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A Generalization of the Equal Coding Theorem

Hui-An Shen, Stefan M. Moser, and Jean-Pascal Pfister

Abstract—We reformulate the Equal Coding Theorem in sen-
sory neural encoding with ON- and OFF-neurons as a channel
capacity problem. We then present a capacity-based proof of
the Equal Coding Theorem, and generalize it to neurons with
different firing probabilities. We also briefly discuss the biological
implications of this generalization.

I. INTRODUCTION

The efficient coding hypothesis states that sensory neurons
maximize the information about the environment [1], [2]. This
hypothesis is one of the most influential theory in systems
neuroscience and was the first one to apply Shannon’s infor-
mation theory to the problem of neural coding. This theory
has been successfully applied in different systems (such as
in invertebrate vision [3], vertebrate vision [4]) as well as at
different levels (synaptic plasticity [5], neuronal adaptation [6],
neural network level [4], [7]).

In this paper we investigate the setup of a system with n
neurons that encode a random one-dimensional stimulus S,
that we assume to be uniform on [0, 1]. We consider two types
of neurons: An ON-neuron will remain inactive as long as the
stimulus S is below a given neuron-specific threshold 6;. If
S is larger than this threshold, the neuron will emit a spike
with a given neuron-specific firing-probability p;. The OFF-
neurons are identical apart from that they will remain inactive
if the stimulus S' is larger than the threshold 6; and fire (with
probability p;) if the stimulus is below the threshold. Thus, the
output of each neuron behaves like the output of a Z-channel
with 1-error probability 1 — p;, whose input is binary with
0-probability #; (ON-neuron) or 1 — 6; (OFF-neuron).

According to the efficient coding hypothesis, the goal of
the system is to maximize the mutual information between
the stimulus S and the outputs of the n neurons Y under the
system’s biophysical constraints. Our question here is twofold:
For given firing probabilities p;, (1) what is the best ratio of
ON- to OFF-neurons and (2) how do we best set the thresholds
0; of these neurons?

This problem is tightly linked to ‘“nonadaptive 20-
questions”, and an example of such questions can be formu-
lated as follows. Let .S be a real number uniformly sampled
from [0, 1]. We are allowed to ask n yes—no questions of the
following two types: “Is S greater than 6;?” or “Is .S smaller
than 6;?”. Goal is to estimate the value of S. The yes—no
answers are corrupted by asymmetric noise as in a Z-channel,
i.e., there is a certain probability that a yes is distorted into a
no, while a no always remains a no. Here the question is how
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do we choose the thresholds 6; a priori so that the guesser’s
estimation error is minimized?

Returning to our neural-inspired setup, instead of mini-
mizing the estimation error, we aim to maximize the mutual
information between the random variable S ~ ¢/([0,1]) and
the corrupted neuronal responses Y € {0,1}".

In [8], Gjorgjieva et al. investigated this topic and proposed
the Equal Coding Theorem, which states that the mutual infor-
mation between the input stimulus and the neuron responses is
identical for any fraction of ON-neurons provided that (i) all
thresholds of the OFF-neurons are smaller than those of the
ON-neurons and (ii) all the thresholds are chosen optimally in
the sense that the mentioned mutual information is maximized.

In this paper, we provide three contributions. Firstly, we
generalize the theorem by allowing the neurons to have differ-
ent firing rates. Secondly, we provide a simpler, information-
theoretic proof that relies on a dual formulation of channel
capacity. Thirdly, we highlight the biological consequences of
this generalized theorem.

II. PROBLEM SETUP AND REFORMULATION OF THE
EQUAL CODING THEOREM

Let S ~ U([0,1]) denote the stimulus to be estimated.
Let V;, i € [n] £ {1,2,...,n}, denote the activities of a
population of n Bernoulli neurons, which are characterized
by their firing thresholds 0 < 6; < --- < 6,, < 1, their firing
probabilities p; € [0,1], and their types z; (z; = 0 denotes an
ON-neuron and z; = 1 denotes an OFF-neuron).

The activity of those neurons can thus be expressed as

Y, ~ Bernoulli(pifi(S)), (D

where

fi(8) £O((-1)*(S —6y)) )

is the activation function and ©(-) is the Heaviside step
function. See Fig. 1 for an illustration.

Once all thresholds 6; are set, we can divide the stimulus
interval [0, 1] into n + 1 intervals of length 0 — 6_1, k €
[n + 1], where we set 6§y = 0 and 6,1 = 1. The identity
of those intervals can be described by n-dimensional binary
vectors (codewords) ¢, € {0,1}", k € [n + 1] that are set
according to the activation of each neuron, i.e.,

Ck £ f(S) for s € (9;@,1, 9;9). 3)

The collection of those n 4+ 1 codewords is denoted as the
n-configuration of codewords C,, = (c1,...,Cnt1). Note that
those codewords have specific properties. For example, the
first codeword is a direct readout of the neuron types z =
(#1,.-+,2n)": €1 = z. Due to the linear arrangement of the
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pifi(s)

P —

fi(s) =

Fig. 1. Top: Response functions of two OFF-neurons (red and orange) and
one ON-neuron (blue).

Bottom: Those 3 response functions can be translated into 4 codewords
ci1,...,cq. Since the OFF-neurons’ thresholds 07 and 65 are smaller than the
ON-neuron’s threshold 63, there exists a zero codeword (i.e., cz = (0,0,0)7).

neurons, the components of the subsequent codeword can be
recursively expressed as

(ckt1)i = (cg)i + d; mod 2, i,k € [n], 4)

where 6;; = 1{i =k} is the Kronecker delta. Thus, any

configuration is uniquely specified by its type-vector z = cj.

This is best illustrated with examples; see also Fig. 1.
Example 1: For n = 3,

1 0 0 0
CG=1{[1].{1]).{0]. [0 ®)
0 0 0 1

is a 3-configuration with the underlying sequence of neurons
being “OFF, OFF, ON”, as read from left to right in Fig. 1. ¢
Example 2: For n = 3,

cG=|[1].[1]. o], [0 (6)

is a 3-configuration with the underlying sequence of neurons
being “OFF, OFF, OFF”. O

We denote the collection of all n-configurations as %,.

Note that if the neurons were noiseless (i.e., p; = 1 for
all neurons), it would be optimal (again in the sense of
maximizing the mutual information between .S and the neuron
activity vector Y = C) to choose the thresholds equally
spaced in order to create n + 1 equally long intervals. In this
case each n-configuration would be equivalent as any one does
perfectly distinguish the n + 1 intervals.

In our setting, however, each binary neuronal response is
corrupted by independent asymmetric flipping noise that is
modeled as a Z-channel. Therefore, the codewords are firstly
passed through an n-fold Z-channel (with different 1-error
probabilities), and thus different n-configurations show in
general a different performance.

Next, we will reformulate the Equal Coding Theorem,
which was introduced in Section I, in the context of channel
capacity and by identifying the set of all length-n binary
codewords of an n-configuration as the n-fold Z-channel’s

input alphabet. In this framework, the Equal Coding Theorem
essentially states that for any n € N, the channel capacity is the
same for all n-configurations that contain the zero codeword
(i.e., a zero vector). To that goal, we give the following
definition.

Definition 3 (Zero-Codeword Configurations): We define the
family of n-configurations containing the zero codeword as

0,={C,|0€C,, C, €%} (7

To recapitulate, we consider the setting where a mixture of
n ON/OFF-neurons encodes for a stimulus random variable
S ~ U([0,1]). The binary neuronal responses to the stimulus
then gives a length-n codeword C, which is then transmitted
through an n-fold Z-channel, resulting in a channel output that
we denote by Y.

In our framework, the Equal Coding Theorem concerns
the mutual information between the stimulus S and the said
channel output Y, denoted I(S;Y). Note that this mutual
information is a function of both the input alphabet of the
n-fold Z-channel (i.e., the n-configuration of codewords) and
the probability mass function (PMF) over the input alphabet
(which is a direct function of the thresholds via the length of
the intervals 6j1 — 0x). And thus, for a given n-configuration
of codewords C,, and a given PMF 7 € &, (with &,
describing the collection of all PMFs over n+1 elements) over
the codewords, we write I(.S;Y)[C,, 7] to denote the mutual
information in question.

Now we can reformulate the Equal Coding Theorem as
follows.

Theorem 4 (Equal Coding Theorem, reformulated): For all
Cpn,Cl, € Oy,

sup I(S;Y)[Cp, 7] =

TEP 41

sup I(S;Y)[C,.7m. (8)
TEP 41
The original Equal Coding Theorem is only for the setting
where all neuronal binary flipping noise is identical, i.e., the
single Z-channels forming the n-fold Z-channel all have the
same l-error ¢. In this paper, we generalize Theorem 4 and
show that it holds also for the setting where each neuron has a
different binary flipping noise modeled respectively by 1-error
probability ¢; £ 1 — p;.

III. CAPACITY-BASED PROOF OF EQUAL CODING
THEOREM

Recall that we denote the stimulus by S ~ U([0,1]), the
codeword by C € {0,1}", and the response by Y € {0,1}",
where n is the number of neurons.

Lemma 5: We have I(C;Y) =I(S;Y).

Proof: Due to the Markov chain S —o— C —— Y and
the Data Processing Inequality, we have I(C;Y) > I(S;Y).
But as C = f(5), we also have I(C;Y) = I(f(5);Y) <
I(S;Y), where the latter inequality follows again by the Data
Processing Inequality. [ ]

Next, we note that for n > 3, any n-configuration with its
n + 1 input codewords generates more than n + 1 possible
channel outputs Y. However, if the n-configuration contains
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the zero codeword, it is possible to classify the channel outputs
into n + 1 categories of “pooled responses”’, where Y is
classified according to the OFF-neuron of lowest threshold
that fires, the zero codeword (no neuron fires), or the ON-
neuron of highest threshold that fires. We denote this pooled
response vector by R. This categorization is best illustrated
with two examples.

Example 6: For the 3-configuration in Example 1, the pooled
response is

1\ /0\ /o
Ra= (¢l [1], (o],
0o/ \o/ \o/ \1

Here, the channel outputs (1,1,0)" and (1,0,0)" are pooled
into the category (1,¢,0)7, where we use ¢ to denote an
unspecified element (0 or 1). O

Example 7: For the 3-configuration in Example 2, the pooled
response is

(€))

0 0 0
Ro=1|((¢t].[t].[o], [0 (10)

t t 1 0
The channel outputs (1,1,1)", (1,1,0)7, (1,0,1)", (1,0,0)"
are pooled into the category (1,¢,¢)"; and (0, 1, )T, (0,1,0)7

are pooled into the category (0, 1,¢)". O

Lemma 8: For any n and an n-configuration containing the
zero codeword, it holds that I(C;Y) = I(C;R), where R
denotes the pooled response vector as defined above.

Proof: We note that H(C|Y =y) is the same for all y
that are pooled together to the same pooled response vector.
Thus, I(C;Y) = H(C) — H(C|Y) = H(C) — H(C|R) =
I(C;R). ]

Thus, in the following we will now focus completely on
the “pooled channel” with input C and output R. We use 7 €
Pn+1 for PMFs on the input alphabet, ¢ for the conditional
channel distribution, and ¢ € &, .1 for PMFs on the output
alphabet. In particular, we use the shorthand

o(-|k) = Pric(lck), (11)

to denote the channel output distribution given that C = cy
(where we assume some given configuration C,,). Moreover,
we use (m¢) to describe the output PMF induced by the
input PMF 7. Finally, 2(-||-) denotes the relative entropy
(Kullback-Leibler divergence) between probability distribu-
tions.

The capacity C of this channel (again for some given
configuration C,,) is given as

C £ maxI(C;R) =

ken+1],

max I(r,9),

TEPnt1

12)

which can also be written using the well-known dual expres-
sion for capacity [9, Sec. 16.2]:

C= min max 2(¢(:|k)|[v).

(13)
T/JGQTHJ ke[n+l]

Note that the optimal capacity-achieving output distribution
1) (which is the minimizer of (13)) can be seen as the

pifi(s)

(%)

Fig. 2. Top: Response function of one ON-neuron and one OFF-neuron.
Middle: Transition diagram from input codewords cj to output responses y;.
In order to obtain the transition probability ¢(i|k) = Pr[Y =y;|C = ck],
it is sufficient to follow the black arrows from cj to y; and multiply their
respective probabilities. E.g., the transition from c1 to y2 is denoted by a red
arrow and is given by ¢(2]|1) = (1—p1)-1. Note that the transition from ¢; to
y3 is impossible (red dashed arrow) and hence the transition probability is 0.
Bottom: Representation of the response vectors ¢(-|1), ¢(-|2), and ¢(:|3) on
the 2-simplex. The capacity-achieving output distribution 1 is such that the
“distance” (in the Z-sense, denoted in color-code) from the response vectors
are identical (see Eq. (14)). Hy,(p;) £ —p; log(p;) — (1 — p;) log(1 — p:)
denotes the binary entropy function and # denotes the normalization constant.

“circumcenter” of all the conditional output PMFs ¢(-|k) (see
Fig. 2).

We now have the following result that holds generally for
any (discrete and memoryless) channel, but that we formulate
directly for our n-fold Z-channel.

Proposition 9: If there exists some output PMF ) that is
induced by some input PMF 7 and that satisfies for some
constant ¢ > 0,

-y |=¢ Vk with 7(k) > 0,
|k 14
2o [ {25 k7 s
then
1) 4 is the capacity-achieving output distribution, i.e.,
Y = argmin max Z(¢p(-|k)||); (15)
YEP 41 FEINF]]
2) ¢ is the capacity, ¢ = C;
3) 1 is unique.
Proof: Note that for arbitrary 7, ¢, and 1,
¢(ilk)
o(jlk) log< : ) (16)
ke%me%u (7¢)(4)
oGIk)  ¥0G)
- o(j|k) lo < . —) (17)
ke%”]e%l] (m¢)(3)  ¥()
= > k) 26k %) - 2((x9) || ¥). (18)
k€[n+1]
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Now, it follows from (14) that

c= Y wke= Y ak)2(6Ck)]v) 19
ken+1] k€[n+1]

=17, ¢)+ 2((7¢) || ) =1(7,¢) + 2(¢||¢) (20)

=1(7,¢) <C, 1)

where the first equality in (20) follows from (18).
On the other hand, for any capacity-achieving PMF 7%,

c= Y wmke= Y 7k 26k P) @2
k€[n+1] ke[n+1]

=1(n*,0)+ 2((x*¢) || ¥) = C+ 2((=*¢) [| ) (23)

>C, (24)

where (22) again follows from (14), but potentially with an
inequality because there might exist some k for which 7(k) =
0, but 7*(k) > 0.

We have therefore proven that ¢ = C. Moreover, the KKT
conditions for capacity [10, Sec. 12.5] state that some PMF 7
is capacity achieving if, and only if,

= C Yk with 7(k) > 0,

2((1k) || (79)) {< C Yk with 7(k) =0. )

Thus, it follows from (14) that 7 must be capacity achieving
and thus that 1) is the capacity-achieving output distribution.
The uniqueness of ) can be shown using a simple convexity
argument. |
Proposition 9 can now be used for some output PMF ¢ to
obtain a system of n + 1 equations with n + 1 variables.
Concretely, this is done by first assuming that for (14), equality
holds also in the case of 7(k) = 0, and after solving for ¢
from the system of equations, further showing that there exists
an input PMF that induces 1, and therefore 1) is indeed the
unique capacity-achieving output distribution. Before writing
out the details, we again first present this idea with the help
of the two examples above.

Example 10: The conditional channel PMF for input con-
figuration C3 and pooled response Rs from Example 1 and 6,
respectively, is

1-q 0O 0 0
@1(l—g) 1—¢ O 0
= 26
¢ 4142 42 1 q: (26)
0 0 0 1-—gs

As the third column corresponds to the zero codeword, we
define ¢ = (¢, 2,10,13)", where we on purpose use
an unusual numbering with 1y at the position of the zero
codeword. Using Proposition 9 as mentioned beforehand, we
obtain the following equations:

a1(1—q2)
2
q1492
o
q2 q2
+ g2log -~
q2 gwo
1
o

1 —
(1—q1)log — 4 ¢1(1 — g2) log

(a1

||
Ql

+ q1g2 log —— (27a)

(27b)

I
Ql

1_
(1 —g2)log "

(27¢)

Il
Ql

log

1 — Q3

1 - 17
) log ™

By Gaussian elimination steps (27b)—q2(27c¢), (27a)—q1(27b),

and (27d) — ¢3(27c), we obtain

gslog L 4 (1 g5 —c (79
Yo

; £
% = (1 - QJ)qjl ! , J€ {132a3}a (28)
and by normalization
3 tlj
Z 1—qj)q; . (29)

Note that it is not difficult to show (by matrix inversion of
(26)) that there indeed exists a PMF 7 that achieves 1):

J
—q1
)

a1
W:(wo-q;ﬂ,wo-(; g

do (1-a ™~ g ), do-a3 ® ) (30)

where g is defined in (129), and where it is straightforward
a2

to show that g, 2 > ¢ ** for all g1, ¢ € [0,1]. Thus, from
Proposition 9, the capacity of the channel is

3 qj
C=c=log[1+> (1-¢)q "
j=1

€1V

¢

Example 11: The conditional channel PMF for input con-

figuration C} and pooled response R from Example 2 and 7,
respectively, is

1-q 0 0 0
q1(1 —gq2) 1—q 0 0
= 32
¢ n1q2(1—q3) @2(1—q3) 1—¢q3 O (32)
419293 4243 q3 1

As here the fourth column correspond to the zero codeword,
we define 1) £ (11, )2,13,)" and thus obtain from Propo-

sition 9
1— 1—
(1—q1)log — 2 JrQl(lfqz)lOgM
P1 P2
1
+q1g2(1 — g3) log 2921 - gs) + q192¢g3 log —— NP9 _ 7 (330
P3 Yo
1 —
(1—g2)log —2
1—
+q2(1 — g3) log 2(~a) +aaslog BB —2 (33p)
P3 Yo
1—
(1—gs)log —B 4 g3l0g B =z (330)
P3 o
1
log— =¢  (33d)
0

By Gaussian elimination steps (33¢)—q3(33d), (33b)—q2(33c),
and (33a) — ¢1(33b), we obtain again the same solution as in
(28) and (29). O
Note that we always end up with the zero codeword separating
the system of equations into two halves, with their respective
Gaussian elimination as elaborated in the following.

Assume that the configuration C,, has the zero codeword
at position ¢. The corresponding channel transition matrix is
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1—q1 0 0 0 0 0 0
q1(1 — q2) 1—q2 :
q192(1 — g3) q2(1 — g3) :
: : 0 : : : :
g1 qe—2(1 —qe—1) g2 -qe—2(1 — qe—1) 1—qe—1 O 0 0 0
¢ = g1 qe—1 g2 qe—1 qo—1 1 qe qeqe+1 qe- - qn (34)
0 0 0 0 1-gqg¢ (1—qr)qetr (1= qe)qe+1--qn
: 0 1—qe4a (T = qes1)qet2 - qn
: : 0 :
0 0 0 0 0 0 1—gn

shown in (34) on the top of the page. Note that the column
and row containing the value 1 is the ¢-th column and row.

We now define ¢ £ (¢1, ..., 01,0, %0, .., %n)", where
we again purposefully use an ordering with iy being at the
{-th position. Applying Proposition 9 for k = / (i.e., the /-th
column) then results in

1
log— =c.

Yo

For any k < ¢, we use a linear combination of (14) (with
equality) for k£ and for k£ + 1 to obtain

P(o(1k) | ¥) —ax Z(¢(-|k +1) || ) = & — qre, (36)
which combined with (35) can be solved to
%E,::
Yo
Similarly, for & > ¢, we use (14) (with equality) for K —1 and
k to obtain

2((-1k) || ) —ax 2(6(- |k = 1) || ¥) = — qre, (38)

which results in the same expression (37). Finally, by the fact
that v needs to sum to one, we obtain

(35)

9k
1—qp

(1= ar)qy

(37

n ap -1
Yo = (1 + Z(l - Qk)q;qk> ; (39)
k=1
C :10g<1+2(1 —Qk)qklék>. (40)
k=1

Note that this capacity value depends only on g = 1 — py
and not on the choice of configuration (apart from the fact
that the configuration needs to contain the zero codeword).
Hence, we have proven the following main result in Theorem
12, for n neurons with given firing probabilities py,...,py,
0 <pr <1and g, =1—pg for all k € [n]. Note that for
the n-fold Z-channel, g; is the 1-error of the ith Z-channel
corrupting C; (the ¢th component of a codeword), and thus
we define q £ (q1,...q,) as the parameter of the n-fold Z-
channel. We also make explicit the dependence of 1(S;Y) on
q in Theorem 12.

Theorem 12 (Generalization of Equal Coding Theorem):
Let S,, be the symmetric group consisting of all possible

permutations over n elements. Then for all C,,C/, € £, and
permutations o,0’ € S,,,

sup I(S;Y)[Cn, 7, 0q]

TEP i1

sup I(S;Y)[C,, 7, 0'q

TEP i1
)7

In this paper, we generalized the Equal Coding Theorem
proposed by [8], by considering heterogeneous firing proba-
bilities, see Theorem 12.

A direct extension of this theory is to consider the channel
capacity per unit of energy (every spike costs some energy to
produce and transmit). This information capacity per energy
has been already studied by [8] for the case of homogeneous
ON- and OFF-cells, and in this case the optimal fraction of
ON-neurons is 1/2. This is in contrast to the ON- or OFF-
cells’ dominance found in various different neural systems
(see Table 1 in [8]). The generalized Equal Coding The-
orem we presented offers new possibilities to explain the
said dominance together with other heterogeneous biophysical
properties found in ON- versus OFF-neurons (see e.g. [11]).

Recently, [12] generalized the Equal Coding Theorem in
a different direction than that in this paper. Instead of con-
sidering a simple Heaviside step function for the neural
activation, they assumed a sum of step functions such that each
neuron has multiple thresholds. The strength of this approach
is that in the limit of a large number of small steps, one
can approximate any monotonically increasing or decreasing
activation function, and in particular the smoothed rectified
linear functions found for ON- and OFF-cells [11]. However,
the limitation of the approach of [12] is that both the ON- and
OFF-neurons are assumed to have the same activation function
(up to a sign flip) and therefore this approach is unable to
capture the heterogeneity in the activation functions of ON-
and OFF-cells. An interesting future direction would be to
combine the flexibility of activation functions from [12] with
the neuronal heterogeneity proposed in the present paper in
order to offer more accurate biological predictions.

dk

= log (1 +) (- g, ™

k=1

where oq and ¢’q denote permutations on the 1-errors q.

IV. DISCUSSION
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