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Abstract

Recent research put forward the hypothesis that eye movements are integrated in memory rep-

resentations and are reactivated when later recalled. However, “looking back to nothing” during

recall might be a consequence of spatial memory retrieval. Here, we aimed at distinguishing

between the effect of spatial and oculomotor information on perceptual memory. Participants’ task

was to judge whether a morph looked rather like the first or second previously presented face.

Crucially, faces and morphs were presented in a way that the morph reactivated oculomotor and/

or spatial information associated with one of the previously encoded faces. Perceptual face mem-

ory was largely influenced by these manipulations. We considered a simple computational model

with an excellent match (4.3% error) that expresses these biases as a linear combination of

recency, saccade, and location. Surprisingly, saccades did not play a role. The results suggest that

spatial and temporal rather than oculomotor information biases perceptual face memory.

Keywords: Eye movements; Memory; Perceptual memory; Cognitive model

1. Introduction

Most people will have experienced a situation in which they misplaced an object, for

example, keys or glasses, in absent-mindedness. One common strategy to find lost objects

is to turn around and retrace the path on which the object might have gotten lost. In

memory tasks, by applying the “method of loci,” participants mentally place to be
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memorized material at locations on a familiar path, for example, the way home from

work. During recall, the path is mentally rewalked to facilitate memory recall. Similarly,

it has been demonstrated that the eyes “walk back” to the encoding location when we

recall or mentally visualize a previously seen object (Johansson & Johansson, 2014;

Laeng & Teodorescu, 2002; Martarelli & Mast, 2013; Spivey & Geng, 2001). Here, we

ask whether looking back to a location where information has been encoded biases per-

ceptual face memory.

Some studies have demonstrated that looking back to the encoding location during

memory retrieval is functional for recall. For example, memory recall is impaired during

fixation compared to free viewing (Johansson, Holsanova, Dewhurst, & Holmqvist, 2012;

Laeng, Bloem, D’Ascenzo, & Tommasi, 2014; Laeng & Teodorescu, 2002) and when the

eyes are guided to a position incongruent with the encoding location compared to congru-

ent locations (Johansson & Johansson, 2014; but see Martarelli & Mast, 2013). These

studies support the hypothesis that eye movements are stored in integrated memory repre-

sentations and are co-activated when memories are retrieved (Laeng & Teodorescu,

2002).

Interestingly, during recall or mental imagery, the eyes do not only look back to the

encoding location but sometimes reenact the entire “scan-path” produced during stimulus

viewing (Brandt & Stark, 1997; Spivey & Geng, 2001). Similarly, scanpaths during

encoding and recognition (Foulsham & Underwood, 2008) or image re-viewing (Harding

& Bloj, 2010; Humphrey & Underwood, 2008; Underwood, Foulsham, & Humphrey,

2009) often closely match. The “scanpath theory” proposed by Noton and Stark (1971)

predicts that during pattern recognition, the sequence of fixations is compared to the

stored sequence enacted during encoding. When the paths match, the pattern is recog-

nized. This theory rests upon early ideas of Hebb (1968), namely, that a mental image is

not generated at once but in parts, fixation after fixation.

Recently, Foulsham and Kingstone (2013) conducted a study to experimentally test the

scanpath theory. Participants encoded scenes and later performed a recognition task.

Although participants looked back to fixated positions during recognition, they did not do

so in the same temporal order (Experiment 1). Moreover, recognition accuracy did not

differ between trials on which scanpaths were reenacted in the same compared to differ-

ent temporal order as during encoding (Experiment 5), hence emphasizing the role of spa-

tial information during recognition memory.

Such spatial information might explain why previous studies found that during recall,

people perform eye movements back to the encoding location. For instance, if an elephant

was encoded in the lower right quadrant of the screen, participants will be more likely to

look back into this area when later recalling this animal on a blank screen (Johansson &

Johansson, 2014). To date, it remains unclear whether this looking back is based on the

reactivation of oculomotor information that is integrated into memory representations or,

alternatively, whether these eye movements are a consequence of spatial memory recall.

In this study we aimed at disentangling effects of oculomotor and spatial information

on perceptual memory using a novel task. The basic principle of our task lies in the

assumption that a memory trace of previously encoded information influences the
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perception of an ambiguous stimulus. On each trial, participants were presented with two

different faces at two different locations on the screen. Then, a morph consisting of the

exact average of the two faces appeared and participants were to judge whether it looked

more like the first or second face. Crucially, the morph was the exact average of the two

faces so that there were no correct or wrong responses. We expected that participants’

judgments would be biased by the experimental manipulations, that is, by the reactivation

of oculomotor and/or spatial information associated with one of the two faces during

encoding. Oculomotor information was reactivated by presenting fixation crosses and

morphs in a way that participants enacted a similar saccade as during encoding of specific

face while spatial information was reactivated by presenting the morph at the very loca-

tion where a specific face has been encoded. We propose a computational model express-

ing these response biases as a function of individual contributions of oculomotor

information (saccades), spatial information (location), and recency.

2. Methods

2.1. Participants

A total of 153 participants were tested. Each participant was tested under only one of

the four conditions. Prior to the experiment, all participants gave written informed con-

sent to participate. Participants were treated in accordance to the protocol approved by

the Faculty of Human Science of the University of Bern and conformed to the “Ethical

Principles of Psychologists and Code of Conduct” of the American Psychological Associ-

ation (2002).

2.2. Material

A total of 96 gray-scale face images were derived from the FERET Database (Phillips,

Moon, Rizvi, & Rauss, 2000; Phillips, Wechsler, Huang, & Rauss, 1998). The 96 images

were arranged in pairs of the same gender and approximately the same age. We then cre-

ated the exact average of each pair by morphing the faces using PsychoMorph computer

graphics software (Burt & Perrett, 1995; Tiddeman, Burt, & Perrett, 2001). All images

were aligned by the eyes and cropped ovally using Photoshop. The final image subtended

a visual angle of approximately 7 9 8° (image size of 6 9 7 cm at a viewing distance of

50 cm). To suppress afterimages of the faces, a mask (see Fig. 1) was created for each

face from the image itself using a Matlab script. Fixation crosses were presented in black

36pt Courier font.

2.3. Procedure

All experimental conditions were programmed in E-Prime (Psychology Software Tools

Inc., Pittsburgh, PA, USA; http://www.pstnet.com/prime) and were run on personal
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laptops. Participants were assigned to one of four conditions and were told that the study

is about face perception. The instruction was the same for all conditions. Participants

were informed that two faces would be presented after each other, which they were to

memorize. Then, a third face would be presented and their task would be to judge

whether it looks more like the first or second face. Responses were given by pressing key

“1” on the keyboard for first face responses and key “2” for second face responses while

Fig. 1. Experimental procedures of the four conditions. On each trial, participants were presented with a first

face in Context 1 (specific saccades and/or locations), a second face in Context 2, and the average of them

(morph) with (a) saccades and location, (b) only the saccade, or (c) only the location of either Context 1 or

Context 2. Finally (d), all face images were presented centrally without triggering saccades. In all four condi-

tions, participants were asked to judge whether the morph looks more like the first or second face.
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response time was not emphasized. Importantly, participants were encouraged to always

fixate the fixation cross between the faces as the fixation cross determined saccades. As

described in Appendix A, it is likely that participants followed this instruction.

Each of the four conditions comprised 48 trials. One trial consisted of nine slides: a

blank screen for 1,000 ms, a central fixation cross for 1,000 ms, the presentation of the

first face for 2,000 ms, a mask for 1,000 ms, a central fixation cross for 1,000 ms, the

presentation of the second face for 2,000 ms, a mask for 1,000 ms, a fixation cross for

1,000 ms, and finally the presentation of the morph until a response was given. Through-

out the experiment, the background was white. The procedures of all four conditions are

illustrated in Fig. 1. The same pairs were used in all four conditions but appeared in a

random order. For each pair, the face that appeared first on each trial was randomly

chosen.

2.3.1. Saccade plus location condition
Forty-four participants (28 women, Mage = 32.2 years, SD = 15.87, range = 19–70)

were tested in this condition. In the saccade plus location condition, the morph was pre-

sented in a way that both the location and the saccade to one of the encoded faces were

repeated. Before encoding each of the two faces at a different location on the screen, par-

ticipants had to fixate a central fixation cross to execute a specific saccade. The morph

was then presented at either of the two locations and was also preceded by a central fixa-

tion cross. In half of the trials the morphed face appeared in the context of the first face

(same saccade and location as the first face), in the other half of the trials it appeared in

the context of the second face (same saccade and location as the second face). We

expected a higher probability for participants to judge the morph as looking more similar

to the face that was encoded with the same saccade and at the same location compared to

the other face.

2.3.2. Saccade-only condition
Thirty-two participants were tested in the saccade-only condition (15 women,

Mage = 34.25 years, SD = 16.25, range = 18–67). In this condition, we presented the

morph so that one of the two saccades executed during encoding was repeated but the

morph appeared in a new location. Thus, on each trial the two faces appeared at a periph-

eral location on the screen preceded by a central fixation cross. The morph then appeared

centrally at all times but was preceded by a peripheral fixation cross in a way that a sac-

cade enacted during encoding was repeated. For instance, if the first face was encoded in

the upper right corner, participants executed a saccade from the center diagonally toward

the upper right corner during encoding. If the morph should then be presented with the

same oculomotor vector, a fixation cross was presented in the lower left corner and the

morph appeared centrally. In half of the trials, the morph was presented with the saccade

enacted during encoding the first face (i.e., in Context 1) without repeating the location.

In the remaining trials, only the saccade but not the location associated with the second

face was repeated. We expected a higher probability for participants to judge the morph

as resembling the face that was encoded with the same saccade.
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2.3.3. Location-only condition
Forty-three participants (24 women, Mage = 29.88 years, SD = 10.76, range = 18–60)

were tested in the location-only condition. Here, the morph was presented either at the

same location as the first or second face, whereas no saccade was executed immediately

beforehand. Thus, like in the previously described conditions, two faces were encoded at

different locations on the screen, preceded by a central fixation cross, so that saccades

were executed. The morph then appeared either in the location of the first or second face,

but crucially, the preceding fixation cross appeared in exactly the same position as the

morph did. Thus, participant’s eyes were already at the very location where the morph

was presented and no saccade was elicited. In half of the trials, the morph was presented

in the location of the first face (i.e., Context 1), in the other half the morph was presented

in the location of the second face (i.e., Context 2). We expected a higher probability for

participants to judge the morph as the face that was encoded in the same location.

2.3.4. Recency only
Finally, 34 participants were tested in this condition (24 women, Mage = 24.29,

SD = 5.04, range = 19–45). To control for biases other than spatial or oculomotor influ-

ences, all faces and fixation crosses as well as the morph appeared in the center of the

screen in this condition. As saccades and location did not vary between encoded faces,

we expected participants’ judgments to only depend on recency (a generally higher pro-

portion of second face responses compared to first face responses).

3. Results

As the morphs were comprised of exactly 50% of each previously encoded face, there

was no correct response for perceptual judgments. Instead, we were interested in the pro-

portion of biased responses, that is, the probability of judging the morph as resembling

Face i when the context was repeating both saccade and location, only saccade, or only

location of the face presentation i (i = 1, 2). In the recency-only condition, responses

were not biased by spatial or oculomotor information, but only by recency. The descrip-

tive data are summarized in Table 1A.

3.1. Statistical analysis

To analyze differences in response biases depending on the context (experimental con-

dition), a mixed-effects analysis of variance (ANOVA) was computed with Face (first face

and second face) as a within-participants factor and condition (saccade plus location, sac-
cade only, location only, and recency only) as a between-participants factor. The results

revealed significant main effects of face (F(1, 149) = 207.287, p < .001, g2
p ¼ 0:582) and

of condition (F(3, 149) = 37.811, p < .001, g2
p ¼ 0:432). The main effect of face indi-

cates more biased responses for Face 2 compared to Face 1. Tukey corrected post hoc

comparisons revealed more biased responses in the saccade plus location condition
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compared to saccade-only (p < .001) and recency-only (p < .001), and more biased

responses in the location-only condition compared to saccades-only (p < .001) and re-
cency-only condition (p < .001). No other comparison reached significance (all

p’s > .473). Face and condition interacted (F(3, 149) = 6.674, p < .001, g2
p ¼ 0:118).

Tukey post hoc comparisons of a single-factor ANOVA on the differences between response

biases (proportion of second face minus first face responses) revealed larger differences

in the saccade-only compared to the location-only (p < .001) and the recency-only condi-

tion (p = .023). No other comparison reached significance (all p’s > .113).

3.2. Logistic regression model

To predict whether participants selected the biased or unbiased face for the morph, we

considered the logistic function

qðxÞ ¼ 1=ð1þ e�xÞ

and fitted the three parameters (r, s, l) in a way that the conditional probabilities given in

Table 1B match the empirical means in the various conditions. The average error of the

logistic regression model was 8.1% (see Appendix B). Parameter estimates indicate that

oculomotor information did not play a role (r = 0.65, s = �0.02, l = 0.54; see Fig. 2).

Together, these predictors were reliable in distinguishing between selecting the biased or

unbiased face for the morph.

The results of the logistic regression analysis suggest that morph perception was biased

by spatial (location) and temporal (recency) but not oculomotor (saccade) information,

that is, s � 0. However, with the choice probabilities as defined by the logistic regres-

sion, the same predictions result for the recency-only and the saccade-only condition (be-

cause r(�r) � r(�r + s), if s � 0, see Table 1). However, other parameterizations of

the choice probabilities as a function of the three parameters (r, s, l) are conceivable.

Below we develop a computational model that explains decision-making based on Luce’s

axiom of choice.

3.3. Computational model

Compared to the logistic regression analysis, the following computational model yields

a more accurate description of the empirical data using the same three context variables

saccade (s) and location (l) and recency (r) that were systematically modified in the four

experiments. As for the logistic regression model, we determined for each condition the

evidence I1 and I2 for judging the morph as resembling more Face 1 or Face 2 by a linear

combination of these parameters, Ii = 0.5 � r � s � l. Because the morph contains

exactly 50% of information of each face stimulus, the probability of selecting either face

in the absence of experimental biases is 0.5. But as the two faces were presented after

each other, the temporal order introduced a recency bias that favored second face

responses. In our model we accounted for this bias by adding r in the evidence (I2) for

1540 A. L. Wantz et al. / Cognitive Science 41 (2017)



the recent Face 2 and subtracting r in the evidence (I1) for the remote Face 1. Similarly,

saccadic and location cues additionally biased the probabilities depending on a match or

mismatch between face encoding and morph decoding. This was taken into account by

adding or subtracting the context variable (s and/or l) in the evidence (Ii), depending on

the presence or absence of the saccade or location cue, respectively.

In conditions involving spatial and/or oculomotor variations, the morph was presented

in either the context (saccade and/or location) of the first or second face. In the saccade
plus location condition, the context (saccade and location) was either the same as or com-

plementary to the first or second face stimulus, yielding terms +s+l and �s�l, respec-
tively, in the conditional probabilities given in Table 1C. In the saccade-only condition,

the context only allowed the saccade to vary, whereas the location was always new

(yielding terms +s�l and �s�l). In contrast, in the location-only condition, no saccades

Fig. 2. Decision probabilities for the human subjects and their best fits by the computational model and the

logistic regression. The seven conditional probabilities as a function of the recency, saccade, and location

parameters (r, s, l) are defined in Table 1C. The dashed lines reflect chance level (0.5) and the recency effect

as quantified by the recency-only condition. The relative error in fitting the seven choice probabilities is 4.3%

for the computational model and 8.1% for the logistic regression. In addition, the computational model

explains 72% of the variance in individual decision probabilities across the human subjects (see also

Appendix B).

A. L. Wantz et al. / Cognitive Science 41 (2017) 1541



were performed before perceiving the morph, but the location varied (yielding terms

�s+l and �s�l). Note that because during recall saccades that have been enacted during

encoding were missing in the location-only condition, we subtracted the saccade term

(�s) to obtain the choice probabilities. Finally, in the recency-only condition, no saccades

were performed and the location was always the same (yielding a term +l both for the

repetition of context 1 and context 2). The logistic regression model calculates choice

probabilities from the differences in the evidences, for instance, p1 = r (I1�I2). In our

computational model we now convert evidences into choice probabilities by Luce’s

choice axiom (Luce, 1959, 1977), that is, by normalizing the individual evidences by

their sum, pi = Ii/(I1 + I2). In Luce’s axiom, the ratio between the choice probabilities is

just the same as the ratio between the evidences. The experimental conditions were char-

acterized by the respective seven conditional probabilities (Table 1C) and their counter

probabilities (not shown, except for the recency-only condition).

For instance, in the saccade plus location condition the evidences for Face 1 and Face

2 are I1 = 0.5�r + s + l and I2 = 0.5 + r � s � l, respectively, and the conditional

probability p for identifying the morph as Face 1, fId1, given that the morph was pre-

sented in the context of Face 1, c1, is calculated by, P(fId1|c1) = Ii/
(I1 + I2) = 0.5�r + s + l. Note that in a given context c one identifies either Face 1 or 2,

and the two probabilities P(fId1|c) and P(fId2|c) therefore sum up to one, P(fId1|c) + P
(fId2|c) = 1 (as a consequence, we only show one of these probabilities in Fig. 2). In the

saccade-only condition, where the morph’s presentation always elicited a saccade associ-

ated with either of the two faces, the morph’s location was always new (central). This

yields evidences I1 = 0.5�r + s� l and I2 = 0.5 + r�s�l, respectively, and the condi-

tional probability p(fId1|c1
�l) for identifying the morph as Face 1 given the same context

calculates to P(fId1|c1
�l) = Ii/(I1 + I2) = (0.5 � r + s�l)/(1�2l). To justify the notation

of the context, note that in the saccade-only condition the location of the morph is always

different from the individual face locations (hence the superscript �l), and in the location-
only condition no saccades to the morph are executed (hence the superscript �s).

3.3.1. Model comparison
Although both the logistic regression and the computational model closely reproduce

the average of the seven independent decision probabilities with a low error, the compu-

tational model better captures the effects of recency, location, and saccades. The compu-

tational model achieved an average error of only 4.3% as compared to the average error

of 8.1% for the logistic regression model (see Appendix B).

Despite the fact that the models make predictions that are roughly in the same range in

terms of average accuracy across all conditions, they substantially differ in predicting

choice probabilities for the recency-only and the saccade-only conditions (Fig. 2). In the

saccade-only condition, the morph appeared in a new, previously unoccupied location

(centrally, whereas the faces were encoded peripherally). This implies that the evidence

both for Face 1 and Face 2 is reduced by �l, I1 = 0.5�r + s�l and I2 = 0.5 + r + s�l.
Because the logistic regression model calculates the choice probabilities as difference in

evidences, p1 = r(I1�I2) and p1 = r(I2�I1), the location parameter l is canceled out in
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the argument of the logistic function r. This is different for Luce’s choice axiom. When

reducing both evidences by the same amount, Luce’s choice axiom disproportionally

favors the more likely option, that is, the choice option that is favored even more after

both evidences were symmetrically reduced.

The same effect is also observed in the experiment: Face 2 which is favored in the re-
cency-only condition is favored even more in the saccade-only condition, where the loca-

tion of the morph is always new (Figs 1 and 2). In other words, the probability for

perceiving the morph as Face 1 when context 1 is repeated is lower in the saccade-only
condition compared to the recency-only condition, even though a saccadic cue could be

expected to increase this probability. A negative saccade parameter s cannot explain this

probability decrease as it would also decrease the choice probability for Face 2 given

context 2 (which is not the case, see data in Fig. 2). As recency contributed comparably

to the choice probabilities in both conditions (�r), it is the location parameter that criti-

cally accounts for the differences in choice probabilities. While in the saccade-only con-

dition, the morph location was always new (expressed in �l in formula of the neuronal

model, see Table 1), in the recency-only condition location remained congruent between

encoding and morph presentation (expressed in a +l). Note that in the logistic regression

model no such location dependence can be expressed as the location parameter l cancels
in the argument of the regression function r (Table 1). Any non-zero value of s (positive
or negative) would decrease rather than increase the difference between choosing Face 1

in context 1 and choosing Face 2 in context 2 (because r(r + s)�r(� r + s) < r(r)�r
(�r) for s 6¼ 0, and so the best choice for the saccade parameter is s � 0). Hence, while

the neuronal model closely fits the empirical data, the logistic regression model fails.

3.3.2. Best parameter fit
The parameters that minimized the mean squared error of the choice probabilities

across the four conditions were r = 0.13 � 0.06, s = �0.01 � 0.05, and l = 0.12 � 0.06

(mean � SD, see Fig. 2). Interestingly, like in the logistic regression model, the best fit

(see Fig. 2 for a comparison between empirical and modeled data) was achieved when

the influence of the saccade was approximately zero (s = �0.01 � 0.05 SD). Recency
(r = 0.13 � 0.06) and location (l = 0.12 � 0.06) seemed to be almost equally influential.

For example, the probability in the saccade plus location condition for selecting the first

face when the morph was presented with the saccade and in the location of face1 is calcu-

lated to be 0.48 (= 0.5�0.13�0.01 + 0.12). The parameter distributions obtained by the

model when fitting the choice probabilities for each of the 44 human subjects individually

are shown in Fig. 3.

3.3.3. Neural network architecture
To gain insight into the possible neuronal mechanisms that produce the response biases

in our decision task, we propose a model that includes the process of face identification.

The network is composed of three layers (Fig. 4). The first layer encodes the face image

together with the image location and a possible saccade to that location. The second layer

encodes the identity of the face that is determined based on the sensory and motor inputs
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from the first layer. The third layer encodes a label associated with the identity of a face.

In our case, each face is associated with the label of being presented either as the first or

second stimulus in a given experimental trial.

The first layer consists of N = 96 face units facen (n = 1. . .96) that encode the face

images, four saccade units sacn (n = 1. . .4) that encode eye movements in the four diago-

nal directions, and five location units locn (n = 0. . .4) that encode the central and the four

diagonal stimulus positions (upper left, upper right, lower left, and lower right). These

units are either active (= 1) or inactive (= 0). During encoding of Face 1 or Face 2, one

specific face unit becomes activated. Perceiving the morph (average of Face 1 and Face 2)

fId1 fId2 

face1 face2 loc1 loc2 sac1 sac2 loc0 

STM synapses 

f f s 

LTM synapses 

l -l 
-l 

-s -s 

l -l 
 -l 

s 

-1 -1 

1 labels

face  
identification

sensorimotor 
encoding 

2 

Fig. 4. Neuronal implementation. A face identification (fId) layer that acts as a winner-takes-all network

receives input from a sensory-motor layer and activates one of the label units “first face” or “second face”

that represent the network decisions for a specific trial. The units in the sensory-motor layer encode the face

image, the saccade, and the location. Their activity (1 or 0) is transmitted through short-term memory (STM)

synapses and long-term memory (LTM) synapses to the fId units (Eq. 1). The synaptic strengths of these con-

nections are learned by a Hebbian rule.

Fig. 3. Parameter distributions for the computational model (44 parameter triples [r, s, l]) that fit the choice

probabilities of the 44 subjects. For each of the 44 datasets, the parameters were adapted to minimize the

mean square error for the seven choice probabilities from Fig. 2. The parameter distributions reflect the

interindividual differences on how recency, saccade, and location information affect the choice probabilities.

1544 A. L. Wantz et al. / Cognitive Science 41 (2017)



then activates both of the corresponding face units. When perceiving a face image, there

is at most one saccade unit (if at all) and one location unit active. The face identity layer

consists of N = 96 mutually competing face identity units (fIds), corresponding to the N
original face images used in the experiment. This second layer represents a winner-takes-

all network. The total input Ij to face identity unit j is the weighted activity of the face,

saccade, and location units in the first layer,

Ij ¼
XN
n¼1

fjnfacen þ
X4
n¼1

sjnsacn þ
X4
n¼0

ljnlocn ð1Þ

where fjn, sjn, and ljn represent the synaptic strengths from the presynaptic face, saccade,

and location unit m, respectively, to the postsynaptic unit j. The face identity unit j with
the strongest input, Ij > Ii for i 6¼ j, is activated first, and all other units are suppressed,

fIdj = 1, whereas fIdi = 0 for i 6¼ j, j = 1. . .N. The third layer consists of only two units

that encode the sequential position of the corresponding face. Each unit represents a pop-

ulation of neurons.

The synaptic strengths were set as shown in Fig. 4, motivated by a Hebbian plasticity

rule (see Appendix C). More specifically, we set the synaptic weight from the facen neu-

ron to the jth identity neuron fIdj to fjn = f, the weight from the saccade neuron sacn to

fIdj to sjn = s and to fIdi (i 6¼ j) to sin = �s, and correspondingly, the weight from the

location neuron locn to fIdj to Ijn = l and to fIdi (i 6¼ j) to Iin = �l.

3.3.4. Decision-making
When presented with a morph the two face units facej and facek that compose the

morph are activated. The corresponding fIds receive the total input Ij and Ik and compete

to become activated. We assume that a possible morph identity unit is suppressed by

some external “task unit.” For convenience we sequentially renumber these involved

faces with 1 and 2. Based on Eq. 1 (see also Fig. 4), the total input to fId1 and fId2 dur-

ing the presentation of the morph in a specific context has the form

I1 ¼ 0:5� r � s� l and I2 ¼ 0:5þ r � s� l ð2Þ

These synaptic inputs correspond to the evidences for Face 1 and Face 2 in the compu-

tational model. As before, the � signs in Ij indicate whether the saccade and the location

associated with the morph are the same or opposite as during the presentation of face j.
More specifically, Eq. 2 is obtained by taking into account that at the time of the morph

presentation (a) the involved face units are equally strongly activated, face1 = face2 = 1,

(b) the connection strength from face1 to fId1 decayed to f11 = 0.5�r, while the connec-

tion strength from face2 to fId2 is f22 = 0.5 + r, and (c) the executed saccade and the

image location can be the same (+) or different (�) as it was during the presentation of

Face 1 or Face 2, respectively. The signed pair of saccade and location represents the

context in which a morph image is presented, c = (�s, �l), as compared to a preceding
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face presentation. The probability that fIdi (with i=1, 2) is activated and hence facei is

chosen when presenting the morph in context c becomes

PðfIdijcÞ ¼ Ii
I1 þ I2

ð3Þ

These probabilities for i = 1 and 2 represent a neuronal implementation of Luce’s

axiom of choice (Luce, 1959, 1977), as introduced in the computational model (s. also

Table 1C). In the context of a stochastic neuronal decision-making, the synaptic drive Ii
causes the neuronal population fIdi to stochastically fire with Poisson rate Ii (e.g., Church-
land et al., 2011). The probability of the population fIdi firing first is given by Eq. 3, jus-

tifying Luce’s axiom in neuronal terms. Once fIdi is activated, the associated label unit i
gets activated and the decision for Face 1 or Face 2 is made.

4. Discussion

Based on previous findings demonstrating that memory retrieval is impaired when eye

movements are restricted (e.g., Johansson & Johansson, 2014; Laeng et al., 2014), the

goal of this study was to investigate distinct effects of oculomotor and spatial information

on perceptual decision-making. In four conditions, participants encoded two different

faces and were asked to judge whether the exact averaged image of the two faces

(morph) looks more like the first or second face. Participants were more likely to perceive

the morph as the face that was encoded with the same saccade or in the same location or

both. However, these response biases occurred only when recent contextual information

(saccade and/or location) was repeated. The recency-only condition confirmed that partici-

pants were more likely to perceive the morph as resembling the face that was encoded

directly before the morph, thus demonstrating a recency effect. We propose a computa-

tional model explaining the response biases as a combination of memory (depending on

recency), spatial, and oculomotor information. Surprisingly, predictions were best when

oculomotor information was disregarded. These findings suggest that spatial rather than

oculomotor information influences perceptual memory.

Previous studies demonstrated that during recall, the eyes are likely to move back to

where the stimuli have been encoded (Laeng & Teodorescu, 2002; Martarelli & Mast,

2013; Spivey & Geng, 2001) and that these eye movements are functional for memory

recall (Johansson & Johansson, 2014; Johansson et al., 2012; Laeng & Teodorescu,

2002). However, impairments in memory performance due to gaze manipulation in terms

of the instruction (i.e., to fixate a cross vs. free viewing or to look only in an area con-

gruent vs. incongruent to the encoding location) can be explained by a spatial mismatch

between encoding and recall rather than by oculomotor mechanisms.

The computational model we suggest (that incorporates Luce’s axiom of choice) has

the advantage of differentially accounting for contributions of spatial and oculomotor

information, providing insight into the effects of spatial location and eye movements on
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perceptual memory. Moreover, the suggested neural network architecture provides a plau-

sible explanation of how these factors influence memory retrieval. This network imple-

ments the idea that visual, spatial, semantic (Ferreira et al., 2008; Richardson et al.,

2009), and potentially also oculomotor information (Laeng & Teodorescu, 2002) are inte-

grated in a single representation. It also shows that data modeling that is guided by a

possible neuronal implementation can more faithfully capture the dependency of

decision-making on context variables than a standard statistical approach may do. In fact,

compared to the logistic regression model, reconstruction errors for the averaged choice

probabilities were only half the size in the computational model.

Inference statistics (ANOVA) imply that perceptual memory is biased by location and/or

saccades only when the morph contains contextual information (saccade and/or location)

of the face that was encoded most recently. This can lead to the erroneous conclusion that

the results simply reflect a recency effect, that is, participants were generally more likely

to perceive the morph as the face that was encoded most recently, independent of spatial

and oculomotor information (recency-only condition). Indeed, recency effects are not sur-

prising given the compelling evidence showing that memory is best for the object that

has been fixated last (Hollingworth & Henderson, 2002; Irwin & Zelinsky, 2002; Zelinsky

& Loschky, 2005). The computational model can explain both effects of intervening sac-

cades and spatial information as well as remote information (first face) by subtracting

these influences from the corresponding response biases.

Explaining data with a model that can be implemented in neuronal terms is constrain-

ing. Forcing a model to take a specific form typically reduces the degrees of freedom and

results in a worse fit of the data. Interestingly, this is not the case in our connectionist

approach. Although the decision probability derived from our neuronal model (Table 1C)

is functionally similar to the logistic regression model, our model is able to explain the

different outcomes in the saccade-only and recency-only condition where the logistic

regression model fails. Hence, the neuronal model captures variance in the cognitive pro-

cesses that is neglected by the regression model.

In addition to the better fit, the computational model and its implementation in a neu-

ral network foster new ideas in the research field of eye movements during memory

recall. For instance, the suggested neural network implementation postulates specific

mechanisms of how face identities and the contextual information are encoded and reac-

tivated during perceptual memory. Whereas the recency effect originates from short-term

facilitation of synapses encoding the face identities, context information is encoded in

long-term synaptic changes. Because long-term potentiation (but not short-term facilita-

tion) accumulates across repetitions, the neuronal model predicts that repeating the iden-

tical experiment after 1 h would enhance the contextual modulation but not the recency

effect.

Although our computational model achieved a better fit when oculomotor information

was ignored, this does not necessarily contradict studies suggesting a functional involve-

ment of eye movements in memory recall (Johansson & Johansson, 2014; Johansson

et al., 2012; Laeng & Teodorescu, 2002; Laeng et al., 2014). One might interpret previ-

ous findings of “looking back to nothing” during recall as a consequence of spatial
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mismatch during encoding and recall. This interpretation is consistent with our finding

that spatial information contributes to response biases in a perceptual judgment task

while saccades had no influence. A similar dissociation has been found in a recent study

examining the role of scanpath similarity between encoding and recognition on memory

performance (Foulsham & Kingstone, 2013). Although participants looked back to

regions already fixated during encoding, the temporal order (i.e., the path of fixations)

was not necessarily the same. Moreover, performance was the same when scanpaths were

exactly reproduced and when the same regions were refixated in a different temporal

order.

The spatial component of episodic memory is emphasized in traditional theories defin-

ing episodic memory as “what-where-when” associations (e.g., Tulving, 1972). Making

use of spatial information as memory cue is a well-known memory strategy (e.g., method

of loci). Furthermore, memory recall is better when accomplished in the same context as

during encoding (Godden & Baddley, 1975). The memory supportive effect of location

or context cues might be explained by the encoding specificity principle (Tulving &

Thomson, 1973), claiming that recall is best when cues that were present during encod-

ing are also available during recall. In line with these memory theories, it has been pro-

posed that looking back to the encoding location during recall improves performance

because oculomotor cues that were enacted during encoding are reproduced during recall

(Johansson & Johansson, 2014). However, the results from this study suggest that oculo-

motor (saccade) information does not serve as retrieval cue. One explanation for this

effect could be that the brain is effectively storing the spatial context in a body- or geo-

centric coordinate system and that saccades in such coordinate systems are typically not

correlated with object representation and are therefore suppressed. This explanation is

consistent with previous research suggesting that “looking back to nothing” benefits

recall of spatial object relations (Johansson & Johansson, 2014; see also Olsen, Chiew,

Buchsbaum, & Ryan, 2014). Moreover, executing a saccade during encoding but main-

taining fixation during recall has been found to impair memory recall (Johansson &

Johansson, 2014; Johansson et al., 2012; Laeng & Teodorescu, 2002; Laeng et al.,

2014). Future research will need to differentiate between allocentric (relative positions in

world-fixed coordinates) and egocentric (eye positions relative to head-fixed coordinates)

contributions to memory cueing.

The spatial cues in our perceptual memory task are so strong that they can almost

compensate for the fading effect of memory. The present experimental data and the

proposed neuronal model show that it is spatial rather than oculomotor (saccadic)

information that contributes to the memory process. These findings are nevertheless in

line with previous research demonstrating that visual recall is impaired when eye

movements are restricted (e.g., Johansson & Johansson, 2014; Laeng et al., 2014).

However, contrary to the hypothesis that this impairment stems from impeding the

reactivation of a stored oculomotor trace (cf., Ferreira et al., 2008; Richardson et al.,

2009; see also Laeng & Teodorescu, 2002), our model findings suggest that such

memory impairments are rather caused by a spatial mismatch between encoding and

recall.
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Appendix A: Eye-tracking control data

To ensure that participants did indeed fixate fixation crosses, we used eye tracking in a

pseudo random version of the saccade plus location condition and tested three partici-

pants (one woman, Mage = 27.33 years, SD = 4.16, all right handed). The stimulus mate-

rial and procedure was identical to the saccade plus location condition. The experiment

was programmed in ExperimentCenter (SensoMotoric Instruments, Teltow, Germany).

Throughout the experiment, eye movements were recorded using an SMI RED system

(SensoMotoric Instruments) sampling with 50 Hz, with a spatial resolution of 0.1° and

gaze position accuracy of 0.5°. Calibration deviations were lower than 0.8° in all cases.

The behavioral data of the three participants are similar to the group means in the sac-
cade plus location condition: The mean proportion of judging the morph as resembling
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Face 1 when it was presented with the saccade and in the location of the first face was

M = 0.57 (SD = 0.34), and M = 0.75 (SD = 0.08) for judging the morph as resembling

the second face when it was presented in the context of Face 2. Fig. A1 confirms that

participants complied with the instruction to fixate the central fixation cross.

Appendix B: Model fitting details and comparison

B.1. Details on the model fitting

To capture the variation in the data by the model, we constructed 44 model subjects.

For each subject we determined a parameter triplet (r, s, l). Given such a parameter tri-

plet, the seven independent probabilities (displayed in Fig. 2 and Table 1) can be calcu-

lated. We randomly chose 44 sets of seven empirical data points. In those conditions

where <44 datasets were available, the sample sizes were completed (“bootstrapped”) by

doubling an appropriate number of randomly selected subsamples from other participants

who performed that experiment. For each of these 44 sample sets, the mean square error

on the seven data points was minimized across the parameter triplet. Mean probabilities

and standard errors of the mean were calculated for the 7 probabilities across the 44

model subjects. The reported values for r, s, and l correspond to the mean of the 44

parameter triples that fit best the 44 sample sets (Fig. 2).

Fig. A1. Heat map during fixation. The spatial distribution of fixations is color coded for accumulated time

(ms) participants spent looking at different areas during fixation crosses ranging from 1 ms (blue) to

1,000 ms (red). The maximum is 1,000 ms as this was the presentation duration of fixation cross slides. Note

that ovals indicate possible face locations.
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B.2. Details on the model comparison

To systematically compare the two models, we calculated for each model the relative

deviations in the seven model mean probabilities from the seven empirical mean proba-

bilities shown in Fig. 2, that is, |pmodel – pempir|/pempir. These relative errors were then

averaged across the seven conditions. The relative errors were calculated for 100 runs

with different initial conditions for (r, s, l) and different bootstrap samplings as explained

above. The histograms of these relative errors for both models show that the computa-

tional model systematically achieves half the error than the logistic regression model

(Fig. B.1).

B.3. Goodness of fit and individual differences

The relative errors in estimating the decision probabilities as reported in Fig. B.1 is a

simple way to quantify the model fits. In general, characterizing a goodness of fit for a

binary classification is tricky and can fail in various ways (Hosmer, Hosmer, Le Cessie,

& Lemeshow, 1997). But fitting seven independent values by effectively two parameters

(r and l, with s = 0) with a relative error of 4.3% (Fig. B.1) would pass any reasonable

goodness-of-fit test. Moreover, the stochasticity in the model with fixed parameter triple

(r, s, l) does not fully account for the large interindividual variations among the human

subjects. In fact, when considering 44 model subjects characterized by the same

Fig. B.1. Model comparison. Histograms of the averaged relative errors for the computational model (mean

error 4.3%) and the regression model (mean error 8.1%).
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parameter triplet (r, s, l), with each generating n = 48 binary decisions in the 7 experi-

mental conditions, then the relative frequencies vary less than the relative frequencies

vary among 44 human subjects (Fig. B.2). The centered and normalized relative choice

frequencies r are defined by r ¼ ðO� pÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=np

. For human subjects, O represents

the relative counts for one alternative in n = 48 trials in one of the seven experimen-

tal conditions, and p represents the average count across all 44 subjects. For the

model subjects, O represents the relative count for one alternative sampled in n = 48

trials with probability p. For the model the frequencies r converge with large trial

numbers n to a normal distribution (blue line in Fig. B2). The overlap (72%) between

the histograms represents the percentage of variance in the data that is explained by

the model.

Appendix C: Synapse model

It is interesting to note that the synaptic strengths from the first to the second layer can

be regarded as emerging from a Hebbian plasticity rule. A synaptic weight is increased if

Empirical data

Computational model Overlap = 72% 

0.4 

0.3 

0.2 

0.1 

-4 -2 0 2 4 

Fig. B.2. Histograms for the centered and normalized relative choice frequencies r for the 7 experimental

conditions across the 44 human subjects (yellow) and model subjects (blue). The 72% histogram overlap cor-

responds to the “explained variance.” The larger variance in the data histogram shows that the choice fre-

quencies of the 44 human subjects are more widely distributed than the choice frequencies of a model

subject that is duplicated to 44 sets. For large n, the model histogram converges to the standard normal distri-

bution (blue curve).
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both the pre- and postsynaptic units are active, and it is decreased or stays unaffected if

the presynaptic unit is active but the postsynaptic unit is inactive (or vice versa). Because

each face image is used only once for each subject, the synaptic strength fjn from face

unit n to face identity unit j is proportional to the product of the post- and presynaptic

activity at the first face presentation, fjn / fIdj facen. As for this presentation only face

unit j is co-active with fId unit j, this synaptic weight is potentiated, fjj > 0, whereas the

others remain zero, fjn = 0 for n 6¼ j. To take into account a short-term memory effect we

additionally assume that the synaptic strengths fjj reach a value fjj = 0.5 + r immediately

after potentiation, where r represents a recency parameter. Formally the strength fjn of the
synapse from face unit n to face identity unit j is set to the product of the recency factor

times the post- and presynaptic activities,

fjn ¼ ð0:5þ rÞfIdjfacen ðC:4Þ

The strength of these synapses is assumed to partially decay on a time scale of seconds

such that at the time of seeing the morph, the synaptic strength from the firstly presented

face unit to its corresponding fId is fjj = 0.5�r, whereas the strength from the secondly

presented face unit to its fId is fkk = 0.5 + r.
The synaptic strengths from saccade unit n to fId j is set when executing (sacn = 1) or

not executing (sacn = 0) saccade n. Following the Hebbian rule, we set

sjn ¼
s if fIdj ¼ sacn ¼ 1

�s if fIdj 6¼ sacn
0 if fIdj ¼ sacn ¼ 0

8<
: ðC:5Þ

with some saccade parameter s. Similarly, the synaptic strength from location unit n to

decision unit j is set upon face presentation to

ljn ¼
l if fIdj ¼ locn ¼ 1

�l if fIdj 6¼ locn
0 if fIdj ¼ locn ¼ 0

8<
: ðC:6Þ

with l representing a location parameter. The free parameters of the model are (r, s, l)
that encode the effect of the recency, saccade, and location.
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