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A B S T R A C T

With increasing presence of science throughout all parts of society, there are rising expectations for researchers 
to effectively communicate their work and for teachers to discuss contemporary findings in their classrooms. 
While the community can resort to established teaching aids for the fundamental concepts of most natural sci-
ences, there is need for similarly illustrative demonstrators in neuroscience. We therefore introduce Lu.i: a 
parametrizable electronic implementation of the leaky integrate-and-fire neuron model in an engaging form 
factor. These palm-sized neurons can be used to visualize and experience the dynamics of individual cells and 
small networks. When stimulated with sensory input, Lu.i demonstrates brain-inspired information processing in 
the hands of a student. As such, it is actively used at workshops, in classrooms, and for science communication. 
As a versatile tool for teaching and outreach, Lu.i nurtures the comprehension of neuroscience research and 
neuromorphic engineering among future generations of scientists and the general public.

1. Introduction

Expanding our understanding of the brain is among the central 
frontiers of modern science and yet implies some of the longest standing 
questions humanity has posed to itself. Their fundamental nature in-
duces an intrinsic curiosity about the progress of neuroscience, artificial 
intelligence, and brain-inspired technology. In contrast to this demand, 
the repertoire of tangible demonstrators to communicate principles and 
recent achievements in brain research is limited [1]. In comparison, 
other fields can build on many centuries of experience to convey their 
essential concepts through physical demonstrators and live experiments.

In our current understanding, the fundamental principles of infor-
mation processing in nervous systems lie in neuronal dynamics and 
synaptic interactions. A strong intuition for these mechanisms is, 
therefore, the foundation for understanding and investigating more 
complex processes and emerging phenomena. In the following, we thus 
present Lu.i – an analog electronic implementation of the leaky 
integrate-and-fire (LIF) neuron model targeted for educational use as 
well as scientific outreach. Lu.i features current-based synaptic inputs 
that enable the formation of simple spiking neural networks (SNNs) and 
offers control over many parameters, including the time constants and 
the synaptic weights. The printed circuit board (PCB) visualizes the 

time-continuous dynamics of the emulated membrane potential and 
allows interfacing with digital and analog periphery for advanced ex-
periments. It has been optimized for low-cost production, long battery 
life, and intuitive operation.

2. Neuron and synapse dynamics

Neurons are a family of electrically active cells that compute and 
communicate by exchanging action potentials. Each cell receives such 
signals via its synapses and integrates them over time. Once a neuron has 
accumulated enough input, it becomes active and communicates this by 
itself sending a spike to other neurons.

Lu.i implements the LIF neuron model, arguably the simplest 
abstraction that still captures these fundamental properties of neuronal 
information processing: time-continuous computation, spatio-temporal 
integration, and event-based communication. This model was origi-
nally put forward by Louis Lapicque (/lu.i la’pik/) in [2], after 
whom the PCB was fittingly named. In contrast to models based on 
specific ion channel dynamics like the one by Hodgkin and Huxley [3], 
LIF captures essential neuron dynamics in a single state variable: It de-
scribes the evolution of a neuron’s membrane potential Vmem(t) by the 
differential equation 
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τmem
dVmem(t)

dt
= − [Vmem(t) − Vleak] + Isyn(t)

/
gleak, (1) 

where τmem denotes the membrane time constant, gleak the leak 
conductance, and Vleak its resting potential. Isyn(t) subsumes the time- 
dependent synaptic currents stimulating the neuron. This differential 
equation describes a membrane potential which continuously decays to 
the resting state. It is, however, augmented by a reset condition to mimic 
the hyperpolarization following the action potentials observed in bio-
logical neurons: Whenever the membrane potential crosses the 
threshold ϑ, the neuron emits a spike. This efferent signal is accompa-
nied by a reset of the membrane potential, where the latter is simply 
clamped to Vreset for the refractory period. For an exemplary time evo-
lution of these dynamics see Fig. 3A.

Lu.i implements current-based synapses with postsynaptic currents 
following exponential kernels with time constant τsyn. This additional 
temporal filter mimics the kinetics of synaptic ion channels: Each pre-
synaptic spike j, arriving at time tj

pre at synapse i, triggers an exponen-
tially decaying current 

Ij
syn(t) = wi⋅exp

(

−
t − tj

pre

τsyn

)

for t > tj
pre, (2) 

where wi denotes the weight of the respective synapse i. This weight 
variable models the strength of synaptic interaction, its sign corresponds 
to the positive and negative effect of excitatory and inhibitory neuro-
transmitters, respectively. The total synaptic current then results as a 
sum over the individual contributions from all synapses i and spikes j.

In biological neurons, the membrane potential typically resides be-
tween − 80 mV and 0 mV. The temporal dynamics are, however, inde-
pendent of that absolute voltage scale, and are instead mainly governed 
by the time constants. We on the one hand chose to slow down the 
temporal dynamics to a scale that can be visually well perceived and 
interacted with by experimenters. On the other hand, we opted to reduce 
the full complexity of the parameter space by fixing two of the poten-
tials, namely the threshold ϑ and reset potential Vreset, leaving the leak 
potential Vleak as a free, adjustable, parameter.

3. Electronic implementation

Lu.i realizes the LIF dynamics through a set of analog electronic 
circuits (Fig. 2) and thus forms a physical model thereof. It exposes the 
neuronal time constants τmem and τsyn, the leak potential Vleak and all 
synaptic weights wi as user-settable parameters (Fig. 3B). The membrane 
is accessible through a board-edge connector and its voltage – as well as 

spike events – are visualized by on-board LEDs.
Internally, Eq. (1) is rendered by the combination of capacitor Cmem 

and potentiometer gleak, which form an RC integrator with adjustable 
time constant τmem (Fig. 2A). Without external stimuli, Vmem decays 
towards the resting potential Vleak, which we generate by the combi-
nation of an adjustable voltage divider with a subsequent unity gain 
buffer. The leak potential can thus be set between 0 V and the supply 
voltage VDD. The spike mechanism is implemented by continuously 
comparing the membrane potential to the threshold, which was chosen 
as ϑ = VDD /2 to guarantee sufficient voltage headroom for the 
comparator (Fig. 2D). Once the membrane reaches this threshold, the 
comparator trips, indicating a spike and causing a membrane reset. To 
avoid instabilities, it is fitted with a hysteresis circuit that temporarily 
reduces the comparator’s reference potential to VDD/4 during the onset 
of a spike. At that point, the capacitor Cref is discharged and the con-
nected comparator trips, thus shorting the membrane to Vreset = 0 V via 
the transistor Qreset to implement the refractory period. Rref and Cref 
determine the fixed refractory time of approximately 15 ms, which starts 
once Vmem is discharged below VDD/4, where the threshold comparator 
releases. The control signal for Qreset is re-used as the neuron’s axonal 
output, with a pulse width equivalent to the refractory time.

Lu.i features three synapses implementing the current-based model 
with an exponential kernel as introduced by Eq. (2). Each of them pos-
sesses a tunable weight and can be switched between excitation and 
inhibition. The synapses share a common synaptic time constant τsyn, 
which is adjustable over a broad range. For an area- and cost-effective 
implementation, we minimize the amount of components per synaptic 
connection: Events from presynaptic neurons control the gate of the n- 
channel MOSFET Qlow (Fig. 2B). Depending on the selected polarity 
Ssign,i, this transistor either directly discharges the shared synaptic 
integrator or indirectly charges it via the p-channel MOSFET Qhigh. For 
each event, this synaptic trace is in- or decremented by a fixed amount of 
charge proportional to the respective weight gw,i which can be config-
ured through a potentiometer. The time constant τsyn = Csyn/gτsyn of the 
integrator can be similarly tuned (Fig. 2C). Especially in light of the 
additional filter introduced by the membrane, the resulting temporal 
behavior closely approximates the instantaneous response of the orig-
inal model. The synaptic current Isyn is derived from the integrator state 
through a V-I conversion stage. As such, it consists of two voltage- 
controlled current sources – each built from a resistor, a MOSFET, and 
an operational amplifier. Qpush and Qpull operate in a push-pull config-
uration and generate two antagonistic currents. Their difference is 
proportional to the deflection of the integrator and corresponds to the 
total postsynaptic current Isyn that stimulates the membrane.

Lu.i displays its state through a set of LEDs. Six of them form a bar 
that visualizes the membrane potential, and a seventh LED indicates 
efferent spikes with a flash. This interface is sketched in Fig. 3A for 
various states of the neuron. The voltmeter is implemented through a set 
of comparators and a resistor ladder to generate the respective reference 
potentials. While these circuits take up significant area on the PCB, they 
have been omitted from the schematic for clarity. This intuitive on- 
board interface enables standalone operation and the visualization of 
network activity and signal propagation therein. Experimentation with 
external equipment is, however, encouraged and allows more detailed 
insights into the neuron dynamics. For that purpose, the emulated 
membrane is accessible through a pad at the board edge for interfacing 
with, e.g., current sources and oscilloscopes.

The PCB is powered from a single CR2032 coin cell, which we chose 
for its small form factor, wide availability, and comparably high ca-
pacity at low cost. All voltage references of the circuit are derived 
relative to this supply voltage of nominal 3 V. The temporal dynamics 
are thus, on first order, invariant to the battery voltage. This ensures 
mostly stable operation across the entire lifetime of the cell, which re-
sults in approximately 24 h of continuous use. Lu.i can be powered down 
completely through a switch on its back side.

Fig. 1. A single Lu.i neuron PCB, with a 2-Euro coin for scale. To relay infor-
mation from one neuron to the other, excitatory and inhibitory synapses can be 
formed by wiring the axonal output (right) to one of the three dendritic ter-
minals (left).
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While aiming for an intuitive and appealing form factor, the PCB has 
been strongly optimized for low-cost fabrication. This is reflected in the 
selection of components as well as the layout, which only relies on a 
simple two-layer PCB. As a result, we achieved a unit price of around US 
$3 (excluding the battery) already for batches below 1000 Lu.i neurons. 
As the backside only contains the battery holder and an optional power 
switch, fabrication costs can be further reduced by restricting automated 
assembly to the top layer.

4. Exploring neural computation with Lu.i

Lu.i was designed to illustrate two of the fundamental aspects of 
biological neurons: spatio-temporal accumulation of input and event- 
based communication, both of which are captured by the LIF model. 
These aspects can be demonstrated in a set of experiments of increasing 
complexity, some of them shown in Fig. 3.

The first property – leaky integration of input – can be seen in 
Fig. 3A: The membrane potential rises after weak excitatory stimuli and 

Fig. 2. Schematic of the LIF emulation circuit implemented in Lu.i. (A) Membrane capacitance and leak conductance. (B) Current-based synaptic input circuits. This 
circuit is instantiated three times, once per synapse. (C) Synaptic integrator and voltage-to-current conversion circuit. (D) Threshold, reset, and refractory circuit. The 
spike output pulse is derived from the neuron’s reset signal and of equivalent duration. The purple boxes relate all user-settable parameters to their representation in 
the circuit.

Fig. 3. Exploration of single-cell and network dynamics with Lu.i. (A) A single Lu.i neuron receiving multiple excitatory and a single inhibitory events. The depicted 
trace is an analog recording of Vmem on the board. It shows how stimuli are integrated on the membrane, which continuously leaks back to the resting potential. If the 
threshold ϑ is reached, the neuron sharply resets and emits a spike. For applications without an oscilloscope at hand, each Lu.i neuron features a bar of LEDs to 
display the current membrane potential as well as axonal spikes (top LED, flashing). (B) Tuneable neuron parameters on Lu.i. Each model parameter is represented by 
a small potentiometer (cf. Fig. 1), all three synaptic weights are individually configurable in sign and strength. The traces showing the influence of τsyn have been 
normalized in amplitude. (C) Analog recording of the membrane potential Vmem of two Lu.i neurons. The top trace shows the dynamics of a circuit that is configured 
with Vleak > ϑ and emits spikes at regular intervals. This neuron projects onto a second one (bottom trace), which is excited by these events, integrates the post-
synaptic current and – eventually – also spikes. (D) Wiring diagram of a closed, circular delay chain built from seven Lu.i neurons. (E) Spike recording of three Lu.i 
boards, configured to represent rate-based AND, OR and – combined – XOR gates. For panels (A) and (E), the input events are presented by an external microcontroller.
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decays back to the resting potential, similarly with inhibitory input. The 
resulting trajectories are shaped by the adjustable time constants τsyn 
and τmem. These determine the time scales on which consecutive inputs 
are integrated and stacked. Only when the threshold is reached, an 
efferent spike is triggered and visible externally. On Lu.i, these dynamics 
can be observed using an on-board LED strip visualizing the membrane 
state and spike output, as shown in Fig. 3A. Neurons compute through 
this combination of analog integration and thresholding, for example by 
performing spatio-temporal coincidence detection. Exploring the impact 
of the model parameters on this computation – in case of coincidence 
detection on the sensitivity or detection window – is a worthwhile 
educational exercise: When Lu.i receives two spikes with a certain time 
difference, the neuron’s parametrization determines whether an output 
spike is emitted. With short time constants, it becomes active only for 
inputs close to each other, whereas longer time constants result in a 
larger detection window. These temporal dynamics fundamentally 
determine the timescale on which information is processed.

In contrast to the local computation on their membranes, neurons 
communicate through temporally sparse spike events. This signal 
propagation can be demonstrated in a simple two-neuron network 
(Fig. 3C), where a synaptic connection is formed by a cable between the 
presynaptic axon and a postsynaptic dendrite. By choosing a resting 
potential above the threshold, the first neuron can act as a regularly 
firing spike source to the second. As before, the stacking of excitatory 
stimuli and the reset upon threshold crossing can be observed on the 
membrane of the postsynaptic cell. The behavior of both neurons is 
clearly visible using the built-in LEDs without an external oscilloscope. 
Already in this simple setup, the influence of the synaptic parameters 
can be explored: For example, the combination of a short synaptic time 
constant and a strong excitatory weight can be used to trigger one spike 
for each incoming event. Increasing the synaptic time constant, while 
lowering the weight, can lead to a delayed propagation of single spikes. 
This can be used to build delay chains, which vividly illustrate the finite 
propagation speed of neural signals. Once these chains are closed 
(Fig. 3D), their activity becomes self-sustained.

Fig. 3E shows a more complex example, where rate-based AND, OR 
and – in combination – XOR gates are implemented using three Lu.i 

neurons. In this case, the OR (AND) gate is implemented by a single 
neuron that has been tuned to fire for at least one (two) active presyn-
aptic neurons. The output of the OR neuron excites the XOR cell, with the 
AND neuron acting inhibitorily.

While the inputs A and B can be presented using Lu.i neurons (e.g., in 
leak-over-threshold configuration), we have used an external micro-
controller to stimulate the network in Fig. 3E. With a pulse duration of 
15 ms and a signal level of approximately 2.5 V, Lu.i’s event output 
signal can be detected by most 3.3 V and 5 V microcontrollers. The event 
inputs on Lu.i are compatible with signal levels from 1.8 V to 20 V, 
allowing to interface with a great variety of sensors and devices.

Due to its simplicity, the XOR network is attractive in educational and 
outreach environments. Inspired by existing literature, more complex 
networks have emerged from collaborations of researchers across all 
areas of neuroscience, including realtime sound localization [4], a 
balanced random network [5], a ring attractor model [6], an echo 
localization latch [7], and – with preprocessing of the analog signals – a 
brightness change detection circuit. Lu.i has been used repeatedly to 
teach a younger audience about fundamentals of neuroscience and 
physical computing, also in combination with a subsequent transition to 
neuromorphic systems made accessible through the european research 
initiative EBRAINS. Within the first two years, Lu.i has been used at 
more than 20 workshops held by lecturers not affiliated with the group 
of authors. Across all described applications, it was used to compellingly 
illustrate fundamental topics across a wide range of research areas from 
robotics to systems neuroscience.

5. Discussion

This manuscript presents Lu.i, a palm-sized electronic neuron with 
versatile applications for teaching and scientific outreach. It can be used 
to illustrate the dynamics of individual neurons under different pa-
rametrizations and their interaction in small spiking neural networks 
(Fig. 3). Featuring various connectivity options as well as on-board 
visualization aids, Lu.i can be used stand-alone or in combination with 
external equipment, like oscilloscopes, current sources, or 
microcontrollers.

Fig. 4. Lu.i has played an integral role at various events all over the world for teaching and outreach applications, including: Nacht der Forschung (Switzerland, 
2022, ), CapoCaccia Workshop toward Neuromorphic Intelligence (Italy, 2023, ), TReND in Africa (Ghana, 2023, ), and Deutsche SchülerAkademie (Germany, 
2023, ).
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Lu.i complements a range of pedagogical tools spanning from 
experimental to computational neuroscience [8,9]. Among those are 
guided experiments on tissue and living animals, which are arguably the 
most natural way to convey biological concepts but always imply ethical 
and logistical challenges. Simulation-based curricula, on the contrary, 
trade immediacy with ease-of-use and simplicity, even when considering 
graphical user interfaces [10,11]. Reducing experimentation on living 
tissue in accordance to the 3R principles [12] while keeping the benefits 
of interactive teaching [13], the concept of tangible hardware has been 
put forward before [14–18]. As another effort in this direction, Lu.i 
combines an inviting interface with an analog yet accurate imple-
mentation of the LIF model. The latter is sufficiently complex and flex-
ible to allow illustration of fundamental biological phenomena as well as 
the concept of physical computation. The PCB is optimized for 
cost-effective manufacturing to ease acquisition especially for educa-
tional institutions. With its engaging form factor, Lu.i has been 
welcomed at various conferences and workshops, leading to adoption by 
teachers and tutors in classrooms (Fig. 4). As such, the project received 
enthusiastic responses initiating collaborations across both different 
areas of expertise and from pupils to faculty.

The Lu.i project is available as open hardware2 and undergoes active 
development. The circuits are continuously improved and future ver-
sions might be accompanied by additional extensions, such as sensory 
spike sources or actuators. In conjunction with the above-mentioned 
collaborations on courses and workshops using Lu.i, a curriculum of 
teaching material and feedback is being collected to nurture adoption 
among teaching personnel.
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