of a sampling network and the state distribution p* 
generated by the corresponding Boltzmann machine as 
a function of the sampling duration T for different 
sources of noise (intrinsic: intrinsically stochastic units 
updating their states with a probability determined by 
their total synaptic input; private: deterministic units 
receiving private additive independent noise; shared: 
deterministic units receiving noise from a finite 
population of independent stochastic sources; network: 
deterministic units receiving quasi-random input 
generated by a finite recurrent network of deterministic 
units). Error bands indicate mean +/- SEM over 5 random 
network realizations. Inset: Same data as main panel in 
double-logarithmic representation. (b) Relative 
frequencies (vertical, log scale) of six exemplary states 
s (horizontal) for T = 10^6 ms. 

4.4.2 Impact and significance 

Our results demonstrate that background input from an active surrounding network can serve as a 
suitable source of noise for stochastic computations in neuronal networks, lending biological 
plausibility to many network models that rely on noisy background input. The proposed approach is 
sufficiently general to support a wide variety of network models without significant changes and 
provides a possibility for generating stochasticity in neuromorphic systems that often suffer from 
bandwidth limitations. 
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4.4.3 Components 

C0001, C0209, C0349, C0457, C2226, C2439  

4.4.4 Publications 

Jakob Jordan, Mihai A. Petrovici, Oliver Breitwieser, Johannes Schemmel, Karlheinz Meier, Markus 
Diesmann, and Tom Tetzlaff. Deterministic networks for probabilistic computing. Scientific reports, 
9(1), 1-17, (2019) (P843) 

4.5 Accelerated physical emulation of spike-based Bayesian 
inference 

Akos F. KUNGL, Sebastian SCHMITT, Johann KLÄHN, Paul MÜLLER, Andreas BAUMBACH, Dominik 
DOLD, Alexander KUGELE, Eric MÜLLER, Christoph KOKE, Mitja KLEIDER, Christian MAUCH, Oliver 
BREITWIESER, Luziwei LENG, Nico GÜRTLER, Maurice GÜTTLER, Dan HUSMANN, Kai HUSMANN, 
Andreas HARTEL, Vitali KARASENKO, Andreas GRÜBL, Johannes SCHEMMEL, Karlheinz MEIER, Mihai A 
PETROVICI 

CDP5 collaboration between SP9 (UHEI, P47) and SP4 (UBERN, P71). UHEI and UBERN have jointly 
worked on the theory, network models and hardware implementation. UHEI was responsible for the 
commissioning of the system, providing the required hardware and software infrastructure. 

Neuromorphic hardware seeks to achieve fast, parallel and robust computation by mimicking 
aspects of the nervous system. However, it needs appropriate algorithms and coding schemes, 
which can exploit the advantages of neuromorphic hardware. In previous works, we proposed a 
sampling-based framework for spiking neural networks (SNNs) both as models of cortical 
computation and as candidates for solving problems in machine learning. We adapted the 
framework and implemented it on the BrainScaleS-1 and BrainScaleS-2 neuromorphic systems. 
Of special interest for neuromorphic hardware with analogue components is whether and how 
the model can handle substrate-inherent difficulties, such as limited control over the 
parameters. 

4.5.1 Research and Infrastructure 

The proposed sampling framework and the accelerated spiking neuromorphic BrainScaleS systems 
excellently complement each other in many aspects. First, the sampling framework explicitly uses 
spikes as a computation paradigm, and not averaged quantities such as rates (see also Outputs 3, 4 
and 6). Furthermore, sampling inherently benefits from the acceleration of the hardware, since 
many samples are needed to reach an appropriate estimate of the posterior distribution. Finally, 
local Hebbian-like learning has the potential to act as an on-chip learning procedure that exploits 
the acceleration of the system, since no global information (like global network states or weights) 
have to be shifted around from memory. 

The noise necessary for sampling stems from an inhibition-dominated sparse random network to 
circumvent external bandwidth limitations between host computer and the chip. Such networks have 
been found to display chaotic dynamics in theory as well as neuromorphic implementations (Pfeil et 
al. 2016). 

We show that the proposed sampling networks can cope with the challenges arising on analogue 
neuromorphic hardware, such as inhomogeneity (fixed-pattern noise) of the realized neurosynaptic 
circuits and limited weight resolution (4bit). This allows our model to exploit the fast emulation 
speeds (1,000 - 10,000 compared to biology) offered by the BrainScaleS systems, while experiencing 
only a negligible performance loss. We demonstrated this for three network architectures: firstly, 
we trained a fully-connected network on hardware with local contrastive Hebbian plasticity to 
sample from a predetermined target distribution and perform inference, i.e., calculate the correct 
conditional distributions. Secondly, we implemented a hierarchical network for classification, 

https://arxiv.org/abs/1912.12980
https://arxiv.org/abs/1912.12980
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inference and data generation trained on a subset of the MNIST dataset. Finally, we trained an 
ensemble of deterministic sampling networks on neuromorphic hardware, realizing a closed physical 
implementation of sampling with deterministic networks shapeable by local contrastive Hebbian 
plasticity. We demonstrated the capabilities of the network in three different applications: 
Classification, pattern completion and guided data generation (Fig. 6). The hardware 
implementation reached a performance on a par with equivalent Restricted Boltzmann Machines run 
in software simulation. 

Fig. 6: Accelerated physical emulation of spike-based Bayesian inference.  
(A) We trained a hierarchical spiking 
sampling network on a reduced 
version of the MNIST dataset. We 
had to reduce the resolution of the 
dataset due to technical issues on 
the system limiting the size of 
implementable networks. (B) By 
training the system in the loop using 
a form of Hebbian contrastive 
plasticity we were able to restore 
the classification performance that 
was lost due to the translation from 
the abstract neural network domain 
to the spiking neuromorphic 
domain. (C) The network can 
perform pattern completion as 
measured by the mean squared 
error between the original image 
and network response. The 
neuromorphic realization is 
approximately on par with the 
original software solution and, in 
addition, strongly accelerated. (D) 
In dreaming mode, the network 
produced recognizable images from 
all classes, resembling the training 
set.  We reached similar results on a 
reduced version of the Fashion 
MNIST dataset, see Kungl et al. 
(2019). (E) We successfully 
transferred the method to 
implement spike-based Bayesian 
inference on the DLSv2 prototype 
chip of the BSS-2 system. Sampling 
performance after training for 500 
randomly generated target 
distributions. (F) Sampling from the 
learned (top) and an associated 
conditional distribution (bottom). 
Orange: sampled distribution. Blue: 
analytically calculated target 
distribution. Remaining error bars 
are too small to visualize. See also 
Billaudelle et al. (2019). 

4.5.2 Impact and significance 

The project has demonstrated the applicability of the spike-based sampling network on accelerated 
neuromorphic hardware. The implementation is unique in the sense that the underlying model 
explicitly uses the spiking nature of the neuron model and that the full implementation resulted in 
an autonomous sampling model. The established method proved to be robust enough that we could 
easily implement sampling on a prototype chip of the BrainScaleS-2 system (Billaudelle et al. 2019). 
Talk on neuromorphic computing at the NICE (Neuro-Inspired Computational Elements) Workshop, 
Albany, March 27, 2019 (recorded talk E2633).  

https://plus.humanbrainproject.eu/eventcontributions/2633/
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4.5.3 Components 

C0001, C0209, C0349, C0457, C2226, C2420, C2439  

4.5.4 Publications 

• Spike-based sampling on the BrainScaleS-2 prototype chip was published as part of the study: 
o Sebastian Billaudelle, Yannik Stradmann, Korbinian Schreiber, Benjamin Cramer, Andreas 

Baumbach, Dominik Dold, Julian Göltz, Akos F Kungl, Timo C Wunderlich, Andreas Hartel, 
Eric Müller, Oliver Breitwieser, Christian Mauch, Mitja Kleider, Andreas Grübl, David Stöckel, 
Christian Pehle, Arthur Heimbrecht, Philipp Spilger, Gerd Kiene, Vitali Karasenko, Walter 
Senn, Mihai A Petrovici*°, Johannes Schemmel, Karlheinz Meier. Versatile emulation of 
spiking neural networks on an accelerated neuromorphic substrate. arXiv:1912.12980, 
accepted for publication at the International Symposium of Circuits and Systems 2020, to 
appear in IEEE Xplore (2019) (P2241). 

• Spike-based sampling on the BrainScaleS-1 system was published in: 
o Akos F Kungl, Sebastian Schmitt, Johann Klähn, Paul Müller, Andreas Baumbach, Dominik 

Dold, Alexander Kugele, Eric Müller, Christoph Koke, Mitja Kleider, Christian Mauch, Oliver 
Breitwieser, Luziwei Leng, Nico Gürtler, Maurice Güttler, Dan Husmann, Kai Husmann, 
Andreas Hartel, Vitali Karasenko, Andreas Grübl, Johannes Schemmel, Karlheinz Meier, Mihai 
A Petrovici. Accelerated physical emulation of Bayesian inference in spiking neural networks.  
Frontiers in neuroscience —- Neuromorphic Engineering Volume 13, Page 1201 (2019) (P1360) 

4.6 Stochasticity from function in spiking sampling 
networks 

Dominik DOLD, Ilja BYTSCHOK, Akos F. KUNGL, Andreas BAUMBACH, Oliver BREITWIESER, Walter 
SENN, Johannes SCHEMMEL, Karlheinz MEIER, Mihai A. PETROVICI 

CDP5 collaboration between SP9 (UHEI, P47) and SP4 (UBERN, P71). UHEI and UBERN have jointly 
worked on the theory, network models and hardware implementation. UHEI was responsible for the 
commissioning of the system, providing the required hardware and software infrastructure. 

The manner in which the brain could use a probabilistic computing scheme to process sensory 
information on the neuronal level is still an ongoing debate. Our work demonstrates how an 
ensemble of deterministic spiking networks, supplemented with weak and sparse inter-network 
connections, can be shaped by local plasticity to perform probabilistic computing in the form of 
sampling. This allows a self-sustained implementation of sampling-based computing in spiking 
networks, without the need for any explicit source of noise. 

4.6.1 Research and Infrastructure 

The sensory input available to humans (as well as machines) is not only noisy, but also ambiguous 
and often incomplete due to the nature of our environment. For instance, when playing Poker, only 
a limited amount of definite information is available (i.e., the cards on the table and in our hand) 
and remaining information is either not accessible or uncertain (i.e., the cards of other players). In 
such a situation, it is best to choose actions with the highest probability of a favourable outcome. 
How to estimate and choose the action with the highest probability, and how to reduce uncertainty 
when accumulating new evidence is mathematically known as Bayesian inference. 

Recently, it has been proposed that Bayesian inference might be realized in the brain as sampling, 
i.e., spikes represent samples from a probability distribution (Buesing et al., 2011; Probst et al., 
2015; Petrovici et al., 2016, see also Outputs 3, 4 and 5). One key question that remains is how such 
systems attain their stochasticity in the first place to perform sampling-based computations. In 
cortical models, this is often realized using externally generated, high-frequency Poisson noise. 
However, this is rather problematic: for neuromorphic implementations, it demands additional 

https://arxiv.org/abs/1912.12980
http://dx.doi.org/10.3389/fnins.2019.01201
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architectural constraints and bandwidth considerations as external noise has to be induced into the 
system; and in case of the brain, such a well-behaved and artificial source of stochasticity is not 
plausible. Even though cortical neurons behave stochastically in vivo, this mainly originates from a 
strong background bombardment of up to 10,000 presynaptic partners per neuron in vivo (Ariele et 
al., 1996); many of which are not involved in the current functionality of the postsynaptic neuron’s 
local cortical area. Thus, inspired by the modular structure of the brain, i.e., strongly connected 
functional clusters that are weakly interconnected, we propose a similar architecture for spiking 
sampling networks: a weakly interconnected ensemble of functional subnetworks, where the 
interconnections are used to provide background noise to every subnetwork (Fig. 7A). 

We found that ensembles of functional networks can be set up such that the output statistics 
generated by the ensemble equals the input statistics of the assumed background noise (self-
consistency) - enabling self-sustained sampling. Such a self-consistent state can be found 
automatically via synaptic plasticity, independent of the underlying functionality each network has 
to implement. This enables a self-sufficient and parsimonious implementation of spike-based 
sampling, by allowing all neurons to take on a functional role and not dedicating any resources purely 
to the production of background stochasticity - which we demonstrate both on the neuromorphic 
hardware system “BrainScaleS-1” (Fig. 7B-D) and for hierarchical networks in software simulations 
(Fig. 7E, F). These results reduce the architectural constraints imposed on physical neural substrates 
required to perform spike-based probabilistic computations both in biology and neuromorphic 
hardware. 

 
Fig. 7: Stochasticity from function in spiking sampling networks. 

(A) Schematic visualisation of an ensemble of spiking sampling networks, inspired by the modular structure found in 
the mammalian cortex. In black, intra-network connections are shown, in grey inter-network connections. For 
instance, the red neuron receives spikes from neurons of the other two networks as background activity (red arrows), 
through which it attains the desired logistic activation function needed for spike-based sampling. (B-D) Sampling on 
BrainScaleS-1 with an ensemble of 15 deterministic functional networks with 4 neurons each. (B) Median performance 
of the ensemble (blue thick) and of individual networks (transparent blue) during training. The best performance 
reached by an equivalent implementation without interconnections using Poisson noise is shown in black. (C) Single 
run of the ensemble after training finished. By sampling longer, the networks approximate their target distributions 
better. The median performance pre-training is shown in (blue, dashed). (D) Final performance of the networks shown 
in (B), sorted from best to worst. Black crosses mark the performance of equivalent implementations with Poisson 
noise on the hardware. Green dashed lines correspond to the green triangles in (B). (E, F) An ensemble of four 
deterministic hierarchical networks provide each other with noise while performing Bayesian inference on the EMNIST 
dataset (software simulation using PyNEST). Each network was trained on a different subset of EMNIST (‘a15YW’, 
‘BRTXV’, ‘13579’, ‘ACELZ’). (E) If no input is given to the networks, all of them generate patterns that match the 
data they were trained on (only one of four shown, we plot the spike activity of the visible layer averaged over a 
small time window here). (D) If only part of an image is shown to one of the networks (red), it is able to reconstruct 
the image and traverse through several plausible image interpretations (pattern completion / rivalry). The networks 
are also capable of classifying inputs (not shown here). 

4.6.2 Impact and significance 

The mammalian brain uses spikes to transmit information between neurons; however, there is still 
an ongoing debate on whether and what the functional purpose of spike-based coding might be. 
Here, we proposed that biological neurons use spikes for two specific functional purposes: (i) to 
draw samples from a posterior probability distribution constrained by sensory stimuli, offering an 



 
 

  
 

D9.4.2 (D60.2 D469) SGA2 M24 ACCEPTED 201006.docx PU = Public 20-Oct-2020 Page 20 / 41 
 

elegant algorithmic implementation of Bayesian inference and (ii) as sources of background 
irregularity needed to guarantee stochastic firing in the first place. This allows a resource-efficient 
and self-consistent realization of sampling-based Bayesian inference, both in the brain as well as 
neuromorphic hardware. 

4.6.3 Components 

C0001, C0209, C0349, C2226, C2420, C2439  

4.6.4 Publications 

Dominik DOLD, Ilja BYTSCHOK, Akos F. KUNGL, Andreas BAUMBACH, Oliver BREITWIESER, Johannes 
SCHEMMEL, Karlheinz MEIER, and Mihai A. PETROVICI. Stochasticity from function - why the Bayesian 
brain may need no noise. Neural Networks, 119, 200-213 (2019). https://arxiv.org/abs/1809.08045. 
doi: 10.1016/j.neunet.2019.08.002. (P1447) 

4.7 Fast and deep neuromorphic learning with time-to-
first-spike coding 

Julian GÖLTZ, Andreas BAUMBACH, Sebastian BILLAUDELLE, Oliver BREITWIESER, Dominik DOLD, 
Laura KRIENER, Akos F. KUNGL, Walter SENN, Johannes SCHEMMEL, Karlheinz MEIER, Mihai A. 
PETROVICI 

CDP5 collaboration between SP9 (UHEI, P47) and SP4 (UBERN, P71). UHEI and UBERN have jointly 
worked on the theory, network models and hardware implementation. UHEI was responsible for the 
commissioning of the system, providing the required hardware and software infrastructure. 

The credit assignment problem represents a fundamental challenge for local synaptic plasticity 
mechanisms and is exacerbated by the use of non-smooth signals for communication, as is the 
case in spiking neural networks. We propose a mechanism for spike-based backpropagation of 
errors and demonstrate its functionality on an accelerated spiking neuromorphic substrate. 

4.7.1 Research and Infrastructure 

Training networks of spiking neurons to perform pattern recognition is a problem that has received 
increasing attention after recent successes of artificial neural networks, in the hope of producing 
similar functionality as machine learning and gaining insights about biological brains “on the go”. 
We have shown how the naive translation between artificial and spiking neural networks via rate 
coding (see CDP5 SGA1 M24 Deliverable) can be improved by using a more elaborate but sparse 
scheme, namely time-to-first-spike coding. We derived equations for the spike times of leaky 
integrate-and-fire (LIF) neurons in particular configurations (see also CDP5 SGA2 M12 Deliverable). 
Given a loss function, the equations allow us to train networks of spiking neurons with gradient 
descent and error backpropagation. In more recent work, we reformulated the equations to be more 
stable and thus perform better on analogue neuromorphic hardware. 

The training of such a network on the BrainScaleS-2 system with a simple data set is shown in Figure 
8. The coding favours early spikes, basically encoding stronger features by earlier spikes, and thus 
classification happens quickly (less than 5 μs wall-clock time). Learning of the MNIST data set in 
NEST-simulated networks is ongoing and translation to hardware is planned. 

The algorithm was integrated into the Jenkins code development and monitoring framework. This 
allows automated, regular tests as well as manual testing of software changes to monitor the high-
level state of the hardware and code base. Apart from setting a norm of standardisation and 
reproducibility for future experiments on BrainScaleS systems this has already helped debug 
complications in the past year. 

https://arxiv.org/abs/1809.08045
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Fig. 8: Pattern recognition of a simple data set with time-to-first-spike coding on BrainScaleS-2 
Evolution of key characteristics during training (A-F) and state after training (G-J). Training succeeds to 100% accuracy 
(A) and reduced loss (B) by effectively pushing correct neurons to spike earlier (C-F for the four classes of the data 
set, in each the correct neuron is highlighted over the other neurons). In the trained network (G), the classifying 
spike (▲) happens before most of the hidden neurons spike (█) and there is a large separation to the other label 
neurons’ spikes. The voltage dynamics in the label layer (H-J) confirms the size of the separation. 

4.7.2 Impact and significance 

To harness the speed and parallelism of the neuromorphic system, one has to deal with the noisy 
and varying nature of analogue and mixed-signal neuromorphic systems, which represents a serious 
challenge. The successful training on both BrainScaleS generations and the use as a high-level 
monitoring tool on BSS-1, together with the analytical derivation of the spike times of LIF neurons 
demonstrate the feasibility of our approach and warrant further research into larger data sets, 
currently ongoing in software simulations. 

4.7.3 Components 

C0001, C0209, C0349, C0457, C2420  

4.7.4 Publications 

Julian Göltz. Training Deep Networks with Time-to-First-Spike Coding on the BrainScaleS Wafer-Scale 
System. Master’s thesis. Universität Heidelberg (Apr. 2019). http://www.kip.uni-
heidelberg.de/Veroeffentlichungen/details.php?id=3909. (P2020) 

Sebastian Billaudelle, Yannik Stradmann, Korbinian Schreiber, Benjamin Cramer, Andreas Baumbach, 
Dominik Dold, and Eric Müller. Versatile emulation of spiking neural networks on an accelerated 
neuromorphic substrate. (2019) arXiv preprint arXiv:1912.12980. (P2241) 

Julian Göltz, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser, Dominik Dold, Laura 
Kriener, and Mihai A. Petrovici. Fast and deep neuromorphic learning with time-to-first-spike coding. 
(2019) arXiv preprint https://arxiv.org/abs/1912.12980. (P2239) 

5 Key Result KRc5.3: Deep learning with 
compartmental neurons 

5.1 Overview of Outputs 
• Output 8: NEST implementation of three-factor error-correcting plasticity 
• Output 9: Error-correcting learning with leaky integrate-and-fire point neurons 

http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3909
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3909
https://arxiv.org/abs/1912.12980
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• Output 10: Bayes-optimal multisensory integration via conductance-based dendrites 
• Output 11: Time-continuous deep reinforcement learning 

5.2 NEST implementation of three-factor error-correcting 
plasticity 

Jonas STAPMANNS, David DAHMEN, Markus DIESMANN, Laura KRIENER, Jakob JORDAN, Walter SENN, 
Mihai A. PETROVICI 

CDP5 collaboration between SP7 (JUELICH, P20), SP4 (UBERN, P71) and SP9 (UHEI, P47). 
Contributions. 

Due to the point-like nature of neuronal spiking, efficient neural network simulators often 
employ event-based simulation schemes for synapses. Yet many types of synaptic plasticity rely 
on the membrane potential of the postsynaptic cell as a third factor in addition to pre- and 
postsynaptic spike times. In order to update their strength, synapses therefore require 
continuous information which a priori necessitates a continuous update in a time-driven manner. 
Simulations of networks with this type of plasticity are therefore restricted to small network 
sizes. To overcome this problem, we implemented an efficient archiving of the history of 
postsynaptic membrane potentials in NEST to maintain an event-based update for synapses that 
minimizes the amount of stored data and communication between neurons. 

5.2.1 Research and Infrastructure 

Within component C2696, the storage and communication infrastructure for advanced plasticity 
mechanisms has been implemented in NEST by JUELICH. Besides the integration of the point-neuron 
rule by Clopath et al. (2010), a pull request has been made against NEST for the compartmentalized 
third-factor plasticity rule by Urbanczik and Senn (2014), which is the cornerstone of many learning 
paradigms studied in CDP5 (see also Outputs 2, 9, 10 and 11). The rule has been validated using 
simple examples, see e.g. (Fig. 9), provided by UBERN and UHEI. 

 
Fig. 9: Simple learning task using the Urbanczik-Senn plasticity rule for a 2-compartment neuron 
The dendritic compartment receives a repeated spike pattern as an input via plastic synapses. During learning the 
synaptic weights are trained so that the membrane potential of the somatic compartment follows a teaching signal. 
A Membrane potential of the soma U (dark blue) and the dendrite VW (light blue). The red curve denotes the nudging 
potential UM resulting from somatic input (panel B). B Excitatory (gE) and inhibitory (gI) somatic conductances that 
produce the teaching signal. Panels A and B correspond to figure 1b in (R. Urbanczik, W. Senn (2014): Learning by 
the Dendritic Prediction of Somatic Spiking. Neuron, 81, 521 - 528). C Temporal evolution of the synaptic weights 
during learning. 
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5.2.2 Impact and significance 

NEST is designed as a highly scalable neural network simulation engine that can be run on laptops as 
well as supercomputers. It provides well-documented, peer-reviewed and tested code to a large user 
community. Incorporating the infrastructure for third-factor plasticity rules makes this technology 
available to studies of functional networks. The possibility of simulating larger networks also allows 
investigation of learning paradigms in tasks of increasing complexity. 

5.2.3 Components 

C0209, C0349, C2419, C2420, C2547, C2696, C2722  

5.2.4 Publications 

Jordan, Jakob; Mørk, Håkon; Vennemo, Stine Brekke; Terhorst, Dennis; Peyser, Alexander; Ippen, 
Tammo; Deepu, Rajalekshmi; Eppler, Jochen Martin; van Meegen, Alexander; Kunkel, Susanne; 
Sinha, Ankur; Fardet, Tanguy; Diaz, Sandra; Morrison, Abigail; Schenck, Wolfram; Dahmen, David; 
Pronold, Jari; Stapmanns, Jonas; Trensch, Guido; Spreizer, Sebastian; Mitchell, Jessica; Graber, 
Steffen; Senk, Johanna; Linssen, Charl; Hahne, Jan; Serenko, Alexey; Naoumenko, Daniel; Thomson, 
Eric; Kitayama, Itaru; Berns, Sebastian; Plesser, Hans Ekkehard. NEST 2.18.0. 
https://doi.org/10.5281/zenodo.2605422 (P2534) 

5.3 Error-correcting learning with leaky integrate-and-fire 
point neurons 

Laura KRIENER, Matteo CARTIGLIA, Germain HAESSIG, Sebastian BILLAUDELLE, Benjamin CRAMER, 
Johannes SCHEMMEL, Giacomo INDIVERI, Walter SENN, Jakob JORDAN, Mihai A. PETROVICI 

CDP5 collaboration between SP4 (UBERN, P71), SP9 (UHEI, P47) and external partners University of 
Zürich (UZ) and ETH Zürich (ETHZ). UBERN, UHEI, UZ and ETHZ have jointly worked on the theory 
and network models, as well as the implementation on different hardware platforms (BrainScaleS-
2 and DynapSE). UBERN was responsible for the software simulations. UHEI, UZ and ETHZ were 
responsible for the commissioning of the system, providing the required hardware and software 
infrastructure. 

In previous and ongoing work, we have shown how three-factor error-correcting learning rules 
enable powerful computation in hierarchical networks of structured neurons (see also CDP5 
SGA1 M24 Deliverable and SGA2 M12 Deliverable). In order to make these learning algorithms 
amenable to contemporary neuromorphic platforms, we have developed a version of neuronal 
backpropagation for networks of single-compartment neurons. 

5.3.1 Research and Infrastructure 

Over the past year, we have made significant progress in implementing our general framework for 
learning from real-time data streams in low-power neuromorphic systems. The framework follows a 
first-principles approach to derive from a single objective function the neuron and weight dynamics 
in recurrent circuits of pyramidal neurons that extend across multiple cortical areas (see also 
Outputs 11 and 14). The network continuously learns to reduce its output error by forming local 
prediction errors from the combination of bottom-up and top-down neuronal activity represented in 
the lower and higher cortical area, respectively (Sacramento et al. 2018, Dold et al. 2019). 

Originally described in Sacramento et al. 2018, the network consists of layers of dendritic 
microcircuits shown in Fig. 10 A and B. Through the choice of connectivity, neuron model and 
learning rule (see also Outputs 2, 8, 10, 11), this network natively implements a form of time 
continuous error-backpropagation, while relying only on locally available information for synaptic 
plasticity. 

https://doi.org/10.5281/zenodo.2605422
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In Sacramento et al. 2018, dendritic microcircuits employ a multi-compartment neuron model. Most 
contemporary neuromorphic platforms do not support this model and, for those that do, the 
implementation details vary greatly. In order to stay platform-independent and not exclude 
platforms that do not feature multi-compartment neurons, we reformulated the dendritic 
microcircuit with point neurons. Figure 10 C shows our equivalent formulation of the original 
microcircuit. Figure 10 D illustrates the functionality of the point-neuron microcircuit using an 
instantaneous rate-based software simulation of the point neuron microcircuit. Early experiments of 
learning with point-neuron microcircuits on the neuromorphic hardware platforms DYNAPSE (ETHZ 
and UZ) and BrainScaleS-2 (UHEI) are shown in Fig. 11. 

 
Fig. 10: Error backpropagation in cortical microcircuits 

(A) Dendritic microcircuit using only point neurons. While the plasticity mechanism stays the same as for structured 
neurons, the multi-compartment pyramidal neurons are replaced by a combination of pyramidal point neurons and 
apical point neurons. The multi-compartment interneuron is replaced by a single point neuron. Dashed arrows 
represent the target firing rates for the neurons they are pointing towards. (D) Successful learning of an input/output-
mapping with a point neuron microcircuit. The top panel shows the input, the middle panel shows the output in 
comparison to the target, the bottom panel shows the apical neurons which encode the error in the network (zero 
error corresponds to a rate of 0.5). Left panel: early phase of learning, right panel: late phase of learning. 
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Fig. 11: Microcircuits on 
neuromorphic platforms. 

(A) Successful learning of 
an input/output-mapping with a 
point neuron microcircuit on the 
DYNAPSE chip developed by ETHZ 
and UZ. The experimental setup 
was very similar to the simulation 
shown in Fig. 9 (D) and shows the 
portability of the model from 
software simulation to hardware 
emulation.  (B) Setup used for 
learning in (A). Spikes of the 
microcircuit are recorded and 
sent from the chip to the host 
computer, where the weight 
updates are calculated. These are 
sent back to the chip and a new 
learning cycle begins. (C) Similar 
experiment on the BrainScaleS-2 
chip. The microcircuit learns the 
correct weight configuration to 
produce to distinct target output 
rates for two given inputs. 

 

 

 

5.3.2 Impact and significance 

Our approach can be interpreted as a biophysically plausible implementation of real-time error-
backpropagation amenable to the implementation in low-power neuromorphic hardware. 
Importantly, it does not require global scheduling for different phases of inference and learning. If 
successful, the framework can be extended to study time-continuous learning from ongoing stimulus 
streams in a mixed supervised, unsupervised and reinforcement-learning scenario, using spiking 
neural networks in neuromorphic systems. 

5.3.3 Components 

C0457, C2419, C2420, C2547, C2722  

5.3.4 Publications 

Dominik Dold, Akos F. Kungl, João Sacramento, Mihai A. Petrovici, Kaspar Schindler, Jonathan Binas, 
Yoshua Bengio, and Walter Senn. Lagrangian dynamics of dendritic microcircuits enables real-time 
backpropagation of errors. Cosyne abstracts, Lisbon (http://www.kip.uni-
heidelberg.de/Veroeffentlichungen/details.php?id=3855), (2019) (P1905) (recorded talk: E2424) 

5.4 Bayes-optimal multisensory integration via 
conductance-based dendrites 

Jakob JORDAN, João SACRAMENTO, Willem WYBO, Mihai A. PETROVICI, Walter SENN 

CDP5 collaboration between SP4 (UBERN, P71), SP9 (UHEI, P47) and external partners University of 
Zürich (UZ) and ETH Zürich (ETHZ). All partners contributed to the theoretical approach and the 
design of the model. The execution of simulations and the evaluation of data was done at UBERN. 

http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3855
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3855
https://plus.humanbrainproject.eu/eventcontributions/2424/
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Cue integration, the combination of different sources of information to reduce uncertainty, is a 
fundamental computational principle of brain function. Starting from a normative model, we 
show that the dynamics of multi-compartment neurons with conductance-based dendrites 
naturally implement the required probabilistic computations. The associated error-driven 
plasticity rule allows neurons to learn the relative reliability of different pathways from data 
samples, approximating Bayes-optimal observers in multisensory integration tasks. 

5.4.1 Research and Infrastructure 

Starting from a normative model of cue integration in single neurons, we derived membrane 
potential and weight dynamics in a principled fashion. The resulting neuron dynamics resembled 
leaky integrators with multiple dendritic compartments and the associated plasticity rule reduces 
output errors, while extracting the relative reliabilities of different sensory pathways from data 
samples (see also Outputs 2, 8, 9 and 11). We previously demonstrated that a model derived in this 
framework approximates Bayes-optimal observers in multisensory integration tasks assuming strong 
coupling of dendritic compartments to the soma. We now extended our mathematical analysis and 
numerical experiments to include realistic ratios of leak and transfer conductances extracted from 
biophysically detailed models. Since the relative weights of different pathways are learned from 
data, our model can account for the deviations introduced by finite transfer conductances and 
maintain a Bayes-optimal estimate, demonstrating the generality of our approach. 

 
Fig. 12: Learning approx. Bayes-optimal inference of orientations from multi-modal stimuli 

(a) Experimental setup; using visual and/or tactile information a rat classifies the orientation of a grating as either 
vertical or horizontal. (b) Network model. From a ground truth orientation 𝜽𝜽 visual and tactile stimuli are sampled 
with fixed, modality-specific noise amplitudes. These orientations are translated into firing rates using two 
populations of von-Mises feature detectors. All feature detectors project onto two multisensory neurons. (c) Loss 
(error) of the MAP estimate (dark grey), an unweighted estimate combining visual and tactile orientations equally 
(light grey), the trained model with bimodal cues (red), visual cues alone (blue) and tactile cues alone (green). Light 
coloured bars indicate loss before training, light grey line denotes chance level. (d) Psychometric curve, i.e., relative 
frequency of stimuli classified as vertical as a function of the true orientation of the grating, for bimodal (red) and 
unimodal conditions (blue and green). Dashed red line indicates psychometric curve estimated from unimodal 
measurements. Inset shows data from [Nikbakht et al., 2018]. 

5.4.2 Impact and significance 

The classic view on neural computation abstracts integration of information in single neuron by a 
simple sum of their inputs. We suggest a fundamental change in perspective, considering membrane 
conductances as the central variables of neural computation. This new view exposes that single 
neurons are naturally equipped to perform a ubiquitous form of probabilistic computation: instead 
of simply summing their inputs, they compute a convex combination of stimulus-specific reversal 
potentials. Our framework provides parsimonious explanations for various experimental findings in 
cue integration tasks, connecting theories of probabilistic cue integration with neuron-level data. 
Furthermore, our approach has the potential to increase the robustness of artificial neural networks 
that need to merge different information streams. 
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5.4.3 Components 

C2419, C2420, C2547, C2722  

5.4.4 Publications 

Jakob Jordan, Joao Sacramento, Mihai Petrovici, and Walter Senn. Conductance-based dendrites 
perform reliability-weighted opinion pooling. Proceedings of the NICE conference 2020, Heidelberg, 
Germany (2020, postponed). (P2536) 

5.5 Time-continuous deep reinforcement learning 
Akos F. KUNGL, Dominik DOLD, Walter SENN, Oskar RIEDLER, Mihai A. PETROVICI 

CDP5 collaboration between SP4 (UBERN, P71) and SP9 (UHEI, P47). Both partners contributed to 
the theoretical approach and the design of the model, the execution of simulations and the 
evaluation of data. 

The hierarchical structure of the cortex raises the question of how plasticity in the brain is able 
to shape this complex network in order to solve the spatial and temporal credit assignment 
problems. Abstract neural networks - distant relatives of their biological archetypes - solve this 
problem with the backpropagation-of-errors algorithm. Despite its effectiveness in abstract 
neural networks, it remains an open question whether and how backprop might be implemented 
in biological neural networks. In M12 of SGA2, we reported the development of a theoretical 
framework that uses a least-action principle to derive a biologically plausible implementation of 
backpropagation. Here, we present an extension of the work to include not only supervised but 
also reinforcement learning. 

5.5.1 Research and Infrastructure 

In our model, the neurosynaptic dynamics are derived from an energy function using the variational 
principle. The resulting neuron and synapse models are closely related to those used in several other 
models (see Outputs 2, 8, 9 and 10). Errors are introduced to the network by nudging, and they are 
propagated to deeper layers via cortical microcircuits (Fig. 13 A; see also Outputs 9 and 14 for 
related architectures). In the resulting dynamics the phase-advanced firing of the neurons 
effectively undoes the network delay introduced by finite membrane time-constants (Fig. 13 B). 
Training in a supervised learning setup has been previously demonstrated on the MNIST dataset (Fig. 
13 C). 

For reinforcement learning, instead of having an explicit teacher, the output neurons, which 
represent the actions, now form a soft winner-take-all network (Fig. 13 A). We propose that this 
winner-take-all structure evokes a nudging on the soma of the output neurons (Fig. 13 D), which is 
subsequently backpropagated through the network. We formally derive a reward prediction error 
δ=R-〈R〉 that modulates the plasticity multiplicatively as a global reward-specific neuromodulator. 
By construction, the learning rule approximates the policy gradient of the mean expected reward. 
Learning is not only possible, but the model also performs well under delayed reward (Fig. 13 E-F) 
and against noisy synaptic weights in the soft winner-take-all circuit. 
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Fig. 13: Time-continuous deep reinforcement learning 

(A) Cortical microcircuit used for error calculation and representation. Backpropagated errors are locally calculated 
by subtracting bottom-up prediction from top-down feedback. (B) The neuronal activity r is a non-linearly advanced 
version of the respective membrane potential that effectively undoes low-pass filtering caused by leaky integration. 
(C) A network of 786 - 800 - 10 neurons learns MNIST from a continuous movie, where each digit is only shown briefly 
(time scale of the membrane time constant). (D) Lateral somato-somatic interaction with self-excitation and mutual 
inhibition gives rise to an error nudging approximating policy gradient. (E-F) The network successfully learns on a 
small time-continuous classification problem based on 3 MNIST digits. Learning is robust although slower in the 
presence of delayed rewards, even if the reward delay is stochastic. 

5.5.2 Impact and significance 

Our work fills a gap between models of biological deep learning, which usually only concern 
supervised learning, and models of reinforcement learning, which are often restricted to shallow 
learning architectures. We connected soft winner-take-all architectures to models of 
backpropagation, by which we propose a novel role for winner-take-all networks: error-vector 
generation in the input layer. Finally, our studies regarding the robustness of the model are a 
prerequisite for future neuromorphic applications. 

5.5.3 Components 

C2419, C2420, C2547, C2722  

5.5.4 Publications 

Akos Ferenc Kungl, Dominik Dold, Oskar Riedler, Walter Senn, and Mihai A. Petrovici. Deep 
reinforcement learning in a time-continuous model. Poster on the Bernstein Conference (2019 Sept 
18-20) - http://dx.doi.org/10.12751/nncn.bc2019.0168. (P1999). 

Dominik Dold, João Sacramento, Akos F. Kungl, Walter Senn, and Mihai A. Petrovici. An energy-based 
model of folded autoencoders for unsupervised learning in cortical hierarchies. Poster at the 
Bernstein Conference (2019 Sept 18-20) (P2358). 

6 Key Result KRc5.4: Deep episodic learning 

6.1 Overview of Outputs 
• Output 12: Sleep-memory interaction in a thalamo-cortical spiking model 
• Output 13: Visual memory consolidation during sleep 
• Output 14: Deep predictive coding model of the visual cortical hierarchy 

http://dx.doi.org/10.12751/nncn.bc2019.0168
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6.2 Sleep-memory interaction in a thalamo-cortical spiking 
model 

Cristiano CAPONE, Elena PASTORELLI, Bruno GOLOSIO, Hans Ekkehard PLESSER, Johannes SCHEMMEL, 
Pier S. PAOLUCCI 

CDP5 collaboration among SP3 (INFN, P92), SP7 (NMBU, P44), SP9 (UHEI, P47). INFN developed the 
model, defining with NMBU the necessary NEST features and with UHEI its porting to the BrainScalES 
architecture, planned for SGA3. The model has been released to the community through the 
EBRAINS Knowledge Graph.  

While disconnected from external input and from the duties associated with wakefulness, animal 
brains are free to optimize internal representations, create novel association and plans and 
recover optimal working points for reduced energetic costs of activity. We propose a functional 
role of slow waves during sleep for the optimization and normalization of memory 
representations and the creation of novel associations, that improve post-sleep classification 
performance. 

6.2.1 Research and Infrastructure 

Human brains spend about one-third of their lifetime sleeping. Sleep is present in every animal 
species that has been studied. This happens despite two apparent drawbacks: the danger caused by 
sleep, that diminishes the capability to defend from predators and other threats, and the reduction 
of time available for activities targeting immediate rewards (e.g. hunting or gathering food). Sleep 
must therefore serve essential functions (see also Outputs 3 and 13). 

In June 2019, Capone et al.  demonstrated that sleep-like slow oscillations improve visual 
classification in a thalamo-cortical spiking model through synaptic homeostasis and memory 
association. The corresponding NEST model has been released (component C2193) through the 
EBRAINS Knowledge Graph. A network of spiking AdEx neurons is trained (STDP plasticity) to encode, 
retrieve and classify images of handwritten digits. Then, sleep-like oscillations are induced. A 
differential homeostatic process is observed. Slow oscillations induce both an unsupervised 
enhancement of connections among groups of neurons associated to instances of the same class 
(digit) and a simultaneous down-regulation of stronger synapses created by the training. This is 
reflected in a hierarchical organisation of post-sleep internal representations. This promotes higher 
performances in post-sleep retrieval and classification tasks and creates hierarchies of categories in 
integrated representations. 

 
Fig. 14: Effects of slow oscillations on internal representation.  

(A) Activity correlation between all pairs of populations representing the single images before (left) and after (right) 
sleep. (B) Correlation difference between after and before sleep. (C) Histogram of correlation differences for 
populations encoding the same class (blue) and different classes (green). 

6.2.2 Impact and significance 

The “Sleep-memory interaction in a thalamo-cortical spiking model” has been released through a 
dedicated GitHub (see link) and through the EBRAINS KG. It represents a contribution of WP3.5 to 
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CDP5 (Plasticity). The combination of this simplified model with the final SGA2 results of WP3.2 
(Large-scale spiking simulations of slow-wave and asynchronous activity) prepares the ground for the 
planned SGA3 study of the interaction between brain states and memories in large-scale networks. 
Furthermore, it is conceivable that recurrent multi-area multi-level networks employed in future 
bio-inspired artificial-intelligence systems will need to enter specific brain-states to normalize, 
optimize and associate their internal representations. 

6.2.3 Components 

C0001, C0209, C1788, C2193  

6.2.4 Publications 

https://github.com/PierStanislaoPaolucci/2019thalCort-SNN-SO-AW-mem  

https://kg.ebrains.eu/search/?facet_type[0]=Model&q=paolucci#Model/97670076281ccbdc38ea2c2
d76a64e64 

Cristiano Capone, Elena Pastorelli, Bruno Golosio, and Pier Stanislao Paolucci. Sleep-like slow 
oscillations improve visual classification through synaptic homeostasis and memory association in a 
thalamo-cortical model. Scientific Reports, Vol. 9, No. 1 (2019). 
https://www.nature.com/articles/s41598-019-45525-0. DOI: 10.1038/s41598-019-45525-0 (P2024) 

6.3 Visual memory consolidation during sleep 
Nicolas DEPERROIS, Jakob JORDAN, Mihai A. PETROVICI, Walter SENN 

CDP5 collaboration between SP4 (UBERN, P71) and SP9 (UHEI, P47). Both partners contributed to 
the design of the model and simulation scenarios. The simulations were performed at UBERN. 

The ability of the visual cortex to build semantic representations along the cortical hierarchy 
remains ill-understood. This process, known as visual memory consolidation, is not 
instantaneously achieved during wakefulness and persists as the brain is disconnected from the 
external world, such as during sleep. Moreover, the presence of creative dreams during rapid-
eye-movement (REM) sleep suggests that the brain extracts the content of visual experiences by 
organizing them into semantic representations. Here, inspired by modern artificial intelligence, 
we argue that dreaming, especially during REM sleep, is a key process of visual memory 
consolidation allowing the emergence of semantic concepts. 

6.3.1 Research and Infrastructure 

From an early age, animals are able to recognize many objects in different situations without being 
explicitly taught how to achieve it. Thus, a natural role of the visual system is to build object-
specific representations independently of different factors of variations such as position, distance, 
and illumination. Semantic memories are believed to arise when episodic memories stored in the 
hippocampus are reactivated during Slow-Wave Sleep (for further functional aspects of slow-wave 
sleep, see Outputs 3 and 12). What if, however, memory consolidation was additionally facilitated 
via creative dreaming mainly occurring during REM sleep? 

A recent machine learning algorithm, called Generative Adversarial Networks (GANs) (Goodfellow et 
al., 2014), known for its capability to generate high-quality image samples, could potentially explain 
how feedback connections learn to generate realistic visual representations during REM sleep. This 
generated imagery can in turn facilitate the formation of semantic representations. Here, we 
explore this idea by proposing a possible implementation of GANs in cortical microcircuits and 
considering the discriminator and the generator as part of the feedforward pathway and the 
feedback pathway of the visual cortex, respectively (Fig. 15). Notably, we show that REM sleep is an 
ideal stage where both networks can be trained in an adversarial way to improve the generation of 
visual representations. 

https://github.com/PierStanislaoPaolucci/2019thalCort-SNN-SO-AW-mem
https://kg.ebrains.eu/search/?facet_type%5b0%5d=Model&q=paolucci%23Model/97670076281ccbdc38ea2c2d76a64e64
https://kg.ebrains.eu/search/?facet_type%5b0%5d=Model&q=paolucci%23Model/97670076281ccbdc38ea2c2d76a64e64
https://www.nature.com/articles/s41598-019-45525-0
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We train the model with the benchmark dataset CIFAR-10 (50,000 colour images with 10 categories) 
using the DCGAN architecture introduced by Radford et al. (2015). At each epoch, we evaluated the 
quality of the latent representations by training a linear classifier on top of the 100-dimensional 
latent vectors obtained by passing the CIFAR-10 images through the discriminator network. As a 
baseline, we consider the classification performance achieved with a randomly initialized 
discriminator. Pure autoencoder training (“wake phase” only) does not improve the quality of the 
high-level representations from the baseline (Fig. 16C). Hippocampal replay of previously encoded 
latent states during sleep (“NREM phase”) further improves the performance. Finally, a REM phase, 
in which random latent vectors generate previously unseen image samples, significantly improves 
the network’s latent representations, leading to better classification performance. Together, these 
preliminary results show that hippocampal-replay during SWS and creative dreaming during REM 
sleep can be essential to build semantic representations in the visual cortex. 

 
Fig. 15: Computational scheme of visual cortex for learning representations during 

wakefulness & sleep phases 
x represents an image, z is a vector representing the latent layer (IT cortex). Each pyramidal neuron (triangle) 
represents a layer of the visual cortex. Discriminator (green) and generator (blue) connections are part of the DCGAN 
architecture and project to the basal and apical tree of the pyramidal neurons. Synaptic plasticity is symbolized by 
red arrows indicating that learning occurs on a given connection. (A) During wakefulness (A1), x is processed via the 
D connections and reconstructed via the G connections. D connections learn to classify sensory activity as "real" while 
G connections learn to minimize the reconstruction error |x-G(D(x))|. During NREM sleep (A2), activity z produced 
during wakefulness is replayed from the hippocampal memory and cortical synapses adapt to minimizes the 
reconstruction error |z - D(G(z))|. (B) During the postulated REM sleep, the network is trained to reconstruct random 
cortical activity z which generates new visual imagery (B1), and during PGO waves, D connections learn to classify 
the generated dreams as "fake" while G connections do the opposite. The reversal of plasticity mimics the adversarial 
action of GANs. 
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Fig. 16: Effect of sleep on high-level representations in IT 

(A) Original image and reconstructions obtained via FF and FB connections. Reconstructed images match the original 
ones in terms of shape and semantic content, showing that cortex organizes its high-level representations so their 
feature represents objects. (B) Dreamed images G(z) used to consolidate IT representations during REM sleep. (C) 
Classification accuracy obtained by training a linear classifier on IT representations at each epoch of unsupervised 
learning for different sleeping conditions. 

6.3.2 Impact and significance 

We hypothesize that, besides consolidation of experiences, sleep provides an ideal state for our 
brains to improve their ability to extract semantic structure from sensory data. In contrast to 
previous approaches we provide a concrete model for visual memory consolidation during sleep that 
can potentially be mapped to cortical microcircuits. This provides a unique opportunity to connect 
high-level theories of cortical reorganization during sleep with circuit level dynamics. 

6.3.3 Components 

C1788, C2061, C2193, C2226, C2419, C2420, C2547, C2722  

6.3.4 Publications 

Early research stage - no publications yet. 

6.4 Deep predictive coding model of the visual cortical 
hierarchy 

Shirin DORA, Kwangjun LEE, Sander M. BOHTE, Cyriel M.A. PENNARTZ, Oliver STRUCKMEIER, Martin 
J. PEARSON, Walter SENN, and Mihai A. PETROVICI 

CDP5 collaboration between SP3 (UvA, P98; UWE, P101; AALTO, P2), SP4 (UBERN, P71), and SP9 
(UHEI, P47). UvA worked on developing a deep predictive neural network model for the visual 
cortical hierarchy. UBERN and UHEI helped in formulating the model and discussion of its properties. 
UWE and AALTO implemented the model in a biomimetic robot performing place recognition tasks. 
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Predictive coding provides a computational paradigm for modelling perceptual processing as the 
construction of representations accounting for causes of sensory inputs. Using biologically 
plausible principles, we developed a deep predictive-coding network that mimics properties of 
the visual cortical hierarchy. Furthermore, a multi-sensory extension of the model is developed 
and implemented in a biomimetic navigating robot. 

6.4.1 Research and Infrastructure 

Understanding brain mechanisms of perception requires a computational approach based on 
neurobiological principles. Many deep-learning architectures are trained by supervised learning from 
large sets of labelled data (see also Outputs 9 and 11), but biological brains must also be able to 
learn from unlabelled sensory inputs. We developed a Predictive Coding methodology for building 
scalable networks that mimic deep sensory cortical hierarchies, perform inference on the causes of 
sensory inputs and are trained by unsupervised, Hebbian learning (Figure 17). The network models 
are well-behaved, in that they faithfully reproduce visual images based on high-level, latent 
representations. When ascending the sensory hierarchy, we find that many response properties 
associated with neurons along the sensory cortical hierarchy are also exhibited by these networks, 
like increasing image selectivity, improved object-level generalizability capabilities in higher areas.  

Furthermore, we have extended this model to simultaneously handle data in multiple modalities. To 
study the inferential capacity of these multisensory networks, we used this network for a problem 
in robotics. More specifically, the representations inferred from a deep neural network trained using 
predictive coding on visual and tactile sensory inputs were used for the problem of place recognition 
in navigating robots (Figure 18). The results obtained from the model clearly show that the 
representations obtained from the model outperform the traditional models used for this problem. 
This work was done using simulation of the WhiskEye robot in Gazebo and work on application of the 
model in the actual platform (WhiskEye) is being carried out in collaboration with Martin Pearson at 
University of West England. 

 
Fig. 17: Architecture of the deep predictive coding network with receptive fields 

(A) A population of neurons having identical receptive fields is represented by three overlapping circles.  denotes 
the  population in the  area and  is the size of the receptive field of all populations in the  area. Both  
and  have been set to 3 here. For this value of , the populations  through  constitute the 
receptive field of the population  (their connections are represented by black lines). Similarly, for this value of 
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,  will be present in the projective fields of populations  through . (B) For processing images, 
neuronal populations in each area can be visualized in a two-dimensional grid. Each population exhibits a two-
dimensional receptive field (the receptive field of an example population in a higher-level area is shown in green). 
As a result, the receptive fields of two different populations can exhibit different overlaps horizontally and vertically. 
The receptive fields of two horizontally adjacent populations (black and blue) overlap completely in the vertical 
direction and partially in the horizontal direction. Similarly, the receptive fields of two vertically adjacent populations 
(black and brown) overlap completely in the horizontal direction and partially in the vertical direction. (C) An 
overview of the network with  for all areas. Sensory input is presented to the network through Area 0. Activity 
of neurons in areas 1-4 is represented by tiles in greyscale colours. The green square in a lower area denotes the 
receptive field of the population represented as a red tile in the higher area. 

Fig. 18: High level 
overview of 

MuPNet 
architecture. 

Visuo-tactile sensory 
data for a given scene is 
presented to the 
trained network and a 
latent representation of 
the multi-sensory 
stimuli is inferred. Note 
that the errors (dashed 
lines) are propagated 
forward and the 
predictions (solid lines) 
backwards. The 
resulting representation 
is used for place 
recognition. 

6.4.2 Impact and significance 

Our model shows how a complex neuronal phenomenology emerges from biologically plausible, deep 
networks for unsupervised perceptual representation. Based on the model, we developed MuPNet 
that extracts visuo-tactile latent representations for place recognition in a biomimetic rodent robot. 
The proposed predictive coding based approach for multimodal feature extraction is not limited to 
visuo-tactile processing, but also applicable to learning the joint latent representations from any 
co-incident multi-sensory inputs. 

6.4.3 Components 

C2060, C2061, C2226, C2228, C2321  

6.4.4 Publications 

Shirin Dora, Sander M. Bohte, Cyriel M.A. Pennartz. Deep predictive coding accounts for emergence 
of complex neural response properties along the visual cortical hierarchy. (2020).  
http://europepmc.org/article/PPR/PPR112163. bioRxiv doi: 10.1101/2020.02.07.937292. (P2345) 

Oliver Struckmeier, Kshitij Tiwari, Shirin Dora, Martin J. Pearson, Sander M. Bohte, Cyriel M.A. 
Pennartz, and Ville Kyrki. MuPNet: Multi-modal Predictive Coding Network for Place Recognition by 
Unsupervised Learning of Joint Visuo-Tactile Latent Representations. (2019). 
https://arxiv.org/abs/1909.07201. (P2129) 

  

http://europepmc.org/article/PPR/PPR112163
https://arxiv.org/abs/1909.07201
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7 Key Result KRc5.5: Learning to learn with 
reconfigurable networks 

7.1 Overview of Outputs 
• Output 15: Structural plasticity on BrainScaleS-2 

• Output 16: Evolving plasticity rules for spiking neural networks 

7.2 Structural plasticity on BrainScaleS-2 
Sebastian BILLAUDELLE, Benjamin CRAMER, Mihai A. PETROVICI, Korbinian SCHREIBER, David KAPPEL, 
Johannes SCHEMMEL, Karlheinz MEIER 

CDP5 collaboration between SP9 (UHEI, P47), SP4 (UBERN, P71), and Uni Goettingen (UGO, external 
partner). UHEI, UBERN, and UGO have jointly worked on the theory, network models, experimental 
setups and data evaluation. UHEI was responsible for the hardware implementation, as well as the 
commissioning of the system, providing the required hardware and software infrastructure. 

To be able to adapt to its inputs and learn new tasks, synaptic plasticity cannot be limited to 
only changing synaptic weights: the connectome itself undergoes continuous structural 
modifications during the lifetime of an individual. Since neuromorphic systems impose 
connectivity constraints on the implementable networks, one may again draw inspiration from 
their biological archetype. We propose an efficient implementation of structural plasticity and 
demonstrate its functionality on the BrainScaleS-2 system. The plasticity rule enables neurons 
to dynamically select a set of suitable synapses out of a pool of potential connections. This policy 
optimizes performance while at the same time maintaining a sparse connectome. 

7.2.1 Research and Infrastructure 

Synaptic plasticity is known to not only be limited to adjusting the strength of synapses; the 
connectome itself undergoes continuous change during the lifetime of an individual. By constraining 
the number of expressed synapses to enforce a certain level of sparsity, the nervous system appears 
to manage its spatial and energetic budget. Similar constraints apply to all physical information 
processing systems, with neuromorphic ones being no exception. In particular, the synaptic fan-in 
of silicon neurons is often limited. 

We implemented a synaptic update policy that incorporates structural plasticity, enabling neurons 
to dynamically select a set of suitable synapses out of a pool of potential connections that optimizes 
performance for a chosen task, while maintaining a sparse connectome. An STDP term potentiates 
correlated connections, a homeostatic regulariser limits post-synaptic firing rates and encourages 
synaptic competition, and a stochastic component induces exploration. In addition, a pruning 
condition is executed periodically, removing synapses with a weight below a certain threshold and 
randomly reassigning them. 

Structural plasticity is enabled by bundling k presynaptic sources and injecting them into a single 
synaptic row (Fig. 19A). Spikes are then distinguished by a label address identifying their respective 
source. Synapses hold a similar label in their local memory, which allows filtering of afferent spikes: 
only events with a matching address are forwarded to the home neuron. Pruning and reassignment 
of a synapse is simply implemented by changing this synaptic label. The reconfiguration is thereby 
fully local and, in particular, does not involve time-consuming sorting of routing tables or 
connectivity lists. 

We applied the above algorithm to a supervised learning task, where the network was trained to 
classify the Iris data set. The emulated plasticity rule led to self-organized reconfiguration of 
receptive fields (Fig. 19B). Ultimately, however, the learning rule enabled the network to achieve 
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near-perfect classification for different sparsity levels (Fig. 19C), demonstrating its ability to ensure 
a better utilization of synaptic resources without prior knowledge of the input data. 

 
Fig. 19: Self-organizing receptive fields through structural plasticity 

(A) Spike trains from different sources can be injected into a single synaptic row. Each synapse filters afferent spikes 
according to a locally stored label. (B) A network endowed with structural plasticity learns to discriminate between 
types of Iris flowers (dataset represented by coloured dots). The receptor distribution after training is adapted to the 
input data distribution. (C) Feature selection through structural plasticity allows the conservation of classification 
performance even for strongly enforced sparsity 1 − 1/k. 

7.2.2 Impact and significance 

The results demonstrate how to employ on-chip structural plasticity on BrainScaleS-2 and can be applied 
to other learning frameworks. This expands the set of experimental scenarios that are amenable to 
emulation on BrainScaleS-2 and also offers similar potential for other neuromorphic architectures. 

We have contributed to two well received and widely viewed mini-documentaries featured in articles 
and on the Youtube platform: Euronews, April 2019 (E2564, article 1, article 2), and Bloomberg’s 
“Moonshot” series, November 2019 (E2327, article, Moonshot trailer). 

7.2.3 Components 

C0349, C0457, C2420  

7.2.4 Publications 

Sebastian Billaudelle, Benjamin Cramer, Mihai A. Petrovici, Korbinian Schreiber, David Kappel, 
Johannes Schemmel, and Karlheinz Meier. Structural plasticity on an accelerated analog 
neuromorphic hardware system. (2019).  arXiv preprint https://arxiv.org/abs/1912.12047. (P2240) 

Sebastian Billaudelle, Yannik Stradmann, Korbinian Schreiber, Benjamin Cramer, Andreas Baumbach, 
Dominik Dold, Julian Göltz, Akos F. Kungl, Timo C. Wunderlich, Andreas Hartel, Eric Müller, Oliver 
Breitwieser, Christian Mauch, Mitja Kleider, Andreas Grübl, David Stöckel, Christian Pehle, Arthur 
Heimbrecht, Philipp Spilger, Gerd Kiene, Vitali Karasenko, Walter Senn, Mihai A. Petrovici, Johannes 
Schemmel, Karlheinz Meier. Versatile emulation of spiking neural networks on an accelerated 
neuromorphic substrate. arXiv preprint https://arxiv.org/abs/1912.12980, accepted for ISCAS 2020, 
2019 (P2241). 

7.3 Evolving plasticity rules for spiking neural networks 
Jakob JORDAN, Maximilian SCHMIDT, Walter SENN, and Mihai A. PETROVICI 

CDP5 collaboration between SP4 (UBERN, P71), SP9 (UHEI, P47) and external partner RIKEN Center 
for Brain Science (RIKEN). All partners contributed to the design of the theoretical framework, 

https://plus.humanbrainproject.eu/disseminations/2564/
https://www.euronews.com/2019/04/01/the-human-brain-project-slicing-brains-and-thinking-machines
https://www.euronews.com/2019/04/01/can-we-make-a-computer-like-the-human-brain
https://plus.humanbrainproject.eu/disseminations/2327/
https://www.bloomberg.com/news/articles/2019-11-01/how-the-human-brain-project-aims-to-improve-the-world-s-computers
https://www.youtube.com/watch?v=uwaV0uD4O-A&feature=youtu.be
https://arxiv.org/abs/1912.12047
https://arxiv.org/abs/1912.12980
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evolutionary model and simulation scenarios. The simulations and data analysis were performed at 
UBERN and RIKEN. 

The search for plasticity mechanisms in biological neural networks can be interpreted as an 
optimization problem, with researchers in various disciplines performing a distributed 
manual search based on functional performance, biophysical plausibility and experimental 
evidence. We propose to augment this manual search with automated optimization methods 
suitable for discovering biophysically plausible plasticity rules for spiking neural networks. 
In particular, we employ Genetic Programming to produce compact, interpretable, and 
generalizable plasticity rules. 

7.3.1 Research and Infrastructure 

Genetic Programming offers a unique opportunity to unite an automated search for plasticity rules with 
the desire to intuitively understand the plasticity rules discovered by the algorithm. We successfully 
applied a particular form of Genetic Programming to three different learning paradigms for spiking neural 
networks, error-driven, reward-driven and correlation-driven learning, evolving high-performance 
solutions. In particular, we reproduced previously known solutions for reward-driven learning, evolved 
approximations to well-known plasticity rules in error-driven learning (see also Outputs 2, 8, 9, 10 and 
11) and generated new hypotheses for STDP rules solving correlation-driven learning tasks. 

Our successful experiments demonstrate that Genetic Programming is a suitable method for generating 
interpretable hypotheses for plasticity rules in various learning paradigms. The analytical tractability of the 
resulting expressions allows one not only to understand the mechanism by which the evolved solution 
achieves a high task performance, but also to interpret the evolutionary steps by which the search progresses. 

7.3.2 Impact and significance 

Our results demonstrate the significant potential of Genetic Programming to support traditional 
research on plasticity in biological systems. The presented methods can be seen as a machinery for 
automatically generating, testing, or extending hypotheses on learning in spiking neural networks 
driven by problem instances and constrained by experimental evidence. This approach holds significant 
potential to accelerate progress towards deep insights into biological information processing. 
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Fig. 20: Cartesian Genetic Programming evolves an efficient reward-driven learning rule 

(A) Network sketch. A number of inputs project to a single output unit. Pre- and postsynaptic activity generate an 
eligibility trace in each synapse. Comparison between the output activity and the target activity generates a reward 
signal. Both of these are provided to the plasticity graph that returns a weight update. (B) Raster plot of the activity 
of input units (small black dots) and output unit (large black dots). Blue/green background indicate patterns for which 
the output should become in/active. Checkmarks indicate correct classifications. Shown are 8 trials at the beginning 
(left) and the end of training (right) using an evolved plasticity rule with high fitness. (C) Highest fitness per generation 
as a function of the generation number for multiple runs of the genetic algorithm. Labels are the rule at the end of 
the respective run. Light grey line indicates reward obtained with a gradient-descent rule. (D) Evolution of plasticity 
rules over one particular successful run. 

7.3.3 Components 

C0457, C1032, C2419, C2420, C2547, C2722  

7.3.4 Publications 

Manuscript in preparation. 

8 Key Result KRc5.6: Deep closed-loop sensorimotor 
learning 

8.1 Overview of Outputs 
• Output 17: Learning event-based visual representations for grasping on SpiNNaker 

8.2 Learning event-based visual representations for 
grasping on SpiNNaker 
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Jacques KAISER, Alexander FRIEDRICH, Camilo V. TIECK, Daniel REICHARD, Emre NEFTCI, Rüdiger 
DILLMANN, Guillaume BELLEC, Franz SCHERR, Elias HAJEK, Darjan SALAJ, Robert LEGENSTEIN, 
Wolfgang MAASS, Oliver RHODES, Steve FURBER 

CDP5 collaboration between SP10 (FZI, P52), SP9 (TUGRAZ, P55; UMAN, P63) and external partner 
University of California, Irvine (UCI). TUGRAZ derived the learning rule e-prop and assisted UMAN 
for the SpiNNaker implementation of e-prop. FZI developed a pattern classification architecture 
and integrated it in the robotic demonstrator. UCI assisted with the neural classification 
architecture originally implemented with the learning rule eRBP on a CPU.  

Three-factor synaptic plasticity rules approximating backpropagation-through-time for spiking 
neural networks were recently derived by CDP5 and the computational neuroscience 
community. Suited to neuromorphic hardware, these rules can learn online with asynchronous 
updates. We propose to evaluate the ability to efficiently learn spatio-temporal visual 
representations from an event-based vision sensor, using e-prop implemented on a SpiNNaker. 
This evaluation is integrated in a real robotic setup, where a gripper grasps objects according to 
detected visual affordances. This neuromorphic approach allows fast classification of the event 
stream while events are gathered by the sensor, thanks to the SpiNNaker live streaming feature. 

8.2.1 Research and Infrastructure 

The SpiNNaker implementation of the eligibility propagation (e-prop, Bellec et al., 2019) learning rule 
was integrated in a real-world robotic reaching and grasping experiment (Kaiser et al., 2019). The 
spiking network classifies event streams provided by a Dynamic Vision Sensor (DVS) into four classes: 
ball, bottle, pen and background. The DVS is mounted on a robotic head performing microsaccadic eye 
movements to perceive the static objects. The Schunk robotic arm and five-finger hand execute the 
corresponding predefined reaching and grasping motion. We show that e-prop learns quickly and 
accurately from the spatio-temporal event streams. Additionally, with its live spike streaming feature, 
SpiNNaker enables online classification as the events are emitted by the DVS. 

The network is trained in a supervised fashion from a rosbag dataset of 200 samples. A sample 
consists of the address events obtained during a microsaccade, with the corresponding object label. 
Every sample lasts around 700ms. Labels are encoded as spikes and error signals are computed within 
the network with a population of positive and negative error neurons. Error spikes are integrated in 
a dedicated error compartment in the learning neurons. The accuracy during training is over 99%, 
when the network receives a learning signal. More experiments have to be conducted to stabilize 
learning once the learning signal is removed. A test script for generic pattern classification was 
provided in the SpiNNaker code base. 

 
Fig. 21: The robotic closed-loop setup and the spiking neural network on SpiNNaker 

The spiking neural network is trained with e-prop from a dataset of event stream in a supervised fashion on a pattern 
classification task. At test time, inferences about the object class are made online with live spike injection, and the 
corresponding affordance is sent to the robot arm. Event streams are gathered from static scenes by performing 
microsaccadic eye movements with a dynamic vision sensor. 
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Fig. 22: Wiring of the dedicated learning synapses and network activity during learning 
Left: Positive and negative error neurons enable LTP or LTD respectively on the synapses of the learning neurons. 
The activity of these neurons depend on the label neurons and the output neurons. Right: spike train of the neural 
populations while learning to classify event streams on the SpiNNaker with e-prop. 

8.2.2 Impact and significance 

This development paves the way towards the integration of neuromorphic computing technology into 
the field of robotics. The advantage of neuromorphic technology in this setup over traditional 
computer architecture is the speed at which inference can be performed, while sensory data from 
the dynamic vision sensor is streamed to the network. 

8.2.3 Components 

C2420, C2704, C2719 

8.2.4 Publications 

The e-prop/SpiNNaker evaluation in a robotic setup is still in the stage of preliminary results. 

The corresponding evaluation of eRBP on CPU was published in a pre-print: Jacques Kaiser, Alexander 
Friedrich, Camillo V. Tieck, Daniel Reichard, Arne Roennau, Emre Neftci, and Rüdiger Dillmann. 
Embodied event-driven random backpropagation. (2019). arXiv preprint arXiv:1904.04805. (P2519) 

The original e-prop pre-print: Guillaume Bellec, Franz Scherr, Elias Hajek, Darjan Salaj, Robert 
Legenstein, & and Wolfgang Maass. Biologically inspired alternatives to backpropagation through time 
for learning in recurrent neural nets. (2019). arXiv preprint https://arxiv.org/abs/1901.09049. (P1836) 
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9 Conclusion and Outlook 
In order to further incentivise collaboration among HBP partners, several Co-Design Projects were 
launched at the beginning of SGA1. Their aim was to define explicitly collaborative objectives that would 
link research efforts across multiple SPs. Initially centred around the topic of plasticity, CDP5 was further 
refined and refocused onto the subject of biological deep learning during the transition from SGA1 to 
SGA2. 

Over these four years, an organizational and scientific structure has emerged that reflects, on one hand, 
the scientific goals of the involved partners, and the incentives generated by the funding scheme (or 
lack thereof) on the other. CDP5 represented fertile soil for interactions between computational 
neuroscientists working on functional neuronal networks and developers of efficient neuromorphic 
substrates capable of implementing these models. Thus, our research was mainly driven by 
collaborations between SP4 and SP9, with important contributions from more computationally oriented 
groups in SP3, SP7 and SP10. 

Unsurprisingly, the discontinuation of dedicated funding for CDPs in SGA2 had noticeable consequences. 
Organization and management became significantly more difficult, as it had to rely on SP-dedicated 
resources; the significant strain caused by the substantial reporting requirements and administration 
overhead, along with the difficulties surrounding the repeated reorganization of the project, left some 
partners unfortunately, though understandably, disappointed, leading to losses that will be felt in SGA3. 
With respect to science, the lack of funding led several other contributors to discontinue their efforts in 
CDP5 already during SGA2. This was, however, already foreseen during the planning phase for SGA2. 
While the loss of scientific expertise was certainly regrettable, it left behind a true coalition of the 
willing, capable of efficient teamwork within a more focused project. 

Despite these difficulties, collaboration throughout SGA2 continued to be an exceptionally fruitful one 
and, in many aspects, even a more productive one, thanks to the foundations laid out in SGA1. Many of 
the previously initiated lines of research have led to important insights into biological and biologically-
inspired learning, significantly advancing the state of the art, as evidenced by a number of well-received 
publications and a high visibility at international conferences and workshops. Even more importantly, 
new ideas have spawned new projects, which, even in their early stages, have already sparked interest 
in the community. 

The work in CDP5 will be continued in SGA3 under the aegis of WP3, merging our efforts with those from 
CDP4. The topic of biological deep learning is deeply and explicitly embedded into the research plans of 
WP3. We welcome this renewed commitment of the EC to backing collaborative research in SGA3 and 
believe to have made good use of the associated restructuring process within the HBP in order to continue 
the successful pursuit of our common scientific goals. 
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