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Spontaneous episodic activity is a general feature of develop-
ing neural networks. In the chick spinal cord, the activity com-
prises episodes of rhythmic discharge (duration 5–90 sec; cycle
rate 0.1–2 Hz) that recur every 2–30 min. The activity does not
depend on specialized connectivity or intrinsic bursting neu-
rons and is generated by a network of functionally excitatory
connections. Here, we develop an idealized, qualitative model
of a homogeneous, excitatory recurrent network that could
account for the multiple time-scale spontaneous activity in the
embryonic chick spinal cord. We show that cycling can arise

from the interplay between excitatory connectivity and fast
synaptic depression. The slow episodic behavior is attributable
to a slow activity-dependent network depression that is mod-
eled either as a modulation of cellular excitability or as synaptic
depression. Although the two descriptions share many fea-
tures, the model with a slow synaptic depression accounts
better for the experimental observations during blockade of
excitatory synapses.
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Spontaneous activity generated by networks of synaptic connec-
tions is a characteristic, but poorly understood, feature of the
developing nervous system. It has been detected in many different
regions, including the retina, the hippocampus, and the spinal
cord. In each region, bouts of activity occur episodically, sepa-
rated by periods of quiescence. Although the mechanisms respon-
sible for this activity are incompletely understood, it is known
that developing networks are hyperexcitable, in part, because the
classically inhibitory neurotransmitters, GABA and glycine, are
depolarizing (Cherubini et al., 1991; Sernagor et al., 1995).

We have been studying this activity in the isolated lumbosacral
spinal cord of the chick embryo. This preparation generates
spontaneous episodes of activity in which spinal neurons are
cyclically activated (see Fig. 1). This activity is not produced at a
specific location, nor by a specific set of connexions (Ho and
O’Donovan, 1993), and is still present in networks for which
glutamatergic transmission or glycinergic/GABAergic transmis-
sion has been blocked (Chub and O’Donovan, 1998a). It has also
been shown that episodes of activity transiently depress network
excitability, which recovers in the quiescent phase; this depression
is manifest as decreased synaptic strength (Fedirchuk et al., 1999)
and hyperpolarization of individual cells. These observations
have led to the proposal that the occurrence of episodes is a
population phenomenon that is controlled by activity-dependent
network depression (O’Donovan and Chub, 1997; O’Donovan,
1999). There is evidence that spontaneous bursts or episodes in

other parts of the nervous system are also regulated by a form of
activity-dependent depression. A slow “refractoriness” is thought
to restrict wave generation and propagation in the newborn ferret
retina (Feller et al., 1996, 1997; Butts et al., 1999). In hippocampal
networks, NMDA receptor desensitization (Traub et al., 1994) or
presynaptic depletion of glutamate pools (Staley et al., 1998) have
been proposed to regulate the occurrence and/or duration of
synchronous bursts.

Less is understood about the mechanism of cycling within an
episode, but it has been proposed that this could also be regulated
by activity-dependent depression with much faster kinetics than
the depression controlling episodes [O’Donovan and Chub
(1997); see also Streit (1993)]. Recently, it has been shown in
modeling studies that a purely excitatory network with random
connections susceptible to fast depression is capable of generating
oscillations similar to the cycling observed during episodes (Senn
et al., 1996; J. Streit and W. Senn, unpublished results).

Using these ideas, we develop a simple and general model of
network activity. This model describes only the average firing
rate of the population, rather than the membrane potential and
spikes of the individual neurons. It assumes a purely excitatory
recurrent network that is susceptible to both short- and long-term
activity-dependent depression (see Fig. 2A). The model is de-
scribed by only three coupled nonlinear differential equations.
Therefore, the analysis can be done graphically, step by step,
which facilitates an intuitive understanding of the network
dynamics.

We show that this simple model can account for the occurrence
of spontaneous episodes, the rhythmic cycling within an episode,
and the developmental changes in the duration of episodes and
interepisode intervals. Most importantly, it shows that the recov-
ery of spontaneous activity in the presence of excitatory amino
acid blockers (Barry and O’Donovan 1987; Chub and O’Donovan
1998a) is a property of networks with a slow form of synaptic
depression.
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Parts of this work have been presented previously in abstract
form (Rinzel and O’Donovan, 1997) and conference proceedings
(O’Donovan et al., 1998; Tabak et al., 1999).

MATERIALS AND METHODS
Experimental
All experiments were performed on the isolated spinal cord of White
Leghorn chicken embryos maintained in a forced-draught incubator. The
spinal cord was dissected out under cooled (12–15°C) oxygenated (95%
O2 , 5% CO2 ) Tyrode’s solution containing (in mM): 139 NaCl, 12
glucose, 17 NaHCO3 , 2.9 KCl, 1 MgCl2 , 3 CaCl2. The preparation was
transferred to a recording chamber (at room temperature) and super-
fused with oxygenated Tyrode’s solution that was later heated to 26–
28°C. The concentration of KCl was raised to 5–8 mM during some of the
recordings to accelerate the recovery of activity after glutamatergic
blockade (Chub and O’Donovan, 1998a).

Neural activity was recorded from ventral roots or muscle nerves.
Recordings were made using tight-fitting suction electrodes and ampli-
fied (DC 3 kHz) with high gain DC amplifiers (DAM 50 and IsoDAM,
World Precision Instruments). Amplified signals were directly digitized
through a PCI board (National Instruments) and/or recorded on tape
(Neurodata) for further analysis. Recordings were digitized at a low
sampling rate (5–20 Hz) because the events of interest occur on a slow
time scale (Fig. 1).

Theoretical
Model equations. The two models are described and analyzed in depth in
Results. Here we present them and the associated parameter values more
succinctly. Both models have three dynamical variables, including a and
d: a is the population activity or mean firing rate, and d is the fast
depression variable, representing the fraction of synapses not affected by

the fast synaptic depression. These two variables generate the cycles
within an episode. The slow modulation that underlies onset and termi-
nation of episodes, and the long silent phases, is described by u or s. u
represents the threshold for cell firing. In the u-model, it increases slowly
during an episode, eventually terminating the episode and recovering
between episodes. In the s-model, s represents the fraction of synapses
not affected by the slow synaptic depression, decreasing slowly during an
episode, terminating it, and then recovering between episodes. In the
s-model, the fraction of nondepressed synapses at any given time is
therefore the product szd.

The equations for the models are:

u-model:

taȧ 5 a`~n z d z a! 2 a, (1)

tdḋ 5 d`~a! 2 d, (2)

tuu̇ 5 u`~a! 2 u, (3)

s-model:

taȧ 5 a`~n z s z d z a! 2 a, (4)

tdḋ 5 d`~a! 2 d, (5)

ts ṡ 5 s`~a! 2 s. (6)

The parameter n measures the connectivity in the network (see
Results). All of the x` functions are sigmoidal (e.g., see Fig. 2C for a plot
of a`):

a`~Ieff! 5 1/~1 1 e2~Ieff2u!/ka!

d`~a! 5 1/~1 1 e~a2ud!/kd!

u`~a! 5 1/~1 1 e2~a2uu!/ku!

s`~a! 5 1/~1 1 e~a2us!/ks!.

The parameter ux defines the argument’s value for which half-activation
occurs: x`(ux) 5 1/2. The value of kx (positive) determines the sigmoid’s
steepness, smaller values being steeper. Note that the presence (respec-
tively absence) of a minus sign in front of (a 2 ux) indicates that the
sigmoid is increasing (respectively decreasing). The variables d and s are
high for low activity (low depression) and low for high activity (high
depression), so d`(a) and s`(a) are decreasing functions of a.

Although a` is the cellular input–output function, it should be con-
sidered as an average over the population of neurons. Assuming these
neurons are not identical, a` inherits a sigmoid shape; u can be inter-
preted as the mean threshold and ka as the threshold variance, assuming
a unimodal distribution of thresholds (Wilson and Cowan, 1972). Be-
cause the connectivity coefficients are included inside the a` function, a
should be interpreted as mean population firing rate averaged over a
brief period of time, not as instantaneous voltage (Pinto et al., 1996);
a`(nzszdza) is the instantaneous firing rate. Note that because a`(0) is not
equal to zero, we are implicitly assuming that there is some background
activity or fraction of spontaneously active neurons in the network.
However, the model does not depend on this feature. Indeed, if a`(0) 5
0, similar episodes of activity are produced, except that a stays virtually
at 0 from just after an episode to just before the next one (our unpub-
lished results).

Unless stated otherwise, we use the parameter values given in Table 1.
Simulations. The model equations were implemented within XPPAUT

(freely available software by G. B. Ermentrout, http://www.pitt.edu/
;phase/), a general purpose interactive package for numerically solving
and analyzing differential equations. XPPAUT includes a tool for calcu-
lation of bifurcation diagrams (AUTO). Simulations were performed
using the Runge–Kutta integration method with a time step of 0.2
(dimensionless units). We checked that the results were unchanged when
the time step was halved. Simulations were run on Unix PCs. A version
of the software WinPP runs under Win95 or Win98.

RESULTS
We have argued elsewhere (Ritter et al., 1999) that the spinal
network responsible for spontaneous activity is composed of

Figure 1. Spontaneous episodes of activity recorded from ventral roots
of chick embryo spinal cord in vitro at embryonic day (E) 7.5 and 10.
Recordings were made in DC mode and digitized at 10 Hz, showing the
synaptic depolarization recorded electrotonically from motoneurons. Pe-
riods of activity (episodes) are clearly distinct from silent phases. An
interval is defined as the time between the beginning of two consecutives
episodes. Episodes are composed of cycles, or “network spikes.” With
development, both the interval and episode duration lengthen, and cycle
frequency and the level of depolarization (tonic component) also in-
crease. Also, on older embryos episodes have a leading tonic phase before
cycling begins. For the examples shown here, interval and episode dura-
tions are, respectively, E 7.5: 440 6 29 and 20 6 1 sec; E 10: 1600 6 140
and 68 6 3.5 sec (mean 6 SD).
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recurrently connected, functionally excitatory synaptic connec-
tions. Furthermore, because the expression of network activity
does not appear to depend on the details of network architecture
or membrane properties and because detailed biophysical infor-
mation on cell and coupling properties is unavailable, we are
justified in using a very idealized model. Throughout, we use
mean field models that describe only the averaged population
behavior, not the detailed electrical activity of individual cells.
The models are also temporally coarse-grained so that action
potentials are not represented per se, only firing rate.

Our graphical analysis of the models proceeds by considering
reduced models, beginning with the fastest process first and
expanding the model by stepwise introduction of the next slower
variables. We begin with the single Equation 1 that governs the
dynamics of a recurrent excitatory network, without the negative
feedback of depression. This reduced model illustrates the clas-
sical behavior of bistability in a recurrent population, of either a
low or high activity state of steady firing. Next, we introduce a fast
activity-dependent synaptic depression, which can lead to net-
work oscillations (cycling) in this two-variable system. We ana-
lyze this subsystem with phase plane methods, finding a different
type of bistability. Finally, we add slow activity-dependent de-
pression in either of two forms and show that these three-variable
models can generate episodes similar to those observed experi-
mentally in the chick embryo spinal cord and other networks.

A recurrent excitatory network can be bistable
In this section, we consider only the dynamics of the average
activity in a random excitatory network; the depression variables
are frozen. We use a graphical method to illustrate how the steady
activity states of the one-variable system are determined. These
steady states depend on parameters such as the network connec-
tivity, and we show that for certain values of connectivity the
network can have two stable states.

Here, and throughout, we let a be a measure of the network
activity, for instance the population’s mean firing rate, relative to
the maximum possible rate. Its time behavior, according to clas-
sical descriptions (Wilson and Cowan, 1972), satisfies ta ȧ 5
a`(Ieff) 2 a, where ȧ is the time derivative of a and Ieff is the
effective input to cells in the network. Accordingly, the activity of
the network reaches the value a`(Ieff) with a time constant ta. a`

is called the activation function and describes how Ieff is con-
verted into firing rate (Fig. 2B). For small inputs, a` is near 0;

very few neurons are firing. For large inputs, a` saturates at 1,
with all cells in the network being fully active. There is a rather
sharp transition between these two limits (if ka is small) at the
value Ieff 5 u for which a`(u) 5 1⁄2. u corresponds to the average
threshold for cell firing. The mathematical expression of a` is
given in Materials and Methods.

Because of the recurrent connectivity, the input Ieff is produced
by the network’s own activity, in addition to any external inputs.
Therefore, in the absence of external inputs Ieff 5 nza, where we
introduce the parameter n as a measure of network connectivity
(in arbitrary units). The greater the connectivity, the greater the
recurrent input being fed back to the network for a given amount
of activity (n is a gain parameter, measuring how the average
cellular output is transmitted to other cells, and thus depends on
many physiological parameters such as the average number of
contacts from a neuron, average synaptic efficacy, etc.). Thus, the
dynamics of this network is described by:

taȧ 5 a`~n z a! 2 a. (19)

What is the behavior of the system defined by Equation 19?
After any transient input, a will evolve to a steady state, for which
ȧ 5 0. Its value at steady state must then satisfy a 5 a`(nza). The
solutions to this equation are represented graphically in Figure
3A as the intersections of the curves f(a) 5 a and g(a) 5 a`(nza)
for different values of n.

For small values of n, there is only one steady state, at a low
value of a, with the network barely active because of its low,
functional connectivity. Even if the network receives a strong
transient external input, it will return to this quiescent state
because the connectivity is too low to sustain the activity. Simi-
larly, for large connectivity, there is only one possible steady state
(the curves do not actually intersect at the low level), for which

Table 1. Values of the parameters used for each model, unless
mentioned otherwise in text or figure

Parameter u-model s-model

n 1 1
ta 1 1
u Variable 0.18
ka 0.05 0.05
td 2 2
ud 0.2 0.5
kd 0.5 0.2
tu 1000
uu 0.15
ku 0.05
ts 500
us 0.14
ks 0.02

Figure 2. A, Schematic diagram of recurrent network with random
connections. The output from the network is fed back to the cells. The
amount of feedback depends on network connectivity (n). Activity (a) can
also be modulated at the synaptic level by a fast depression (d) and by a
slow depression (s). The effective input to cells is therefore nzszdza. The
resulting postsynaptic firing rate, at steady state, is given by a`(azdzs). This
postsynaptic firing rate can also be modulated by the cells’ threshold (u).
Note, our mathematical formulation does not distinguish presynaptic and
postsynaptic effects. B, Cellular input–output relationship, averaged over
the population. Ieff is the effective input to the network (see Results). The
cellular threshold parameter u can also be viewed as a slowly modulated
variable. ka measures the width of the transition range around threshold;
a small value of ka implies a steep activation function.
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the network is very active (a near 1). A more interesting case
occurs for intermediate values of the connectivity parameter:
there are three steady states, at low, intermediate, and high values
of a. However, the intermediate steady state is unstable. That is,
a small perturbation from it will grow, and the network activity
will evolve toward one of the two other steady states. Therefore,
the network has two possible stable steady states; it is bistable. If
the network is in the low steady state, it can be switched to the
high steady state by a transient stimulus that brings a above the
intermediate steady state, which is the effective network thresh-
old. If the stimulation does not increase the activity above thresh-
old, the network will fall back to low activity after the stimulus.
This network threshold is not equal to the cell threshold u; for
example, if a` is very steep, the network threshold approximately
equals u/n; it decreases with increasing connectivity. Note that
once the network has switched from the low to high (or high to

low) state, it will stay in the new state even though the perturba-
tion has stopped. It will not return to the previous state, unless a
new perturbation of sufficient magnitude occurs (if neural noise
were incorporated explicitly in the model there might be sponta-
neous transitions between the two states). This type of bistable
behavior, illustrated in Figure 3B (see figure legend), is charac-
teristic of recurrent excitatory networks (Wilson and Cowan,
1972). In the next sections, we will find that bistability underlies
our models’ episodic rhythms; slow modulation leads to transi-
tions between the attracting pseudostates of cycling during an
episode and quiescence between episodes.

Figure 3C summarizes the above results by showing the activity
levels at steady state (ȧ 5 0) over a range of n values. Again, it
illustrates that for low connectivity/efficacy (n small) there is only
one steady state at low activity. For strong connectivity (n near 1
and above) only the high activity state is present. For an inter-
mediate range of n values both stable states coexist, along with an
unstable state of intermediate activity (dashed line). The states
are continuously connected as you travel along the S-shaped
curve. However, as n is varied over the range, one encounters
discontinuous transitions between the stable states, at the
S-curve’s knees. This figure, showing the different possible activ-
ity states for all values of a control parameter, is called a bifur-
cation diagram [see Strogatz (1994); a bifurcation is a point for
which there is a qualitative change in the dynamics of the system,
like at the knees]. It will be useful to distinguish the three
“branches” of such S-curves: upper, lower, and middle. Here, upper
and lower ones correspond to the stable steady states, and the
middle one corresponds to the unstable steady state. The middle
branch is a separatrix between the upper and lower branches: any
state of the network above it (i.e., on the right side of the S-curve)
will evolve toward the high steady state, and any state below it (i.e.,
on the left side of the diagram) will fall to the low steady state. It
is easy to understand why: for any point on the S-curve, by defini-
tion, ȧ 5 0. If the connectivity is increased (i.e., the point shifted to
the right) even slightly, this increases a`(nza), and therefore ȧ . 0.
Conversely, if n is decreased this leads to ȧ , 0.

A recurrent excitatory network with fast
activity-dependent synaptic depression
can produce oscillations
In the above section, we studied the behavior of a recurrent
excitatory network as a function of its (fixed) connectivity. Here,
we will analyze network behavior when the effective connectivity
is changing because of synaptic depression. We will analyze the
resulting two-variable system graphically in the phase plane and
show that it can generate oscillations (like the cycling during an
episode) and bistability, depending on the average neuronal
excitability.

As a preliminary step, reconsider Figure 3C and suppose that
we sweep n slowly back and forth over a range that includes the
bistable regime. This would lead to alternating phases of high and
low activity, with sharp transitions between phases. If n were
decreasing while the activity is high, the system’s state point
would track the upper branch, moving leftward, until we reached
the S-curve’s left knee. Then the state point would fall to the
lower branch. The activity would drop precipitously. Now at low
activity, if n were increasing, the system would track the lower
branch, with activity rising very gradually, until the right knee
was reached. Then the state point would jump back to the upper
branch of high activity, completing a cycle, and the process would
repeat.

Figure 3. Analysis of the single-variable activity model for a recurrent
excitatory network. A, The steady states satisfy a`(nza) 2 a 5 0. They are
determined by the intersection(s) between the curves f(a) 5 a (thick line)
and g(a) 5 a`(nza) (smooth curves), shown here for different values of n.
At these intersections a`(nza) 2 a 5 0. B, Time course of the activity for
n 5 0.5. At t 5 20 a brief stimulus is applied but fails to bring the network
above threshold (i). Stronger stimulation applied at t 5 50 excites the
network above threshold, so the high activity steady state is reached (ii).
The network will stay at this high level unless a large perturbation brings
it back below threshold. C, Plot of the steady-state values of a for all
possible values of n between 0 and 1. The dashed portion of the curve
indicates unstable steady states. In A and C, the steady states for n 5 0.5
are represented by filled (stable) or open (unstable) circles. The arrows
indicate that the activity, if initially below threshold (unstable steady
state), will fall back to the low stable state (i, ȧ , 0), and if it is initially
above network threshold it will increase until it reaches the high stable
state (ii, ȧ . 0), as illustrated in B. u 5 0.18.
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We really want a description so that such cycling happens
spontaneously, rather than being driven as above. With this goal
we make the effective connectivity a dynamic variable by multi-
plying n by the variable d, the kinetics of which depends on
activity, guaranteeing that d automatically decreases when activ-
ity is high and increases for low activity. In this formulation, d is
defined as the fraction of nondepressed synapses from a repre-
sentative cell to its targets (e.g., the fraction of releasable transmit-
ter at those synapses). Its value ranges from 0 (synapses totally
depressed) to 1 (all synapses fully available), so the effective
connectivity (nzd) ranges from 0 to n (n, being an arbitrary measure
of connectivity can be .1). In all of the following figures, we set
n 5 1 unless mentioned otherwise. Equation 19 thus becomes:

taȧ 5 a`~n z d z a! 2 a. (1)

This idealized model does not distinguish between gluta-
matergic excitatory synapses or depolarizing gabaergic/glyciner-
gic synapses.

We use a simple first-order kinetics for d, reminiscent of the
gating kinetics in Hodgkin–Huxley-like models for voltage-gated
ionic currents:

tdḋ 5 d`~a! 2 d, (2)

where d`(a) is a decreasing sigmoid function (see Materials and
Methods). When the system is at low activity, d tends to increase,
whereas for high activity d decreases. d tends toward d`(a) but
lags behind changes in a with a time constant td. Hence, the
system can potentially oscillate, but whether it does depends on
parameter values. For example, if the negative feedback from
depression is too fast, the oscillations are precluded. The condi-
tion (parameter relationship) for which oscillations emerge in the
model is given in the Appendix.

We need to examine the dynamics of this a 2 d system over a
range of u values, because in later sections u will become a slow
modulatory variable. For u small, the network is highly excitable,
and it operates at a steady high-activity level. If the network is
held at a low activity level with synapses fully available and then
released (Fig. 4A), it tends to its desired high level; in this case, it
shows damped oscillations around the steady state because the
depression is delayed (in the same way as the “delayed rectifier”
potassium current does not turn on immediately after a voltage
increase).

The system’s time course from Figure 4A can be viewed in
another way, as a trajectory by plotting in the (a, d) plane simul-
taneously the points defined by the values of a and d at consec-
utive and equally spaced times (Fig. 4B, dotted line). Although
time is not represented explicitly on such a diagram, velocity
along the trajectory can be deduced from the spacing between
consecutive points. Here, on release from low activity the net-
work quickly (large spacing between points) moves toward a state
of high activity with the synapses depressed, slowing down (small
spacing between points) as it approaches the steady state, in a
spiraling fashion (the damped oscillation).

Using the a 2 d plane, we can analyze and predict qualitatively
the system’s dynamical behavior and the consequences of chang-
ing various parameters [for an introduction to phase plane anal-
ysis, see Rinzel and Ermentrout (1998) or Strogatz (1994)]. The
power of this graphical /geometrical approach comes largely from
understanding the two solid curves in Figure 4B. These curves are
called the nullclines. The a-nullcline is defined as the relationship
between a and d that is obtained by setting ȧ 5 0. Similarly, the

d-nullcline comes from setting ḋ 5 0. Given these nullclines, we
can map out the flow directions in the phase plane, according to
the different areas delimited by the nullclines. For example, in the
area on the right of the a-nullcline and above the d-nullcline, we
know that a must be increasing and d decreasing (hence the arrow
pointing up and left). Also, we know that a must be at a local
minimum or maximum when the trajectory crosses the a-nullcline
and so on. Where the nullclines intersect, neither a nor d is
changing, and this corresponds to a steady state of the system.

The a-nullcline is defined implicitly according to a 5 a`(nzdza).
For a physiological interpretation, consider d as a parameter so
that points on the a-nullcline are the steady-state values of a at
which decay of a balances the regenerative input from recurrent
excitation in Equation 1. Of course, the result is similar to the
S-curve in Figure 3C. The d-nullcline is simply the graph of d`(a).
The nullclines are drawn in Figure 4B, showing that there is only
one possible steady state (the unique intersection of the two
curves). In general there can be one or three (exceptionally two)
intersections, as we will show below for some values of u. The
a-nullcline has the characteristic switchback form (S-shape) of
autocatalysis in nonlinear excitable and oscillatory systems. Al-
though the steady state is stable in this case, it could be made
unstable by increasing td to slow the negative feedback process, in
which case the activity would become oscillatory.

For sufficiently large values of u, there is again only one steady
state, but now at a low activity level: in Figure 5B, the unique
intersection of the nullclines near the abscissa at d 5 0.923
(vertical arrow). Note that the a-nullcline’s low-activity branch is
very close to the abscissa. This network model is excitable. If the
system is stimulated briefly but adequately while at this quiescent,

Figure 4. Dynamical behavior of the a 2 d system for low firing thresh-
old, u (0.15). A, Time course of activity a (solid curve) and depression d
(dashed curve) showing that the system reaches a steady state after some
damped oscillations. B, Phase-plane representation of the dynamics,
showing the nullclines and trajectory of network state. The a- and
d-nullclines are defined by ȧ 5 0 and ḋ 5 0. There is only one intersection,
therefore the system has only one steady state. It is a stable steady state;
as shown by the time course (A) or phase-plane trajectory. The damped
oscillations evident in the time course (A) are seen here as spiralling
toward steady state. n 5 1.
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resting state, it exhibits a transient response of high activity and
then returns to rest. Figure 5A shows the threshold effect by
plotting a(t) and d(t) for two different initial conditions. In one
case (gray curves), the activity starts just below threshold and
directly returns to the steady state. In the other case (black
curves), the activity is initially just above threshold and then
increases in a regenerative way before depression returns it to the
steady state. Note that this threshold for network excitability is
approximately given by the value of the middle branch of the
a-nullcline and should not be confused with u, which is the
average cellular threshold. This phase plane portrait gives us a
graphical way to see the effect of increased threshold, by compar-
ison with Figure 4B. The a-nullcline’s right shift is understand-
able intuitively. For a given value of depression variable d, one
expects with increasing u to lose the possibility of a high-activity
state in the a-subsystem. With enough increase of u the high-
activity state in the full a 2 d system is precluded.

Finally, for some intermediate values of u, there can be three
steady states, as shown on Figure 6, A and B. In both A and B, the
lower steady state is stable, and the intermediate one (very close
to the low state) is unstable. However, the stability of the high-
level steady state depends on the particular values of the other
parameters. An important parameter, which does not change the
location of the steady states, is td. The high-level steady state is
stable in Figure 6A, for a value of td 5 1. Hence, the system is
bistable. If the value of td is increased, the negative feedback

caused by depression is more delayed, which can lead to oscilla-
tions around the steady state (now unstable), as shown in Figure
6B. The system is bistable again, but now we have a low-activity
steady state coexisting with a high-activity oscillatory state. De-
pending on the initial conditions (or external inputs), the system
can either reach the low steady state or the high activity state,
either steady (Fig. 6A) or oscillatory (Fig. 6B,C).

We summarize this collection of possible behaviors in a bifur-
cation diagram (Fig. 7A) by plotting the a-values for the steady
and oscillatory states when the parameter u is varied. The
Z-shaped curve (black solid line and dashes) for steady states is
analogous to the S-curve of Figure 3C; the orientation is left–
right-reversed because increasing u reduces network excitability,

Figure 5. Dynamical behavior of the a 2 d system for high u (0.28). A,
Time course for two different initial conditions. In one case, a(0) is above
a threshold, and the network exhibits a transient high-activity phase and
then falls to quiescence (black curves). In the other case, the network goes
directly to “rest” (gray curves). a is indicated by the solid curves; dashed
curves represent d. B, Phase-plane representation of the dynamics, show-
ing trajectories for the two cases illustrated in A. There is only one steady
state, defined by the intersection of the d-nullcline and the lower branch
of the a-nullcline (for a . 0)—the quiescent state. If the system is
perturbed away from steady state by a sudden increase in activity, the
threshold for generation of a transient cycle of high activity is approxi-
mately given by the middle branch of the a-nullcline (it is actually slightly
above). n 5 1.

Figure 6. Dynamical behavior of a 2 d system for intermediate u (0.2).
A, Phase-plane representation of the dynamics for td 5 1. The high and
low steady states are stable. Any trajectory eventually reaches one of
them, depending on initial conditions. A perturbation away from the low
steady state can switch the system to the high state, if it is above the middle
branch (black trajectory). Otherwise, the system falls back to the lower
state (gray trajectory). B, Phase-plane representation of the dynamics for
td 5 2. This higher value destabilizes the high steady state and leads to the
appearance of a stable oscillation (closed orbit) around it. Again, a suffi-
cient perturbation can switch the system from the low-activity steady state
to oscillations. C, Time courses for the trajectories shown in B. Super-
threshold perturbation leads to an oscillation (black curves), whereas after
a subthreshold perturbation, activity returns directly to the low steady
state (gray curves). The dashed curves represent d. n 5 1.
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like decreasing n. Starting at u low with the unique high-activity
steady state and moving rightward along this curve, we see that
this state loses stability at u . 0.181 (solid turns to dashed). At this
point, a stable oscillation emerges, around the steady state. We
plot the maximum and minimum values of a during a cycle (thick
gray curves). At emergence, the oscillation’s amplitude is very low,
but then grows as u increases. This type of oscillation birth is
called a Hopf bifurcation (Rinzel and Ermentrout, 1998). At a
critical value of u (uc 5 0.207), the oscillation encounters the
unstable state on the Z-curve’s middle branch and disappears.
That is, the minimum activity during a cycle is just equal to the
excitation threshold, and the oscillation cannot be maintained if u
is increased any farther. For larger u only the low-activity steady
state is stable.

The system is bistable for u between the Z-curve’s left knee and
uc. Over this range, it can be either at a low, steady activity level,
or at a high, oscillatory level. These high-activity oscillations

mimic the cycling observed during an episode of activity in the
chick spinal cord. In the next sections we will see how slow
autonomous dynamics for this modulatory variable u can sweep
the a 2 d subsystem back and forth over this bistable regime to
account for the cord’s episodic rhythms. Thus, although Figure
7A does not show motion per se, it forms the skeleton over which
episodic dynamic patterns can be understood. For example, as
shown from Figure 6A,B, the value of u where the cycles emerge
depends on parameters such as td. If td is decreased, the oscilla-
tions emerge for higher values of u. Consequently, when an
episode is started, the system first jumps toward a high stable
steady state, then with increased u this high state becomes unsta-
ble and oscillations emerge. Thus, our model when the slow
variable is included may exhibit, depending on parameter values,
episodes that have phases of near steady high-activity before
oscillations start, as sometimes seen experimentally (Fig. 1,
bottom panel ).

Figure 7B shows the variations of oscillation period with u. For
the lowest possible value of u allowing oscillations, the period is
finite. The period lengthens as u increases, first slowly and then
abruptly just before the oscillations disappear (it becomes infinite
at the exact point where the low oscillatory level meets the
intermediate, unstable state). Except for the very end of the
range, the cycle period ranges between 5 and 10 units of time
(approximately 7 for the activity shown on Fig. 6C). Therefore,
because the typical cycle period measured experimentally is ;1
sec for embryonic day (E) 10 embryos, td 5 2 predicts that the
time constant of the depression variable d is of the order of
200–400 msec. This is comparable to time scales reported in
other systems (Chance et al., 1998).

Slow activity-dependent depression leads to
episodic behavior
In the chick embryo, after an episode of activity, evoked mono-
synaptic and polysynaptic potentials are depressed and recover
with a time constant of ;1 min (Fedirchuk et al., 1999). In
addition, after an episode, the membrane potential of ventrally
located spinal neurons hyperpolarizes and subsequently recovers
as a depolarizing ramp until the next episode. Collectively, these
observations indicate the presence of a slow (time scale minutes)
activity-dependent form of depression that regulates network
excitability and has been proposed to control the occurrence of
episodes (O’Donovan and Chub, 1997). Although the mecha-
nisms for these changes are unknown, they could occur through a
modulation of cellular properties or a prolonged “slow” form of
synaptic depression. In the following, we formulate and analyze
models for each of these two possibilities.

The two-variable system presented in the previous section
models a bistable, recurrent excitatory network that can exhibit
persistent states of low and high activity, the latter being oscilla-
tory. In contrast, the chick’s spinal cord shows spontaneous alter-
nation between two such states. Here, we add a slow, third
variable that enables the model to generate sustained, repetitive
episodes of cycling at high activity separated by low-activity
phases, thereby mimicking the spontaneous, episodic rhythm of
the cord. We show that the mathematical structure that underlies
the episodic behavior is the same for both types of slow activity-
dependent depression. Therefore, the two models behave in sim-
ilar ways, say, when perturbed by a brief stimulation or noisy
input, and they are affected similarly by some parameter varia-
tions. In a later section, however, we show that the models lead to

Figure 7. A, Bifurcation diagram showing the possible behaviors of the
a 2 d fast subsystem for different values of u. For low values of u, there is
only one steady state, at high level, which becomes unstable for increasing
u. For intermediate values of u (around 0.2), the system is bistable: there
is a stable high-activity oscillation and a stable, low steady state. With
larger values of u, the system can only be in a low steady state. Circles
represent the cases shown in Figures 4B, 5B, and 6B. Thick black curves:
stable steady states; dashed, thin curve: unstable steady states; thick gray
curve: maximal and minimal values of a for the periodic oscillations. B,
Period of the oscillations.
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different predictions for variations in connectivity and therefore
the models can be distinguished experimentally.

Slow modulation of cellular excitability: u-model
Intracellular recordings have shown that there is a slow ramp
depolarization in motoneurons of chick embryonic spinal cord
(N. Chub and M. J. O’Donovan, unpublished observation), sug-
gesting that after an episode the functional threshold (u) of
neurons is raised and slowly decreases until the next episode. We
can therefore imagine that u increases during an episode and
decreases during the silent phase. This means that the growth and
decay of u is activity-dependent, analogous to a slow adaptation
mechanism. During high activity the threshold rises, eventually
terminating the activity, and then it recovers during the interepi-
sode quiet phase. When the threshold decreases adequately, the
network’s small amount of spontaneous activity can trigger an-
other episode. We formulate below a kinetic model for u that
yields this behavior.

From our dynamical systems viewpoint and the previous sec-
tions, we can predict the model system’s behavior as follows (we
will confirm this below in Figure 8 with a simulation). First,
because u will move very slowly, we expect that the a 2 d
subsystem will evolve relatively rapidly to one of its two attractors
(Fig. 7A) and then track it as u moves. Suppose the network is in
the low-activity state, as after an episode. Under this condition u
will slowly decrease, and the a 2 d subsystem will slowly track the
Z-curve’s lower branch until the left knee is reached. The system
then rapidly moves to the oscillatory high-activity state, starting
an episode. During the episode u now increases, and as indicated
by the thick gray curves on Figure 7A, the cycle amplitude also
gradually increases. Moreover, the cycle period increases too
(Fig. 7B), but only slightly at the beginning of the episode, then
significantly near the end of the episode. Note, this significant
drop in period just before episode termination is a generic feature
of this type of model and is typical of many experiments in chick
cord (Fig. 1, top panel). Eventually, u reaches the critical level uc

where activity can only jump back to the lower steady state,
terminating the episode. As u then decreases again (recovery),
the process will be repeated. Thus, the presence of bistability of
the a 2 d subsystem for a range of u values suggests a mechanism
for the slow occurrence of episodes, in the same way that the
bistability of the simple recurrent network over a range of con-
nectivity values suggested a mechanism for the generation of
cycles during an episode. Our prediction of the slow rhythm’s
a 2 u trajectory rests on the assumptions (i.e., on our construc-
tion) that (1) the fast a 2 d subsystem is bistable, (2) u evolves
very slowly, and (3) u evolves in the proper directions during the
active and quiescent phases. These features form the essence of the
fast/slow dissection technique for analyzing multiple time scale
oscillations and excitability of this sort (Rinzel and Ermentrout,
1998).

As for a and d, we model the variations of u with a simple,
first-order kinetics:

tuu̇ 5 u`~a! 2 u, (3)

with u` an increasing (sigmoidal) function of a and tu being two
to three orders of magnitude greater than ta. Thus u will increase
from low values if activity is high and decrease from high values
if activity is low.

The time courses of a and u for the full three-variable model
resulting from the interaction of the a 2 d fast subsystem and

the slow u subsystem are shown in Figure 8A. As expected, the
behavior is episodic, with rhythmic cycling during episodes. The
system’s trajectory actually lives in the three-dimensional phase
space, a 2 d 2 u. In Figure 8B we project the trajectory onto the
(a 2 u) plane, enabling us to see the dynamic behavior along with
the static bifurcation diagram from Figure 7A. We see qualita-
tively what we anticipated in the preceding paragraphs, with u
covering the bistable range back and forth. Although the trajec-
tory does not exactly follow the bifurcation diagram, it would if
we had made tu larger.

It is important to emphasize that both onset and termination of
the episodes are controlled by the value of u, as shown from the
trajectory in the (a 2 u) plane. Also shown in Figure 8B is the
u-nullcline, the set of points for which u̇ 5 0, that is, u 5 u`(a).
Below this nullcline, u̇ , 0, therefore u is decreasing, and con-
versely, for any point above the nullcline u is increasing. Thus, u
decreases during the silent phase and increases during an epi-
sode. Obviously, the position of the u-nullcline relative to the
a 2 d bifurcation diagram is critical for the existence and timing
of episodic rhythmicity (see below).

Figure 8. A, Time courses of a and u for the u-model. During an episode
u increases, until the episode stops. B, Corresponding trajectory in the
(a, u) plane, superimposed on the bifurcation diagram. Also plotted is the
u-nullcline (dot–dashed curve). Below this nullcline, the trajectory flows
leftward (u̇ , 0, recovery during the silent phase); above it the trajectory
flows rightward (u̇ . 0, depression during an episode). The points num-
bered 1, 2, 3, and 4 correspond to the same states of the network on both
A and B. During an episode, the trajectory passes sequentially 1–2–3–4;
during a silent phase it goes from 4 to 1.
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This graphical representation allows one to easily predict /
understand the effect of parameter variations on the episodic
rhythm. Suppose the cellular adaptation is recruited more easily
(say, uu is decreased). This lowers the u-nullcline. If it drops too
much it will intersect the Z-curve’s lower branch. At this inter-
section, all variables, including u, are at a stable steady state of low
activity; the network will remain silent. On the other hand, if the
u-nullcline is too high, u can stop increasing before the end of the
episode, and the network might enter continuous oscillation.
Therefore, the position of the nullcline, or in other words, the
value of a for which the average cellular excitability in the net-
work starts to get depressed, has to be within a certain range for
episodic oscillations to occur.

The episode durations and silent phase lengths depend on two
factors. First, they depend on the range of values that u covers
between the beginning and end of the episodes, that is, the
horizontal distance between points 4 and 1 on Figure 8B. Increas-
ing this range dilates both the episode and silent phase in the
same way, because the paths 1–2–3–4 and 4–1 are increased
accordingly. As illustrated below, this range can be changed by
varying any single parameter of the fast subsystem. Second, the
episode durations and silent phase lengths depend on the velocity
with which u varies. Because this velocity is inversely proportional
to tu, an increase in this time constant increases similarly the time
it takes to depress the network and the recovery period, so both
duration and silent phase change by the same factor. However,
this velocity is also proportional to the horizontal distance be-
tween the current point in the a 2 u plane and the u-nullcline,
because tu u̇ 5 u`(a) 2 u. Therefore, if the nullcline is changed
[that is, the function u`(a) is changed], velocities are modified.
However, this change in the velocity depends on the activity state
(high or low) of the system. For example, if the nullcline is moved
down, the velocity decreases during the silent phase because
u`(a) 2 u is reduced, but increases during the episode because
u`(a) 2 u is increased. Therefore, episode and silent phase
lengths may be affected in opposite ways when a parameter of the
slow subsystem is changed. The distinction between the effects of
parameters of the fast versus slow subsystems will be important
subsequently to distinguish the two models.

Long-term synaptic depression: s-model
As was considered previously, it is also possible to interpret the
slow form of activity-dependent depression as arising synaptically
rather than from a slow modification of cellular thresholds. In-
deed, this mechanism has been proposed to account for the slow
recovery of synaptic potentials after an episode (Fedirchuk et al.,
1999). Calling s the new, slow variable, the system becomes:

taȧ 5 a`~n z s z d z a! 2 a

tdḋ 5 d`~a! 2 d

ts ṡ 5 s`~a! 2 s.

As for d, a high value of s (near 1) means “not depressed,” so s`

is a decreasing function of a. Note that the fraction of nonde-
pressed synapses is now szd, and the effective connectivity is nzszd.
The activity obtained with this model is qualitatively similar to
the one obtained with the u-model, as shown in Figure 9. Here
again, the onset and termination of episodes are controlled by the
slow depression variable (s), therefore silent phase and episode
durations are determined in the same way. The reason the
u-model and the s-model are so similar is that variations of s

induce the same qualitative changes in the dynamics of the fast
subsystem as do variations of u. Note that because depression is
associated with smaller values of s, in contrast to the u-model
where large u means larger depression, the bifurcation diagram of
Figure 9B has opposite (left/right) orientation to that of Figure 8B.

Simulation experiments with the models
To further characterize the models’ behaviors and compare them
with experimental data, a few manipulations were conducted. The
model network can be perturbed by a brief stimulation. It is also
important to understand how the model is affected by varying its
parameters, because the parameter variations may be identified
with experimental manipulations or with evolving system condi-
tions that occur during development. In addition to the compar-

Figure 9. A, Time courses of a and s for the s-model. During an episode
s decreases, until the episode stops. As for the u-model (Fig. 7B), the cycle
period increases near the end of an episode. A little after t 5 400, a
stimulation was applied, which triggered an episode. This episode was
shorter because recovery of s was not complete. B, Corresponding trajec-
tory in the (a, s) plane, superimposed with the bifurcation diagram and
the s-nullcline (dot–dashed curve). C, Recordings from an E10 cord.
Stimulating quickly after a spontaneous episode triggers a short episode.
Black triangles indicate time of stimulation.
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ison with experimental data, the following simulations offer some
predictions that are testable experimentally.
Activity resetting. In the chick spinal cord, it is easy to trigger an
episode during a silent phase with a brief electrical stimulus. In
addition, if the stimulation is applied shortly after a spontaneous
episode, the evoked episode is much shorter than the average
spontaneous episode, as illustrated on Figure 9C. This effect was
observed on all preparations tested (.20). It is to be expected if
the silent phase is a period of recovery from depression, and it is
indeed a characteristic feature of the models presented here. We
have illustrated this point for the s-model on Figure 9A,B. Again
exploiting the graphical representation of Figure 9B, we see that
to evoke an episode the stimulus must be substantial enough to
bring the activity above the S-curve’s middle branch. Otherwise,
activity returns immediately to the low steady state. Because the
vertical distance between the unstable steady state and low-activity
state is highest just after an episode and progressively declines, the
smaller the amount of time after an episode, the harder it is to
successfully evoke a new episode, in agreement with experiments.
These results are also observed with the u-model because it relies
on the same mechanism of episode generation.
Changing a parameter of the fast subsystem. The main effect of
changing one parameter of the fast a 2 d subsystem is to change
the values of the slow variable at the beginning and/or end of
episodes (or, equivalently, at the end and beginning of silent
phases) by deforming the shape of the bifurcation diagram and, in
many cases, without moving it much relative to the slow variable’s
nullcline. Therefore, as mentioned above (section describing the
u-model), silent phase and episode duration are affected in the
same way, because the slow variable runs through the same range
during the episode and the silent phase.

Figure 10 illustrates the effects of changing parameters in the
fast subsystem: the steepness of a`(a) for the u-model (Fig. 10A)

and the value of u for the s-model (B). Increasing the steepness
(decreasing ka; see Materials and Methods) leads to larger inter-
val and episode durations, higher cycling frequency, and larger
tonic component. Making a` steeper also results in a lower level
of (background) activity during the silent phase. Increasing u in
the s-model produces similar effects. These increases in interval
and episode duration, cycling frequency, and tonic component are
observed experimentally with development, as shown in Figures 1
and 10C [see also O’Donovan and Landmesser (1987)]. For
instance, activity at E4–5 consists of single cycle episodes, lasting
just a few seconds, but recurring with intervals of ;2 min (Milner
and Landmesser, 1999). By E10–11, episodes typically last ;60
sec, with intervals of 15–20 min.

To understand more physiologically how such a change in a
parameter of the fast subsystem affects both episodes and inter-
vals in the same way, let us consider the example of varying u for
the s-model (Fig. 10B). To keep the argument simple, we exag-
geratedly assimilate the effect on episode termination to the
effects on the high-activity states. Obviously, if the cellular thresh-
old u is increased, s will need to reach a higher value to start an
episode, because neurons will require a higher level of excitation
to start firing. However, the value of s that terminates the episode
will not be increased as much by the increase of u. The reason is
that during an episode neurons receive huge synaptic inputs,
bringing them far above threshold. A small change in u therefore
does not affect very much the activity during an episode. In other
words, the high-activity states are rather insensitive to changes in
u, as can be seen from the saturating shape of a` (Fig. 2C) for
large inputs. This is also illustrated in the a–d plane; note how the
bottom part of the a-nullcline is much more shifted to the right
than the top part when u is increased (Figs. 4B, 5B). The conse-
quence of the need to recover more from depression before
starting an episode, although the level of depression terminating

Figure 10. Time courses of activity (solid curves) and slow process (dashed curves) for different values of a parameter of the fast subsystem. A, Increasing
the slope of a` increases both interval and episode duration (u-model). The intermediate case ka 5 0.05 was shown on Figure 8A. Other parameter values
are given in Table 1. B, For the s-model, increasing u leads to longer silent phases and longer episodes. Notice how the increases in interval and duration
are paralleled by an increase in the range covered by the slow variable. The intermediate case u 5 0.18 was shown on Figure 9A. Other parameter values
are given in Table 1. C, Spontaneous activity recorded from chick embryonic cord at two stages of development showing the increases in silent phase
and episode duration. The scale bar applies to both traces.
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the episode is not changed much, is that intervals will be longer,
and so will episodes be. The increased level of effective connec-
tivity needed to start an episode for increased cellular threshold
also means increased synaptic drive at the beginning of an epi-
sode and thus explains the larger tonic components for higher u.
A lower level of “background” activity just after an episode is also
attributable to the increased value of u, because for a higher
cellular threshold, in the absence of network activity the number
of cells firing randomly will be even smaller. Again this can be
seen from the a` curve (Fig. 2C), which shifts to the right when u
increases, or in the a–d plane by comparing Figures 4B and 5B.
Note how the lower branch of the a-nullcline, and therefore the
low state, is almost down to 0 for the higher u.

We have also seen that a decrease in td leads to similar effects,
and so does an increase in ud (data not shown). These results
suggest that developmental changes that affect the fast subsystem
(time scale ,1 sec) could be responsible for the increase of
episode duration and interepisode interval (time scale minutes),
as well as an increase of the tonic component, with age. This
prediction is testable by comparing the time constant of fast
depression (for example) at different stages of development. The
model also suggests that these developmental changes are accom-
panied by a reduction in the background activity during the silent
phase. Again this could be tested experimentally with intracellu-
lar or optical recordings.

Distinguishing the two models
To summarize our previous results, we have constructed two
models of episodic oscillatory activity. They share common rhyth-
mogenic properties. Their cycle-generating fast subsystems, re-
flecting the interplay of a regenerative activity attributable to
recurrent excitatory connections and (fast) synaptic depression,
are bistable (coexistent states of cyclic high activity and near
quiescence). The episodic nature of the activity results from the
addition of a slow, activity-dependent process, in one case a slow
modulation of cellular properties (u-model) and in the other case
a slow synaptic depression (s-model). Both models have similar

dynamics, where the slow process switches the network between
low and high activity states. As a result, changing a parameter of
the fast subsystem affects interepisode interval and episode du-
ration in the same way for both models.

How can we distinguish between the two models? What exper-
iment would manipulate a parameter that has different effects on
the u-model than on the s-model? We have seen that varying a
parameter of the slow subsystem could affect interval and dura-
tion in opposite ways. Therefore, varying a parameter that is in
the fast subsystem for one model and in the slow subsystem for the
other model could have different effects on the models. In this last
section, we show that the connectivity parameter, n, affects both
models in a different way and also has experimental relevance.
Applying the graphical analysis used in the previous sections, we
show that only the s-model can explain adequately the experi-
mental data, specifically the effects induced by a reduction of
synaptic transmission.

Because n can be identified with the number of connections in
the network, it is suitable for experimental manipulation. One
way to accomplish this is to antagonize synaptic receptors. For
instance, it has been shown previously that on application of the
NMDA receptor antagonist APV (alone or in conjunction with
CNQX) the activity stops for a period of time but then recovers,
with moderately longer interepisode intervals than in control
conditions (accompanied by a slight decrease in episode duration)
(Barry and O’Donovan, 1987; Chub and O’Donovan, 1998a). We
therefore have redone these experiments (using only APV) and
compared the results with a decrease of n for both models (Fig.
11). All of four experiments on E9–10 preparations showed the
transient cessation of activity after drug application, followed by
recovered activity with moderately longer intervals than control
(after recovery, there was also a slow decrease of the intervals with
time, such that in one of the experiments the average interval after
recovery was equal to the average control interval).

Both models reproduce the transient cessation of activity after
a decrease in connectivity, although it is less marked for the

Figure 11. Effect of a reduction of connectivity. A, Experimental results from an E10 chick spinal cord on application of 100 mM APV. Top trace
represents electrical activity recorded from a ventral root. Bottom plot represents, for each episode, the length of the preceding interval. Over four
experiments, control interval, pause, and “recovered” intervals were 742 6 170, 3400 6 970, and 970 6 190 sec, respectively (mean 6 SEM). B, Top,
Time course of activity for the s-model on a decrease of n from 1.2 (“control”) to 0.9 (225%). Bottom, As on bottom plot of A for the s-model ( filled
symbols) and the u-model (open triangles).
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u-model. More importantly, the following intervals are paradox-
ically shorter than control for the u-model, whereas they are larger
for the s-model, as observed experimentally. Also, episode dura-
tion decreases markedly for the u-model, in contrast to the slight
decrease observed experimentally. These results suggest that the
s-model is in better agreement with the data than the u-model.
The effects of varying n on both interepisode interval and episode
duration are summarized in Figure 12. The models clearly differ
in the way intervals are affected. For the u-model, episode dura-
tion and interepisode interval are both decreased when connec-
tivity is reduced, whereas for the s-model, interval increases for a
moderate range of n and duration only slightly decreases.

The fast /slow dissection approach and associated bifurcation
diagrams enable us to understand these results. Figure 13 shows
explicitly how changing the connectivity, n, affects the solution
skeleton of the a 2 d fast subsystem for the u-model. With greater
connectivity, activity can start for a higher value of u and can also
be sustained for higher values of u, because of the higher synaptic
drive. However, the value of uc (at an episode’s end) increases
more than the value of u at the Z-curve’s left knee (at an episode’s
beginning). This means that the bistable range, which is covered
by the slow variable u during episode and silent phase, is in-
creased for increased n, as shown on the Figure (horizontal bars).
Therefore, because the same range is covered during the episode
and during the silent phase, both silent phase and episode dura-
tion are increased. Note however that the range covered by u is
also slightly shifted to the right for larger n. This slightly increases
the horizontal distance from the u nullcline (and therefore speed)
during a silent phase and decreases it during an episode. There-
fore this further increases the duration of an episode but limits
the extent of an interval, as shown on Figure 12. There is a lower
limit on the connectivity that allows episodic rhythmicity. If n is
too small the Z-curve’s lower branch intersects the u-nullcline,
forming a steady state of the whole system. Therefore the network
remains at this low activity level. If the u-nullcline were higher, n
could be decreased further, but for n too low the bistability
disappears and so does episodic activity.

We can now explain in a more intuitive way the effect of

connectivity changes. Increasing connectivity implies a higher
synaptic drive, and therefore episodes are sustained until the
cellular threshold reaches a higher critical value than for lower n.
However, the value of u that has to be reached to start an episode
does not increase as much because during the silent phase activity
is low, and therefore increasing connectivity does not increase
synaptic drive as much as during an episode. Because with higher
connectivity episodes start at approximately the same value of u,
but end for a higher value uc , their duration is increased. In turn,
silent phases start at a higher value of the threshold, so they
increase in duration too. Note how an increase of connectivity for
the u-model is analogous to an increase in u for the s-model (Fig.
10B). The duality of effects of u and n on the two models is
discussed in the Appendix. It is this duality that allows us to
distinguish the two models.

In the s-model, n can be identified as a parameter of the slow
subsystem. Changing this parameter can thus affect episode du-
ration and interepisode interval in opposite ways. To demonstrate
this, let us define a new variable s̃ 5 nzs. The system then
becomes:

Figure 12. Episode duration and interepisode interval as a function of
connectivity for the two models. A, u-model. Both duration and interval
increase with increased n, with a relatively smaller effect on interval. B,
s-model. Although duration increases slightly, interval decreases with
increasing n.

Figure 13. Effects of changing connectivity in u-model. A, Bifurcation
diagrams corresponding to two different values of n. Changing n mainly
scales the diagram and slightly moves it to the right. The main effect is on
the range of bistability, indicated by horizontal bars. Therefore silent
phase and duration are changed in the same direction. B, Time course of
network activity for n 5 0.9. C, Time course for n 5 1.5.
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taȧ 5 a`~ s̃ z d z a! 2 a

tdḋ 5 d`~a! 2 d

ts ṡ̃ 5 n z s`~a! 2 s̃ ,

so that a variation of n results only in a multiplicative scaling of
the s̃-nullcline, as shown in Figure 14A. From this diagram it is
easily seen that the range of s̃ does not change with n, but the
relative speeds of s̃ are affected. During the silent phase the
distance between the trajectory and the s̃-nullcline is smaller for
smaller n, implying a lower velocity during recovery. Therefore,
when connectivity is lowered, interval increases. At the same
time, episode duration slightly decreases (Figs. 12, 14B,C). The
reason for only a small effect on duration is that during activity,
s`(a) . 0, so multiplying it by n does not change it much, implying
that the part of the s̃ nullcline relevant to high activity is moved
only slightly leftward (for decreased n) compared with the part
corresponding to the recovery phase.

After application of the glutamate antagonists there is a very
large interval, immediately followed by regular occurrence of

episodes. It has been hypothesized previously that the lack of
activity for a long period of time (;1 hr) could lead to an
upregulation of the GABA/glycinergic synapses (Chub and
O’Donovan, 1998a). The strengthening of these synapses would
compensate for the blockade of the glutamatergic synapses. Our
graphical approach helps us to interpret this result with the
s-model in a different way. As shown in Figure 15, when n is
decreased, the whole diagram is shifted instantaneously to the
right, that is, to larger values of s. However, just after the manip-
ulation the variable s, because it is slow, will be unchanged. The
system’s state drops to the low-activity branch of the shifted
S-curve (the only attractor at this s-value). Before an episode can
be initiated, s has to recover to a much larger value (the shifted
right knee), hence the long period of inactivity. Once s is in the
right range, episodes occur regularly as in control conditions.
Therefore, the model suggests that the hypothesized upregula-
tion of GABA/glycinergic synapses may simply be a shift to a
lower level of depression.

Finally, there is a corollary to this transient large interval after a
decrease in connectivity. If n is brought back to its original value,
in other words, if the drugs are washed out, s has to decrease back
to its original range. Assuming that the washout is immediate, s has
to decrease while activity is in the high state. Therefore the model
predicts that after washout there should be a very long episode. To
test this prediction we have examined the length of the episodes
after washing out APV (CNQX was not applied because it washes
out too slowly). We did not find such a dramatic increase in the
next episode’s duration, probably because the drug does not wash
out instantaneously. In two cases, there was a longer episode, but
the general effect was a transient reduction of the silent phase. This
can be interpreted with the model as a gradual change from the
S-curve structure on the right of Figure 15 to that on the left. As the
diagram drifts leftward and the trajectory during a silent phase is
moving to the right, they intersect, and episodes are started more
often than usual, until s reaches the control range. If we measure
the percentage of active phase (the duration divided by the length
of the preceding interval), the model predicts a transient decrease
in this percentage after drug application and a transient increase
after washout. This is what is observed experimentally in all four
preparations (data not shown).

DISCUSSION
We have analyzed models that describe the activity of a randomly
connected, excitatory network with activity-dependent network
depression. The models reproduce many features of the sponta-
neous activity generated by developing spinal networks and make
a number of experimentally testable predictions. We have used
graphical methods to provide insights into the behavior of the
models and show that they can account for the newly discovered
short-term plasticity (Chub and O’Donovan, 1998a) exhibited by
developing spinal networks.

In the first part of Discussion, we will consider the models and
the insights that they have provided into the genesis and proper-
ties of spontaneously active spinal networks. In addition, we will
identify processes of the models with their putative biological
equivalents, and we will then discuss some of the specific predic-
tions made by using the models. In the second part of Discussion,
we will explain some limitations of the models and those aspects
of the network behavior that the models cannot account for in
their present form. Finally, we will discuss extensions of the
model to other spontaneously active networks and compare it to

Figure 14. Effects of changing connectivity in s̃ version of s-model. A,
Bifurcation diagram with s̃-nullclines corresponding to two different val-
ues of n. Changing n only changes the maximal value of s̃ covered by the
nullcline. If n is further decreased below 0.85, the s̃-nullcline intersects the
low steady-state branch so episodic activity ceases. B, Time course of
network activity for n 5 0.9. C, Time course for n 5 1.5.
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other models that have been developed to account for spontane-
ous network activity.

Model predictions and insights into the genesis of
spontaneous activity by spinal networks
We consider first the slow form of network depression that controls
the onset and termination of episodes because it is in this area that
most of the experimental data have been accumulated. What is the
physiological correlate of this slow depression? As mentioned ear-
lier, a variation of both neuronal threshold and synaptic strength are
compatible with the experimental findings. Intracellular recordings
have revealed a slow depolarization between episodes [N. Chub and
M. O’Donovan, unpublished result; see O’Donovan (1999)], and
evoked synaptic potentials are depressed after an episode and pro-
gressively recover in the interepisode interval (Fedirchuk et al.,
1999). The s-model favors synaptic depression as the primary mech-
anism because it duplicates the experimental findings when gluta-
mate antagonists are applied to the network. Indeed the s-model
provides an important insight into the mechanisms of the recovery of
activity in the presence of excitatory blockers because it suggests that
it is a consequence of the presence of slow synaptic depression rather
than requiring the involvement of an additional mechanism. In the
model, the mechanism for rhythmicity within an episode is a fast
form of synaptic depression. Its time constant is of the order of ta ,
but longer, so that the feedback inhibition provided by d is delayed,
which allows for the cycling observed during episodes. At present,
we have only preliminary evidence to support the presence of fast
depression in the synapses responsible for the rhythmic drive to
motoneurons and interneurons (P. Wenner, unpublished observa-
tions). However, previous studies have indicated the existence of a
fast depression of the monosynaptic connection between muscle
afferents and motoneurons (Lee and O’Donovan, 1991). The time
constant for this depression in E18 embryos was ;200–300 msec,
which is in the appropriate range for oscillatory behavior. However,
the time constant for synaptic depression is very dependent on
developmental maturity, and further studies will be necessary to
establish whether the time constant of the active synapses is in the
range predicted by the model.

Limitations of the present model
Our modeling framework uses two classes of slow activity-
dependent network depression (s or u), which deterministically
control the onset and termination of episodes. As a consequence,
for a given set of parameter values the episode and interval lengths

will be constant (except for small regimes of parameter values
where chaotic behavior might occur). However, this contradicts our
experimental observations showing that these durations vary from
episode to episode. Some form of synaptic noise could affect the
onset of episodes, because intracellular recording from ventrally
located spinal neurons has shown the presence of action potential-
independent synaptic noise that peaks in amplitude just before the
episode (Chub and O’Donovan, 1998b). Experimentally, we have
equated the slow depression to the reduction in the amplitude of
synaptic potentials that follows an episode. The maximal depres-
sion of these evoked potentials occurs ;1 min after an episode. On
the falling phase of the episode depolarization, the evoked poten-
tials can actually be facilitated (Fedirchuk et al., 1999). This sug-
gests that an additional process might be involved in episode
termination. Finally, we cannot exclude the possibility that both
synaptic depression and some form of activity-dependent cellular
modulation affect network excitability.

Another area in which the models fail to predict the measured
network behavior is in the response to the bath-applied GABAA

and glycine antagonists bicuculline and strychnine. These drugs
cause a marked decrease in episode duration, whereas interepi-
sode intervals become less regular (but not necessarily longer).
This is not expected from a decrease of n in the s-model. This
discrepancy between the modeling and the experimental results
may arise because the actions of these drugs cannot simply be
viewed as simply a reduction in connectivity (n parameter in the
model). Indeed, although GABA and glycine depolarize spinal
neurons and are thought to be functionally excitatory, activation
of GABAA receptors can produce a shunt that prevents neuronal
firing (O’Donovan, 1989). Blockade of these receptors could
therefore increase neuronal firing frequency during an episode,
depressing synapses faster than in control conditions. Moreover,
there is evidence that extracellular GABA produces a persistent
conductance in spinal neurons, so that bath-applied bicuculline
may lead to an increase in input resistance (Chub and
O’Donovan, unpublished results) and thus to an increased sensi-
tivity to synaptic noise.

Comparison with other models of spontaneous activity
There are several other models of spontaneous activity that also
rely on some form of slow activity-dependent depression. For
example, Staley et al. (1998) have proposed that transmitter deple-
tion terminates epileptiform discharges induced by inhibitory

Figure 15. Simulation with s-model of applying and then
washing out an excitatory synaptic antagonist. The bifurca-
tion diagram for two values of n and the corresponding
trajectory in the (a, s) plane are plotted. Assume connectivity
is initially “high” (n 5 1.5). When connectivity is decreased
(after drug application), the bifurcation diagram switches to
the one on right. Therefore the trajectory falls to the low-
activity steady state and migrates along the lower branch (for
n 5 0.9). Because it must travel far rightward, to the shifted
lower knee, there is a very long “interval” before the next
episode can occur. Once the new range of s allowing for
activity has been reached, episodes occur regularly. If con-
nectivity is suddenly increased back to control (washout), the
bifurcation diagram switches back to the lef t. Thus, the tra-
jectory migrates leftward, but this time following the high
activity state, hence a very long “episode” before the control
range of s values is reached.
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blockade or elevated extracellular K1 in hippocampal slices. They
suggest that during an episode, the number of available transmitter
vesicles (Nr) decreases until it reaches a threshold value Thr where
activity can no longer be sustained. During the following silent
phase, they propose that synapses recover exponentially and that a
new episode starts when Nr reaches a given value that depends on
network excitability and Thr. This scheme is similar to the s-model.
In the model of Staley et al. (1998), an increase in network excit-
ability decreases the duration of both the episode and the interepi-
sode, as in the s-model when u is decreased. Also, it can be shown
that Nr/Thr is similar to our variable s, and therefore that an
increase of Thr is similar to a decrease of connectivity in our
model: interepisode interval is increased, but episode duration is
not affected substantially. It is worth noting that in the scheme of
Staley et al. (1998), the time constant of transmitter depletion
during a burst is much faster than the time constant of recovery
during the silent phase. This allows the interburst interval to vary
independently of burst duration. In our model there is only one
time constant ts for both depression and recovery, so scaling it
affects both interval and duration in the same way. For this reason,
in our model it is difficult to achieve the experimentally observed
interval/duration ratios (.10). It is possible to get high ratio values
for the s-model for low values of connectivity. We do not claim,
however, that this is an additional piece of evidence in favor of the
s-model as presented here, because we could also achieve higher
ratios by allowing ts (or tu in the u-model, for that matter) to be
activity dependent, being greater during the silent phase.

Feller et al. (1996) have used a cellular refractory period to
account for the limited domains of spontaneous retinal waves.
Still unknown are the precise mechanisms of this refractoriness
and whether synaptic depression plays a role in limiting wave
frequency or extent. We have suggested a way to distinguish
between these two possibilities by manipulating connectivity (or
neuronal threshold, cf. Appendix), but it is not clear how it could
be applied to the retinal network.

In conclusion, we have shown that a highly idealized model
with very few assumptions is capable of generating spontaneous
activity such as the one observed in the experimental preparation.
Despite and because of the simplifications, the model allows a
basic understanding of the processes involved in generation of
episodic, rhythmic activity. Whether the slow activity-dependent
process is a modulation of cellular excitability or a depression of
intercellular connections does not change the qualitative behavior
of the model. However, the two models show different responses
to a change in connectivity or in cellular excitability. This can be
used experimentally to help decide which is the better model to
apply to a given preparation.

APPENDIX
Condition for oscillations of the fast subsystem
We consider the fast subsystem and rewrite it as follows:

ȧ 5 A~a, d!

ḋ 5 D~a, d!,

where A(a, d) 5 a`(nzdza) 2 a and D(a, d) 5 (d`(a) 2 d)/t with
t 5 td /ta. We will derive the condition associated with the
destabilization of a steady state and birth of cyclic oscillations (via
Hopf bifurcation) around the high-activity steady state. Two
aspects of this condition are that the steady state must be on the
a-nullcline’s middle branch and that the negative feedback from
depression must be sufficiently slow.

The stability of a steady state (a# , d#) is analyzed in the tradi-
tional way (Rinzel and Ermentrout, 1998) using linear perturba-
tion theory. Consider the effect of a small perturbation (x, y) from
the steady state and determine whether it grows or decays. That
is, we write a 5 a# 1 x and d 5 d# 1 y. We assume the perturbations
to be small enough so that

A~a, d! < A~a# , d# ! 1 x z
A
a

~a# , d# ! 1 y z
A
d

~a# , d# !

(and the same approximation applies to D).
The system becomes:

ẋ 5 x z
A
a

~a# , d# ! 1 y z
A
d

~a# , d# !

ẏ 5 x z
D
a

~a# , d# ! 1 y z
D
d

~a# , d# !.

This is a system of two linear differential equation with con-
stant coefficients. Therefore the solution is a linear combination
of two exponentials, exp(l1t) and exp(l2t). As long as the real
part of the li values are negative, the perturbation will decay to 0;
the steady state is stable in this case. The steady state loses
stability in an oscillatory manner when a control parameter is
varied so that the li values as a complex pair cross the imaginary
axis, from Re(l) , 0 to Re(l) . 0. At the critical point, l1 1 l2 5
0 (each has zero real part), and this happens when:

A
a

~a# , d# ! 1
D
d

~a# , d# ! 5 0.

Recalling the definition of A and D, we have that at the critical
point of destabilization:

nd# a 9̀ ~nd# a# ! 2 1 5 1/t.

This is the necessary and sufficient condition (along with a few
technical details) for a Hopf bifurcation of periodic solutions to
occur (Rinzel and Ermentrout, 1998). Thus, the steady state will
be an unstable spiral only if:

nd# a 9̀ ~nd# a# ! 2 1 . 1/t.

We glean several interpretations from this condition as follows.
First, we note that the quantity on the left side is equal to
2na#a9̀ (nd#a#)M, where M is the slope of the a-nullcline. Because this
term has to be greater than 1/t, M must be negative, i.e., the steady
state must be on the middle branch of the a-nullcline (as in Figs.
4B,C, and 6A,B). This is a geometric statement, but to guarantee
instability we need the parametric aspect as well. The cells’ activa-
tion function must be steep enough, and their thresholds should
not be too spread out. That is, we must have high-gain positive
feedback. Also, if n or d is too small, destabilization will not occur.
Importantly, the depression time constant has to be large enough.
If the negative feedback is too fast, then the steady state can be
stable even though it is on the middle branch. If the gain of the
positive feedback is increased, the time constant of the negative
feedback can be decreased and still not preclude destabilization.

The above condition does not guarantee that the fast subsystem
can oscillate, only that there is a high-activity, unstable steady state.
In the example of Figure 6, increasing t destabilizes the high state so
that oscillations can occur. However, further increasing t increases
the oscillation amplitude and can cause the periodic to hit the
intermediate steady state and then disappear. Therefore, in that case
there is a range of values for t that allow oscillations (1.4–2.4). In the
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example of Figure 4, however, there is no lower steady state, so for
any value of t larger than 6 there will be oscillations.

Dual effects of connectivity and threshold
We have noted previously, in “Distinguishing the two models,”
how a change in connectivity in the u-model is analogous to a
change of u in the s-model. In the latter, an increase in u leads to
a higher value of s before an episode is started, which increases
the silent phase and in turn increases episode duration. Similarly,
an increase in connectivity in the u-model allows the episodes to
continue for a larger value of u, increasing episode duration and in
turn increasing the silent phase. Each of these parameters is iden-
tified as belonging to the fast subsystem of the respective model.

We have also shown that a decrease of connectivity induces an
increase in interval for the s-model, whereas it decreases the
interval in the u-model. This allows us to distinguish between the
two models. Here, we show that manipulating the average cellular
threshold, or bias excitation to the neurons (that is, depolarization
from a source external to the network), allows a similar distinction.

Changing u in the s-model is equivalent to changing the bias
excitation. For the u-model, we represent the influence of an
external excitation by introducing a parameter, u0 , adding it to the
argument nzdza of a`. As we saw for n in the s-model, we see here
that the bias excitation u0 can be viewed as a parameter of the slow
subsystem in the u-model, by defining the new variable ũ 5 u 2 u0.
The effect of u0 is to shift the u-nullcline by 2u0 , which for u0

positive decreases the silent phase (slightly) while it increases the
duration. Table 2 summarizes the types of transformations that are
analogous in the s- and u-models. We believe that this might help
one to decide whether the episodic activity observed in other
preparations is dominated by cellular or synaptic properties.

It is interesting to note that if the activation function a` were
a step function, as used in some models, it would not be possible
to distinguish between the u-model and the s-model, because a
change in both connectivity and threshold would have the same
effect on the activation function.

The behavior of the u-model is similar to that of a cell-based
network model of a respiratory rhythm generator developed by
Butera et al. (1999). In the respiratory model, cell–cell coupling
is also purely excitatory and a fraction of cells are endogeneous
(bursting) oscillators. For strong enough coupling, this model
behaves as the u-model: increasing the tonic excitation to the
network shortens interval but increases duration, whereas de-
creasing connectivity decreases both interval and duration.
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Table 2. Manipulations of connectivity and tonic excitation that induce
similar effects in s- and u-models

u-model s-model Effect

Decreased
connectivity

Increased
tonic excitation

Shorter interval,
shorter episode

Decreased
tonic excitation

Decreased
connectivity

Longer interval,
shorter episode

The first line corresponds to changes that affect interval and duration in the same way;
the second line indicates changes that affect interval and duration in opposite ways.
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