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Summary

Plasticity of excitatory cortical synapses is thought to be the main mediator of mammalian learning.
Due to the selective advantage that the ability to adapt to a changing environment grants, it is rea-
sonable to assume that the processes governing these changes in connection strength are in some sense
optimal. Yet, this has been di�cult to reconcile with an “embarrassment of riches” of the LTP and LTD
phenomenology. Here, we present an attempt at bridging this gap by showing that a mathematically
derived model can exhibit some of these experimentally observed e↵ects, while still retaining functional
capabilities under diverse learning paradigms.

Our work is based on a published plasticity model [3] that postulates that learning is driven by
an intraneuronal prediction error where the weights of “student inputs” onto a dendritic compartment
change in order to reproduce voltage changes imposed on a somatic compartment by “teacher inputs.”
We show here that this two-compartment model of a pyramidal neuron can be extended in some
simple ways, such as using conductance-based instead of current-based inputs, bringing it closer to the
biophysics of pyramidal neurons. This allows us to reproduce a diverse set of experimental observations
on cortical plasticity, such as di↵erent characteristics of the spike-timing dependence of plasticity.

Additionally, we show within a simple setup of a pattern recognition task that the extended model,
while being less analytically tractable, can still perform well under unsupervised and reinforcement
learning paradigms. Therefore, a single learning rule derived from the optimization of a well-defined
cost function can be brought into correspondence with a large body of experimental evidence on synaptic
plasticity, while still providing a diverse set of relevant functionality.

Methods

The principal idea of the learning rule is that
synaptic plasticity in dendrites serves to minimize
a prediction error between dendritic and somatic
voltages. Briefly (see [3] for the full model), we con-
ceptualize a two-compartment neuron with somatic
and dendritic voltages U and V respectively. We
assume that the soma receives time-varying con-
ductance inputs gE and gI , and that the weights of
dendritic inputs change in order for the dendritic
voltage to reproduce the resulting somatic voltage.
Note that, due to the “teaching” inputs being con-
ductances, the teaching current vanishes (and can
thus be removed) as soon the soma follows a match-
ing potential UM set by the inputs:

UM(t) =
gE(t)EE + gI(t)EI

gE(t) + gI(t)

A learning rule assuring this dynamic of dendritic
input “explaining away” somatic inputs can be
achieved by following a gradient on a suitable error
function, resulting in a weight update rule

ẇ / (S(t)� �(V ⇤))PSP (t), (1)

where S(t) is the somatic spike train (generated
by an inh. Poisson process with rate �(U), V ⇤ is

the attenuated dendritic potential and PSP (t) is
the postsynaptic potential evoked by a presynap-
tic spike. In order to make direct analogies to ex-
periments, we enhance the biophysical plausibility
of the published model with the following mod-
ifications: (i) bidirectional current flow between
somatic and dendritic compartments, (ii) conduc-
tance based inputs in the dendrites, resulting in
low-pass filtered version PSP 0 of the postsynap-
tic potential entering the equation above, and (iii)
adding explicit spike currents (Na+ and K+), re-
sulting in a stereotypic spike shape (see Fig. 1a
inset). We will show in the next sections that this
extended model is able to reproduce plasticity ex-
periments while retaining useful functional capa-
bilities.

Results I: Plasticity experiments

As can be seen from Eq. 1, a synapse is only po-
tentiated if its EPSP is shortly followed by a post-
synaptic spike. This characteristic lies at the heart
of the pervasive spike-timing dependence of plas-
ticity (STDP) [1]. Indeed, an STDP-like plastic-
ity curve readily emerges as we simulate common
STDP plasticity protocols (Fig 1a). The LTD part
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of the curve is driven by the correlation of the back-
propagating action potential (Fig. 1a inset) and a
subsequent EPSP. We stress that the sharp tran-
sition from LTP to LTD is largely independent of
parameter choices. STDP is well-known to be a
complex and malleable process. Due to space con-
straints we concentrate on stimulation frequency
dependence1 in both experiments [2] and under the
model (Fig 1. b): As we increase stimulation fre-
quency, post-pre-post triplets start to emerge and
turn an LTD post-pre protocol into and LTP one.

Results II: Computational Task

At its heart, the learning rule is a supervised one
where somatic voltage acts as the teacher for den-
dritic voltage. Given su�ciently rich inputs onto
the dendrite (for all results here, we use 100 inputs
with frozen Poisson spike trains), the learning rule
will force the dendritic voltage to follow a trajec-
tory that subsequently reproduces UM in the soma.
We refer to the previous publication ([3] Fig. 1) for
a simple demonstration and focus on more inter-
esting settings here.

A well-known technique for unsupervised learn-
ing is to use the activity itself as a teaching signal.
We thus construct a small network where the out-
puts are fed back as a somatic teaching signal. For
neurons within the same group, these connections
have a high reversal potential, whereas the con-

nections across groups are inhibitory (see Fig. 1c).
The two groups thus learn to respond in a struc-
tured winner-take-all manner to two partially over-
lapping input patterns (see Fig. 1d): The learning
rule picks out connections that are exclusively part
of one of the two patterns (Fig. 1e, weights are de-
picted for time points marked by arrows in Fig 1.
1d).

Extending this to reinforcement learning, we
can enforce one of the two mappings from patterns
to groups by integrating Eq. 1 with a long time
constant to get eligibility traces eij. After each
trial, weights are changed by the eligibility trace
modulated by reward R: �w / Reij, where R = 1
if the correct group was more active and R = �1
otherwise. Fig. 1f shows the course of learning
where the reward mapping was flipped at t = 15s
(indicated by arrow) .
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1
other reproduced characteristics include voltage-dependence and the influence of synapse location in the dendritic

tree
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