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A Class of Nonbinary Symmetric
Information Bottleneck Problems

Michael Dikshtein and Shlomo Shamai (Shitz)
Technion–Israel Institute of Technology

Department of Electrical and Computer Engineering, Haifa 3200003, Israel
Email: {michaeldic@campus, sshlomo@ee}.technion.ac.il

Abstract—We study two dual settings of information pro-
cessing. Let Y → X → W be a Markov chain with fixed
joint probability mass function PXY and a mutual information
constraint on the pair (W,X). For the first problem, known
as Information Bottleneck, we aim to maximize the mutual
information between the random variables Y and W, while for
the second problem, termed as Privacy Funnel, our goal is to
minimize it. In particular, we analyze the scenario for which X is
the input, and Y is the output of modulo-additive noise channel.
We provide analytical characterization of the optimal information
rates and the achieving distributions.

I. INTRODUCTION

Let (X,Y) be a pair of random variables specified by
a fixed bivariate distribution PXY, of cardinality |X | = n,
and respectively |Y| = m. Consider all random variables
W satisfying the Markov chain Y → X → W subject to
a constraint on the mutual information of the pair (X,W).
We consider here two extremes of the information processing
problem, the Information Bottleneck (IB) function and the
Privacy Funnel (PF).

The IB optimization problem, introduced by Tishby et al.
[1], is defined as

RIB
PXY

(C) , maximize
PW|X

I(Y;W)

subject to I(X;W) ≤ C.
(1)

This problem is illustrated in Figure 1. In our study we aim to
determine the maximum value and characterize the achieving
conditional distribution PW|X (test channels) of (1) for a class
of symmetric channels PY|X, and constraints C.

The motivation to study such a model is as follows. Consider
a latent random variable Y, which constitutes the Markov chain
Y → X → W and represents a source of information. The
user observes a noisy version of Y, i.e., X, and then tries to
compress the observed noisy data such that its reconstructed
version, W, will be comparable under the maximum mutual
information metric to the original data Y. Thus, (1) is es-
sentially a remote source coding problem [2], choosing the
distortion measure as the logarithmic-loss. Here W represents
the noisy version (X) of the source (Y) with a constrained
number of bits (I(X;W) ≤ C), and the goal is to maximize
the relevant information in W regarding Y (measured by the
mutual information between Y and W). In the standard IB
terminology, I(X;W) is referred to as the complexity of W,
and I(Y;W) is referred to as the relevance of W.

Bivariate
Source
PXY

Stochastic
Encoder
PW|X

I(X;W) ≤ C
max I(Y;W)

Y
X

W

Fig. 1: Block diagram of the Information Bottleneck function.

For the particular case where (Y,X,W) are discrete random
variables, an optimal PW|X can be found by iteratively solving
a set of self–consistent equations [1]. A generalized Blahuto-
Arimoto algorithm [3] was proposed to solve those equations.
The optimal test-channel PW|X was characterized using a
variation principle in [1]. A particular case of deterministic
mappings from X to W was considered in [4], and algorithms
that find those mappings were described. Unfortunately, since
the underlying optimization problem in (1) is not convex, there
are no theoretical guarantees for convergence of the proposed
iterative algorithms.

There are two cases for which the solution of (1) is thor-
oughly characterized. The first one, considered in [5], is where
the pair (X,Y) is a Doubly Symmetric Binary Source (DSBS)
with transition probability p. It was shown that the optimal test
channel PW|X is a BSC with transition probability h−1

2 (1−C)
where h2(·) is binary entropy function and h−1

2 (·) its inverse.
The converse can be established by applying Mrs. Gerber’s
Lemma [6]. This setting was also solved as an example in
[7, Section IV.A]. The optimality of BSC test-channel extends
also to a Binary Memoryless Symmetric (BMS) channel [8,
Ch. 4] from X to Y, as [9, Theorem 2] implies.

The second case, first considered in [10], is where (X,Y)
are jointly Gaussian. It was shown that the optimal distribution
of (Y,X,W) is also jointly Gaussian. The optimality of the
Gaussian test-channel can be proved using conditional Entropy
Power Inequality [11, Ch. 2]. It can also be established using
I-MMSE and Single Crossing Property [12]. Moreover, under
the I-MMSE framework, the proof can be easily extended to
Jointly Gaussian Random Vectors (X,Y) [13].

The IB method can also be seen as a variation on some
closely related problems in the Information Theory literature.
A bound on the conditional entropy for a pair of discrete
random variables subject to entropy constraint has been consid-

International Zurich Seminar on Information and Communication (IZS), March 2 – 4, 2022

9



ered in [7] as a method to characterize common information
[14]. A method based on convex analysis was proposed to
find the achieving distributions and several important examples
were given. We will show that the problem addressed in [7]
is equivalent to (1).

The problem of Common Reconstruction (CR) [15] is a
different type of source coding with side-information, a.k.a.
Wyner-Ziv coding [6]. In [15] the distortion was measured
with a log-loss merit, and the encoder is required to perfectly
reconstruct decoder’s sequence. It can be shown that for
the CR, the resulting single-letter rate-distortion region is
equivalent to IB.

The problem of Information Combining [16] was analyzed
in the context of check nodes in LDPC decoding. Two ex-
tremes were considered in form of maximization and mini-
mization of mutual information for the binary X setting [9]. It
can be shown that the first extreme is equivalent to PF, while
the second recovers the IB setting. A recent comprehensive
tutorial on the IB method and related problems is given in [5].

Applications of IB methods in Machine Learning are de-
tailed in [17]. Furthermore, the IB methodology connects to
many timely aspects, such as Capital Investment [18], Dis-
tributed Learning [19], Deep Learning [20], and Convolutional
Neural Networks [21].

The PF, which was first introduced in [22], is a dual problem
to the IB method. In contrast to IB problem, the goal in PF
is to minimize I(Y;W) over all test-channels PW|X subject
to I(X;W) ≥ C. To be more formal, the PF function, RPF :
[0, H(X)]→ R+ is defined as

RPF
PXY

(C) , minimize
PW|X

I(W;Y)

subject to I(X;W)≥C.
(2)

Note that since the objective function is a convex function of
PW|X, taking the constraint here with reverse inequality, i.e.
I(X;W) ≤ C, will induce a trivial solution, i.e. taking X and
W independent.

PF is directly connected to Information Combining [9], [16].
For example, if the channel from X to Y is a BMS, then
by [9], PW|X is a Binary Erasure Channel (BEC). A rather
intriguing example is the setting where the pair (X,Y) are
jointly Gaussian, where the result of the minimization is zero,
since one can use the channel from X to W to describe the
less significant bits of X [23]. Furthermore, the additive noise
Helper problem studied in [24], is directly linked to the PF.
By reformulating the former as an information combining
problem, the solution follows directly as was shown in [23].

In this work we address the input symmetric nonbinary
setting for the IB and PF functions. We will find conditions
on the bivariate source (X,Y) for which the stochastic encoder
from X to W can be completely characterized, thus extending
the binary examples from [7], [9] and [5]. Omitted proofs are
at the arXiv version of this paper [25].

II. NOTATIONS AND BASIC PROPERTIES

We denote by ∆n the n dimensional probability simplex,
q ∈ ∆n the marginal probability vector of X, and T the

transition matrix from X to Y, i.e.,

Tij , P (Y = i|X = j) , 1 ≤ i ≤ m, 1 ≤ j ≤ n. (3)

We further rewrite (1) with explicit dependence on q and
T as RT (q, C) = R(C) = RPXY

(C). The entropy of an n-ary
probability vector p ∈ ∆n is denoted by hn(p).

The following tight cardinality bound was established in
[26]. It was actually already proved for the corresponding
dual problem, namely the IB Lagrangian, in [27]. But since
RT (q, C) is generally not a strictly convex function of C, the
result in [27] cannot be directly applied for our problem (1).

Lemma 1 ( [26, Th. 9]): The optimization over W in (1)
can be restricted to |W| ≤ n.

As we have already mentioned, the IB function defined in
(1) is closely related to the Conditional Entropy Bound (CEB)
problem studied in [7], which is given by

FT (q, x) , minimize
W→X→Y

H(Y|W)

subject to H(X|W) ≥ x.
(4)

Remark 1: Note that originally in [7] the conditional entropy
constraint was given with equality, and equivalence to the
inequality setting was established in [7, Theorem 2.5].
It turns out that the aforementioned problem is closely con-
nected to the IB function.

Proposition 2.1: The IB function defined in (1) is equivalent
to the CEB function defined in (4).

The latter result implies that we can utilize the properties of
FT (q, x) developed in [7] for our problem in a straightforward
manner, an aspect that we will heavily rely on in Section III.

In a very similar manner to Proposition 2.1, we can redefine
the Privacy Funnel problem defined in (2) as follows.

F PF
T (q, x) , maximize

PW|X
H(Y|W)

subject to H(X|W)≤x.
(5)

We have the following characterization of F PF
T (q, x).

Theorem 1: The function F PF
T (q, ·) is concave on the com-

pact convex domain {x : 0 ≤ x ≤ hn(q)} and for each (q, x),
the maximum is attained with W taking at most n+ 1 values.
The proof of this theorem is similar to [7, Theorem 2.3] and
is omitted here due to space limitations.

III. THE SYMMETRIC INFORMATION BOTTLENECK

In this section we will give a characterization of the achiev-
ing conditional distributions and the value of the problem
defined in (1) for specific class of input symmetric channels.
We begin with the definitions of symmetric group of permuta-
tion, symmetry group of stochastic matrix and input symmetric
channel [7].

Definition 1: Let Sn denote the representation of the
symmetric group of permutation of n objects by the n×n per-
mutation matrices. Let Sn ×Sm be the representation of the
direct product group by the pairs (G,Π), G ∈ Sn; Π ∈ Sm

with the composition (G1,Π1)(G2,Π2) = (G1G2,Π1Π2).
For an m × n stochastic matrix T , (an n input, m output

channel), let G be the set {(G,Π) ∈ Sn ×Sm|TG = ΠT},
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and let Gi (Go) be the projections of G on the first (second)
factor. If TG1 = Π1T , TG2 = Π2T , then TG1G2 = Π1Π2T
which shows that G , Gi ,Go are subgroups of the finite groups
Sn×Sm, Sn, Sm respectively. G is the symmetry group of
T , Gi (G0) is the input (output) symmetry group.

The channel defined by T will be called input (output)
symmetric if Gi (Go) is transitive (a subgroup of Sn is
transitive if each element of {1, . . . , n} can be mapped to
every other element of {1, . . . , n} by some member of the
subgroup). T is said to be symmetric if both Gi and Go are
transitive.

We also define the set of (q, C) for which we will have a
complete characterization of the achieving distributions.

Definition 2: Assume that {Gα}nα=1 ∈ Sn is a set of n
distinct elements. Let φ(p, λ) , hm(Tp)−λhn(p) and p∗ =
argminp∈∆n

φ(p, λ). We define the following set for any λ ∈
[0, 1]:

Q ,
{

(q, C) : q=
n∑

α=1

waGαp
∗,w∈∆n, C=1−hn(p?)

}
.

(6)
Equipped with this definition we are ready to state our main

theorem here.
Theorem 2: Assume that T is input symmetric stochastic

matrix with input symmetry group Gi of order n. Then for
every (q, C) ∈ Q defined in (6), the optimal test-channel from
W to X is a modulo-additive channel.

Note if q is uniform over n, then it always in Q, as taking
w to be uniform over n, we obtain

q =
n∑

α=1

waGαp
∗ =

1

n

n∑

α=1

Gαp
∗ = un, (7)

where un is an n-ary uniform probability vector. This fact
induces the following corollary.

Corollary 3.1: Assume that T is input symmetric stochastic
matrix with input symmetry group Gi of order n and X is
uniformly distributed over n. Then for every C ∈ [0, log n], the
test-channel from W to X is a modulo-additive noise channel
and W is uniform over n.

A particular case for which T is input symmetric, is when
the channel from X to Y is a modulo-additive noise channel,
i.e., there exist a random variable Z, with probability vector
z such that Y = X ⊕ Z, where ⊕ is modulo n addition. An
equivalent representation of the modulo-additive noise channel
is using circulant matrix. A circulant matrix A ∈Mn(F) [28,
p. 33] has the form

A =




a1 a2 · · · an
an a1 a2 · · · an−1

...
...

. . . . . .
...

a2 a3 · · · an a1


 , (8)

i.e, the entries in each row are cyclic permutations of those in
the first. In this case we have the following corollary.

Corollary 3.2: If T = A as defined in (8), then some
modulo additive test channel from W to X achieves RA(q, C).

In particular, there exists an n-ary random variable V, with
H(V) = log n−C, such that X = W⊕V achieves RA(q, C).

Although this result greatly simplifies the optimization
space, it does not give a precise analytical solution to the
problem. In the following subsection, we provide an example,
for which the achieving distribution and the objective function
value can be fully characterized.

A. Hamming Channels

Let T = Tα = αIn + (1 − α)n−1En, where In is the
n×n identity matrix, En the all ones matrix, and 0 ≤ α ≤ 1.
The channel with transition matrix Tα is called a Hamming
channel with parameter α. Note that Tα is in particular a
circulant matrix, therefore by Corollary 3.2 the optimal channel
from W to X is a modulo-additive channel. Thus, (4) can be
reformulated as follows.

FT (q, x) , minimize
v∈∆n

hn(Tαv)

subject to hn(v) ≥ x.
(9)

The optimization problem defined in (9) is identical to the
problem considered in [29]. Furthermore, it was solved for the
Hamming channel and the achieving distribution was found.

Lemma 2 ( [29, Lemma 7]): For n × n Hamming channel
Tα the solution to (9) is attained for

v = βe + (1− β)un. (10)

where e is any standard basis vector of ∆n.
Since v is determined by a single parameter β and satisfies

hn(v) = log n− C, we can find β explicitly as follows:

C = log n− hn(v)

=
n− 1

n
(1− β) log(1− β) +

βn+ 1− β
n

log(βn+ 1− β)

, gn(β).

Thus, β can be recovered from C as β = g−1
n (C). In summary,

we have the following theorem.
Theorem 3: Assume that T is a Hamming channel with

parameter α, then RT (un, C) is attained with a Hamming
channel with parameter β = g−1

n (C) and is given by

RT(un,C)=
1+(n−1)αβ

n
log(1+(n−1)αβ)+

1−αβ
n

log(1−αβ).

(11)

B. Examples

Now let us consider two special cases.
1) BMS: Assume that the channel from X to Y is a BMS

channel. Let z be an m-ary probability vector and Gm be the
m ×m anti-diagonal matrix with unit entries. The respective
transition matrix in this case is T = [z, Gmz]. Note that

GmT = [Gmz, GmGmz] = [zG2z] = TG2. (12)

Therefore, T is input symmetric stochastic matrix with input
symmetry group Gi of order 2. Thus, since the only binary-
input binary-output symmetric channel is a BSC, combining
with Theorem 2, we recover the following result from [9].
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Corollary 3.3 ( [9, Theorem 2]): Given that the channel from
X to Y is a BMS, then BSC channel from X to W maximizes
I(W;Y).
The latter result can also be deduced from [30].

2) Ternary-Input Ternary-Output (TITO) Circulant Matrix:
The general TITO Circulant Matrix is defined as follows:

T =




1− α− β α β
β 1− α− β α
α β 1− α− β


 . (13)

We can further ask if there are values of C such that
R(C) can be achieved with W taking at most two points. The
following corollary states the opposite.

Corollary 3.4: The minimum cardinality of W that achieves
R(C) is exactly 3 for C 6= 0.

C. Numerical Simulation

We proceed to verify Theorem 3 via numerical optimization
for n = 3. Since V is independent of the choice of α, we fix

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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C

PV vs C for α =0.5
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(a)
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0

5 · 10−2
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0.15
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C

RT(C) vs C for α =0.5

Simulation
Theory

(b)

Fig. 2: (a) Optimal v for α = 0.5 vs C. (b) RTα(C) vs C for
α = 0.5.

α = 0.5 and compare it with respect to the value of C. Figure 2
shows the probability vector V and RTα(C) for various values
of α. We observe that the numerical optimization agrees with
theoretical arguments of Theorem 3.

IV. THE SYMMETRIC PRIVACY FUNNEL

In this section we consider a special symmetric setting for
the PF problem (5) for which the transition matrix from X
to Y is an input symmetric stochastic matrix as defined in
Definition 1.

Theorem 4: Let T be an input symmetric stochastic matrix
with input symmetry group Gi of order n, and X be a uniformly
distributed random variable. Let (G1 = I,G2, . . . , Gn) ∈ Gi.
Furthermore, denote by (p∗, λ∗) a pair for which

φ(u, λ∗) = φ(p∗, λ∗) ≥ φ(p, λ∗) ∀p ∈ ∆n. (14)

Then, for every C ≤ C∗ , log n − hn(p∗), the transition
matrix from W to X, given by

B =
(
p∗ G2p

∗ · · · Gnp
∗ u

)
, (15)

achieves (2). Moreover,

RPF
PXY

(C) = C · log n− hn(Tp∗)
log n− hn(p∗)

. (16)

Also, (15) implies that the transition matrix from X to W is a
class of noisy n-ary symmetric erasure channel.
Note that the optimization procedure in (14) is performed
once for every C ∈ [0, log2 n − hn(p∗)]. Moreover, for
C ∈ [0, log2 n−hn(p∗)], the optimal test-channel from X to W
is no longer symmetric as we show using a numerical example.
We now provide some examples that illustrate Theorem 4.

A. Examples

We begin with the simplest scenario where X is a binary
random variable. Plugging this choice in Theorem 4 and noting
that p∗ = e in this case, results in the following corollary.

Corollary 4.1: Assume that the channel from X to Y is a
BMS, then, BEC test-channel PW|X with parameter ε = 1−C
minimizes I(Y;W) subject to I(X;W) = C.
Note that this result recovers [9, Theorem 1], but here with
only one-sided symmetry restriction.

We further illustrate Theorem 4 using numerical optimiza-
tion for a particular choice of the channel from X to Y
being a symmetric TITO with parameters (α, β) = (0.1, 0.05),
as defined in (13). For this choice of channel parameters,
C∗ = 0.59. In Figure 3 we compare the results of global
optimization solution of (2) versus choosing PW|X be the
respective optimal input-symmetric channel as described in
Theorem 4 for various values of C. We observe that our
results from Theorem 4 agree with the brute-force numerical
optimization for all values of C ∈ [0, C∗]. For values greater
than C∗, we observe that the curve which is restricted to input
symmetric transition matrices from X to W, is sub-optimal.
In this region of link capacity, the numerical optimization
achieves lower rates. By carefully observing the numerical
solution, one can notice that the optimal test-channel in this
region is no longer input symmetric.
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Fig. 3: Optimal R for α = 0.1, β = 0.05 vs C

V. OUTLOOK

As said, the Information Bottleneck and Privacy Funnel
are two dual optimization problems which have been applied
in a variety of emerging applications such as Deep Neural
Networks, Privacy Algorithms, and design of Polar Codes
[17]. It also interesting to consider rather more classical
use-cases, i.e, multi-user channel capacity and Noisy Source
Coding problems. A comprehensive summary of the different
relations between the IB and Privacy Funnel problems has been
presented in [26].
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Abstract—Zero-error source coding when side-information (SI)
may be present is a fundamental building block of interactive
real-world compression systems. In such a scenario, the side
information may represent an image that could have been
requested previously by the user. We aim at designing a two layer
zero-error coding scheme that adapts to the presence or absence
of the side information at the decoder. The scenario we consider
involves two decoders and two noiseless channels, the first channel
to both decoder and the second channel of additional information
to decoder 2 only. The side information is available at the encoder
and decoder 1, but not at decoder 2. By using a random coding
argument we characterize the zero-error achievable rate region.
The code construction relies on coset partitioning obtained from
a linear code. The encoder sends the coset of the source sequence
on the first channel to all decoders, and sends the index of the
source sequence in its coset on the second channel to decoder 2.

I. INTRODUCTION

We consider the scenario described in Fig. 1 in which the
information source X is correlated to the side information
(SI) Y observed by the encoder and decoder 1 only. The
information is sent through a noiseless channel at rate R1 to
both decoders and an additional noiseless channel at rate R2 to
decoder 2, which does not observe the SI. All decoders must
recover the source X with zero-error, i.e. with a probability
of error equal to zero, which is a more restrictive assumption
than a vanishing probability of error.

This scenario arises in interactive compression, where the
user can randomly access part of the data directly in the com-
pressed domain. A source sequence Xn models the smallest
entity that can be requested, for instance a file of a database,
a frame of a video, or a block of an omnidirectional image in
[1]. Upon request of Xn, and if no request has been previously
made (case of decoder 2 in Fig. 1), the encoder sends the com-
plete representation of the data (f1(Xn

, Y
n), f2(Xn

, Y
n)) at

rate R1 + R2. If, instead, the block Y
n has already been

requested (case of decoder 1), the encoder sends only a
part of the compressed representation namely f1(Xn

, Y
n) to

complete Y
n. Moreover, we consider the zero-error version

of this problem, as zero-error source coding is a fundamental
building block of practical video coding schemes. We therefore
seek for the set of rates (R1, R2), which can be achieved in
this scenario.

A way to achieve zero-error coding is to use conditional
coding, and send the source X to decoder 1 at rate R1 =

H(X∣Y ), since both encoder and decoder 1 observe the SI
Y . Then, to recover the source X , decoder 2 needs to obtain
the SI Y , which requires a rate of R2 = H(Y ) ≥ I(X;Y ).

In order to be exploitable by both decoders, part of the
information sent through the common channel must be inde-
pendent from Y . For this reason our setting is closely related
to the Slepian and Wolf (SW) problem in [2], seen as lossless
source coding with side information at the decoder only. In [3],
Csiszar proved in that linear codes achieve the optimal SW rate
region. Several works in [4]–[6] investigate the duality between
SW setting and channel coding using linear codes, as the side-
information Y can be seen as the input of a virtual channel
with input X . However these tools cannot be straightforwardly
adapted to the zero-error setting, as the linear codes proposed
also present a vanishing probability of error.

Our setting can be seen as a zero-error variant with side-
informations known at the encoder of the successive refinement
problem proposed by Kaspi in [7]; later generalized by Timo
et al. in [8] for more than two decoders. Even if the lossy
reconstruction of the source makes it fundamentally different
from the zero-error setting, there are notable examples that
present the same tools as in SW. The side-information scalable
source coding (i.e. the decoder 2 has a SI Y ′ s.t. X → Y → Y

′)
in [9] for instance uses nested random binning. This random
binning approach was further developed in [10] to give a
unified coding scheme that works for both scalable source
coding and Wyner-Ziv successive refinement in [11] (i.e. the
decoder 2 has a SI Y ′ s.t. X → Y

′ → Y ).
In the open problem, the zero-error SW scheme requires

to send at rate H(X) to the decoder with side information,
see [12]–[15]. In [16], Ma and Cheng use linear codes in
a zero-error SW restriction, under symmetry assumptions on
the source. However, a zero-error SW coding scheme in our
setting does not use at all the side information knowledge at the
encoder. Therefore, we study the role of the side information at
the encoder with a zero-error constraint when side information
may be present at the decoder.

In this paper, we characterize the set of rate pairs that
are achievable with zero-error source codes, as depicted in
Fig. 1. More precisely, we show that the pair of rates(R1, R2) = (H(X∣Y ), I(X;Y )) is achievable and moreover,
it is the corner-point of the set of achievable pair of rates. Our
achievability result relies on a random coding argument. We
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Fig. 1: Source coding when side-information may be present.

use Csiszar and Körner’s method of types [17, Chapter 2] in
order to calibrate a linear code which is used to partition the
set of source sequences. The encoder sends the coset of the
source sequence to all decoders and the index of the source
sequence in its coset to decoder 2. We show that the zero-error
property is satisfied and the corresponding rates converge to
the pair of target rates (H(X∣Y ), I(X;Y )).

A. Notations

Random variables and their realizations are represented
by uppercase letters (e.g., X) and lowercase letters (e.g.,
x), respectively; and their set of possible values with the
corresponding calligraphic letters (e.g., X ). We denote by ∣ ⋅ ∣
the cardinality of a set. We denote a sequence of symbols by
x
n = (x1, ..., xn). The set of probability distributions over a

finite set X is denoted by P(X ). The distribution of a random
variable X is denoted by PX ∈ P(X ). When computing
entropies with other distributions than PX , we specify it in
subscript (e.g. HQ(X) is computed with the distribution Q).
The conditional distribution of a random variable X knowing
Y is denoted by PX∣Y , and the joint distribution is denoted
by PX,Y . We denote by {0, 1}∗ the set of binary words.
Throughout the paper the logarithms are in base two.

II. PROBLEM STATEMENT AND MAIN RESULT

The setting of Fig. 1 is described by:

⬩ Two finite sets X , Y and a pair of random variables(X,Y ) ∈ X × Y drawn with the distribution PX,Y .
⬩ An encoder that observes the realizations of (X,Y ).
⬩ Two decoders, where only decoder 1 observes the real-

izations of the side-information Y .
⬩ The encoder transmits over a first channel to both de-

coders, and a second channel to decoder 2 only.
⬩ We denote by n ∈ N⋆ = N \ {0} the block size of the

coding scheme. For n iterated source uses, we denote
by (Xn

, Y
n) the sequences of independent copies of(X,Y ).

Definition II.1 Given n ∈ N⋆ = N \ {0}, (R(n)
1 , R

(n)
2 ) ∈[0,+∞)2, a (n,R(n)

1 , R
(n)
2 )-zero-error source code consists of

encoding functions (f1, f2) that assigns variable-length binary
sequences and decoding functions (g1, g2) defined by:

f1 ∶ Xn × Yn → {0, 1}∗, f2 ∶ Xn × Yn → {0, 1}∗, (1)

g1 ∶ {0, 1}∗ × Yn → Xn, g2 ∶ ({0, 1}∗)2 → Xn, (2)

that satisfy

R
(n)
1 = 1

nE[l(f1(Xn
, Y

n))], R
(n)
2 = 1

nE[l(f2(Xn
, Y

n))],
where l(⋅) denotes the length of a binary word, and that satisfy
the zero-error property, i.e. Xn = g1(f1(Xn

, Y
n), Y n) =

g2(f1(Xn
, Y

n), f2(Xn
, Y

n)) with probability 1.

Definition II.2 A rate pair (R1, R2) ∈ [0,+∞)2 is achiev-
able if there exists a sequence of (n,R(n)

1 , R
(n)
2 )-zero-error

source codes such that

lim
n
R

(n)
1 = R1, lim

n
R

(n)
2 = R2. (3)

We denote by R the zero-error achievable rate region.

Theorem II.3

R = {(R1, R2), R1 ≥ H(X∣Y ), R1 +R2 ≥ H(X)}. (4)

R

H(X∣Y ) H(X)

I(X;Y )
H(X)

0
0

R1

R2 complement of R
R1 +R2 = H(X)
R1 = H(X∣Y )

Fig. 2: Zero-error achievable rate region R.

Proof. [Converse of Theorem II.3] In this setting, each decoder
must retrieve X with zero-error. Using Shannon lossless source
coding result [18, Theorem 5.3.1] and Slepian-Wolf Theorem
[2, Theorem 2] on each decoder, we have R1 ≥ H(X∣Y )
and R1 + R2 ≥ H(X), as the zero-error source codes are a
subclass of lossless codes considered for these converses.

III. ACHIEVABILITY PROOF OF THEOREM II.3
In order to prove Theorem II.3, we show that(H(X∣Y ), I(X;Y )) ∈ R. (5)

In order to complete the achievability result we use a time
sharing with the point (H(X), 0), which is known to be
achievable by compressing X using a Huffman code and
sending the resulting binary sequence via f1.
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A. Preliminaries

Definition III.1 (Type) For all pair of sequences (xn, yn) ∈
Xn × Yn, the joint type is the distribution from P(X × Y)
denoted Qxn,yn that satisfies for all (x′, y′) ∈ X × Y

Qxn,yn(x′, y′) = 1
n
»»»»»{i ≤ n »»»»» (xi, yi) = (x′, y′)}»»»»» . (6)

We denote the marginal types by Qxn and Qyn , respectively.
We denote the conditional type of xn knowing yn by Qxn∣yn .

The n-discretized probability simplex Pn(X ×Y) is the set
of types that are achievable using sequences of length n.

We denote by QXn,Y n the random variable of the joint type
of the random sequences (Xn

, Y
n). We denote the random

variables of their conditional and marginal types by QXn∣Y n ,
QXn and QY n , respectively.

Definition III.2 (Type class, V -shell) For all type π ∈
Pn(X × Y), we denote the type class by Tπ

Tπ = {(xn, yn) ∈ Xn × Yn ∣Qxn,yn = π} . (7)

Given a conditional type V ∈ P(X )∣Y∣, the V -shell of a
sequence yn is the set TV (yn) = {xn ∈ X ∣Qxn∣yn = V }.

Definition III.3 (Generator/parity matrix, syndrome, coset)
Let A be a finite set such that ∣A∣ is prime, so we can give
A ≃ Z/∣A∣Z a field structure. For all n, k ∈ N⋆, we denote
by Mn,k(A) the set of n× k matrices over the finite field A.

Let k ∈ N⋆, a generator matrix is a matrix G ∈Mn,k(A).
An associated parity matrix is a matrix H ∈Mn−k,n(A) such
that Im G = Ker H, where Im and Ker denote the image and
the kernel, respectively.

The syndrome of a sequence an ∈ An is Hxn. The coset
associated to the syndrome Han is the set Im G+an = {ãn ∈
An ∣ Hãn = Han}.

B. Coding scheme

For all n ∈ N⋆, we show the existence of a sequence
of (n,R(n)

1 , R
(n)
2 )-zero-error source codes that achieves the

corner-point (H(X∣Y ), I(X;Y )) of the zero-error rate region
R. Our proof is based on a linear code adjusted depending on
QXn,Y n , and coset partitioning of the Hamming space.

We assume w.l.o.g. that PX,Y ≠ PXPY . We also assume
w.l.o.g. that ∣X ∣ is prime number by padding (i.e. extending
with zeros) PX,Y if necessary. We fix the block-length n and
a constant parameter δ ∈ (0; log ∣X ∣ − H(X∣Y )) that will
represent a rate penalty.
⬩ Random code generation: For each pair of sequences(xn, yn), we define the parameter

k ≐ ⌈n − nHQxn,yn (X∣Y ) + δ
log ∣X ∣ ⌉+ . (8)

where ⌈⋅⌉ denotes the ceiling function and (⋅)+ denotes
max(⋅, 0). We denote by K the random variable induced
by k defined in (8), for the random sequences (Xn

, Y
n).

A generator matrix G ∈ Mn,n(X ) is randomly drawn,

with i.i.d. entries drawn according to the uniform distri-
bution on X . If K ≠ 0, let GK be the matrix obtained by
extracting the K first lines of G, and HK a parity matrix
associated to GK .
The random code C consists of the set of random matrices
C = {(Gk,Hk), 1 ≤ k ≤ n}. Before the transmission
starts, a code realization is chosen and revealed to the
encoder and both decoders.

⬩ Encoding function f1: Let E ∈ {0, 1} be such that E = 0
if K ≠ 0 and (Im GK +X

n) ∩ TQXn∣Y n (Y n) = {Xn};
E = 1 otherwise. Then we define

f1(Xn
, Y

n) = {b(QXn,Y n , E,HKX
n) if E = 0,

b(QXn,Y n , E,Xn) if E = 1,
(9)

where b(⋅) denotes the binary expansion.
⬩ Encoding function f2: If E = 0, the index of Xn in its

coset Im GK +X
n is compressed using a Huffman code

with the distribution PXn . Let B(GK , X
n
, Y

n) be the
resulting binary sequence, then we set

f2(Xn
, Y

n) = B(GK , X
n
, Y

n). (10)

Otherwise, f2(Xn
, Y

n) = 0.
⬩ Decoding function g1: It observes f1(Xn

, Y
n) and ex-

tracts E and QXn,Y n . If E = 1,

g1(f1(Xn
, Y

n), Y n) = Xn
. (11)

Otherwise E = 0, it extracts HKX
n and determines the

coset Im GK + X
n. Moreover, by using QXn,Y n and

Y
n it determines the QXn∣Y n -shell TQXn∣Y n (Y n), and

therefore returns an element

g1(f1(Xn
, Y

n), Y n) ∈ (Im GK +X
n) ∩ TQXn∣Y n (Y n).

⬩ Decoding function g2: It observes f1(Xn
, Y

n) and ex-
tracts E and QXn,Y n . If E = 0, it extracts HKX

n

and determines the coset Im GK + X
n, and it returns

g2(f1(Xn
, Y

n), f2(Xn
, Y

n)), the element of Im GK +
X
n with index f2(Xn

, Y
n). If E = 1, it returns

g2(f1(Xn
, Y

n), f2(Xn
, Y

n)) = Xn
.

Remark III.4 The parameter K is selected so that when
K > 0, the number of parity bits of the linear code asymp-
totically matches the conditional entropy: (n−K) log ∣X ∣

n
=

HQXn,Y n (X∣Y ) + δ +O ( 1
n
).

C. Zero-error property

We now prove that the code built in Section III-B satisfies
the zero-error property. It is clear that both decoders retrieve
X
n with zero-error when E = 1.
If E = 0, then by definition of E we have (Im GK +

X
n)∩ TQXn∣Y n (Y n) = {Xn}, hence g1(f1(Xn

, Y
n), Y n) =

X
n with probability 1. On the other hand, f2(Xn

, Y
n) =

B(GK , X
n
, Y

n), so the element of Im GK +X
n with index

f2(Xn
, Y

n) is X
n. Thus, g2(f1(Xn

, Y
n), f2(Xn

, Y
n)) =

X
n with probability 1.
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D. Rate analysis

Now we prove that for all parameter δ > 0, the sequence of
rates of the codes built in Section III-B satisfy

R
(n)
1 →

n→∞
H(X∣Y ) + δ, R

(n)
2 →

n→∞
I(X;Y ). (12)

Lemma 1 (Large deviations) Let X ′ be a random variable
such that PX ′ is the uniform distribution over X . Then for
each pair of sequences (xn, yn), we have:

Pr (QX ′n,yn = Qxn,yn) = 2
nHQxn,yn (X∣Y )−n log ∣X ∣+o(n)

(13)

Proof. Since PX ′ is uniform:

Pr (QX ′n,yn = Qxn,yn) = ∣X ∣−n »»»»»TQxn∣yn (yn)»»»»» (14)

= 2
−n log ∣X ∣

2
nHQxn,yn (X∣Y )+o(n)

,

as [17, Lemma 2.5] gives the asymptotic size of the Qxn∣yn -
shell TQxn∣yn (yn).

Probability of decoding ambiguity. We need to es-
timate Pr(E = 1). We have E = 1 iff K = 0
or there exists (α1, ..., αK) ∈ XK \ {0, ..., 0} such that
Q(Xn+∑i≤K αiG(i)

K ),Y n = QXn,Y n , where G(i)
K denotes the i-

th column of GK . Thus

Pr(E = 1) ≤ Pr(K = 0) (15)

+ Pr( ⋃
α∈XK

α≠0

[Q(Xn+∑i≤K αiG(i)
K ),Y n = QXn,Y n] »»»»»»»»»»K ≠ 0).

We provide an upper bound on the second term in (15). For
all (xn, yn) such that k ≠ 0, we have:

Pr( ⋃
α∈Xk

α≠0

[Q(xn+∑i≤k αiG(i)
k ),yn = Qxn,yn] )

≤ ∑
α∈Xk

α≠0

Pr(Q(xn+∑i≤k αiG(i)
k ),yn = Qxn,yn) (16)

≤∣X ∣k2nHQxn,yn (X∣Y )−n log ∣X ∣+o(n) (17)

≤2n log ∣X ∣−nHQxn,yn (X∣Y )−δn+o(n)
× 2

nHQxn,yn (X∣Y )−n log ∣X ∣+o(n) ≤ 2
−δn+o(n)

, (18)

where (17) comes from Lemma 1 and (18) comes from (8).
Therefore,

Pr( ⋃
α∈XK

α≠0

[Q(Xn+∑i≤K αiG(i)
K ),Y n = QXn,Y n] »»»»»»»»»»K ≠ 0)

= ∑
xn,yn

Pr((Xn
, Y

n) = (xn, yn)»»»»»»K ≠ 0)
× Pr( ⋃

α∈XK

α≠0

[Q(Xn+∑i≤K αiG(i)
K ),Y n = QXn,Y n]

»»»»»»K ≠ 0, (Xn
, Y

n) = (xn, yn)) (19)

≤ ∑
xn,yn

Pr((Xn
, Y

n) = (xn, yn)»»»»»»K ≠ 0)2−δn+o(n) (20)

≤2−δn+o(n), (21)

where (20) comes from (18) and the fact that G is independent
of (X,Y ).

We now provide an upper bound on the first term in (15).

S ≐ {π ∈ P(X × Y), 1 −
Hπ(X∣Y ) + δ

log ∣X ∣ ≤ 0}. (22)

Then we have:

Pr(K = 0) (23)

= Pr(⌈n − nHQXn,Y n (X∣Y ) + δ
log ∣X ∣ ⌉+ = 0) (24)

= Pr(n − nHQXn,Y n (X∣Y ) + δ
log ∣X ∣ ≤ 0) (25)

= Pr(QXn,Y n ∈ S) (26)

= ∑
π∈S∩Pn(X×Y) Pr(QXn,Y n = π) (27)

≤ ∣S ∩ Pn(X × Y)∣ sup
π∈S∩Pn(X×Y) Pr(QXn,Y n = π) (28)

≤ ∣S ∩ Pn(X × Y)∣ sup
π∈S∩Pn(X×Y) 2

−nD(π∥PX,Y ) (29)

≤ ∣S ∩ Pn(X × Y)∣ sup
π∈S

2
−nD(π∥PX,Y ) (30)

≤ 2
−n infπ∈S D(π∥PX,Y )+o(n)

, (31)

where (29) comes from [17, Lemma 2.6]. Since PX,Y ∉ S by
definition of δ, we have infπ∈S D(PX,Y ∥π) > 0. Thus there
exists a positive constant β > 0 such that

Pr(K = 0) ≤ 2
−βn+o(n)

. (32)

Thus by combining (15), (21), (32), we have:

Pr(E = 1) ≤ 2
−δn+o(n) + 2

−βn+o(n)
. (33)

Rate on the common channel. The encoding function f1
defined in (9) returns QXn,Y n and E. When E = 0, it sends
the syndrome HKX

n at rate n−K
n

log ∣X ∣, otherwise, it sends
X
n. Therefore,

nR
(n)
1 =1 + ∣X ∣∣Y∣ log2(n + 1) + Pr(E = 1)n log ∣X ∣

+ Pr(E = 0) ∑
xn,yn

Pr((Xn
, Y

n) = (xn, yn)∣E = 0)
× (n − k) log ∣X ∣ (34)

≤1 + ∣X ∣∣Y∣ log2(n + 1) + Pr(E = 1)n log ∣X ∣
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+ (n − E[K]) log ∣X ∣ (35)
≤1 + ∣X ∣∣Y∣ log2(n + 1) + Pr(E = 1)n log ∣X ∣
+ nE[HQXn,Y n (X∣Y )] + nδ + 1, (36)

where (35) comes from n − k ≥ 0 for all (xn, yn), and (36)
comes from (8).

By the law of large numbers [18, Theorem 11.2.1]
E[HQXn,Y n (X∣Y )] →

n→∞
H(X∣Y ), and by using (33), we

obtain

lim
n→∞

R
(n)
1 ≤ H(X∣Y ) + δ. (37)

Rate on the secondary channel. The encoding function
f2 is defined in (10). If E = 0, then K ≠ 0 and the encoder
transmits the index of Xn in its coset. The Huffman algorithm
has an average output length R(n)

2 that satisfies

R
(n)
2 ≤ 1

n(1 +∑
k≠0

Pr(K = k∣E = 0)
×H(Xn∣HkX

n
,K = k, C, E = 0)) (38)

= 1
n +

1
nH(Xn∣K, C, E = 0)

−
1
nH(HKX

n∣K, C, E = 0), (39)

where (39) follows from the fact that HKX
n is a deterministic

function of Xn, given a random code C.

We now provide an upper bound to the last term
− 1
n
H(HKX

n∣K, C, E = 0) in (39). To do so, we introduce
a new encoding scheme that first encodes the sequences Xn

and Y
n with the encoding function f1, and then encode the

output by using an entropy coder. The rate of this code r is
upperbounded by H(f1(Xn

, Y
n)∣C) + 1.

Moreover, the decoder 1 retrieves Xn with zero error (see
Sec. III-C), and the entropy coder is also lossless. Thus r is
greater than the rate achieved by a conditional entropy coder
that compresses Xn knowing the side information Y n, whose
rate is lower bounded by nH(X∣Y ).

Therefore, we have

nH(X∣Y ) ≤ r < H(f1(Xn
, Y

n)∣C) + 1 (40)
= 1 +H(QXn,Y n , E∣C)
+ Pr(E = 0)H(HKX

n∣QXn,Y n , C, E = 0)
+ Pr(E = 1)H(Xn∣QXn,Y n , C, E = 1) (41)

≤ H(HKX
n∣QXn,Y n , C, E = 0) + o(n) (42)

= H(HKX
n∣QXn,Y n ,K, C, E = 0) + o(n) (43)

≤ H(HKX
n∣K, C, E = 0) + o(n) (44)

where o(n) in (42) corresponds to the term 1 +
H(QXn,Y n , E∣C) + Pr(E = 1)H(Xn∣QXn,Y n , C, E = 1),
and (43) follows from the fact that K is a deterministic
function of QXn,Y n .

We now provide an upper bound on the second term of (39).
1
nH(Xn∣K, C, E = 0) ≤ 1

nPr(E = 0)(H(Xn∣K, C, E)

− Pr(E = 1)H(Xn∣K, C, E = 1))
≤ 1
nH(Xn∣K, C, E) + o(1) (45)

≤ H(X) + o(1). (46)

By combining (39), (44) and (46), we obtain

lim
n→∞

R
(n)
2 ≤ I(X;Y ). (47)

Conclusion. The rates in (37) and (47) are evaluated on
average over the random code C with a parameter δ > 0
arbitrarily small. This shows that there exists a sequence of(n,R(n)

1 , R
(n)
2 )-zero-error source codes, such that

(R(n)
1 , R

(n)
2 ) →

n→∞
(H(X∣Y ), I(X;Y )). (48)
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Abstract—Motivated by the problem of robust community
detection, we study the r-th power of a graph, i.e., the new
graph obtained by connecting every vertex pair in the original
graph within distance r. This paper gives a generalization of the
Alon-Boppana Theorem for the r-th power of graphs, including
irregular graphs. This leads to a generalized notion of Ramanujan
graphs, those for which the powered graph has a spectral gap
matching the derived Alon-Boppana bound. In particular, we
show that certain graphs that are not good expanders due to
local irregularities, such as Erdős-Rényi random graphs, become
almost Ramanujan once powered. A different generalization of
Ramanujan graphs can also be obtained from the nonbacktrack-
ing operator. We next argue that the powering operator gives a
more robust notion than the latter: Sparse Erdős-Rényi random
graphs with an adversary modifying a subgraph of log(n)ε

vertices are still almost Ramanujan in the powered sense, but
not in the nonbacktracking sense. As an application, this gives
robust community testing for different block models.

I. INTRODUCTION

The Alon-Boppana Theorem implies that a family of d-
regular n-graphs with adjacency matrix An satisfies

λ2(An) ≥ 2
√
d− 1− on(1). (1)

A family of d-regular n-graphs with adjacency matrix An is
Ramanujan, denoted here A-Ramanujan, if

λ2(An) ≤ 2
√
d− 1. (2)

Explicit constructions of such families were obtained in [8],
[10], and it was shown in [5] that random d-regular graphs Rn
are almost Ramanujan, in that

λ2(An) = 2
√
d− 1 + on,P(1), (3)

where we use the notation An = Bn + on,P(1) when
An − Bn tends to 0 in probability when n tends to infinity.
Obviously the above definitions are not directly relevant
for irregular graphs. More specifically, Erdős-Rényi (ER)
random graphs with an expected degree d will have their
top two eigenvalues of order

√
log(n)/ log log(n), due to

eigenvectors localized on high-degree nodes, and therefore
afford no spectral gap. Nonetheless, ER random graphs are
similar to random d-regular graphs in various respects, e.g.,
their local neighborhoods for typical vertices are trees of
either fixed or expected degree d. In particular, Lubotzky [9]

gives a definition of Ramanujan that generalizes to irregular
graphs, where G is Ramanujan if for every non-trivial
eigenvalue λ of A(G), |λ| ≤ ρ(Ĝ) where ρ(Ĝ) is the spectral
radius of the universal cover Ĝ of G. We observe that this
definition does not fix the previously mentioned issue, as
the spectral gap of G may be in some sense maximally
large given the universal cover, but this property does not
overcome the problem of the corresponding eigenvectors
simply isolating on high-degree nodes. Thus one may wonder
whether ER random graphs could also be good expanders,
or even almost Ramanujan, if their local irregularity could
be smoothed out. We will next discuss how to formalize
and quantify such statements, and give motivating applications.

Generalized Ramanujan: beyond the adjacency opera-
tor. We start with a concrete example of a generalization
of the Ramanujan property that can be obtained using the
nonbacktracking operator of the graph. Given a graph G, the
nonbacktracking matrix BG is defined by the matrix on the
set of directed edges of the graph (i.e., its dimension is twice
the number of edges), and for two directed edges e = (e1, e2),
f = (f1, f2), Be,f = 1e2=f11e1 6=f2 . It was shown in [7] that
for regular graphs, the Ramanujan property can be equivalently
defined using the nonbacktracking spectral gap:

Definition I.1. A family of d-regular n-graphs with nonback-
tracking matrix Bn is B-Ramanujan, if

|λ2(BG)| ≤
√
d, (4)

where a graph satisfying (4) is also said to satisfy the graph
Riemann hypothesis [7], since the eigenvalues of the nonback-
tracking operator are the reciprocal of the poles of the Ihara
zeta function of the graph [6], [7].

This definition is indeed equivalent to the former definition
for regular graphs.

Lemma I.1. [7] For regular graphs, A-Ramanujan is equiva-
lent to B-Ramanujan.

Further, it was shown in [4] that the B-Ramanujan definition
extends more naturally to some irregular graphs than the A-
Ramanujan definition, with the ER random graph being almost
B-Ramanujan.
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Theorem I.2. [4] For a random ER graph,

|λ2(Bn)| =
√
λ1(Bn) + on,P(1), (5)

with
√
λ1(Bn) = d+ on,P(1) in this case.

Therefore, the nonbacktracking operator meets our objective
to turn ER random graphs into almost Ramanujan graphs in
the nonbacktracking domain. We next argue that this approach
can be further improved.

Symmetry and robustness. The B-Ramanujan definition suf-
fers from two drawbacks: (1) Complex spectrum: as opposed
to A, the matrix B is no longer symmetrical and thus has a
complex spectrum. This makes some of the spectral intuition
more delicate, where expansions are in terms of directed walks
(that do not backtrack) and where the Courant-Fisher theorem
(connecting cuts to eigenvalues) requires the use of oriented
path symmetry. In particular, a tight Alon-Boppana theorem
in the nonbacktracking domain is not obtained in [4]. (2)
Robustness: the nonbacktracking operator meets the objective
of making ER random graphs almost Ramanujan, but this
property is lost once one slightly deviates from such models.
For instance, perturbing the ER graph by adding a clique of
size c = Ω(

√
d) edges already makes the perturbed graph far

from B-Ramanujan.
Some solutions have been proposed for these issues. First,

the Bethe-Hessian operator [12] has been shown to essentially
act as a symmetrized version of the nonbacktracking operator,
however it does not fix the robustness issue. In [3], the
generalized notion of r-nonbacktracking operator is used to
gain generality in the proofs, but this is still nonsymmetrical
and the complexity of the eigenpair computation increases
significantly with r.

In [2], graph powering was proposed to address issues (1)
and (2), testing robustness on a geometric block model, with
parallel results in [13] using a related operator based on graph
distances. However, these papers no longer investigate the
connection to Ramanujan graphs, which is explicit in the case
of the nonbacktracking operator [4] (cf. previous paragraphs).

This paper. In this paper we consider the symmetric operator
of graph powering, and investigate its robustness and extremal
spectral gap properties. The r-th graph power G(r) of a graph
G modifies the graph by adding edges between any vertex pair
at distance less or equal to r [2]. Equivalently, the adjacency
matrix of G(r) is given by A(r) = 1((I + A)r ≥ 1), where
the indicator function is applied point-wise to the matrix. We
are typically interested in r large but significantly less than
the graph diameter (otherwise powering turns the graph into a
complete graph). In general, a regular graph may no longer be
regular once powered, so even for regular graphs, we cannot
bound the spectral gap for powered graph simply by using
the Alon-Boppana result with degree dr. Nonetheless, if we
take a regular graph of girth larger than 2r, then the r-th
power is regular and the Alon-Boppana Theorem gives the
bound λ2 ≥ 2

√
dr − 1, so approximately 2dr/2 for large r or

d. In fact, we shall see that random d-regular graphs have a
second eigenvalue around rdr/2 instead of 2dr/2 for large r
[2]. For this reason one might conclude that in the powered
domain, random d-regular graphs are not almost Ramanujan,
creating contrast to the classical definition, and suggesting
that powering may be misleading for generalizing Ramanujan
graphs. The main result of this paper shows that this argument
is false. Instead we will observe that applying the general
Alon-Boppana bound to powered graphs is suboptimal, since
powered graphs are not arbitrary graphs - instead, they are
powers of arbitrary graphs.

We show an Alon-Boppana bound that applies to powers
of (possibly irregular) graphs and which matches the scaling
rdr/2 for random d-regular graphs. Further, it is shown that
both ER and random regular graphs have a comparably
large and ‘optimal’ spectral gap in the powered domain,
i.e., they are almost r-Ramanujan, just as they are almost
B-Ramanujan. However, we show that this r-Ramanujan
definition is more robust to local density variations (e.g.,
degrees) and adversaries than the B-Ramanujan definition: an
adversary modifying a subgraph containing log(n)ε vertices
in ER or the random regular model cannot disrupt the
P-Ramanujan property, while the B-Ramanujan property is
lost after such a perturbation. We finish the introduction by
motivating why such robust extensions are useful for spectral
algorithms.

Community detection from the spectrum We will consider
the problem of detecting the presence of a hidden structure in
a graph, such as communities in the Stochastic Block Model
(SBM). To give a formal statement of the problems we are
interested in:

Definition I.2. Consider a graph G drawn from the sym-
metric 2-community SBM ensemble SBM(n, a/n, b/n). An
algorithm solves the problem of weak recovery if, with high
probability in the choice of G, the algorithm identifies more
that 1

2 + ε of vertices to the correct community (up to a
relabelling of the communities).

A related problem is to identify that there is community
behavior in a random graph:

Definition I.3. Consider a graph G which is chosen with prob-
ability 1

2 according to the random graph model ER(n, d/n)
and with 12 from SBM(n, a/n, b/n). An algorithm solves the
problem of distinguishability if, with high probability in the
choice of G, the algorithm correctly identifies which of the
two ensembles G was chosen from.

This means that we want to distinguish between two cases,
either the graph is drawn from ER(n, d/n), or, on the other
hand, it is the assembly of two independent ER(n/2, a/n) sub-
graphs with a random bipartite graph connecting each pair of
vertices across the groups independently with probability b/n.
One can view the SBM adjacency matrix as an ER matrix A
perturbed as A+Z where Z adds/subtracts edges within/across
clusters with the specified probabilities. If (a + b)/2 6= d,
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the average degree or edge density of the graph allows to
distinguish the two models, so we consider the case where
(a + b)/2 = d. As we are concerned with a regime where
the second eigenvector does not give information about the
communities in the SBM case, similarly spectral analysis will
fail to distinguish the SBM from the ER random graph.

Rather than using the spectrum of A, we may attempt to use
the cycle counts, as originally proposed in [11]. This allows us
to distinguish the models down to the optimal Kesten-Stigum
(KS) threshold, i.e., λ2(SBM) >

√
λ1(SBM), which reads

(a− b)/2 >
√

(a+ b)/2. One can also use spectral methods,
not based on the adjacency matrix but on the nonbacktracking
matrix [4], which does not suffer from ER irregularities due
to the weak Ramanujan property: its second eigenvalue is√

(a− b)/2+on,P(1) in the ER case, and (a− b)/2+on,P(1)
in the SBM case due to the community eigenvector. Thus the
second eigenvalue of the nonbacktracking matrix allows us to
solve the distinguishability problem down to the optimal KS
threshold.

The relevance of the almost-Ramanujan property in the B-
domain is now clear: the idea of using the spectral method to
analyze the SBM is that v2 will approximate the community
vector while v≥3 will be noise from randomness. For this anal-
ysis to work, the community signal λ2 needs to be separated
from the noisy values λ3,; if λ2 ≈ λ3 that means that λ2 (and
v2) might be controlled by the noise rather than the community
vector. And so a large spectral gap for the null model (ER)
leaves more room for the community signal to be visible in
the SBM, and thus gives a broader range of parameters for
which testing is solvable.

We want to consider the question of whether algorithms
for solving distinguishability are robust to an adversarial
modification of the graph:

Definition I.4. Suppose a random graph G is cho-
sen according to the distinguishability problem; i.e.,
from SBM(n, a/n, b/n) with probability 1/2 and from
ER(n, d/n) with 1/2. Then we allow an adversary to create
G′ by modifying a subgraph of c vertices (adding and remov-
ing any number of edges) . The robust testing problem (for
distinguishability) is solved by an algorithm that takes input
G′ (i.e., without seeing G) and can, with high probability in
the choice of G, decide whether G′ is the result of adversarial
modification of a graph from SBM or ER.

It is not hard to check that a budget of c = Ω(a+b) suffices
to disrupt the two previous methods based on cycle counts and
the nonbacktracking operator. However, for graph powering

and for c = o

(
((a−b)/2)r

log(n)
√

(a+b)/2
r−1

)
, we will prove that that

the ER model perturbed by such an adversary affords still a
maximal spectral gap in the powered domain. This allows one
to distinguish the models down to the KS threshold despite
such adversaries — See Corollary II.7. For this case, a similar
result has recently been obtained in parallel work [13] for the
SBM using a slightly different operator based on the distance
matrix of the graph. [13] further covers the case of weak

recovery.

II. RESULTS

Remark. The proofs of all theorems in this section are found
in the long version of this paper:
https://arxiv.org/pdf/2006.11248.pdf

A. Notations

We will start by recalling some standard notations. In a
graph G, distG(v, w) is the graph distance metric, measuring
the length (in edges) of the shortest v − w walk in G. If G
is a finite connected graph, diam(G) is the maximum graph
distance between any pair of vertices. If G has |V | = n the
adjacency matrix A(G) is an n × n matrix indexed by V in
which Aij = 1 if i ∼G j and 0 otherwise. The eigenvalues of
A are λ1 ≥ λ2 ≥ λ3 . . . .

Let G be a graph, G may have self-loops but we do not allow
repeated edges. If r ≥ 1, the r-th power of G is G(r), the graph
with vertex set V (G) and an edge {x, y} iff distG(x, y) ≤ r.
This definition was introduced in [2]. A(r) is the adjacency
operator of G(r). The graph power G(r) will by definition
contain a self-loop at every vertex, it does not contain repeated
edges.

In order to model community behavior, we sample random
graphs from the (balanced 2-community) Stochastic Block
Model: a graph G sampled from SBM(n, a/n, b/n) is a
random graph on n vertices generated by the following two
steps. First, each vertex is put in community X1 or X2

uniformly and independently. Second, for every pair of vertices
v, w, {v, w} is taken to be an edge with probability a/n if
v and w are in the same community and b/n if not. The
SBM is a generalization of the well-known Erdős-Rényi
graph ER(n, d/n) := SBM(n, d/n, d/n).

In an SBM , the community vector is the {±1}-vector on
the vertices with vi = 1 if i ∈ X1 and vi = −1 if i ∈ X2.

The Kesten-Stigum (KS) threshhold a−b
2 =

√
a+b
2 is a limit

on weak recovery in the SBM: when a−b
2 ≤

√
a+b
2 weak

recovery is not possible [11].

B. Alon-Boppana for powered graphs

We investigate the maximum size of the spectral gap fol-
lowing graph powering. We modify well-known methods of
finding a lower bound on the second-largest eigenvalue in
a graph in order to derive a version of the Alon-Boppana
theorem for graph powering.

Recall that the Alon-Boppana result for (non-powered) d-
regular graphs is

λ2(A) ≥ (1− odiam(G)(1))2
√
d− 1.

A Ramanujan graph is one for which the lower bound is tight,
as first investigated in [8].

Friedman [5] argued that d-regular random graphs are
almost Ramanujan with high probability. We will replicate this
result under powering, arguing that with high probability, a d-
regular random graph under powering is almost r-Ramanujan.
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The Alon-Boppana like bound for powered graphs is:

Theorem II.1. Let {Gn}n≥1 be a sequence of graphs such
that diam(Gn) = ω(1), and {rn}n≥1 a sequence of positive
integers such that rn = ε · diam(Gn). Then,

λ2(G(rn)
n ) ≥ (1− oε(1))(rn + 1)d̂ rn/2rn (Gn), (6)

where

d̂r(G) =

(
1

r + 1

r∑

i=0

√
δ(i)(G)δ(r−i)(G)

)2/r

, (7)

δ(i)(G) = min
(x,y)∈E(G)

|{v : dG(x, v) = i, dG(y, v) ≥ i}|. (8)

In [2], the authors (jointly with Boix and Sandon) prove that
the quantity d̂ is d± o(d) with high probability in a d-regular
random graph, for such graphs we get the following version
of Theorem II.1

Theorem II.2. Let G be a random d-regular graph and r =
ε log(n), where ε log d < 1/4. Then, with high probability,

λ2(G(r)) ≥ (1− o(1))(r + 1)
√
d
r
. (9)

We say that a graph G is r-Ramanujan if the bound of The-
orem II.1 is tight, that is, if λ2(G(r)) ≤ (1+o(1))(r+1)d̂r/2.
We demonstrate that a class of Ramanujan graphs are also
r-Ramanujan, and therefore that r-Ramanujan graphs exist.

Lemma II.3. Let G be a d-regular Ramanujan graph with girth
g, and let 2r < girth(G). Then G(r) is r-Ramanujan, so that
λ2(G(r)) = (1 + od(1)) (r + 1)dr/2.

As first seen in the original construction of [8],
there are families of Ramanujan graphs may have girth
Θ(log(n)/ log(d); it is straightforward to observe that this is an
upper bound on girth. Using such graphs, we can now construct
r-Ramanujan powered graphs.

C. Robustness of graph powering

If a graph contains large cliques but otherwise appears to be
randomly generated (such as by the stochastic block model),
analysis of the leading eigenvectors will reliably identify those
cliques rather than any communities that may exist. We will
investigate what happens to such graphs under powering.
Observe that a shortest path of length r may have, at most, 1
edge from any clique. Intuitively, powering the graph means
gives a graph whose edges are paths in G that take edges
mostly from the "expander part" of the graph with at most
one edge from any large clique, and so we can observe the
community behaviour. In fact the results will be more general;
we will consider any perturbation of an expander graph and
not just the addition of a clique.

In order to examine specific examples of random graphs,
we will first briefly give a general discussion on how adding
edges to a graph impacts the eigenvalues of G(r).

Definition II.1. Let G be a graph on vertex set [n] and let H
be a graph whose vertex set is a subset of [n]. Then G + H
is the graph with vertex set [n] and satisfying the equation

E(G+H)∆E(G) = E(H), in other words, G+H is obtained
from G by adding or removing all edges of H as applicable.

We will use the following simple theorem for bounding
eigenvalues of graphs of the form G+H .

Theorem II.4. Let k ≥ 1. Then |λk(AG+H)− λk(AG)| ≤
‖AH‖.

An application of Theorem II.4 is the following result, which
we will use to prove the main theorems of this section.

Theorem II.5. Let G be a graph with c < |V (G)|, and let H
be a graph whose vertex set consists of at most c elements of
V (G). Define D(i)(G+H) to be the maximum degree in G(i)

over all the vertices of H . Then

∣∣∣λk((G+H)(r))− λk(G(r))
∣∣∣ ≤

r−1∑

q=0

cmax
i

√
D(i)D(q−i).

We apply Theorem II.5 to the case of an Erdös-Rényi
random graph or a sparse SBM.

Theorem II.6. Let G = SBM(n, a/n, b/n) + H where
|V (H)| ≤ c. There is a universal constant α so that, with
high probability in the random choice of graph from the SBM
ensemble, the following statements hold:

1) If
√

(a+ b)/2 ≤ (a − b)/2 (the KS threshold), then,
independently of the choice of H ,

(1− o(1))
(
a−b
2

)r − c log(n)α
√

a+b
2

r−1
≤ λ2(G(r))

≤ c log(n)α
√

a+b
2

r−1
+ (1 + o(1))

(
a−b
2

)r
.

2) On the other hand, if
√

(a+ b)/2 ≤ (a − b)/2, then
independently of the choice of H ,

(√
a+b
2 − c

)
log(n)α

√
a+b
2

r−1
≤ λ2(G(r))

≤
(
c+

√
a+b
2

)
log(n)α

√
a+b
2

r−1
.

In particular, if G = ER(n, d/n) + H (i.e., the SBM
with values a = b = d), then

(√
d− c

)
log(n)α

√
d
r−1 ≤ λ2(G(r))

≤
(
c+
√
d
)

log(n)α
√
d
r−1

.

Remark. Note that we are thinking of r = log(n)γ where
γ is a constant. If c = log(n)ε, then in this result, we
obtain the bound λ2(ER(n, d/n)(r)) ≤ log(n)αdr/2 for
the original ER graph and λ2(G(r)) ≤ log(n)α+εdr/2 for
the perturbed graph. Our Alon-Boppana result for powering
states that (if the unpowered graph is d-regular) then λ2 ≥
(r + 1)dr/2 = log(n)γdr/2. Because the upper bounds for
λ2(ER(n, d/n)(r)) and λ2(G(r)) are tight up to a power of
log(n) we say that those graphs are both almost Ramanujan.

We will use the following result to solve the distinguisha-
bility problem. That is, suppose with equal probability either
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the ER(n, a+b2n ) or SBM(n, a/n, b/n) random graph model
is chosen, and then a graph G is drawn from that model at
random and perturbed to G + H by an adversarial choice of
H with the constraint |V (H)| ≤ c. Then for what values of
a, b, c is it possible to guess with high probability which of
the two models G comes from?

Corollary II.7. Assume c = o

(
((a−b)/2)r

log(n)
√

(a+b)/2
r−1

)
.

Let G = SBM(n, a/n, b/n) + H . With high probability,
independently of the choice of H ,

λ2(G(r)) = (1± o(1))
(
a−b
2

)r
.

Let G = ER(n, a+b2 /n) + H . With high probability, inde-
pendently of the choice of H ,

λ2(G(r)) = o(
(
a−b
2

)r
).

The proof of each statement is just an application of
Theorem II.6.
Remark. A common method of solving the distinguishability
problem is by examining the number of m-cycles [1]. In brief,
the number of cycles is 1

2m

(
dm ± dm/2

)
in an ER graph and

1
2m

(
dm + (a−b2 )m ± dm/2

)
in an SBM , so that the decision

is possible up to the KS threshhold. However this method
is not robust to adversarial perturbation of the graph. If the
perturbation is a c-regular clique where c >> d, the number
of m-cycles is 1

2m

(
cm + d2cm−2 ±

√
d2cm−2

)
for both the

ER and SBM random graph models, this makes the decision
impossible. But the method of graph powering lets us solve
this decision problem even with the addition of much larger
cliques. This result is similar to one found in the work of
Stephan and Massoulié [13], working with the distance matrix
rather than A(r).
Remark. Implicit in the result of Theorem II.6 is that if
G = SBM(n, a/n, b/n) + H under the hypotheses of
Corrolary II.7, then the second eigenvector v2 of G(r) will
approximate the second eigenvector of SBM(n, a/n, b/n)(r).
Theorem 2.6 of [2] tells us that the second eigenvector of
SBM(n, a/n, b/n)(r) is useful for weak recovery of the
communities.

III. OPEN PROBLEMS

• In Lemma II.3 we show that a Ramanujan graph with
girth more than 2r must be also r-Ramanujan after power-
ing, taking advantage of the fact that all r-neighborhoods
in that graph are trees. Is this true in general - is
every Ramanujan graph also r-Ramanujan (with some
reasonable bound on r)?

• The converse of the previous problem - is every r-
Ramanujan powered graph necessarily the r-th power of
a Ramanujan graph?

• Observe that we, along with our concurrent work [2],
do not in general investigate the exponent in the factors
log(n)α which appears in our paper. In particular in the
Alon-Boppana result for powering, we see the bound
(r + 1)dr/2 where r = ε log(n), but in the bound

for λ2(ER(n, d/n)(r)) we have log(n)alphadr. Because
these bounds are equivalent up to a factor of a power
of log(n) we say that ER(n, d/n)(r) is r-Ramanujan. Is
it possible to better characterize the exponents of log(n)
that appear in this work (especially related to the ER
graph) and to understand why they exist in view of the
Alon-Boppana result for powering?
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Abstract—We propose novel compression algorithms for time-
varying channel state information (CSI) in wireless communica-
tions. The proposed schemes combine (lossy) vector quantisation
and (lossless) compression. The vector quantisation technique
is based on data-adapted parametrised companders applied on
each component of the normalised vector. Then, the sequences
of quantisation indices are compressed according to estimated
distributions computed with a context-tree approach. The algo-
rithms have low complexity, are linear-time in spatial dimension
and time duration, and can be implemented in an online fashion.
We run numerical experiments to demonstrate the effectiveness
of the proposed algorithms in such scenarios.

I. INTRODUCTION

In wireless communication systems, efficiently representing
the channel state information (CSI) is crucial for storage and
dissemination. Typically, in the downlink transmission from
a base station (BS) with multiple antennas to multiple users,
beamforming techniques rely on precise CSI at the transmitter
side [1]. For the BS to acquire the CSI, however, it usually
requires that each user feeds back the CSI measurements in
a timely and accurate fashion. How to reduce the bandwidth
cost of such feedback traffic, which is highly non-negligible,
is becoming a crucial problem. This is essentially a lossy data
compression problem.

The spatial correlation inherent to the antenna structures
has been exploited to reduce CSI dimension in recent works
using deep learning and compressed sensing techniques (see,
e.g., [2], [3] and the references therein), while the temporal
correlation of CSI measurements is less exploited for feedback.
Indeed, if the sequence of the quantised symbols is stationary,
it can be losslessly compressed up to the entropy rate of the
underlying process. A possible approach for CSI compression
is therefore to apply any universal compression algorithm [4],
[5], such as Lempel-Ziv [6], [7] (known as LZ77 and LZ78),
to the quantisation indices.

Another universal compressor is the context-tree weight-
ing (CTW) algorithm [8], which learns the distribution of
a given sequence in an efficient way. This distribution can
then be used to compress the sequence in combination with
arithmetic coding, achieving the Rissanen lower bound [8].
A modification of CTW yields the context-tree maximis-
ing (CTM) algorithm [9], which can produce the maximum
a posteriori (MAP) probability tree model. Connections with
Bayesian inference have been explored in [4], [10].

However, directly applying these algorithms to compress
quantisation indices in an online fashion presents some diffi-
culties. First, the output bit-stream is of variable length, mak-
ing the feedback difficult to implement. Second, in Lempel-
Ziv methods, the input symbol block is also of variable
length, as it depends on parsing the original sequence. Finally,
arithmetic coding has to be carefully implemented so as to
deal with digital computers finite precision constraints [11].
Trying to avoid such difficulties motivates us to propose new
compression algorithms adapted to applications such as the
communication scenarios considered here.

In this work, we focus on the problem of online lossy
compression of a sequence of CSI vectors and propose a two-
step compression procedure. First, a new vector quantisation
technique, based on a class of parametrised companders, is
applied on the components of the normalised vector. The quan-
tisation is composed of a non-linear transformation, followed
by a uniform quantiser. The companders can be designed
and updated with available empirical data. In particular, we
consider the widely used µ-law compander and a new one, the
β-law compander, inspired by the beta distribution. Then, we
compress the sequence of quantisation indices using a context-
tree-based approach. We propose two solutions: 1) to directly
apply CTW with arithmetic coding, or 2) to apply CTM to
estimate the conditional distribution of the upcoming symbol
at each time instant and use this probability to compress the
symbol. In the latter case, we encode each symbol with a
fixed number of levels to limit the fluctuation of the encoded
bit-flow—a desirable property in communication systems. In
addition, the algorithms have low complexity, are linear-time
in both the spatial dimension and time duration, and can be
implemented in an online fashion.

This paper is organised as follows. In Section II we present
the system model and review basic concepts of vector quan-
tisation and context-tree representation. Our CSI compression
algorithm is described in Section III. The simulation of CSI
acquisition is analysed in Section IV, followed by some con-
clusions. Due to the space limitation, we omit some important
details that can be found in the extended version in [12], where
implementation codes are also available.

Notation: Vectors (vvv) are denoted by bold italic lower-case
letters. Random variables (X) are in non-italic upper-case.
L2 vector norms are denoted by ‖vvv‖. Logarithms are to the
base 2. We denote [n] := {1, . . . , n}.
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II. PROBLEM FORMULATION AND PRELIMINARIES

A. Main Problem

We consider a network composed of a transmitter (e.g., base
station) and Nr receivers (e.g., mobile users). Assume that the
CSI between the transmitter and receiver k at time t can be
described by a complex vector hhhk[t] ∈ CNt×1, for k ∈ [Nr].
For different purposes (e.g., feedback, storage), each receiver
is required to represent its state sequence using as few bits
as possible, for a given distortion constraint. This is known
as the lossy source coding problem [5]. In most practical
scenarios, the norm of the vectors hhhk[t] is less important than
the direction. Therefore, our goal here is to compress the
normalised vector hhhk[t]/‖hhhk[t]‖.
B. Vector Quantisation

A vector quantiser [13] of dimension p and size M , is
a mapping q : Rp → C, with C := {yyy0, yyy1, . . . , yyyM−1} ⊂
Rp, that associates each vector xxx ∈ Rp to a codeword
x̂xx := q(xxx) = yyyk, for some k ∈ {0, 1, . . . ,M − 1}. For a
sequence of vector symbols xxxn1 := xxx1xxx2 · · ·xxxn, we can apply
vector-by-vector quantisation, generating a sequence of quan-
tised vectors x̂xxn1 := x̂xx1x̂xx2 · · · x̂xxn and a sequence of quantisation
indices kn1 := k1k2 · · · kn, where x̂xxi = yyyki , for each i ∈ [n].

Two important parameters to assess the performance of
a vector quantiser are the quantisation rate and the mean
distortion. The quantisation rate, defined as R := (logM)/p,
is an indicator of the cost to describe the vector, while the mean
distortion measures the error induced by the quantisation. We
use, as distortion measure between xxx and x̂xx, the mean squared
chordal distance (MSCD), defined as

MSCD(xxx, x̂xx) := 1− E

[
|〈xxx, x̂xx〉|2
‖xxx‖2‖x̂xx‖2

]
. (1)

C. Variable-Order Markov Chain and Context Tree

Let xji := xixi+1 · · ·xj be a scalar sequence over an
alphabet A := {0, 1, . . . ,m − 1}, generated by a source with
probability distribution P . We denote l(xji ) := j − i + 1 the
length of sequence xji . A variable-order Markov chain with
order or memory D (also called bounded memory tree source)
is a random process for which P (xi|xi−1−∞) = P (xi|xi−1i−D).
Our interest in Markov chains comes from the fact that any
stationary ergodic source can be approximated by a Markov
chain with sufficiently large order [4], [5].

The statistical behaviour of a variable-order Markov chain is
described by a context set S (also known as suffix set or model),
which is defined as a subset of

⋃D
i=0Ai that is proper (i.e., no

element in S is a proper suffix of any other) and complete (i.e.,
each xn−∞ has a suffix in S, which is unique by properness).
The context function c : AD → S maps each length-D context
xi−1i−D to a suffix c(xi−1−∞) = c(xi−1i−D) = xi−1i−j , j ≤ D.
Furthermore, each suffix s ∈ S is associated with a parameter
θθθs := (θs(0), θs(1), . . . , θs(m − 1)), where θs(j) := P (j|s).
The parameter vector Θ := {θθθs : s ∈ S} groups all parameters
in the context set S. Therefore, the Markov chain is completely
characterised by the couple (S,Θ). We use CD to denote the

class of all context sets of order up to D. Finally, we define
LD(S) := |{s ∈ S : l(s) = D}| the number of contexts with
length D.

Since the context set S is proper, its elements can
be represented as leaf nodes of a tree TD, called con-
text tree, i.e., S ⊆ TD. For a given sequence xn1 ,
each leaf node s ∈ S is associated with a counter
aaas := aaas(x

n
1 ) := (as(0), as(1), . . . , as(m− 1)), where as(j)

stores the number of times that symbol j ∈ A follows context s
in xn1 . The counter of each inner node of the tree is recursively
defined as the sum of the counters of its children nodes, i.e.,
aaas :=

∑
j∈A aaajs, ∀ s ∈ TD \S. In particular, we use the empty

string λ to denote the root of the tree.
With the above definitions and the Markov property for a

D-th order Markov chain, if both S and Θ are known, the
probability of a sequence can be written as [10]

P (xn1 |x0D−1,S,Θ) =
∏

s∈S

∏

j∈A
θs(j)

as(j). (2)

If only the model S is known, but not its parameters Θ, the
marginal distribution of a sequence xn1 , given its past x01−D
and model S, is

P (xn1 |x01−D,S) =

∫
P (xn1 |x01−D,S,Θ)π(Θ|S) dΘ, (3)

assuming the distribution of the parameters, π(Θ|S), is known.
While this distribution is unknown in general, using the so-
called Jeffrey’s prior is asymptotically optimal in the minimax
sense [4]. This choice corresponds to setting π(Θ|S) to be
the Dirichlet distribution with parameters

(
1
2 , · · · , 12

)
. In this

case, the distribution (3) can be simplified to the so-called
Krichevsky–Trofimov (KT) distribution, which can be easily
computed as

P (xn1 |x01−D,S) =
∏

s∈S
Pe(aaas), (4)

where

Pe(aaas) =

∏m−1
j=0

(
1
2

) (
3
2

)
· · ·
(
as(j)− 1

2

)
(
m
2

) (
m
2 + 1

)
· · ·
(
m
2 +Ms − 1

) , s ∈ TD, (5)

with Ms :=
∑m−1
j=0 as(j).

Finally, if the model S is also unknown, then we shall
marginalise over S with a given prior distribution πD on all
models S of maximal depth D. Fixing γ ∈ ]0, 1[ and

πD(S) := (1− γ)
|S|−1
m−1 γ|S|−LD(S), (6)

we obtain a mixture of different distributions (4), correspond-
ing to the coding distribution of CTW [4], [10]:

Qn(xn1 |x01−D) :=
∑

S∈CD
πD(S)

∏

s∈S
Pe(aaas). (7)

Not only is this coding distribution universal for the class
of stationary ergodic sources (i.e., it asymptotically achieves
optimal coding rate irrespective of the source distribution), but
also it can be recursively computed so that the complexity is
linear in n [8].
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The CTM algorithm [9] comes from a modification of the
CTW algorithm and can be used to compute the maximum
a posteriori model S for a given sequence xn1−D.

Definition 1. For γ ∈ ]0, 1[, the maximised probability P sm of
each node s ∈ TD with length d = l(s) is

P sm :=

{
max{γPe(aaas), (1− γ)

∏m−1
j=0 P jsm }, 0 ≤ d < D,

Pe(aaas), d = D,
(8)

and the maximising tree Ssm is obtained by pruning the
descendants of the nodes s where the maximum is achieved
by the first term.

Lemma 1 (See [10]). The maximised coding distribution Pλm
of the root node λ ∈ TD satisfies

Pλm = max
S∈CD

πD(S)
∏

s∈S
Pe(aaas). (9)

We find then that the maximising tree Sλm, which is asso-
ciated to the maximised probability Pλm, corresponds to the
maximum a posteriori model:

Sλm = arg max
S∈CD

P (S|x) = arg max
S∈CD

πD(S)
∏

s∈S
Pe(aaas). (10)

III. PROPOSED SCHEME

A. Quantisation

The vector quantisation that we propose consists in vector
normalisation, decomposition into real components, and indi-
vidual scalar quantisation based on parametric companders.

1) Vector Normalisation: In this step, the input vector
xxx = [x(1) · · · x(Nt)] is normalised by the component with
the largest absolute value, i.e., x̄xx := xxx/x(i∗) where i∗ :=
arg maxi |x(i)|. Note that x̄(i∗) = 1, while the other nor-
malised components are complex in general, with absolute
value in [0, 1]. The i∗-th component can skip the following
steps and be directly assigned a special quantisation index
indicating it as the strongest component.

2) Decomposition: Before quantisation, each complex com-
ponent should be decomposed into real values. We consider
the polar decomposition into amplitude and phase, since these
components are usually less correlated in wireless applications,
thus providing a less ‘redundant’ representation.

3) Quantisation with Parametric Companders: The ampli-
tude and phase are quantised separately with different scalar
quantisers of Mabs and Mang quantisation levels, respectively.

If the input is uniformly distributed, then a uniform quantiser
is optimal. In general, however, uniform quantisation can be
far from optimal in the rate-distortion sense [5]. Let X be
a random variable representing the input, following some
distribution P over the support interval [0, 1]. The idea of
using a compander is to apply a non-linear and non-decreasing
mapping g : [0, 1] → [0, 1] to the signal (compression)
before quantising it, so that the signal is more ‘uniform’ in
the image space. To recover the signal, the inverse mapping
g−1 : [0, 1] → [0, 1] is used (expansion). It is practical to
use parametric companders, i.e., (differentiable) maps g that

TABLE I
TWO COMPANDER FUNCTIONS.

Compander Parameters pdf g′(x)

µ-law µ > 0
µ

(1 + µx) ln(1 + µ)

β-law α > 0, β > 0
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

can be described by a few number of parameters. One of the
widely used such companders is the µ-law compander, which
is parametrised by a value µ > 0. Note that, as compared
to the Lloyd quantiser [5], compander-based quantisers have
much lower complexity of quantisation and representation.

In this work, we propose a data-driven design of a com-
pander parametrised by some θ (which can contain multiple
scalar parameters). Assume that we have a set of training
data x1, . . . , xn. Our design is a two-step procedure: 1) uni-
formisation of the data, and 2) adjustment of the compander
parameter.

We assume that the training data are formed by independent
samples from some distribution P . If we knew the cumulative
distribution function (cdf) FP of P , we could apply the
mapping FP so that FP (x1), . . . , FP (xn) are samples from
a uniform distribution. If, however, we are restricted to a class
of companders {gθ, θ ∈ Q} for some set Q, then we have
to approximate FP with gθ. Since a compander as defined
above is non-decreasing from 0 to 1, it is equivalent to a cdf.
Thus, a sensible criterion for the approximation is through the
Kullback-Leibler divergence:

θ∗ = arg min
θ∈Q

D(P ‖ gθ) = arg max
θ∈Q

EP [log(g′θ(X))]. (11)

Remarkably, this is equivalent to maximising the differen-
tial entropy of gθ(X). Since the uniform distribution max-
imises differential entropy among all bounded support distri-
butions [5], the criterion (11) returns indeed the best ‘uni-
formiser’. Note that, since gθ is a cdf, g′θ is the corresponding
probability density function (pdf).

The true distribution of the data is, nevertheless, unknown
in most practical scenarios. But we can adapt the probabilistic
criterion (11) into a data-driven one by replacing the expecta-
tion with the sample mean:

arg max
θ∈Q

1

n

n∑

i=1

log (g′θ(xi)) . (12)

In this paper, we consider the µ-law compander and another
one that we call β-law compander, as shown in Table I. The
β-law compander is equivalent to the beta cdf, parametrised by
α > 0 and β > 0. An attractive feature of the β-law compander
is that its pdf is log-concave in (α, β) [14, Theorem 6], so that
the maximisation (12) can be easily solved.

The first step (uniformising the input) is not enough in the
sense of rate-distortion. We also need to adjust the parameter
to balance the distortion generated in different intervals, which
is the role of the second step. While the exact solution is hard
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to find, we provide a heuristic, yet efficient, way to make the
adjustment.

If we assume that the distortion generated in the interval i
is proportional to the squared length ∆2

i of the interval, then
the average distortion is proportional to

∑M−1
i=0 Ni∆

2
i where

Ni is the number of samples inside interval i. Starting with
the solution given by step 1, all Ni’s are comparable (since
it is roughly uniform), and the largest interval contributes the
most to the average distortion. Similarly, the smallest interval
contributes the least. The idea is therefore to reduce the largest
interval until

NS∆2
S ≥ NL∆2

L, (13)

where ‘S’ and ‘L’ stand for the ‘smallest’ and ‘largest’ inter-
vals, respectively.

Although the presented compander design is based on
training data, we can also start with a uniform compander
and update it regularly when more data are available. A great
advantage of the parametric compander design is the negligible
communication overhead of the (few) quantisation parameters.

Remark 1. It is well known that, followed by entropic en-
coding, a uniform quantiser is asymptotically optimal in the
high-rate regime. We emphasise, however, that here we do not
operate in the high-rate regime unlike many other applica-
tions. More importantly, a large alphabet size would make
the following context-tree-based compression highly inefficient.
Hence, a carefully designed quantiser is crucial for the overall
performance.

After the quantisation is done, one has to compress the
sequence of quantisation indices. One way to do that is to
directly apply CTW with arithmetic coding to this sequence. In
the following subsections, we describe an alternative solution
that limits the fluctuation of the output bit-stream.

B. Tree Estimation

Given a scalar sequence kn1 , we use the CTM algorithm (cf.
Section II-C) to find the maximum a posteriori tree model
Ŝ that describes that sequence. This algorithm consists in
building the same tree TD as in CTW algorithm, followed
by a pruning procedure as described in Definition 1. Both the
computational and storage complexity of CTM algorithm are
known to be O(nmD), i.e., linear with sequence length n,
alphabet size m and maximum tree depth D, cf. [10].

When training data are available, we can apply the CTM
algorithm on the training data to estimate the MAP model Ŝ ,
and use it to estimate symbol probabilities and encode the
incoming sequence. This, however, is not necessary: we could
initialise the full tree TD with empty counters, keep updating
the counters with incoming data, and regularly prune a copy
of this tree to have an updated estimate of the MAP model Ŝ .

C. Coding Distribution and Encoding

Once a tree model Ŝ is estimated, we can encode a sequence
kn1 according to the probabilities issued from that model.
Note that, given a model Ŝ and past symbols k01−D, the
estimated probability of a sequence kn1 can be computed via

the KT estimator, using (4) and (5). In particular, denoting
s := c(ki−1i−D), we can compute the probabilities P̂ (·) = P (·|Ŝ)
that the next symbol is ki = j, for all j ∈ A, as

P̂ (j|ki−1i−D) =
P̂ (kii−D)

P̂ (ki−1i−D)
=

∏
s′∈Ŝ Pe(aaas′(k

i
1))

∏
s′∈Ŝ Pe(aaas′(k

i−1
1 ))

=
Pe(aaas(k

i
1))

Pe(aaas(k
i−1
1 ))

=
as(j) + 1

2
m
2 +

∑
j′∈A as(j

′)
. (14)

With P̂ , one may apply arithmetic coding to encode ki. But the
encoded bits would have a variable length depending on both
P̂ and ki. Reducing the fluctuation of the coded bit length
is important for practical communication systems. Here, we
propose an encoding scheme with three possible codeword
lengths, as described below.

Fix two integers q1, q2 ≤ logm such that m1 := 2q1 ,
m2 := 2q2 , and m1 + m2 ≤ m. If ki is among the m1 most
probable symbols according to P̂ (tie could be broken with
a fixed rule), then the encoded bit string ci is 0 followed by
q1 bits indicating the position of ki in the list of the m1 most
probable symbols. Otherwise, if ki is among the next m2 most
probable symbols, the encoded bit string ci is 10 followed by
q2 bits indicating the position of ki in the second list. Finally,
if ki is not among the m1 + m2 most probable symbols, the
encoded bit string ci is 11 followed by q2 bits corresponding
to the index k̃i from a lower resolution quantiser with size m3.
Hence, in our scheme, we also need to keep a lower resolution
quantiser to apply on least probable symbols. It follows that
the codeword length is either 1 + q1, 2 + q2 or 2 + dlogm3e.

D. More Implementation Details

Some more implementation details are omitted and can be
found in the long version in [12].

First, the bit allocation between the amplitude and phase
quantisations can be optimised to minimise the overall distor-
tion on the complex symbol. We can show that a rule of thumb
is to use two more bits on the phase than on the amplitude.

Then, for practical uses, we have multiple trees, each one
corresponding to a quantised sequence (amplitude or phase)
of a given user and antenna. While each tree provides the
marginal distribution of the given sequence, all the marginal
distributions can be jointly used to encode the parallel streams
together, in order to improve the coding rate.

IV. SIMULATION RESULTS AND CONCLUSIONS

We use the MATLAB LTE Toolbox to simulate an LTE
MIMO downlink channel, with Nt = Nr = 4. We consider
both the low mobility (EPA5, Doppler 5 Hz) and high mo-
bility (EVA70, Doppler 70 Hz) scenarios, with either low or
high correlation between antennas at the base station. In our
implementations, we use D = 2, γ = 0.5 and q1 = 0.

We consider three quantisation schemes: the µ-law compan-
der, the β-law compander, and the cube-split quantiser [15].
Interestingly, the cube-split quantiser can be regarded as a
complex compander adapted to the distribution of normalised
complex Gaussian vectors. For each quantisation scheme, we
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Fig. 1. Simulation results.

consider three scenarios: no compression, compression with
ideal CTW using arithmetic coding [8], and compression with
the two-level resolution CTM scheme. The ideal CTW case is
simply evaluated with 1

n

(⌈
− logQn(xn1 |x01−D)

⌉
+ 1
)
.

In all cases, we assess the MSCD versus the average number
of CSI bits per antenna, and, for low antenna correlation,
we also assess the downlink communication sum rate with
zero-forcing beamforming, evaluated approximately using the
formula provided in [1, Eq. (20)], at 30 dB. The results
are obtained with the best quantisation parameters (sizes of
different codebooks) over those that we have tried.

Fig. 1a compares the performance of the different quantis-
ers, with no compression, for low mobility scenario (EPA5).
For low antenna correlation, the cube-split and the proposed
quantisers achieve almost the same results. On the other hand,
when antenna correlation is high, both proposed quantisers
have similar performances and are noticeably better than the
cube-split (which assumes uniformity of the distribution by
design).

In Fig. 1b, we fix the β-law compander and study the
performance of different compression methods, under high
antenna correlation. The compression gains are significant and
can reduce the CSI bits by up to half in the lower rate
regime. For EPA5, in the higher rate regime, the two-level
CTM scheme can reduce the feedback bits in 4.5 bits and
is 1.5 bits away from the CTW performance, approximately.
For EVA70, the gains are smaller, due to the lower time
correlation. Nevertheless, in the higher rate regime, the two-
level CTM can save more than 2 bits, and CTW, more than
4 bits. Furthermore, for EVA70 in the extreme low rate regime,
the the two-level CTM outperforms CTW, thanks to the low-
resolution quantiser.

Finally, Fig. 1c presents the communication rates for dif-
ferent compression schemes, using the β-law compander. The
results are normalised by the rate achieved when perfect (i.e.,
noiseless) CSI knowledge is available. For both EPA5 and
EVA70, we see that the communication rate converges much
faster to the analog CSI rate (i.e., with no quantisation) when
some of the proposed compression schemes are employed.

More importantly, the proposed schemes have low complex-
ity, can be implemented in an online fashion, and are modular.
In particular, the context-tree-based compression scheme can
be applied on any other quantisers, including those recently de-
signed with neural networks, e.g., [3]. Similarly, the proposed
quantiser can be combined with any other lossless compression
schemes.
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Abstract—We present a geometric picture for optimal single-
letter uncoded transmission for source-channel duals, where the
source and distortion measure are dual to the channel and cost
function. In particular, we investigate an additive noise channel
with the conditional channel distribution and capacity-achieving
input distribution both being symmetric, continuous log-concave
densities. We show that under these assumptions, a Gaussian
source transmitted over an additive Gaussian channel is the only
possible choice for optimal single-letter uncoded transmission.
We explain the uniqueness of Gaussian uncoded transmission
through a homothetic property for the channel input and output
typical sets, and illustrate the geometry of single-letter uncoded
transmission as opposed to communication based on the classical
source-channel separation principle.

I. INTRODUCTION

As proven in Shannon’s source-channel separation theorem,
it is possible to design information-theoretically optimal sys-
tems that achieve both the rate-distortion function of the source
and the capacity-cost function of the channel. Unfortunately,
in Shannon’s approach, the optimal system employs a code
with high complexity and infinite delay.

In the context of biological plausibility, [1] proposed opti-
mal almost code-free information transmission, for which it
is required that both encoder and decoder only perform linear
scaling (or are identity functions). For brevity, we will refer
to such schemes as uncoded transmission.

Uncoded transmission was studied systematically by means
of probabilistic matching in [2], and it follows that there
exist infinite quadruples of source, encoder, channel, and
decoder that are optimal over single-letter transmission, i.e.,
with codewords of length 1 that cause no delay. Such single-
letter transmission works when both the distortion measure
and the cost function are probabilistically matched to the said
quadruple.

Two well-known examples of uncoded transmission are a bi-
nary source over a binary symmetric channel, using Hamming
distortion (see [1, Ex. 1, Sec. 4.1]), and a Gaussian source over
the Gaussian channel with squared-error distortion and second-
moment constraint (see [1, Ex. 2, Sec. 4.2]). Note that both
cases are information-theoretic source-channel duals.1 This

This work was supported by the Swiss National Science Foundation grants
PP00P3_179060 (J.-P.P.) and 31003A_175644 (H.-A.S.).

1Duality here is in the sense of source coding and channel coding.
Therefore, strictly speaking, the duality is between the pairs “source and
distortion measure” and “channel and cost function”. See Section III for more
details.

duality permits the aforementioned encoder and decoder to
be functionally equivalent (see, e.g., [3]).

It is a curious fact that, for continuous sources and channels,
no other source-channel duals for optimal single-letter un-
coded transmission have been discovered other than the afore-
mentioned Gaussian case. In the following we are going to
partially explain why this is the case. We develop, under mild
assumptions, the geometry of optimal uncoded transmission
over continuous additive noise channels with its dual source.
The assumptions we take are that a) both the channel and the
capacity-achieving input distribution are symmetric continuous
log-concave distributions, and b) that the aforementioned
encoder and decoder are identical linear functions acting on
a single letter. The main “geometric reasoning” for restricting
to log-concave distributions is to make use of concentration
inequalities for log-concave random variables, and to associate
its density function with a convex body. The restriction for
the encoder and decoder being identical functions arises from
the functional equivalence between the source encoder and
channel decoder in dual problems of source and channel
coding, as introduced in the previous paragraph.

Our main theorems illustrate through a geometric perspec-
tive that the well-known Gaussian uncoded transmission is
indeed the unique solution for source-channel duals where the
latter is the family of all symmetric continuous log-concave
additive noise channels. So, e.g., the corresponding situation
of an Laplacian source and an ℓ1-distortion measure that is
transmitted over an additive Laplacian noise channel does not
allow for uncoded transmission. In fact, any generalization of
the ℓ2 case (Gaussian case) to a general ℓp-normed case (for
p ̸= 2) does not work.

We show that uncoded transmission naturally arises when
the input and output distributions of the channel yield not
only “linearly equivalent2” but also “homothetic3 typical sets”,
which we call the homothetic property. When the distortion
measure is associated with a norm generated by an inner
product, this allows for linear single-letter codes that are
optimal.

2Two sets T1, T2 are linearly equivalent when there is a nonsingular linear
transformation ϕ such that ϕ(T1) = T2.

3Here homothetic is based on the idea of homothets of a convex body, as
we will define in Section II.
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II. DEFINITIONS AND NOTATION

We use capitalized Roman alphabets, e.g. X , to denote
random variables (RV), with the exception of “V ” that is
exclusively reserved to denote a real vector space. We write
X ⊥⊥ Z to denote X and Z being independent RVs; fX
denotes the probability density function of the RV X . A
density over R is said to be symmetric if fX(x) = fX(−x),
∀x ∈ R. For k ∈ N, we define [k] ≜ {1, 2, . . . , k}.

We denote {ei}i∈[n] to be the standard orthonormal basis
of an n-dimensional real vector space V . Bold font denotes a
tuple or a vector, and x = (x1, x2, . . . , xn), xi ∈ R, refers to
either a point x ∈ Rn or x =

∑
i∈[n] xi ei ∈ V . In this paper,

x ∈ Rn and x ∈ V are used interchangeably.
We use conv(·) to denote the convex hull. Sets and convex

bodies in Rn are denoted with calligraphic font, e.g. K. A
convex body K ⊂ Rn is a compact convex set with nonempty
interior. A homothet of a convex body K ⊂ Rn is any set with
the form x + λK = {x + λt : t ∈ K} for some x ∈ Rn and
nonzero λ ∈ R.

For an o-symmetric (i.e., centrally symmetric with regard
to the origin o) convex body K in Rn, we use ∥·∥K to denote
the norm defined by (the gauge of) K, i.e., for any x ∈ Rn,

∥x∥K = inf{λ > 0: x ∈ λK}. (1)

In this paper, normed spaces are always real vector spaces.

III. DUALITY BETWEEN SOURCE AND CHANNEL CODING

This section defines source-channel duals as first encoun-
tered in Section I, in terms of a dual source coding problem
to a channel coding problem. This is based on the classical
information-theoretic duality (see, e.g., [3, Sec. III]).

Definition 1: For a channel coding problem with input
variable X , output variable Y , conditional channel distribution
PY |X , and capacity-achieving input distribution P ∗

X inducing
the channel output marginal P̄Y , the dual source coding
problem is the rate-distortion problem over the source variable
Y with distribution P̄Y , reconstruction variable X , and the
single-letter distortion measure d : Y × X → R+

0 taking the
form

d(y, x) = −c0 logPY |X(y|x) + d0(y), (2)

for arbitrary c0 > 0 and d0(·).
The following theorem is a corollary to [2, Th. 6].

Theorem 2: For the channel coding problem stated in
Definition 1, define the induced backward channel as

P̄X|Y (x|y) =
P ∗
X(x)PY |X(y|x)

P̄Y (y)
. (3)

Then for the dual source coding problem according to Defini-
tion 1, we have

P̄X|Y (x|y) = argmin
QX|Y

E[d(Y,X)]≤D

I
(
P̄Y , QX|Y

)
, (4)

I
(
P ∗
X , PY |X

)
= min

QX|Y
E[d(Y,X)]≤D

I
(
P̄Y , QX|Y

)
, (5)

where the distortion D = EQ∗ [d(Y,X)] with Q∗(y, x) =
P ∗
X(x)PY |X(y|x).

IV. UNCODED TRANSMISSION IN NORMED SPACES

A. Preliminaries Regarding Normed and Inner Product Spaces

Definition 3 (Real normed linear spaces): A real normed
linear space (V, ∥·∥) is a real vector space V with a function
(called norm) ∥·∥ : V → R, x 7→ ∥x∥ satisfying the following
properties:
(1) ∥x∥ ≥ 0, ∀x ∈ V ;
(2) ∥x∥ = 0 if, and only if, x = 0;
(3) ∥λx∥ = |λ| ∥x∥, ∀λ ∈ R, ∀x ∈ V ;
(4) ∥x+ y∥ ≤ ∥x∥+ ∥y∥, ∀x,y ∈ V .

Definition 4 (Real inner product spaces): A real inner
product space (V, ⟨·, ·⟩) is a real vector space with a function
(called inner product) ⟨·, ·⟩ : V × V → R, (x,y) 7→ ⟨x,y⟩
satisfying the following properties:
(1) ⟨x,x⟩ ≥ 0, ∀x ∈ V ;
(2) ⟨x,x⟩ = 0 if, and only if, x = 0;
(3) ⟨x,y⟩ = ⟨y,x⟩, ∀x,y ∈ V ;
(4) ⟨λx,y⟩ = λ⟨x,y⟩, ∀λ ∈ R, ∀x,y ∈ V ;
(5) ⟨x+ z,y⟩ = ⟨x,y⟩+ ⟨z,y⟩, ∀x,y, z ∈ V .

Theorem 5: For any real inner product space (V, ⟨·, ·⟩),
define

∥x∥ ≜
√
⟨x,x⟩, ∀x ∈ V. (6)

Then (V, ∥·∥) is a real normed linear space.
Definition 6: Let ∥·∥ be a norm on V . We say “(V, ∥·∥) is

an inner product space” when there exists an inner product
⟨·, ·⟩ such that (6) is satisfied.

B. Preliminaries Regarding Log-concavity

Definition 7 (Log-concave functions): A function f : Rn →
[0,+∞) is said to be log-concave if it has the form

f = e−g (7)

where g : Rn → (−∞,∞] is a convex function.
Definition 8: We say “X is a log-concave random variable”

when fX is a log-concave function.
Proposition 9 (Log-concavity preserved over convolution

[4]): If X,Z are independent log-concave random variables,
then X + Z is also log-concave.

C. Main Theorem 1

Definition 10: The differential entropy of a probability
density function f is given as

h(f) ≜ −
∫ ∞

−∞
f(s) log f(s) ds. (8)

Definition 11: Let Ψ be the family of continuous symmetric
log-concave probability density functions over R, and Ω be the
collection of compact convex sets in Rn with the collection
of their boundaries ∂Ω. For f ∈ Ψ, define Φn : Ψ → ∂Ω,
f 7→ Φn(f) as follows:

Φn(f) ≜
{
x ∈ Rn : − 1

n

n∑

i=1

log f(xi) = h(f)

}
. (9)
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Theorem 12 (Main Theorem 1): For any n ≥ 2, let V be
an n-dimensional real vector space, and let Bn(f) denote the
convex hull of Φn(f). For a log-concave random variable Z ∈
R with a symmetric, continuous density fZ , define the family
F of log-concave random variables X ∈ R where X ⊥⊥ Z
and fX is symmetric, continuous and satisfies

tΦn(fX) = Φn(fZ), for some t > 0. (10)

Then the following three conditions are equivalent:
(i) For all X ∈ F ,

(
V, ∥·∥K

)
is an inner product space for

K = Bn(fX).
(ii) For all X ∈ F , there exists some αt > 0 which only

depends on t, such that

Φn(fX+Z) = αtΦn(fX). (11)

(iii) For all X ∈ F and K = Bn(fX), there exists some
αt > 0 which only depends on t, such that for any pair
of y ∈ Φn(fX+Z), x ∈ Φn(fX),

∥y − x∥K =

∥∥∥∥
1

αt
y − αtx

∥∥∥∥
K

(12)

and αt ̸= 1.
Proof: See Appendices A and B.

Remark 13: Property (ii) describes the “homothetic prop-
erty” mentioned in Section I, and Property (iii) describes the
geometry of uncoded transmission with a linear single-letter
code over the source-channel duals. We will discuss these
conditions further in Sections IV-D and IV-E.

enc

ch dec

enc

dec
y

x
o o

ch
x

y

a) b)

Fig. 1. A schematic comparison of a) optimal infinite-letter coded trans-
mission, and b) optimal single-letter (scaled) uncoded transmission. Both
source-channel communication systems consist sequentially of an encoder
(enc), a channel (ch), and a decoder (dec). In a), the encoder and decoder
are jointly typical encoder/decoders that act on infinite-length sequences. In
b), the encoder and decoder can act on single symbols by scaling due to the
homothetic property.

D. Main Theorem 2: Strengthening Theorem 12

In this section, we relax two assumptions in Theorem 12
to obtain Theorem 14: we do not require that fX and fZ
yield linearly equivalent sets by Φn (i.e., assumption (10) is
relaxed), and we also do not require in the third condition that
K is a convex body associated with fX (i.e., K = Bn(fX) in
Condition (iii) of Theorem 12 is relaxed).

Theorem 14 (Main Theorem 2): For any n ≥ 2, let V be
an n-dimensional real vector space. Let Z ∈ R be a log-
concave random variable with a symmetric, continuous density
fZ . Define the family F of log-concave random variables
over R with symmetric, continuous densities satisfying for any
Xi, Xj ∈ F ,

uΦn(fXi
) = Φn(fXj

), for some u > 0; (13)

and X ⊥⊥ Z for any X ∈ F . Then the following three
conditions are equivalent:

(I) The RV Z and all RVs in the family F are Gaussian.
(II) For all Xi ∈ F , there exists some αi > 0, such that

Φn(fX+Z) = αiΦn(fX). (14)

(III) For all Xi ∈ F , and for any norm ∥·∥ generated by an
inner product on V , there exists some αi > 0, such that
for any pair of y ∈ Φn(fX+Z), x ∈ Φn(fX),

∥y − x∥ =
∥∥∥∥
1

αi
y − αix

∥∥∥∥ (15)

and αi ̸= 1.
Proof: We omit the proof of Theorem 14 for it is similar

to that of Theorem 12. We only remark that for showing
(II) =⇒ (I), we make use of the following proposition.

Proposition 15: For X ⊥⊥ Z, if fX and fX+Z are both
zero-mean Gaussian distributions, then fZ is also Gaussian.

The graphical representation of Gaussian uncoded transmis-
sion, which uniquely satisfies Properties (i)–(iii) and (I)–(III)
in Theorem 12 and 14, is given in Fig. 1b).

E. Interpreting the Main Theorems for the Geometry of Un-
coded Transmission

To see how the main theorems, Theorems 12 and 14, explain
the geometry of uncoded transmission, we first introduce the
following theorem.

Theorem 16 ([5, Th. 2]): Let X(n) be a random vector in
Rn with log-concave density f . Then for any 0 ≤ t ≤ 2,

Pr

[
1

n

∣∣∣log f
(
X(n)

)
− E

[
log f

(
X(n)

)]∣∣∣ ≥ t
]
≤ 4 e−ct2n (16)

where c ≥ 1
16 .

Intuitively, Theorem 16 describes how the random vector
realizations concentrate near a ‘thin shell’ as n → ∞. In
the special case when each element of the random vector is
generated IID from fX , a log-concave density over R, this
‘thin shell’ lies around Φn(fX) (see Definition 11) and can
be understood as the typical set of X for some n sufficiently
large. Note that in the main theorems, both X and X +Z are
log-concave random variables and thus Theorem 16 applies.
In this context, loosely speaking, Property (ii) and (II) state
that the typical sets of X + Z and X are linearly equivalent
as n→∞. We call this the “homothetic property”, and depict
it in Fig. 1 with the outer and inner sphere, respectively,
representing the typical sets of X + Z and X .

International Zurich Seminar on Information and Communication (IZS), March 2 – 4, 2022

31



Let the channel coding problem be on input variable X with
capacity-achieving distribution P ∗

X , output variable Y = X +
Z with additive channel noise Z. Then using Definition 1 we
have the dual source coding problem on source variable Y and
reconstruction variable X . In this case we have the following
communication system on a source-channel dual with length-n
letters:

Y(n) enc−→ x(n) ch−→ Y(n) dec−→ X(n), (17)

where ‘enc’ stands for ‘encoder’, ‘ch’ for ‘channel’, and
‘dec’ for ‘decoder’. As n becomes sufficiently large, we can
understand the system in (17) as acting on sequences in the
typical set for arbitrary ϵ > 0:

T (n)
ϵ (Y )

enc−→ T (n)
ϵ (X)

ch−→ T (n)
ϵ (Y )

dec−→ T (n)
ϵ (X). (18)

The classical scenario for optimal source-channel dual com-
munication system is shown in Fig. 1a), where the encoder
is the jointly typical encoder, and the decoder is the jointly
typical decoder, which ‘undoes’ the channel (i.e., we have
reliable transmission). However, both the encoder and decoder
in the classical scenario need to act on vectors of length
n. In contrast, the homothetic property presented in the two
main theorems allows for uncoded transmission, as shown in
Fig. 1b). This means that the encoder can perform a linear
scaling isotropically independent of the position of the source
sequence y on the outer sphere. This makes it possible for
the encoder to act on a single-letter allowing for uncoded
transmission. Since the decoder is equivalent to the encoder
due to the imposed source-channel duality, the same reasoning
also applies to the decoder.

APPENDIX A
“HOMOTHETIC PROPERTY” OF UNCODED TRANSMISSION

AND THE INNER PRODUCT SPACE

A. Characterizations of Inner Product Spaces
Since an inner product space is a normed linear space with

extra structure (see also Theorem 5 and Definition 6), there are
properties that characterize inner product spaces which help
us determine whether the norm arises from an inner product
in the sense of (6). One such characterization is the well-
known Parallelogram Law4 [6]. Another such characterization
is presented as follows.

Theorem 17 ([7, Th. 2.2.]): Let X = (V, ∥·∥) be a 2-
dimensional real normed linear space and let its unit sphere
be SX ≜ {x ∈ R2 : ∥x∥ = 1}. Then X is an inner product
space if, and only if, SX is an ellipse.
In the following section, we use the characterization presented
in Theorem 17 to give a proof for (i) =⇒ (ii) of Theorem 12.
We isolate this particular part of the proof of Theorem 12 to
illustrate the underlying geometric property (as in Theorem 17)
of an inner product space, before we present the rest of the
proof for Theorem 12 in Appendix B.

4A normed linear space (V, ∥·∥) is an inner product space if, and only if,

2∥x∥2 + 2∥y∥2 = ∥x− y∥2 + ∥x+ y∥2, ∀x,y ∈ V.

B. Proof for (i) =⇒ (ii) in Theorem 12

1) For n = 2, we apply Theorem 17 to see that the unit
sphere Φ2(fX) is an ellipse. Taking n = 2 for (9), we
immediately see that this ellipse Φ2(fX) must be a two-
dimensional ℓ2-sphere. Furthermore, using the fact that
fX is a symmetric log-concave density, we can write it
in the form

fX(x) = c1 e
−c0x

2

, where c1, c0 > 0. (19)

2) For n > 2, since (i) holds, let ⟨·, ·⟩V be an inner product
satisfying

∥x∥K =
√
⟨x,x⟩V , ∀x ∈ V. (20)

Let V ′ = span({e1, e2}), then

⟨x′,y′⟩V ′ ≜ ⟨x′,y′⟩V , ∀x′,y′ ∈ V ′, (21)

is an inner product on this subspace. Thus, (V ′, ⟨·, ·⟩V ′)
is an inner product space with the unit sphere

S ′ = Φn(fX) ∩ V ′ (22)

=

{
x ∈ R2 :

−1
n

(
2∑

i=1

log fX(xi) +

n∑

i=3

log fX(0)

)

= h(fX)

}
. (23)

Since dimV ′ = 2, it follows from Theorem 17 that S ′
is an ellipse, and therefore, similarly to 1), we can write
fX in the form of (19).

Combining 1) and 2) then yields (19) for any n ≥ 2. Using
(19), (10) and that X,Z are independent, we obtain that for
any t > 0,

Φn(fX+Z) =
√
1 + t2 Φn(fX). (24)

Letting αt =
√
1 + t2 > 0 in (24) we conclude (i) =⇒ (ii)

for any n ≥ 2.

APPENDIX B
PROOF OF THEOREM 12

The proof consists of three parts that together prove the
equivalence of Conditions (i)–(iii). The standard dot-product
for x,y ∈ V is denoted x · y and defined as

V × V → R, (x,y) 7→
∑

i∈[n]

xi yi, (25)

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

A. (ii) =⇒ (i)

We start proving (ii) =⇒ (19). Pick an arbitrary X ∈ F
and define Y0 = X , let k ∈ N, and for all i ∈ [k], let Yi−1, Zi

be independent RVs, where {Zi} are IID and where

Yi = Yi−1 + Zi. (26)
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By Proposition 9, Yi has log-concave (symmetric) density, so
we can apply (10) and (ii) recursively (starting from i = 1) to
obtain a sequence of {αti}i∈[k] satisfying

Φn(fYi) = αtiΦn(fYi−1) ∀i ∈ [k]. (27)

From this we then obtain

Φn(fYk
) =

(
k∏

i=1

αti

)
Φn(fY0). (28)

By letting βk ≜ 1/
∏k

i=1 αti , we can rewrite (28) as

Φn(fX) = βkΦn(fYk
), βk > 0. (29)

Note that by the central limit theorem, Yk/k = X/k +
1
k

∑k
i=1 Zi converges to a zero-mean Gaussian RV as k

becomes sufficiently large. (Note that the central limit theorem
applies because a log-concave density has finite moments of
all orders and thus also finite variance.) Also, for a Gaussian
RV U it holds that Φn(fU/k) = γkΦn(fU ) for some factor
γk. Thus, and since (29) holds for all k ∈ N, we take k →∞
and conclude that Φn(fX) is an ℓ2-sphere and that fX either
takes the form of (19) or is a Dirac delta. However the latter
is excluded due to the continuity assumption of fX .

Next, we are going to prove that (19) =⇒ (i). Using (19)
and the definition of (9) we obtain

Φn(fX) =

{
x ∈ Rn :

n∑

i=1

x2i =
n

2c0

}
(30)

to be the unit sphere of the normed space (V, ∥·∥K). Now we
define an inner product ⟨·, ·⟩ on V (which satisfies all five
properties in Definition 4) as

⟨x,y⟩ ≜ x · y
r20

, ∀x,y ∈ V, (31)

with r0 ≜
√

n
2c0

. Then by applying (1),

∥x∥K = inf{λ > 0: x ∈ λBn(fX)}
=⇒ ∥x∥Kv = x where v ∈ Φn(fX) (32)

=⇒ x

∥x∥K
∈ Φn(fX). (33)

Using (33), (30) and (31) we get

∥x∥K =

√∑n
i=1 xi

2

r20
=

√
x · x
r20

=
√
⟨x,x⟩, (34)

i.e., ∥x∥K =
√
⟨x,x⟩, ∀x ∈ V . Therefore, by Definition 6,

we say that “(V, ∥·∥K) is an inner product space”, which holds
for arbitrary X ∈ F and K = Φn(fX), concluding our proof.

B. (i) =⇒ (iii) (by way of (ii))

Since (i) holds, there exists an inner product ⟨·, ·⟩K such that
∥x∥K =

√
⟨x,x⟩K, ∀x ∈ V . Using this and the properties of

the inner product we can write
∥∥∥∥
1

αt
y − αtx

∥∥∥∥
2

K
=

〈
1

αt
y − αtx,

1

αt
y − αtx

〉

K
(35)

= α2
t ⟨x,x⟩2K +

⟨y,y⟩2K
α2
t

− 2⟨x,y⟩K (36)

= α2
t ∥x∥2K +

∥y∥2K
α2
t

− 2⟨x,y⟩K (37)

= α2
t +
∥y∥2K
α2
t

− 2⟨x,y⟩K. (38)

Similarly we have

∥y − x∥2K = ⟨y − x,y − x⟩K = 1 + ∥y∥2K − 2⟨x,y⟩K. (39)

Because in Section A-B we already proved (i) =⇒ (ii), we
see that (ii) holds, which implies ∥y∥2K = α2

t , where αt > 0
only depends on t. Applying this to (38) and (39) we get
∥∥∥∥
1

αt
y − αtx

∥∥∥∥
2

K
= α2

t + 1− 2⟨x,y⟩K = ∥y − x∥2K, (40)

where αt > 0 only depends on t. Using Property (1) of the
norm in Definition 3 for (40) we obtain (12), which concludes
the proof.

C. (iii) =⇒ (ii)
Since (12) holds for any x ∈ Φn(fX), y ∈ Φn(fX+Z),

we know that (12) also holds for any y0 ∈ Φn(fX+Z) and
x0 ≜ y0/∥y0∥K ∈ Φn(fX). Taking x = x0, y = y0 in (12)
we obtain∥∥∥∥y0 −

y0

∥y0∥K

∥∥∥∥
K
=

∥∥∥∥
1

αt
y0 −

αt

∥y0∥K
y0

∥∥∥∥
K

=⇒
∣∣∣∣1−

1

∥y0∥K

∣∣∣∣ =
∣∣∣∣
1

αt
− αt

∥y0∥K

∣∣∣∣ (41)

=⇒ ∥y0∥K = αt, where αt > 0. (42)

In (42) ∥y0∥K = −αt is not valid because ∥y0∥K ≥ 0.
Because (42) holds for any y0 ∈ Φn(fX+Z) and Φn(fX)

is the unit sphere of (V, ∥·∥K), we obtain

Φn(fX+Z) = αtΦn(fX), (43)

which concludes the proof.
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A Rate-Distortion-Perception Theory for Binary
Sources
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⋆University of Toronto

Abstract—Building upon a series of recent works on
perception-constrained lossy compression, we develop a rate-
distortion-perception theory for binary sources under Hamming
distortion and TV perception losses. It includes a closed-form ex-
pression of the rate-distortion-perception function in the one-shot
setting, a complete characterization of the distortion-perception
region for an arbitrary representation, partially tight upper
and lower bounds on the minimum rate penalty for universal
representations, a necessary and sufficient condition for point-
wise successive refinement, and a sufficient condition for the
successive refinability of universal representations.

I. INTRODUCTION

Recently, there has been an upsurge of research on
perception-constrained lossy compression for images or
videos. Within traditional compression, the well-established
rate-distortion formulation is to minimize some notion of
distortion under the condition that the given bit rate is not
exceeded. In contrast, perceptually-constrained lossy compres-
sion takes into account the notion of perceptual quality, which
turns out to be distinct from the notion of distortion, as well.
The motivation for considering both the traditional distortion
and the perceptual quality comes from the fact that in many
cases, minimizing distortion does not produce visually pleasing
results. Such a fact was exemplified by many remarkable
deep learning enhanced lossy compression works capable of
operating at extremely low rates, such as [1], [2]. In perception-
constrained lossy compression, instead, the target is to find the
best tradeoff among three quantities —- rate, distortion and
perception. Following the success of deep learning for lossy
compression, a mathematical view of this topic was initiated
and investigated by Blau and Michaeli [3].

Concretely, perceptual quality aims to quantify the degree of
visual satisfaction as measured by the human visual perception
system and unlike distortion is taken to be fully no-reference
(i.e., not with respect to any particular source sample, such as
a single image or video). Blau and Michaeli adopt a notion
of perceptual quality defined by the divergence (e.g., the
Kullback-Leibler divergence, the Wasserstein distance, and the
total variation (TV) distance) between the distribution of the
original source and that of the reconstruction, with the property
that perfect perceptual quality is obtained only when the two
distributions are identical. By basing this measure on the
distributions, we again emphasize that the perceptual quality
is in fact a global and inherently no-reference measure of the
reconstruction quality. In contrast, the distortion is a local one,
expressed in terms of the symbol-by-symbol “distance”. As

mentioned previously, it may not be possible to attain both
low distortion and high perceptual quality at the same time,
in the sense that one quality must be sacrificed to improve
the other one [2]. Optimizing the tradeoff between distortion
and perception, incorporated with distribution-preserving lossy
compression [4], is the central idea in studying the rate-
distortion-perception tradeoff in the seminal work [3]. How-
ever, we note that various versions of distribution-constrained
lossy compression have been studied before [3] in information
theory literature (e.g., [5]–[7]).

In this paper, we investigate the tradeoff among rate, distor-
tion, and perception for binary sources. The distortion consid-
ered here is the Hamming distortion and the perception quality
is measured by the TV distance. We first derive a closed-form
expression for the rate-distortion-perception tradeoff in the
one-shot setting. This is followed by a complete characteriza-
tion of the achievable distortion-perception region for a general
representation. We then consider the universal setting [8] in
which the encoder is one-size-fits-all, and derive upper and
lower bounds on the minimum rate penalty. Finally, we study
successive refinement for both point-wise and set-wise versions
of perception-constrained lossy compression. A necessary and
sufficient condition for point-wise successive refinement and a
sufficient condition for the successive refinability of universal
representations are provided.

II. PROBLEM DEFINITIONS AND KNOWN RESULTS

A. Rate-Distortion-Perception Function and Universal Repre-
sentation

Let d : X × X → R+ be a distortion measure and
ω : P(X ) × P(X ) → R+ be a divergence, where X is the
source/reconstruction alphabet and P(X ) denotes the set of
distributions defined on X . We assume that ω is convex in its
second argument. Let Θ be a non-empty set of (D,P ) pairs
with each pair being a distortion-perception objective.

Definition 1 (One-Shot Rate-Distortion-Perception Func-
tion): A rate R is said to be one-shot achievable with respect
to Θ for the source variable X if we can find a random
seed U (which is independent of X) and an encoder pV |XU

with H(V |U) ≤ R such that for every (D,P ) ∈ Θ, a
decoder pX̂|V U can be constructed to meet the constraints
E[d(X, X̂)] ≤ D and ω(pX , pX̂) ≤ P , where the joint dis-
tribution pXV X̂U is assumed to factor as pXpUpV |XUpX̂|V U .
The infimum of such R is denoted by R∗(Θ). In the case where
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Θ consists of a single (D,P ) pair, we simply write R∗(Θ)
as R∗(D,P ) and refer to it as the one-shot rate-distortion-
perception function.

The random seed U acts as a shared source of randomness,
which plays an important role in our formulation. Note that
with U available at both the encoder and decoder, V can be
losslessly represented by approximately H(V |U) bits using
variable-length codes. This provides an operational justifica-
tion of the rate constraint H(V |U) ≤ R.

Let PZ|X(Θ) denote the set of conditional distributions
pZ|X such that for every (D,P ) ∈ Θ, there exists a con-
ditional distribution pX̂|Z satisfying E[d(X, X̂)] ≤ D and
ω(pX , pX̂) ≤ P , where the joint distribution pXZX̂ is assumed
to factor as pXpZ|XpX̂|Z . Define

R(Θ) ≜ inf
pZ|X∈PZ|X(Θ)

I(X;Z).

Theorem 1: It holds that R(Θ) ≤ R∗(Θ) ≤ R(Θ) +
log(R(Θ)+1)+4. Moreover, in the case where Θ consists of
a finite number of (D,P ) pairs,

R∗(Θ) = inf
pX̂ΘU|X

H(X̂Θ|U) (1)

subject to I(X;U) = 0, (2)

H(X̂Θ|X,U) = 0, (3)

E[d(X, X̂D,P )] ≤ D, (D,P ) ∈ Θ, (4)
ω(pX , pX̂D,P

) ≤ P, (D,P ) ∈ Θ, (5)

where XΘ = {X̂D,P }(D,P )∈Θ.
Proof: The first statement was established in [8] (see also

[9] for the special case Θ = {(D,P )}).The second statement
follows by showing that there is no loss of optimality in setting
V = X̂Θ and restricting it to be a deterministic function of
(X,U).

Definition 2 (Asymptotic Rate-Distortion-Perception Func-
tion): A rate R is said to be asymptotically achievable with
respect to Θ for the i.i.d. source sequence {X(t)}∞t=1 with
each component following the distribution pX if for some
positive integer n, we can find a random seed U and an encoder
pV |XnU with 1

nH(V |U) ≤ R such that for every (D,P ) ∈ Θ,
a decoder pX̂n|V U can be constructed to meet the constraints
1
n

∑n
t=1 E[d(X(t), X̂(t))] ≤ D and ω(pX ,

1
n

∑n
t=1 pX̂(t)) ≤

P , where the joint distribution pXnV X̂nU is assumed to factor
as pXnpUpV |XnUpX̂n|V U . The infimum of such R is denoted
by R(∞)(Θ). In the case where Θ consists of a single (D,P )
pair, we simply write R(∞)(Θ) as R(∞)(D,P ) and refer to it
as the asymptotic rate-distortion-perception function.

As a consequence of Theorem 1, the following result holds
[8] (see also [6], [7], [9] for the special case Θ = {(D,P )}).

Theorem 2: We have R(∞)(Θ) = R(Θ).
In view of Theorem 2, the asymptotic source coding rate

is completely characterized by R(Θ), and such a quantity is
expressed in terms of optimization over random variables Z
satisfying certain conditions. Hence, we can interpret any ran-
dom variable Z jointly distributed with X as a representation
(or reconstruction random variable) of X .

Definition 3 (Universal Representation): Given a represen-
tation Z of X , its distortion-perception region, denoted by
Π(pZ|X), is the set of all (D,P ) pairs for which there exists
pX̂|Z satisfying E[d(X, X̂)] ≤ D and ω(pX , pX̂) ≤ P ,
where the joint distribution pXZX̂ is assumed to factor as
pXpZ|XpX̂|Z . We say that Z is a Θ-universal representation
of X if Θ ⊆ Π(pZ|X).

Note that R(∞) is the minimum rate needed for a fixed
encoder to cope with the distortion-perception objectives in
Θ. In light of Theorem 2, it also coincides with the infi-
mum of I(X;Z) over all Θ-universal representations Z of
X . On the other hand, sup(D,P )∈ΘR

(∞)(D,P ) is the rate
required to meet the most demanding objective in Θ. As such,
∆(Θ) ≜ R(∞)(Θ) − sup(D,P )∈ΘR

(∞)(D,P ) characterizes
the extra rate incurred by meeting all objectives in Θ with
the encoder fixed. We can also interpret ∆(Θ) equivalently
as the minimum rate penalty for using Θ-universal repre-
sentations as opposed to choosing an optimal representation
for each objective in Θ. We are particularly interested in
the case Θ = Θ(R), where Θ(R) is the set of distortion-
perception objectives achievable with dedicated encoders at
rate R, i.e., Θ(R) ≜ {(D,P ) : R(∞)(D,P ) ≤ R}. It
will be seen that for the binary case studied in Section III,
∆(Θ(R)) is negligible compared to R, namely, objective-
agnostic encoders/representations can be (almost) as rate-
efficient as objective-aware encoders/representations.

B. Two-Stage Coding and Successive Refinement
Let Θ1 and Θ2 be two non-empty sets of (D,P ) pairs.
Definition 4 (One-Shot Version): A rate pair (R1, R2) is said

to be one-shot successively achievable with respect to (Θ1,Θ2)
for the source variable X if we can find a random seed U
and an encoder pair (pV1|XU , pV2|XV1U ) with U independent
of X , H(V1|U) ≤ R1, and H(V2|V1, U) ≤ R2 such that
for every (D1, P1) ∈ Θ1 and (D2, P2) ∈ Θ2, a decoder
pair (pX̂1|V1U

, pX̂1|V1V2U
) can be constructed to meet the

constraints E[d(X, X̂i)] ≤ Di and ω(pX , pX̂i
) ≤ Pi, i = 1, 2,

where the joint distribution pXV1V2X̂1X̂2U
is assumed to factor

as pXpUpV1|XUpV2|XV1UpX̂1|V1U
pX̂2|V2U

. The closure of the
set of such (R1, R2) is denoted by R∗(Θ1,Θ2).

Let PZ1Z2|X(Θ1,Θ2) denote the set of pZ1Z2|X such
that for every (D1, P1) ∈ Θ1 and (D2, P2) ∈ Θ2, there
exists (pX̂1|Z1

, pX̂2|Z2
) satisfying E[d(X, X̂i)] ≤ Di and

ω(pX , pX̂i
) ≤ Pi, i = 1, 2, where the joint distribution

pXZ1Z2X̂1X̂2
is assumed to factor as pXpZ1Z2|XpX̂1|Z1

pX̂2|Z2
.

Define

R(Θ1,Θ2) ≜
⋃

pZ1Z2|X∈PZ1Z2|X(Θ1,Θ2)

{(R1, R2) ∈ R2
+ :

R1 ≥ I(X;Z1) + log(I(X;Z1) + 1) + 4,

R1 +R2 ≥ I(X;Z1, Z2) + log(I(X;Z1) + 1)

+ log(I(X;Z2|Z1) + 1) + 8},
R(Θ1,Θ2) ≜

⋃

pZ1Z2|X∈PZ1Z2|X(Θ1,Θ2)

{(R1, R2) ∈ R2
+ :

R1 ≥ I(X;Z1),
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R1 +R2 ≥ I(X;Z1, Z2)}.

Similarly to Theorem 1, we have the following theorem [8].
Theorem 3: We have cl(R(Θ1,Θ2)) ⊆ R∗(Θ1,Θ2) ⊆

cl(R(Θ1,Θ2)).
Definition 5 (Asymptotic Version): A rate pair

(R1, R2) is said to be asymptotically successively
achievable with respect to (Θ1,Θ2) for the i.i.d. source
sequence {X(t)}∞t=1 if we can find a random seed
U and an encoder pair (pV1|XnU , pV2|XnV1U ) with
1
nH(V1|U) ≤ R1 and 1

nH(V2|V1, U) ≤ R2 such that
for every (D1, P1) ∈ Θ1 and (D2, P2) ∈ Θ2, a decoder
pair (pX̂n

1 |V1U
, pX̂n

1 |V1V2U
) can be constructed to meet

the constraints 1
n

∑n
t=1 E[d(X(t), X̂i(t))] ≤ Di and

ω(pX ,
1
n

∑n
t=1 pX̂i(t)

) ≤ Pi, i = 1, 2, where the joint
distribution pXnV1V2X̂n

1 X̂n
2 U is assumed to factor as

pXnpUpV1|XnUpV2|XnV1UpX̂n
1 |V1U

pX̂n
2 |V2U

. The closure
of the set of such (R1, R2) is denoted by R(∞)(Θ1,Θ2). We
say that successive refinement from Θ1 to Θ2 is feasible if
(R(∞)(Θ1), R

(∞)(Θ2)−R(∞)(Θ1)) ∈ R(∞)(Θ1,Θ2).
The following result [8] is a corollary of Theorem 3.
Theorem 4: We have R(∞)(Θ1,Θ2) = cl(R(Θ1,Θ2)).

Moreover, successive refinement from Θ1 to Θ2 is feasi-
ble if and only if (R(∞)(Θ1), R

(∞)(Θ2) − R(∞)(Θ1)) ∈
cl(R(Θ1,Θ2)).

III. MAIN RESULTS

Throughout this section, we assume X = {0, 1} and
X ∼ Bern(q) (i.e., X is a binary source with pX(1) =
1 − pX(0) = q ∈ (0, 12 ]); moreover, we focus on the
Hamming distortion d(x, x̂) = 1{x ̸= x̂} and the TV distance
w(pX , pX̂) = 1

2∥pX − pX̂∥1.
We first consider the case Θ = {(D,P )} and characterize

the one-shot rate-distortion-perception function. Without loss
of generality, it is assumed that P ∈ [0, q].

Theorem 5: For a binary source X ∼ Bern(q), under
Hamming distortion and TV perception losses,

R∗(D,P ) =





q−D
q Hb(q) 0 ≤ D ≤ P,

(1−q)+P−D+P
2q

1−q Hb(q) P < D ≤ D′,
0 otherwise,

where Hb(·) denotes the binary entropy function and D′ =
2q(1− q)− (1− 2q)P .

For comparison, we present the asymptotic rate-distortion-
perception function [3] in the following theorem.

Theorem 6: For a binary source X ∼ Bern(q), under
Hamming distortion and TV perception losses,

R(∞)(D,P ) =





Hb(q)−Hb(D), D ∈ S1,
2Hb(q) +Hb(q − P )
−Ht(

D−P
2 , q)

−Ht(
D+P

2 , 1− q), D ∈ S2,
0, D ∈ S3.

where Ht(α, β) denotes the entropy of a ternary random
variable with probability values (α, β, 1 − α − β). Here,
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Fig. 1. Plots of perception-distortion curves for different bit rates, where
solid curves denote the asymptotic case while dotted curves denote the one-
shot case.
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Fig. 2. Plots of rate-distortion curves for different perception qualities, where
solid curves denote the asymptotic case while dotted curves denote the one-
shot case.

S1 = [0, D1], S2 = [D1, D2], and S3 = [D2,∞) with
D1 = P

1−2(q−P ) and D2 = 2q(1− q)− (1− 2q)P .
Fig. 1 plots perception-distortion curves for different rates,

comparing the asymptotic case and one-shot case under the
same bit rate. Note that the trade-off curves for the asymptotic
case always lie below their counterparts for the one-shot case.
A similar phenomenon can be seen from Fig. 2, which plots
rate-distortion curves for different perception qualities.

Let Z be a representation of a binary source X ∼ Bern(q)
with pZ(i) = qi and pX|Z(1|i) = ϵi, i ∈ [n], where

∑n
i=1 qi =

1 and
∑n

i=1 qiϵi = q. Without loss of generality, we assume
that the values of qi|1−2ϵi|, i ∈ [n] are in ascending order as i
increases. Let jk with k ∈ [m] denote the k-th index at which
ϵjk ≤ 0.5. Denote k+ ∈ [m] as the first index such that jk+ >
k and ϵjk+ ≤ 0.5, if it exists. Define k∗ to be the first positive

integer satisfying
∑n

i=k∗ qi(1−ϵi)−
∑m

i=(k∗)+
qji

q∗k
≤ 1− ϵk∗ .

Theorem 7: Let Z be a representation of a binary source
X ∼ Bern(q) as specified above. Under Hamming distortion
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and TV perception losses, the lower boundary of Π(pZ|X) is
piecewise linear with k∗ turning points {(Dk, Pk)}k

∗
k=1 given

by

Dk =

n∑

i=1

qi(1− ϵi) +
k∑

i=1

qi(2ϵi − 1)(1− ϵi)

+

m∑

i=k+

qji(2ϵji − 1), k = 1, . . . , k∗ − 1

Pk =

∣∣∣∣∣
n∑

i=k+1

qi(1− ϵi)−
m∑

i=k+

qji

∣∣∣∣∣ , k = 1, . . . , k∗ − 1,

Dk∗ =

n∑

i=1

qi(1− ϵi) +
k∗−1∑

i=1

qi(2ϵi − 1)(1− ϵi)

+ (2ϵk∗ − 1)




n∑

i=k∗

qi(1− ϵi)−
m∑

i=(k∗)+

qji




+

m∑

i=(k∗)+

qji(2ϵji − 1),

Pk∗ = 0.

Next consider the case Θ = Θ(R). We start by introducing
some quantities which are needed for bounding R(∞)(Θ(R)).
Let D1 = D1(R) and D2 = D2(R) be respectively the
solutions of

R = Hb(q)−Hb(D1),

R = 3Hb(q)−Ht(
D2

2
, q)−Ht(

D2

2
, 1− q).

In fact, D1 and D2 correspond to the D1 and D2 in Theorem
6, but here expressed in terms of R, rather than in terms of
P . Define

RLB = (1− q)
∑

i,j∈{0,1}
pij|0 log

pij|0
(1− q)pij|0 + qpij|1

+q
∑

i,j∈{0,1}
pij|1 log

pij|1
(1− q)pij|0 + qpij|1

,

where

p00|0 = 1− D2

2(1− q) ,

p01|0 =
(D2 −D1)(2q − 2D1 +D2)

2(1− q)(q − 2D1 +D2)
,

p10|0 = 0,

p11|0 =
(2D1 −D2)(q −D1)

2(1− q)(q − 2D1 +D2)
,

p00|1 =
D2

2q
,

p01|1 =
(D2 −D1)(2D1 −D2)

2q(q − 2D1 +D2)
,

p10|1 = 0,

p11|1 =
(q −D1)(2q − 2D1 +D2)

2q(q − 2D1 +D2)
.

(6)

Moreover, define

RUB = (1− q)
∑

i,j∈{0,1}
p′ij|0 log

p′ij|0
(1− q)p′ij|0 + qp′ij|1

+q
∑

i,j∈{0,1}
p′ij|1 log

p′ij|1
(1− q)p′ij|0 + qp′ij|1

,

where
p′00|0 = 1− D2

2(1− q) ,

p′01|0 =
D2 −D1 + PUB

2(1− q) ,

p′10|0 = 0,

p′11|0 =
D1 − PUB

2(1− q) ,

p′00|1 =
D2

2q
,

p′01|1 =
D1 −D2 + PUB

2q
,

p′10|1 = 0,

p′11|1 =
2q −D1 − PUB

2q
,

(7)

and

PUB = κ(D1 −D2), (8)

κ = κ(D2) ≜
− log D2

2 + 1
2 log (1− q − D2

2 ) + 1
2 log (q − D2

2 )

log q
1−q + 1

2 log (1− q − D2

2 )− 1
2 log (q − D2

2 )
.

(9)

Theorem 8: For a binary source X ∼ Bern(q), under
Hamming distortion and TV perception losses,

RLB ≤ R(∞)(Θ(R)) ≤ RUB

and consequently

RLB −R ≤ ∆(Θ(R)) ≤ RUB −R.
Moreover, the upper and lower bounds coincide if and only if

q

2D1 −D2 − q
≥ κ. (10)

Fig. 3 shows when R ⪆ 0.08, the dashed lines coincide
with the dotted lines, implying that the upper bound meets the
lower bound. Fig. 4 provides a direct visualization in the rate
domain, that is when R ⪆ 0.08, the two bounds match.

We next proceed to study successive refinement. Let A be
the regime where both the distortion and perception constraints
are active, i.e., A ≜ {(D,P ) : D ∈ [ P

1−2(q−P ) , 2q(1 − q) −
(1− 2q)P ), P ∈ [0, q]}.

Theorem 9: For a binary source X ∼ Bern(q), under
Hamming distortion and TV perception losses, successive
refinement from (D1, P1) ∈ A to (D2, P2) ∈ A is feasible
if and only if

q((D1 − P1)− (D2 − P2)) ≥ D1P2 −D2P1, (11)
(1− q)((D1 + P1)− (D2 + P2)) ≥ D2P1 −D1P2. (12)
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Fig. 3. Plots of perception-distortion curves for different bit rates under the
lower bound and upper bound, where q = 0.05. When R ⪆ 0.08, the upper
bound and lower bound coincide.
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Fig. 4. Plots of ∆(R) with R for both lower bound and upper bound, where
q = 0.05. When R ⪆ 0.08, the upper bound and lower bound coincide.

For 0 < R1 < R2, we denote D1 = D1(R1), D2 =
D2(R1), and D′

1 = D1(R2), D
′
2 = D2(R2), where the

functions D1(R), D2(R) are defined above Theorem 8.
Theorem 10: Let 0 < R1 < R2. For a binary source X ∼

Bern(q), under Hamming distortion and TV perception losses
as well as the conditions that

q

2D1 −D2 − q
≥ κ(D2),

q

2D′
1 −D′

2 − q
≥ κ(D′

2) (13)

with the function κ given in (9), successive refinement from
Θ(R1) to Θ(R2) is feasible if

2D1 −D2 ≤ 2D′
1 −D′

2.

Remark 1: Note that the conditions in (13) are the necessary
and sufficient conditions for the bounds on R(∞)(Θ(R)) in
Theorem 8 to match at R = R1 and R = R2 respectively.
Hence, the theorem above provides a sufficient condition for
the feasibility of set-wise successive refinement, given that R1

and R2 are above the matching threshold.

Remark 2: In fact, we numerically verify that 2D1 −D2 ≤
2D′

1−D′
2 automatically holds once the conditions in (13) are

satisfied. In other words, successive refinement from Θ(R1)
to Θ(R2) is feasible if R1 and R2 are above the matching
threshold.
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Abstract—A message passing decoding algorithm for q-ary low-
density parity-check codes over the q-ary symmetric channel
is introduced. The exchanged messages are symbols from Fq

together with their reliability scores. A density evolution analysis
for irregular low-density parity-check code ensembles is devel-
oped and thresholds for selected ensembles are computed showing
gains with respect to other algorithms in the literature. Finite-
length simulation results confirm the asymptotic analysis.

I. INTRODUCTION

The design of efficient low-complexity low-density parity-
check (LDPC) decoding algorithms for high-throughput ap-
plications is receiving considerable interest. In his thesis [1],
Gallager presented low-complexity decoding algorithms where
the exchanged messages are binary. In [2], it was shown that
significant gains can be achieved by allowing erasures in the
decoding. Another class of decoding algorithms for binary
LDPC codes has been studied in [3]–[6], where the variable
nodes (VNs) exploit soft information from the channel and the
exchanged messages are coarsely quantized.

Due to their high decoding complexity, several works
considered reduced-complexity decoding algorithms for non-
binary LDPC codes over the binary-input additive white
Gaussian noise (biAWGN) channel [7]–[11] and the q-ary
symmetric channel (QSC) [12]–[17]. Majority logic based
algorithms were considered in [18]–[21].

In [16], a decoding algorithm referred to as symbol message
passing (SMP) for non-binary LDPC codes over the QSC
was introduced, where the exchanged messages are symbols
from Fq . The SMP decoder was extended in [22] to the
scaled reliability list message passing (SRLMP) decoder. The
exchanged messages in SRLMP are sets of symbols from
Fq . As shown in [22], the SRLMP decoder outperforms the
algorithm presented in [17], which has the same message
alphabet and a comparable decoding complexity. The gain is
due to the VN update rule, where the incoming check node
(CN) messages and the channel observations are converted to
log-likelihood vectors. The performance of SRLMP improves
by increasing the list size from 1 to 2 but the decoder data
flow increases as well, especially for large field orders q.

In this work, we introduce a message passing algorithm for
q-ary LDPC codes over the QSC, which we dub reliability-
based symbol message passing (RSMP). We follow the ap-
proach in [16], [22] and convert the channel and the in-
coming CN messages to log-likelihood vectors at the VNs.

This approach is based on modeling the extrinsic channel
as a discrete memoryless channel (DMC) whose transition
probabilities may be estimated via density evolution (DE) as
proposed in [3]. To decrease the data flow, instead of passing
a list of symbols as in SRLMP, the exchanged messages are
symbols from Fq together with their reliability scores from
{H, L}. We improve the performance of SMP by including
reliability scores in the decoding. The VN operation is similar
to a voting system, where the channel and the neighboring CNs
vote for the value of the code symbol. The votes have different
weights. The weight of the channel observation depends on the
error probability of the QSC. The weights of the incoming CN
messages depend on the transition probabilities of the extrinsic
DMC which change in each iteration and can be estimated via
DE analysis. The VN selects then the element with the highest
score. The VN update rule is different than in majority logic
algorithms in [18]–[21]. For instance in [19], the VN uses the
voting result form the previous iteration, the weights of the CN
votes are kept constant over the iterations and no reliability
scores are used.

II. PRELIMINARIES

A. Q-ary Symmetric Channel

Consider a QSC with error probability ε, input alphabet
X and output alphabet Y , with X = Y = {0, α0, . . . , αq−2},
where α is a primitive element of Fq . Denote by x ∈ X and
y ∈ Y the channel input and channel output, respectively. The
transition probabilities of a QSC with error probability ε are

P (y|x) =

{
1− ε if y = x
ε

q−1 otherwise.
(1)

The capacity of the QSC, in symbols per channel use, is

C = 1 + ε logq
ε

q − 1
+ (1− ε) logq(1− ε).

B. Log-Likelihood Vector

For a given channel output y of a DMC with input alphabet
X = Fq , we introduce the normalized log-likelihood vector,
also referred to as L-vector,

L(y) = [L0(y), L1(y), . . . , Lαq−2(y)] (2)

whose elements are defined as

Lu(y) = logP (y|u) ∀u ∈ Fq. (3)

International Zurich Seminar on Information and Communication (IZS), March 2 – 4, 2022

39



The L-vector will be instrumental to the design of a message
passing decoding algorithm for non-binary LDPC codes over
the QSC. We consider a decoding algorithm where the ex-
changed messages are symbols from Fq together with their
reliability scores from {H, L}. A message sent from a CN
to a VN can be modeled as the observation of the random
variable (RV) X after transmission over a q-ary input 2q-ary
output discrete memoryless extrinsic channel [23, Fig. 3]. The
VNs convert the channel and the incoming CN messages to
L-vectors. The transition probabilities of the communication
channel are given in (1) and the transition probabilities of
the extrinsic channel can be estimated via DE analysis, as
suggested in [3].

C. Non-binary LDPC Codes

Non-binary LDPC codes are characterized by an m × n
sparse parity-check matrix H with coefficients in Fq . The
parity-check matrix can be represented by a Tanner graph
with n VNs corresponding to codeword symbols and m CNs
corresponding to parity checks. The edge label associated to
the edge connecting the VN v and the CN c is denoted by
hv,c, with hv,c ∈ Fq\{0}. The sets N (v) and N (c) denote the
neighbors of VN v and CN c, respectively. The degree of a
VN v is the cardinality of the set N (v). Similarly, the degree
of a CN c is the cardinality of the set N (c). The edge-oriented
degree distribution polynomials of an LDPC code graph are
given by λ(x) =

∑
i λix

i−1 and ρ (x) =
∑
i ρix

i−1 where
λi and ρi correspond to the fraction of edges incident to VNs
and CNs with degree i, respectively. An unstructured irregular
LDPC code ensemble C λ,ρ

q,n is the set of all q-ary LDPC codes
with block length n, degree distributions λ (x) and ρ (x) and
edge labels uniformly chosen in Fq \ {0}.

III. RSMP DECODING

This section introduces the RSMP decoder. An exchanged
message between a check and a variable node is a symbol
from Fq together with its reliability score from {H, L}, where
H and L correspond to symbols with high and low reliability,
respectively. We denote by (m

(`)
c→v, r

(`)
c→v) the message sent

from CN c to its neighboring VN v. Similarly, (m
(`)
v→c, r

(`)
v→c)

is the message sent from VN v to CN c at the `-th iteration.
We have m(`)

c→v,m
(`)
v→c ∈ Fq and r(`)c→v, r

(`)
v→c ∈ {H, L}.

Each VN sends its channel observation y to its neighboring
CNs

m(0)
v→c = y.

The reliability score of m(0)
v→c is

r(0)v→c =

{
H if Dch > ∆

L otherwise

where

Dch = log(1− ε)− log

(
ε

q − 1

)
. (8)

The real-valued parameter ∆ is chosen to maximize the iter-
ative decoding threshold and can be chosen for each iteration

individually. In this work, we keep ∆ constant over the
iterations, i.e., we compute the iterative decoding thresholds
for several values of ∆ and choose the best one.

Consider a CN c and a VN v connected to it. The CN c

computes the symbol that satisfies the parity check equation
given the incoming VN messages. We assign to the outgoing
symbol from c the reliability score L if any incoming symbols
from the other neighboring VNs has low reliability and the
reliability score H otherwise. Formally, the outgoing message
is (m

(`)
c→v, r

(`)
c→v) with

m(`)
c→v =− h−1v,c

∑

v′∈N (c)\v
hv′,cm

(`−1)
v′→c (9)

and the reliability score of m(`)
c→v is

r(`)c→v =

{
H if r(`−1)v′→c = H ∀v′ ∈ N (c) \ v
L otherwise.

The multiplication and the sum in (9) are performed over Fq
and h−1v,c is the inverse of hv,c in Fq .

At the `-th iteration, each VN computes

L(`)
ex =

[
L
(`)
ex,0, L

(`)
ex,1, . . . , L

(`)
ex,αq−2

]

= L (y) +
∑

c′∈N (v)\c
L
(

(m
(`)
c′→v, r

(`)
c′→v)

)
.

(10)

Then, the VN determines the Fq symbol with the maximum
entry in L

(`)
ex . The outgoing symbol has high reliability if its

corresponding entry in L
(`)
ex is greater by ∆ than each of the

other entries. Formally, the VN sends (m
(`)
v→c, r

(`)
v→c) with

m(`)
v→c = arg max

u∈Fq

L(`)
ex,u (11)

and the reliability score of m(`)
v→c is

r(`)v→c =

{
H if ∃a ∈ Fq : L

(`)
ex,a > L

(`)
ex,u + ∆ ∀u ∈ Fq \ {a}

L otherwise.

In (11), if multiple maximizing arguments exist the arg max
function outputs one of them uniformly at random.
In (10), the L-vector L(y) corresponding to the QSC channel
observation is obtained from (1) and (3). Moreover, we model
each CN to VN message as an observation of the symbol X
(associated to v) at the output of an extrinsic channel with
input alphabet X = Fq and output alphabet Z = Fq × {H, L}.
The transition probabilities of the extrinsic channel are in
general unknown. It was shown in [3], [4] that, for moderate
to large block lengths, these probabilities can be accurately
estimated via the DE presented in Section IV. They are then
used to compute the L-vectors of the CN messages in (2) and
(3).

To estimate its codeword symbol each VN computes

L(`)
app =

[
L
(`)
app,0, L

(`)
app,1, . . . , L

(`)
app,αq−2

]

= L (y) +
∑

c′∈N (v)

L
(

(m
(`)
c′→v, r

(`)
c′→v)

)
.
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s
(`)
I0 =

1

q

[
ρ
(
p
(`−1)
I0 + p

(`−1)
I1

)
+ (q − 1)ρ

(
p
(`−1)
I0 −

p
(`−1)
I1
q − 1

)]
(4)

s
(`)
I1 =

q − 1

q

[
ρ
(
p
(`−1)
I0 + p

(`−1)
I1

)
− ρ

(
p
(`−1)
I0 −

p
(`−1)
I1
q − 1

)]
(5)

s
(`)
I2 =

1

q

[
1− ρ

(
p
(`−1)
I0 + p

(`−1)
I1

)
− (q − 1)ρ

(
p
(`−1)
I0 −

p
(`−1)
I1
q − 1

)
+ (q − 1)ρ

(
p
(`−1)
I0 + p

(`−1)
I2 −

p
(`−1)
I1 + p

(`−1)
I3

q − 1

)]
(6)

s
(`)
I3 =

q − 1

q

[
1− ρ

(
p
(`−1)
I0 + p

(`−1)
I1

)
+ ρ

(
p
(`−1)
I0 −

p
(`−1)
I1
q − 1

)
− ρ

(
p
(`−1)
I0 + p

(`−1)
I2 −

p
(`−1)
I1 + p

(`−1)
I3

q − 1

)]
(7)

The final decision is

x̂(`) = arg max
u∈Fq

L(`)
app,u.

Note that we can easily include erasures in the decoding
algorithm. We observed that both decoding algorithms (with
and without erasures) have similar performance.

Remark 1. The complexity of a message passing decoding
algorithm can be studied from 2 perspectives: the cost of the
arithmetic operations and the decoder data flow. The internal
decoder data flow, defined as the number of bits that are
processed in each iteration, scales linearly in the number of
bits that represent the exchanged CN and VN messages [24].
This work targets this second complexity, i.e., the reduction
of the internal data flow. The exchanged messages in belief
propagation (BP) decoder are (q−1)-ary real valued vectors,
whereas for RSMP the exchanged messages are symbols from
Fq together with a reliability score from {H, L}. This approach
substantially reduces the number of bits needed to represent
the exchanged CN and VN messages and therefore the decoder
data flow.

IV. DENSITY EVOLUTION ANALYSIS FOR RSMP

This section provides a DE analysis for RSMP for non-
binary irregular LDPC code ensembles. In the DE, the proba-
bilities of VN to CN and CN to VN messages are tracked as
iterations progress. Due to symmetry and under the all-zero
codeword assumption, we can partition Fq × {H, L} into the
following 4 disjoint sets

I0 ={(0, H)}
I1 ={(a, H) : a ∈ Fq \ {0}}
I2 ={(0, L)}
I3 ={(a, L) : a ∈ Fq \ {0}}

where (u, H) denotes a high reliable symbol u and (u, L) de-
notes a low reliable symbol u ∈ Fq . Note that |I0| = |I2| = 1,
|I1| = |I3| = q − 1.
Let p(`)Ik be the probability that a VN to CN message belongs
to the set Ik at the `-th iteration. That means a VN to CN
symbol takes the value a ∈ Fq and has the reliability score
r ∈ {H, L} with probability p(`)Ik /|Ik| if (a, r) ∈ Ik. Similarly

s
(`)
Ik is the probability that a CN to VN message belongs to

the set Ik, where k ∈ {0, 1, 2, 3}.
Initially, we have

p
(0)
I0 =I(Dch > ∆)(1− ε)
p
(0)
I1 =I(Dch > ∆)ε

p
(0)
I2 =I(Dch ≤ ∆)(1− ε)
p
(0)
I3 =I(Dch ≤ ∆)ε

where I(A) is an indicator function that takes the value 1 if
the proposition A is true and 0 otherwise.

For the CN to VN messages, we have s(`)I0 ,s(`)I1 , s(`)I2 and s(`)I3
are given in (4), (5), (6) and (7), respectively. The extrinsic
channel has input alphabet X = Fq , output alphabet Z =
Fq × {H, L} and transition probabilities

P (z|u) =





s
(`)
I0 if z = (u, H)
s
(`)
I1
q−1 if z = (e, H) e ∈ Fq \ {u}
s
(`)
I2 if z = (u, L)
s
(`)
I3
q−1 if z = (e, L) e ∈ Fq \ {u}.

(12)

Consider now the VN to CN messages. Define the random
vector F (`) =

(
F

(`)
(0,H), . . . , F

(`)
(αq−2,H), F

(`)
(0,L), . . . , F

(`)
(αq−2,L)

)

where F
(`)
(u,r), for u ∈ Fq and r ∈ {H, L}, denotes the RV

associated to the number of incoming CN messages to a degree
d VN that are equal to (u, r) at the `-th iteration. Let f (`) be
the realization of F (`). The entries of L

(
(m

(`)
c′→v, r

(`)
c′→v)

)
in

(10) are given by

Lu

(
(m

(`)
c′→v, r

(`)
c′→v)

)
= log

(
P ((m

(`)
c′→v, r

(`)
c′→v)|u)

)

where m(`)
c′→v ∈ Fq, r(`)c′→v ∈ {H, L}, u ∈ Fq and P (z|u) can

be computed from (4), (5), (6), (7) and (12) ∀z ∈ Fq×{H, L}.
Hence, the elements L(`)

ex,u of the aggregated extrinsic L-vector
in (10) are related to f (`)u and the channel observation y by

L(`)
ex,u = D

(`)
H f

(`)
(u,H) + D

(`)
L f

(`)
(u,L) + Dchδuy +K ∀u ∈ Fq

where δij is the Kronecker delta function, Dch is given in (8)
and we have

D
(`)
H = log(s

(`)
I0 )− log

(
s
(`)
I1

q − 1

)
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D
(`)
L = log(s

(`)
I2 )− log

(
s
(`)
I3

q − 1

)

K = log

(
ε

q − 1

)
+
∑

a∈Fq

f
(`)
(a,H) log

(
s
(`)
I1

q − 1

)

+
∑

a∈Fq

f
(`)
(a,L) log

(
s
(`)
I3

q − 1

)
.

(13)

Note that K in (13) can be ignored in the VN update rule
since it is independent of the symbol u. We obtain

p
(`)
I0 =

∑

d

λd
∑

y∈Fq

Pr{Y = y}
∑

f(`)

Pr{F (`) = f (`)}×
∏

u∈Fq\{0}
I(L(`)

ex,0 > L(`)
ex,u + ∆)

p
(`)
I1 =

∑

d

λd
∑

a∈Fq\{0}

∑

y∈Fq

Pr{Y = y}×

∑

f(`)

Pr{F (`) = f (`)}
∏

u∈Fq\{a}
I(L(`)

ex,a > L(`)
ex,u + ∆)

p
(`)
I2 =

∑

d

λd
∑

y∈Fq

Pr{Y = y}
∑

f(`)

Pr{F (`) = f (`)}×
[
I(S0 6= ∅)

∏

u∈Fq\{0}
I(L(`)

ex,0 > L(`)
ex,u) +

I(0 ∈ U)

|U|

]

p
(`)
I3 =

∑

d

λd
∑

a∈Fq\{0}

∑

y∈Fq

Pr{Y = y}×

∑

f(`)

Pr{F (`) = f (`)}×
[
I(Sa 6= ∅)

∏

u∈Fq\{a}
I(L(`)

ex,a > L(`)
ex,u) +

I(a ∈ U)

|U|

]

where the inner sum is over all length 2q integer vectors f (`)

whose entries are non-negative and sum to d− 1. For all u ∈
Fq , we have

Su ={e ∈ Fq : L(`)
ex,u −∆ ≤ L(`)

ex,e < L(`)
ex,u}

U ={e ∈ Fq : L(`)
ex,e = max

u∈Fq

L(`)
ex,u}

Pr{F (`) = f (`)} =

(
d− 1

f
(`)
(0,H), . . . , f

(`)
(αq−2,L)

) 3∏

k=0

(
s
(`)
Ik
|Ik|

)f(`)
Ik

f
(`)
Ik =

∑

(a,r)∈Ik
f
(`)
(a,r) ∀k ∈ {0, . . . , 3}.

The iterative decoding threshold ε? is defined as the maximum
channel error probability such that p(`)I0 → 1 as `→∞.

V. NUMERICAL RESULTS

A first set of results is related to the asymptotic performance
of RSMP decoding. Tables I, II and III compare the iterative
decoding thresholds ε? of RSMP, SMP, SRLMP (for maxi-
mum list size Γ = 1 and Γ = 2) and BP decoding ε?BP for
(4, 8), (3, 6) and (3, 4) regular ensembles and several q values.

TABLE I
DECODING THRESHOLDS ε? OF THE (4, 8) REGULAR LDPC CODE

ENSEMBLES

q
SMP SRLMP [22] SRLMP [22]

ε? ε?BP εSh[16] Γ = 1 Γ = 2
2 0.0516 0.0656 - 0.0687 0.076 0.110
4 0.0814 0.0923 0.1075 0.1041 0.134 0.189
8 0.1064 0.1151 0.1332 0.1321 0.175 0.247

16 0.137 0.1389 0.1533 0.1481 0.204 0.2897
32 0.1636 0.1636 0.1673 0.1697 0.226 0.3217
64 0.1758 0.1758 0.1758 0.1866 0.241 0.3462

0 5 · 10−2 0.1 0.15 0.2
10−6

10−5

10−4

10−3

10−2

10−1

100

ε

FE
R

Fig. 1. FER versus channel error probability ε for regular (4, 8) LDPC codes
with n = 12000 for SMP ( , , , ) and RSMP ( ,

, , ) for q = 2 ( ), q = 4 ( ), q = 8 ( ) and
q = 16 ( ).

The tables also give the Shannon limit εSh and the thresholds
of the list message passing algorithm in [17] for maximum list
size Γ = 1 and Γ = 2. Observe that our algorithm outperforms
SMP decoding. This gain is due to including reliability scores
in the decoding process. For RSMP, the size of the alphabet
of the messages is 2q which is much smaller than the alphabet
size of SRLMP in [22] and the list message passing [17]
for maximum list size 2, which is equal to 1 + q(q + 1)/2.
Remarkably, for some values of q and degree distributions,
RSMP outperforms both SRLMP and the algorithm in [17]
for maximum list size 2 and with reduced complexity and
data flow.

To check the finite-length performance under RSMP, we
consider the performance of a regular (4, 8) code where we
set the maximum number of iterations `max = 50. The code has
a block length n = 12000 and its Tanner graph is obtained via
the progressive edge-growth (PEG) algorithm [25] and edge
labels uniformly chosen in Fq \ {0}. Finite-length simulation
results for q ∈ {2, 4, 8, 16} are shown in Fig. 1 in terms of
FER versus the QSC error probability ε. We use ∆ = 1.6 for
q = 2 and 8, ∆ = 1.5 for q = 4 and ∆ = 1.8 for q = 16. Due
to space limitations, the parameters D(`)

H ,D
(`)
L are not provided

but are obtained as a byproduct of DE analysis. As a reference,
we provide the simulation results under SMP decoding [16].
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TABLE II
DECODING THRESHOLDS ε? OF THE (3, 6) REGULAR LDPC CODE ENSEMBLES

q
SMP [17] [17] SRLMP [22] SRLMP [22]

ε? ε?BP εSh[16] Γ = 1 Γ = 2 Γ = 1 Γ = 2
2 0.0395 0.039 - 0.0707 - 0.0741 0.084 0.110
4 0.0890 0.072 0.111 0.0946 0.1203 0.1102 0.149 0.189
8 0.1039 0.073 0.137 0.1086 0.1411 0.1390 0.196 0.247
16 0.1075 0.075 0.148 0.122 0.1517 0.1676 0.231 0.2897
32 0.1092 - - 0.1387 0.1560 0.1814 0.26 0.3217
64 0.1101 - - 0.1576 0.1585 0.1915 0.279 0.3462

TABLE III
DECODING THRESHOLDS ε? OF THE (3, 4) REGULAR LDPC CODE ENSEMBLE

q
SMP [17] [17] SRLMP [22] SRLMP [22]

ε? ε?BP εSh[16] Γ = 1 Γ = 2 Γ = 1 Γ = 2
2 0.1069 0.106 - 0.1439 − 0.1448 0.167 0.2145
4 0.1724 0.123 0.222 0.1842 0.2390 0.2213 0.280 0.3546
8 0.1867 0.124 0.269 0.2096 0.2790 0.2791 0.355 0.4480
16 0.1930 0.120 0.287 0.2481 0.2977 0.3138 0.407 0.5120
32 0.1960 - - 0.2893 0.3110 0.3382 0.444 0.5570
64 0.1974 - - 0.3128 0.3175 0.354 0.475 0.5894

VI. CONCLUSIONS

A reduced-complexity decoding algorithm for q-ary LDPC
codes on the QSC was presented. A DE analysis for irregular
non-binary LDPC ensembles was developed. The presented
DE yields the asymptotic iterative decoding thresholds and
estimates the transition probabilities of the extrinsic channel
needed for the VN update rule. Numerical results show that our
algorithm outperforms competing algorithms with comparable
complexity.
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Abstract—The problem of scalar multiplication applied to
vectors is considered in the Lee metric. Unlike in other metrics,
the Lee weight of a vector may be increased or decreased by
the product with a nonzero, nontrivial scalar. This problem is of
particular interest for cryptographic applications, like for exam-
ple Lee metric code-based cryptosystems, since an attacker may
use scalar multiplication to reduce the Lee weight of the error
vector and thus to reduce the complexity of the corresponding
generic decoder. The scalar multiplication problem is analyzed in
the asymptotic regime. Furthermore, the construction of a vector
with constant Lee weight using integer partitions is analyzed and
an efficient method for drawing vectors of constant Lee weight
uniformly at random from the set of all such vectors is given.

I. INTRODUCTION

In the late 1950s, relating to transmitting symbols from a
finite prime field Fq , the Lee metric was introduced in [1], [2].
Error correcting codes endowed with the Lee metric (like BCH
codes, dense error-correcting codes or codes with maximum
Lee distance) were constructed and applied in various different
manners [3]–[9]. Recently, the Lee metric was applied to
DNA storage systems [10] and considered for cryptographic
applications [11]. New families of error correcting codes en-
dowed with the Lee metric together with an iterative decoding
algorithm were proposed [12] while information set decoding
(ISD) in the Lee metric has been analyzed [11], [13].

ISD is one way to solve the well-known generic (syndrome)
decoding problem, which aims at decoding an arbitrary linear
code efficiently without knowing or using the structure of the
code. This problem is fundamental for code-based cryptogra-
phy and was shown to be NP-complete in both the Hamming
metric [14], [15] and the Lee metric [16]. The desirable feature
of generic (syndrome) decoding is to succeed in correcting an
error vector e as long as its corresponding weight is small,
where small refers to the Gilbert-Varshamov bound [17], [18].
In fact, syndrome decoding has an exponential complexity in
the weight of the error for both the Hamming and the Lee
weight. From an adversarial point of view, the goal is to
reduce the weight of the introduced error vector in order to
make the generic (syndrome) decoding problem more feasible.
In fact, while the Hamming weight of a vector with entries
from a finite field is invariant under multiplication with a
nonzero scalar, the Lee weight of a vector can be increased or
decreased by the product with a scalar. Understanding under
which conditions (and with what probability) the Lee weight

on the error vector e is reduced represents a key preliminary
step in the design of Lee metric code-based cryptosystems. We
will refer to this problem as scalar multiplication problem.

In this paper, we consider an additive channel model that
adds an error vector of a fixed Lee weight to the transmitted
codeword. We will refer to this channel as the constant Lee
weight channel. We present an algorithm that draws a vector
of length n and fixed Lee weight t over the ring of integers
Zm modulo m uniformly at random from the set of vectors
with the same parameters. Introducing errors uniformly at
random is important from a cryptographic point of view in
order to hide the structure of the error pattern. We will then
derive the marginal distribution of the constant Lee weight
channel in the limit of large block lengths n. This result
enables to analyze how the Lee weight of a given error vector
changes when multiplied by a random nonzero scalar, in the
asymptotic regime. We show that, under certain conditions,
the Lee weight of such an error vector will not decrease after
scalar multiplication with high probability.

The paper is organized as follows. Section II provides the
notations and preliminaries needed for the course of the paper.
In Section III we introduce the constant Lee weight channel
and provide a uniform construction of an error vector of given
Lee weight among all possible vectors of the same Lee weight.
The scalar multiplication problem is introduced in Section IV.
We state the problem in a finite length setting and analyze it in
the asymptotic regime. Conclusions are stated in Section V.

II. NOTATION AND PRELIMINARIES

We denote by Zm the ring of integers modulo m, where m
is a positive integer. To simplify the reading, vectors will be
denoted by boldface lower-case letters.

A. The Lee Metric

Definition 1. The Lee weight of a scalar a ∈ Zm is defined
as

wtL(a) := min(a,m− a).

The Lee weight of a vector x ∈ Znm of length n is defined as
the sum of the Lee weights of its entries, i.e.

wtL(x) :=
n∑

i=1

wtL(xi).
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Note that the Lee weight of an element a ∈ Zm is upper
bounded by bm/2c. Hence, the Lee weight of a length-n vector
x over Zm is at most n · bm/2c. To simplify the notation, we
define

r := bm/2c.
Furthermore, we observe that if m ∈ {2, 3} the Lee weight is
equivalent to the Hamming weight.

If we consider the elements of Zm as points placed along a
circle such that the circle is divided into m arcs of equal length,
then the Lee distance between two distinct values a and b can
be interpreted as the smallest number of arcs separating the
two values. Therefore, the following property holds

wtL(a) = wtL(m− a) for every a ∈ {1, . . . , r}. (1)

The Lee distance between two vectors is defined as follows.

Definition 2. Let x,y ∈ Znm. The Lee distance between x and
y is given by the Lee weight of their difference, i.e.

dL(x,y) := wtL(x− y).

It is well-known that the Lee distance indeed induces a
metric.

B. Useful Results from Information Theory

Let X be a random variable over an alphabet X with
probability distribution P , where P (x) := P(X = x) with
x ∈ X . The entropy H(X) is defined as

H(X) := −
∑

x∈X
P (x) log(P (x)).

The Kullback-Leibler divergence between two distributions Q
and P is denoted as

D(Q ||P ) :=
∑

x∈X
Q(x) log

(
Q(x)

P (x)

)

Theorem 1 (Conditional Limit Theorem [19, Theorem
11.6.2]). Let E be a closed convex subset of probability dis-
tributions over a given alphabet X and let Q be a distribution
not in E over the same alphabet X . Consider X1, . . . , Xn

to be discrete random variables drawn i.i.d. ∼ Q and let
P ? = arg minP∈E D(P ||Q). Denote by Xn the random
sequence (X1, . . . , Xn) and PXn its empirical distribution.
Then for any a ∈ X

P (X1 = a |PXn ∈ E) −→ P ?(a)

in probability as n grows large.

C. Combinatorics

Definition 3. Let t and s be positive integers. An integer
partition of t into s parts is an s-tuple λ := (λ1, . . . , λs)
of positive integers satisfying the following two properties:

i. λ1 + . . .+ λs = t,
ii. λ1 ≥ λ2 ≥ . . . ≥ λs.

The elements λi are called parts and we say that s is the
length of the partition λ.

Note that the order of the parts does not matter. This means
that, for instance, the tuples (1, 1, 2), (1, 2, 1) and (2, 1, 1) are
all identical and represented only by (2, 1, 1). We will denote
by Πλ the set of all permutations of an integer partition λ.
Let ni denote the number of occurrences of a positive integer
i in an integer partition λ of t, where i ∈ {1, . . . , t}, then
|Πλ| =

(
t

n1,...,nt

)
= t!

n1!...nt!
.

In the following, we use P(t) to denote the set of integer
partitions of t. We write Pk(t) instead, if we restrict P(t)
to those partitions with part sizes not exceeding some fixed
nonnegative integer value k. Note that for any λ ∈ Pk(t) its
length `λ is bounded by d tk e ≤ `λ ≤ t.

We will now introduce a definition describing vectors whose
Lee weight decomposition is based on a given integer partition.

Definition 4. For a positive integer n and a given partition
λ ∈ Pr(t) of a positive integer t, we say that a length-n vector
x has weight decomposition λ over Zm if there is a one-to-one
correspondence between the Lee weight of the nonzero entries
of x and the parts of λ.

Example 1. Let n = 5 and let λ = (2, 1, 1) be an integer
partition of t = 4 over Z7. All vectors of length n over Z7

consisting of one element of Lee weight 2 and two elements
of Lee weight 1 have weight decomposition λ.

We will denote the set of all vectors of length n of the same
weight decomposition λ ∈ P(t) by V(n)

t,λ .

III. THE CONSTANT LEE WEIGHT CHANNEL

Let us consider a channel

y = x + e,

where y,x and e are length-n vectors over Zm and the channel
introduces the error vector e uniformly at random from the set
S(n)t,m of all vectors in Znm with a fixed Lee weight t, i.e.

S(n)t,m := {e ∈ Znm | wtL(e) = t}.
A. Marginal Channel Distribution

Since certain decoder types (e.g., iterative decoders em-
ployed for low-density parity-check codes defined over inte-
ger rings) require the knowledge of the channel’s marginal
conditional distribution, our goal is to describe the marginal
distribution Pe, for a generic element E of the error.

Lemma 1. The marginal distribution of a constant Lee weight
channel over Zm is given by

P ?e =
1∑m−1

j=0 exp(−β wtL(j))
exp (−β wtL(e)) ,

for some constant β > 0.

Proof. Following [19, Ch. 12], we are looking for a distribu-
tion P = (P0, . . . , Pm−1) that maximizes the entropy function

He(P) := −
m−1∑

e=0,Pe 6=0

Pe logPe

2
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under the constraint that the Lee weight of the vector is t,
or equivalently, that the normalized Lee weight of the error
vector is δ := t/n, i.e.

m−1∑

e=0

wtL(e)Pe = δ.

Let us introduce a Lagrange multiplier β > 0, which is the
solution to

δ =
(k − 1)e(k+1)β − kekβ + eβ

(eβk − 1)(eβ − 1)

with k = r + 1. Then the optimization problem has the
following solution

P ?e = κ exp (−β wtL(e)) , (2)

where κ is a normalization constant enforcing
∑
e P

?
e = 1.

The solution (2) is closely related to the problem in statisti-
cal mechanics of finding the distribution of the energy state of
a given system [19]–[21]. Here, we may interpret the energy
value of the particles as the Lee weight wtL(e) of an element
e ∈ Zm. Note that for the channel law determined by Lemma
1, the optimum decoder will seek for the codeword at minimum
Lee distance from the channel output y.

B. Error Pattern Construction

In the following we will present an algorithm that draws a
vector uniformly at random from S(n)t,m for given parameters
n, t and m. The idea is inspired by the algorithm presented
in [12]. We start from partitioning the desired Lee weight
t into integer parts of size at most r, since the Lee weight
of any a ∈ Zm is at most r. The main difference to the
algorithm presented in [12, Lemmas 2 and 3], and crucial to
design the vector uniformly at random from S(n)t,m, is that the
integer partition of t is not chosen uniformly at random from
the set of all integer partitions Pr(t) of t. In fact, picking
a partition uniformly at random from Pr(t) yields that
some of the vectors in S(n)t,m are more probable than others.
Therefore, we need to understand the number of vectors with
weight decomposition λ, for a fixed partition λ ∈ Pr(t). The
following result gives an answer to this question.

Lemma 2. Let n,m and t be positive integers with t ≤ n
and consider the set of partitions Pr(t) of t with part sizes
not exceeding r. For any λ ∈ Pr(t) the number of vectors of
length n over Zm with weight decomposition λ is given by

∣∣∣V(n)
t,λ

∣∣∣ =

{
2`λ |Πλ|

(
n
`λ

)
if m is odd,

2`λ−cr,λ |Πλ|
(
n
`λ

)
else

where cr,λ = |{i ∈ {1, . . . , `λ} |λi = r}|.

Proof. Recall from Definition 4 that V(n)
t,λ consists of all

length n vectors x whose nonzero entries are in one-to-one
correspondence with the parts of λ. Let xi1 , . . . , xi`λ denote

the nonzero positions of x and let us first consider the case
where

wtL(xi1) = λ1, . . . , wtL(xi`λ ) = λ`λ . (3)

Finding the number of such vectors relies on the “selection
with repetition” problem [22, Section 1.2], which implies that
this number is exactly

(number of zeros + free spaces − 1
free spaces − 1

)
, i.e.

(
(n− `λ) + (`λ + 1) − 1

(`λ + 1) − 1

)
=

(
n

`λ

)
,

where with “free spaces” we mean all the possible gaps in
front, between and at the end of the parts of λ.
If m is odd, the number ni of elements in Zm having a nonzero
Lee weight i is always 2 for every possible Lee weight i ∈
{1, . . . , r}. Hence, there are 2`λ

(
n
`λ

)
vectors satisfying (3). On

the other hand, if m is even, then ni = 2 for i ∈ {1, . . . , r − 1}
and nr = 1. If we define cr,λ = |{i ∈ {1, . . . , `λ} |λi = r}|
to be the number of parts of λ equal to r, then the number of
parts of λ that can be flipped is 2`λ−cr,λ . Hence, the number
of vectors satisfying (3) is 2`λ−cr,λ

(
n
`λ

)
.

Finally, since the ordering of the nonzero elements of x is not
necessarily the same as the order of the parts of λ, we multiply(
n
`λ

)
by the number of permutations |Πλ| of λ and obtain the

desired result.

Finally, the actual vector construction over Zm, described
in Algorithm 1, mainly consists of picking a partition λ ∈
Pr(t) of the Lee weight t with part sizes not exceeding r. The
probability of x ∈ S(n)t,m with weight decomposition λ ∈ Pr(t)
is given by

pλ :=

∣∣∣V(n)
t,λ

∣∣∣
∑
λ̃∈Pr(t)

∣∣∣V(n)

t,λ̃

∣∣∣
.

The idea is to choose the integer partition according to the
probability mass function X (n)

t,m defined by the probabilities
pλ, for λ ∈ Pr(t). We will denote this procedure by

λ
X (n)
t,m←− Pr(t).

We then randomly flip the elements of the partition modulo
m and assign these values to randomly chosen positions of
the error vector. Choosing an element a uniformly at random
from a given set A will be denoted by a $←− A. We want to
emphasize at this point that for fixed parameters n, t and m

the computation of X (n)
t,m needs to be done only once at the

beginning, since the distribution is only dependent on these
parameters and does not change anymore.

Theorem 2. Let n,m and t be positive integers. Algorithm 1
draws a vector uniformly at random among S(n)t,m.

Proof. First note that S(n)t,m =
⊔
λ∈Pr(t) V

(n)
t,λ , where

⊔
denotes

the disjoint union of sets. Hence, we want to pick λ ∈ Pr(t)
such that all the vectors in S(n)t,m are equally probable to be
drawn. The choice of λ is decisive for the set V(n)

t,λ . Since

3
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Algorithm 1 Drawing a vector uniformly at random from S(n)t,m

Require: n,m, t ∈ N>0, distribution X (n)
t,m

Ensure: e
$← S(n)t,m

1: λ
X (n)
t,m←− Pr(t)

2: F = {f1, . . . , f`λ}
$← {±1}`λ

3: supp(e)
$← {S ⊂ {1, . . . , n} : |S| = `λ}

4: for i = 1, . . . , n do
5: if i ∈ supp(e) then
6: ei ← fi · λi
7: else
8: ei = 0
9: end if

10: end for
11: return random_permutation(e)

∣∣∣V(n)
t,λ

∣∣∣ changes with λ, we pick λ according to distribution pλ

from X (n)
t,m using Lemma 2 and the result follows.

IV. SCALAR MULTIPLICATION PROBLEM

While we know that the Hamming weight of a vector over
a finite field is invariant under multiplication with a nonzero
scalar, the Lee weight can possibly change. In this section,
we analyze the behavior of the Lee weight of a vector when
multiplied by a scalar. Recalling that the Lee metric coincides
with the Hamming metric over Z2 and Z3, in the following we
will focus only on the case where the Lee weight is different
from the Hamming weight, i.e. we focus on Zm with m > 3.

Remark 1. Even though we will not discuss the following, we
want to emphasize at this point that the Hamming weight is
not invariant under multiplication with a nonzero scalar when
working over a finite integer ring that is not a field.

A. Problem Statement

We now establish bounds on the probability of reducing the
Lee weight of a random vector by multiplying it with a random
nonzero scalar.

Problem 1. Consider the ring of integers Zm, with m > 3.
Given a random vector x ∈ Znm with Lee weight wtL(x) = t

uniformly distributed in S(n)t,m. Let a be chosen uniformly at
random from Zm\{0}. Find the probability that the Lee weight
of a · x is less than the Lee weight t of x, i.e.

P (wtL(a · x) < t) .

For simplicity, let us define the following event

F := {wtL(a · x) < t}.

We denote by Qx the empirical distribution of the entries of
x. Recall the distribution P ? defined in (2). We will rewrite
P(F ) by distinguishing between vectors x with Qx close to P ?

and all others, where by “close” we mean with respect to the

Kullback-Leibler divergence, i.e. Qx satisfies D(Qx ||P ?) < ε
for some ε > 0 small. We have that

P(F ) ≤P (wtL(a · x) < t |D(Qx ||P ?) < ε)

+ P (D(Qx ||P ?) ≥ ε) . (4)

Note that the probability P(F ) is dependent on three pa-
rameters: the length n of the constructed vector x, the size
m of the integer ring and the given Lee weight t of x. The
evaluation of the bound (4) is challenging for m > 3, finite
n and generic t. In the following subsection we will describe
how to attack the problem for n large.

B. Asymptotic Analysis
Let us focus now on the asymptotic regime, i.e. where

the block length n tends to infinity. Note here that we let
wtL(x) = t grow linearly with n. Let us denote by U(Zm) the
uniform distribution over Zm and let E be the set of probability
distributions over Zm with an average Lee weight δ := t/n,
i.e.

E :=

{
p = (p0, . . . , pm−1)

∣∣∣
m−1∑

i=0

pi = 1 and
m−1∑

i=0

piwtL(i) = δ

}

Hence, a straightforward application of Theorem 1 yields the
following corollary.

Corollary 1. Let x = (x1, . . . , xn) ∈ Znm a random vector
drawn uniformly from S(n)δn,m. Then, for every ε > 0 it holds

P (D(Qx ||P ?) ≥ ε) −→ 0 as n −→∞.
Proof. Let x = (x1, . . . , xn) ∈ Znm be a random vector whose
entries are independent and uniformly distributed in Zm. The
distribution of x is uniform on Znm, and hence on S(n)δn,m. We
have that

P ? = arg min
P∈E

D(P ||U(Zm)).

Then, by Theorem 1, we obtain the desired result.

In fact, Theorem 1 allows to assume that the entries
of a sequence x drawn uniformly in S(n)δn,m are distributed
according to P ? as n grows large. Hence, in the asymp-
totic regime, Problem 1 reduces to estimating the probability
P (wtL(a · x) ≤ wtL(x) |D(Qx ||P ?) < ε). In that case, we
apply Definition 1 for the Lee weight of a vector x. Then the
assumption that the entries of x are distributed as in (2) yields,
in the limit of n large, the following equivalent description of
the desired probability

lim
n−→∞

P(F ) = P
(m−1∑

i=1

e−β wtL(i) wtL([a · i]m)

<
m−1∑

i=1

e−β wtL(i) wtL(i)
)

(5)

By Property (1), we can run the sum only up to r. Nevertheless
we need to distinguish between even or odd ring order m. In
particular, for m odd we rewrite (5) as

lim
n−→∞

P(F ) = P
(

0 <
r∑

i=1

e−βi(i− wtL([a · i]m))
)

(6)

4
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whereas for m even (5) is equivalent to

lim
n−→∞

P(F ) = P
(

0 <

r−1∑

i=1

2e−βi(i− wtL([a · i]m))

+ e−βr(r − wtL([a · r]m))
)

(7)

where [a · i]m denotes the reduction of a · i mod m.

Since we want P(F ) to be small (or equal to zero), we need
to understand under which circumstances the sums in (6) and
(7) are non-positive. Note that both

∑r
i=1 e−βi(i−wtL([a·i]m))

and
∑r−1
i=1 2e−βi(i−wtL([a · i]m))+e−βr(r−wtL([a ·r]m) are

dependent on m and β, where β depends on δ. If we fix these
parameters, we are able to compute the sum and hence (5). We
therefore fix m and evaluate the two expressions for different
values of δ. Let δ? denote the largest normalized Lee weight
such that (6) or rather (7) are equal to zero for every δ < δ?.
Table I shows the values of the threshold δ? for different ring
orders m.

TABLE I
MAXIMAL NORMALIZED LEE WEIGHT δ? OVER Zm SUCH THAT P(F ) = 0

AS n −→∞, FOR SOME VALUES OF m COMPARED TO THE MAXIMAL
POSSIBLE NORMALIZED LEE WEIGHT r.

m 5 7 8 9 11 15 16 31 32 53

r 2 3 4 4 5 7 8 15 16 26

δ? 1.2 1.714 2 1.962 2.727 3.310 4 7.741 8 13.245

Observe from Table I that for m an odd prime power and for
δ? = (m2−1)/4m (i.e. the average Lee weight when choosing
an element uniformly from Zm [23]) the Lee weight of a vector
x ∈ Znm can never be reduced when multiplied by a nonzero
scalar. This fact can be established by observing that the
multiplication of a random variable X in Zm by a ∈ Zm \{0}
induces a permutation of the distribution. Moreover, if X is
distributed according to P ? with β > 0, the permutation that
maximizes E(wtL(aX)) is the identity, i.e., a = 1. On the
contrary, if β < 0, the identity permutation (a = 1) minimizes
E(wtL(aX)). The result follows by observing that β > 0
implies that the average Lee weight is δ < (m2 − 1)/4m.

Note that the same result follows for any m if a ∈ Z×m is a
unit modulo m. Moreover, if m is a power of 2, the threshold
is

δ? = m/4.

V. CONCLUSIONS

In this work we have introduced an algorithm for the
construction of error patterns over Znm of a fixed Lee weight.
The algorithm is efficient compared to straightforward ap-
proaches, which are more involved in terms of computation
and memory. The proposed algorithm is based on the idea of
subdividing the tasks into subtasks, which are more or less easy
to solve. The procedure is dominated by the computation of
the distribution used to choose the underlying integer partition
of a vector’s Lee weight decomposition. For a fixed Lee weight
t, this distribution can be pre-computed. We have shown that
the presented algorithm draws a vector uniformly at random

among all vectors of the same length and Lee weight. This
property is important for cryptographic applications in the
context of Lee metric code-based cryptography in order to
avoid information leakage on the structure of the error pattern.
Additionally, the results on the constant-weight Lee channel
together with the random construction of sequences of fixed
Lee weight were used to derive the probability of reducing
the Lee weight of a vector over Znm when multiplying it
by a random nonzero element of Zm, for the limit case
where the sequence length grows large. An open problem is
to characterize this probability in the finite sequence length
regime.
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Abstract—The DNA storage channel is considered, where
each codeword is comprised of M unordered DNA molecules.
At reading time, the molecules are sampled N times with
replacement, and then sequenced. A coded-index concatenated-
coding scheme is proposed, in which the mth molecule of the
codeword is restricted to an inner code, unique for each index.
A low-complexity decoder is proposed that is based on separated
decoding of each molecule (inner code), followed by decoding the
sequence of molecules (outer code). Mild assumptions are made
on the sequencing channel, in the form of the existence of an inner
code and decoder with vanishing error probability. The error
probability of a random code for the storage system is analyzed
and shown to decay exponentially with N . This establishes the
importance of high coverage depth N/M for achieving low error
probability.

I. INTRODUCTION

Various authors have recently proposed and analyzed coding
methods for data storage systems based on a Deoxyribonucleic
acid (DNA) medium (see a survey in [1]). In this channel
model, information is stored in a pool of M DNA molecules,
where each molecule is comprised of two complementary
length-L strands of four nucleotides (Adenine, Cytosine, Gua-
nine, and Thymine). The M molecules cannot be spatially
ordered, and during reading, N molecules are independently
sampled from the DNA pool, with replacement. Then, each
of these sampled molecules is sequenced in order to obtain a
length-L vector describing the synthesized nucleotides, and the
N sequenced molecules is the channel output. Roughly speak-
ing, the impairments of this channel include: (1) Molecule
errors – e.g., the event in which some of the molecules are
not sampled at all (erased). (2) Symbol errors – modeled by
a channel W (L) which specifies the probability of sequencing
some L-symbol vector conditioned that the information was
(possibly other) L symbols. In this paper, we propose a
random coding ensemble and a low-complexity decoder for
this channel model, and analyze the average error probability.

In terms of fundamental limits, it was the capacity of such
a channel which was first addressed [1], with the general con-
clusion that the capacity is positive only when L = β logM ,
with β > 1. Under this scaling, [1]–[4], have derived bounds
on the capacity, assuming a constant coverage depth N/M ,
and a discrete memoryless sequencing channel. In this paper,
we focus on a somewhat different model for the following

reasons: First, the tightest achievable bound for a discrete
memoryless channel (DMC) [4] require a computationally
intensive decoder, which is difficult to implement in practice.
Second, in practice, the sequencing channel is not a DMC, and
may include deletions and insertions [5], or constraints on the
codeword symbols [6], [7]. Third, as was also established in
[4], the error probability is dominated by molecule errors (era-
sures), and so the error probability decays as e−Θ(M) rather
than the e−Θ(ML) decay rate anticipated from a blocklength
of ML. This slow decay of the error probability is significant
for practical systems of finite blocklength.

Accordingly, and following [2], in this paper, we theoret-
ically analyze the error probability of a simple, yet general,
coding method. The scheme follows a practical approach [8]–
[11] in which the lack of order of the molecules is resolved
by an index. The simplest version of indexing-based schemes
uses the first log2M bits of each DNA molecule to specify
its index m ∈ [M ], and is capacity achieving for noiseless
sequencing channels, despite its rate loss of 1/β, which seems
to be inevitable [1], [3], [4], [12], [13]. Nonetheless, if the
payload bits (the last (β − 1) log2M bits of the molecule)
are arbitrary, then an erroneous ordering of the molecules can
be caused by a single channel bit flip. This motivates us to
consider in this paper coded-indexing based schemes for noisy
sequencing channels. In such a scheme, the possible molecules
of the codeword are chosen from a inner code – a sub-code
B(L) ⊂ XL of all possible molecules. Moreover, this inner
code is further partitioned into M equal size sub-codes B(L)

m

so that the mth molecule of a codeword is chosen only from
B(L)
m . The inner code B(L) thus also protects the index from

sequencing errors. An outer code then specifies the valid sets
of molecules.

Our proposed decoder is based on a decoder for the inner
code B(L), which is used to independently decode each of
the N sequenced molecules to a sequence in B(L). Since
the decoder operates on a molecule-by-molecule basis, future
design of codes based on this scheme is a feasible goal (L is
typically on the order of 102−103), and is much simpler than
the decoder of [4] (the clustering-based decoder [12] also has
a low complexity of Θ(N), but there are no guarantees on the
decay rate of the error probability). A decoder for the outer
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code is then used to resolve molecule erasures and undetected
errors. Hence, the proposed coded-index based scheme is
practically oriented, and its analysis is general, in the sense
that very little is assumed on the sequencing channel. It is only
required that a decoder for the inner code exists whose error
probability decays to zero with increasing L. This addresses
the first two issues raised above.

Regarding the third issue, as explained in [4], for fixed
coverage depth (N = αM for some fixed α > 1) the slow
e−Θ(M) decay rate of the error probability is the result of
molecule errors (erasures), rather than sequencing errors. So,
apparently, faster decay rate is only possible by increasing
N . In accordance, we consider in this paper the scaling
N = αMM , where αM is (possibly) an increasing function
of M (though rather slowly). Our main result is a single-
letter upper bound on the error probability which decays
as e−Θ(N), achieved by a coded-index based scheme. An
important consequence of this result is that operating at a
large coverage depth N/M is of importance for low error
probability. This is in opposed to capacity analysis, for which
large N/M only provides marginal capacity gains [1, Sec. I].
We remark that our scheme is not capacity achieving under
the DMC and fixed α model studied in [1]–[4], as it does
not exploit multiple observations of the same molecule to
increase the rate. However, the rate loss is small for sequencing
channels which are fairly clean, as multiple observations only
marginally increase the capacity in this case. Anyway, adapting
our scheme to achieve capacity is an important open problem.

Previously, [12] has considered an (explicit) coded-indexing
and concatenated coding scheme, whose decoder is based on
(hard) output clustering, and so is mainly tailored to the binary
symmetric channel. As described above, we consider here
general sequencing channels, and focus on error probability
analysis and simple decoding (see [14] for a detailed compar-
ison with this, as well as with additional related work [15]). In
our context, the conclusion is that the loss is more profound
for small β. The rest of the paper is organized as follows. In
Sec. II we establish notation conventions, formulate the DNA
storage channel and coded-index based systems. In Sec. III
we state our main result, and in Sec. IV we outline the proof.
All proofs and further results and discussions are available in
a full version of the paper [14]).

II. PROBLEM FORMULATION

We begin with notation conventions. Random variables will
be denoted by capital letters, specific values they may take
will be denoted by the corresponding lower case letters, and
their alphabets will be denoted by calligraphic letters. Random
vectors and their realizations will be super-scripted by their
dimension. The probability of the event E will be denoted
by P(E), and its indicator function will be denoted by 1(E).
The expectation operator will be denoted by E[·]. Logarithms
and exponents will be understood to be taken to the natural
base. The binary Kullback–Leibler (KL) divergence db: [0, 1]×
(0, 1) → R+ by db(a||b) := a log a

b + (1 − a) log (1−a)
(1−b) . The

number of distinct elements of a finite multiset A will be

denoted by |A|. The equivalence relation will be denoted by
≡, and will mainly be used to simplify notation. Asymptotic
Bachmann–Landau notation will be used. For a positive integer
N we will denote [N ] := {0, 1, . . . , N − 1}, where scalar
multiplications of these sets will be used, e.g., as 1

N [N +1] =
{0, 1

N , . . .
N−1
N , 1}.

Next, we formulate a sequence of channels, encoders and
decoders for the DNA storage channel, indexed by M , the
number of molecules in a codeword.

The channel model (reading mechanism): A DNA
molecule is a sequence of L ≡ LM ∈ N+ nucleotides
(symbols) chosen from an arbitrary alphabet X (in physical
systems X = {A,C,G,T}, and in some previous works
[1]–[3] a binary alphabet X = {0, 1} was assumed for
simplicity). Thus, each molecule is uniquely represented by
a sequence xL ∈ XL. An input to the DNA channel is a
sequence of M molecules, xLM = (xL0 , . . . x

L
M−1) where

xLm ∈ XL for all m ∈ [M ]. A message is synthesized
into a sequence of M molecules, xLM . The DNA storage
channel model is determined by the number of molecule
samples N ≡ NM ∈ N+, and by the sequencing channel
W (L):XL → YL. The operation of the channel on the stored
codeword is modeled as a two-stage process:

1) Sampling: N molecules are sampled uniformly from
the M molecules of xLM , independently, with replacement.
Let UN ∼ Uniform([M ]N ) be such that Un is the sampled
molecule at sampling event n ∈ [N ]. The result of the
sampling stage is the vector (xLU0

, xLU1
, . . . , xLUN−1

) ∈ (XL)N .
We also denote by Sm the number of times that molecule m
was sampled, to wit Sm =

∑
n∈[N ] 1{Un = m}, the empirical

count of UN . It then holds that SM = (S0, . . . , SM−1) ∼
Multinomial(N ; ( 1

M , 1
M , . . . 1

M )).
2) Sequencing: For each n ∈ [N ], xLUn is sequenced to

Y Ln ∈ YL, where the sequencing of xLUn is independent
for all n ∈ [N ]. Denoting the channel output by Y LN =
(Y L0 , . . . , Y

L
N−1) ∈ (YL)N it thus holds that

P
[
Y LN = yLN | xLM , UN

]
=
∏

n∈[N ]

W (L)
(
yLn | xLUn

)
.

(1)
We make the following assumptions on the channel: (1) L ≡
LM = β logM where β > 1 is the molecule length parameter.
(2) N/M where α ≡ αM > 1 is the coverage depth scaling
function.

The encoder: A codebook is a set of different possi-
ble codewords C = {xLM (j)}. We propose the following
restricted set of coded-index based codebooks:

Definition 1. Let {B(L)
m }m∈[M ] be a collection of pairwise

disjoint sets B(L)
m ⊂ XL of equal cardinality, and let B(L) :=

∪m∈[M ]B(L)
m be their union. A DNA storage codebook is said

to be a coded-index based codebook if xLm(j) ∈ B(L)
m for all

m ∈ [M ] and all j ∈ [|C|].
To wit, a codeword contains exactly a single molecule from

each of the M sets {B(L)
m }m∈[M ]. The identity of the set from
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which xLm(j) was chosen from is considered an “index” of the
molecule that is used by the decoder to order the molecules
that has been decoded. A coded-index based codebook, can
be thought of as a concatenated code. The set B(L) is an
inner-code, which is used to clean the output molecules from
sequencing errors, and the dependency between molecules of
different index m can be considered an outer-code which is
used to cope with erasures (mainly due to the sampling stage).

The decoder: A general decoder is a mapping
D: (YL)N → [|C|]. We propose the following class of de-
coders, which are suitable for coded-index based codebooks. A
decoder from this class is equipped with an inner-code decoder
Db:YL → B(L), and a threshold T ∈ R+, and decodes the
channel output yLN in three steps:

1) Correction of individual molecules: The decoder em-
ploys the inner-code decoder for each of the received
molecules yLn , for each n ∈ [N ], and set zLn = Db(y

L
n ).

Following this stage, it holds that zLN = (zL0 , . . . , z
L
N−1) is

such that zLn ∈ B(L) for all n ∈ [N ].
2) Threshold for each index: For each index m ∈ [M ], if

there exists a bL ∈ B(L)
m such that

∑

n∈[N ]

1{zLn = bL} ≥ T > max
b̃L∈B(L)

m \{bLl }

∑

n∈[N ]

1{zLn = b̃L}

(2)
then the decoder sets x̂Lm = bL. That is, x̂Lm = bL if bL is
a unique molecule in B(L)

m whose number of appearances in
zLN is larger than T . Otherwise x̂Lm = e, where e is a symbol
representing an erasure.

3) Codeword decoding: Let

j∗ = arg min
j∈[|C|]

ρ(x̂LM , xLM (j)) (3)

where (with a slight abuse of notation)

ρ(x̂L, xL) :=

{
1{x̂L 6= xL}, x̂L 6= e

0, x̂L = e
(4)

and ρ(x̂LM , xLM ) :=
∑
m∈[M ] ρ(x̂Lm, x

L
m), which is a Ham-

ming distance with zero contribution in case of erasures.
The DNA storage channel is thus indexed by M and param-
eterized by (αM , β, {W (L)}L∈N+

). The (storage) rate of the
codebook C is given by R = log|C|

ML , and the error probability
of D given that xLM (j) ∈ C was stored is given by

pe(C,D | xLM (j)) := P
[
D(y) 6= j | xLM (j)

]
. (5)

Let ψM :N+ → N+ be a monotonic strictly increasing
sequence. An error exponent E(R) w.r.t. scaling ψM is
achievable for channel DNA at rate R, if there exists a
sequence {CM ,DM}M∈N+

so that the average error probability
is bounded as

− log


 1

|CM |
∑

j∈[|CM |]
pe(CM ,DM | xLM (j))




≥ ψM · E(R)− o(ψM ). (6)

In this paper, we will obtain single-letter expressions for
error exponents achieved under coded-index codebook and the
class of decoders defined above. Throughout, we only make
the following assumptions on the sequencing channel: 1) Inner
code rate: Rb := 1

L log|B(L)|> 1/β. 2) Vanishing inner code
(maximal) error probability:

peb(B(L)) := max
bL∈B(L)

W (L)
[
Db(y

L) 6= bL | bL
]

= o(1). (7)

As |B(L)
m |= eRbL

M = exp[Rbβ logM ]
exp[logM ] , the assumption on Rb

assures that B(L)
m is not empty. The assumption on the er-

ror probability assures that the error probability at the first
decoding step tends to zero as L = β logM → ∞. Thus, if
the sequencing channel W (L) has capacity C(W (L)) (with
rate normalized to single symbol), then it must hold that
Rb ≤ C(W (L)). For example, for sequencing DMC, the error
probability decays as e−E(Rb)·L, where E(Rb) is the error ex-
ponent. For general sequencing channels, the decay rate could
be slower even for optimal codes. Thus, for concreteness, we
set peb(B(L)) = e−Θ(Lζ), where ζ > 0, and as we shall see,
ζ will not affect the achievable exponent of the DNA storage
system. Therefore, even sub-optimal codes can be used, for
example, polar codes, whose error scales as e−Θ(

√
N) for

standard DMCs [16], and of e−Θ(N1/3) for channel which
include insertions, deletions, and substitutions [17].

Our achievable error exponent will be based on the follow-
ing coded-index based random coding ensemble:

Definition 2. Following Definition 1, let C = {XLM (j)} be a
random coded such that XL

m(j) is chosen uniformly at random
from B(L)

m independently for all m ∈ [M ] and all j ∈ [|C|].

III. MAIN RESULT

Our main result is as follows:

Theorem 3. Let an inner code B(L) ⊂ XL, and let Db be a
decoder which satisfy the assumptions on the inner code (Rb >
1/β, peb(B(L)) = e−Θ(Lζ)). Then, there exists a sequence of
codebooks {CM} and corresponding threshold-based decoders
{DM} (as described in Sec. II) so that the following holds: If
N/M = Θ(1) then for any R < (Rb − 1/β)(1− e− N

M ),

− log pe(CM ,DM )

≥M · db
(

1− R

Rb − 1/β

∣∣∣∣
∣∣∣∣ e−

N
M

)
−O

(
M

logM

)
. (8)

If N/M = ω(1) then for any R < Rb − 1/β,

− log pe(CM ,DM ) ≥ N

2

[
1− R

Rb − 1/β

]
−O(M) (9)

if N
ML < 2(Rb − 1/β), and

− log pe(CM ,DM ) ≥ML [Rb − 1/β −R]−O
(

N

logM

)

(10)
if 2(Rb − 1/β) ≤ N

ML .
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Discussion:
1) The bound is not continuous in N (that is, there is

a phase transition), and a the behavior is different between
N = Θ(M) and N = ω(M). As stems from the proof, in
both regimes, the threshold is chosen as T ≡ TM = o(M).
This follows since the error probability of the inner code is
e−Θ(Lζ) = e−Θ(logζM), and so the number of erroneously
sequenced molecules is o(M), with an average of less than a
single erroneous molecule per index.

2) The result does not depend on ζ, the assumed scaling
of the inner code error probability (peb(B(L)) = e−Θ(Lζ)),
and manifests the fact that sampling events dominate the error
probability, compared to sequencing error events.

3) For the standard channel coding problem over DMCs
with blocklength N , the method of types leads to random
coding and expurgated bounds which tend to their asymptotic
values up to a O((logN)/N) term (this can be avoided for
Gallager’s method [18, Ch. 5], see also [19, Problem 10.33]).
Here, it is evident that the decay is much slower, and could
be as slow as O(1/logM). As discussed in [4, Sec. VII] this
seems to be an inherent property of this channel.

4) Proving tightness of Theorem 3 is challenging, even for
optimal decoders. The main difficulty is in the Poissonization
of the multinomial effect which is used to upper bound the
large-deviations behavior of the number of under-sampled
number of molecules in Lemma 4 to follow (as proposed in [1],
[12]). This upper bound is tight at the center of the multinomial
distribution, but may be loose at its tails. Developing lower
bounds on the error probability is thus an open problem.

5) An expurgated bound is also proved in [14], which im-
proves the error probability at the regime N

ML > 4(Rb−1/β).

IV. MAIN STEPS OF THE PROOF

The proof begins by analyzing the probability of channel-
related events, and specifically, the event in which some of
the molecules are not sampled enough times, or the event
of excessive number of sequencing errors. Let the threshold
T ≡ Tτ := N

M (1 −
√

2τ) of the decoder D be parameterized
by a parameter τ ∈ (0, 1/2). In coded-index based coding,
each codeword xLM (j) contains exactly a single molecule
from each of the sub-codes B(L)

m , and the molecule xLm(j)
is sampled Sm times. Let Km ∈ [Sm + 1] be the number
of copies of the molecule xLm(j) that have been erroneously
sequenced, let K :=

∑
m∈[M ]Km ∈ [N + 1] be the total

number of molecules which have been erroneously sequenced,
and let Vm ∈ [K + 1] be the number of molecules xLm′(j) for
m′ ∈ [M ]\{m} which have been erroneously sequenced to
have index m. Note that

∑
m∈[M ] Vm = K holds too. The

event in which the molecule xLm was not decoded correctly in
the second stage of the operation of the decoder is included
in a union of the following events:

1) Sm < Tτ , that is, the molecule have not been sampled
enough times in the sampling stage.

2) Sm ≥ Tτ yet Sm−Km < Tτ , that is, the molecule have
been sampled enough times in the sampling stage step, but Km

sequencing errors have caused the number of appearances of
xLm(j) to drop below the threshold T .

3) Vm ≥ Tτ , that is, there are more than T molecules with
index m, which are not the correct molecule xLm(j).
On the face of it, the event Vm ≥ Tτ can lead to a crude upper
bound, since the Vm molecules which are erroneously mapped
to index m are not likely to be the exact same molecule in
B(L)
m . However, a more precise analysis of this event would

require making assumptions on the structure of the sub-codes
{B(L)

m }, which we avoid here altogether.
Corresponding to these events, we define the following sets:

Mσ := {m ∈ [M ]:Sm < Tτ} (11)
Mκ := {m ∈ [M ]:Sm ≥ Tτ , Sm −Km < Tτ} (12)
Mν := {m ∈ [M ]:Vm ≥ Tτ} , (13)

The next lemma addresses the cardinality of Mσ:

Lemma 4. Let xLM (j) be a codeword from a coded-index
codebook. Let S̃ ∼ Pois(N/M) and

ϕτ := − 1

N/M
logP

[
S̃ ≤ Tτ

]
. (14)

If N/M = Θ(1) then

P
[
|Mσ|≥ σM | xLM (j)

]
≤ 3 ·exp

[
−M · db

(
σ
∣∣∣
∣∣∣ e−ϕτ NM

)]

(15)
for σ ∈ (e−ϕτ

N
M , 1]. If N/M = ω(1) then

P
[
|Mσ|≥ σM | xLM (j)

]
≤ 4e−στN (16)

for σ ∈ (e−τ
N
M , 1].

Proof outline: The empirical count vector SM follows
a multinomial distribution, whose components are depen-
dent. The proof utilizes the Poissonization of the multino-
mial distribution effect [20, Thm. 5.6]: If Ñ ∼ Pois(λ)
and S̃M ∼ Multinomial(Ñ , ( 1

M , . . . , 1
M )) conditioned on Ñ ,

then {S̃m}m∈[M ] are independent and identically distributed
(i.i.d.) S̃m ∼ Pois( λM ) (unconditioned on Ñ ). Let A ≡∑
m∈[M ] 1{Sm < Tτ} and Ã ≡ ∑m∈[M ] 1{S̃m < Tτ}. The

Poissonization effect is used to prove the upper bound (see
also [20, Exercise 5.14])

P [A ≥ σM ] ≤ 2 · (1 + o(1)) · P
[
Ã ≥ σM

]
, (17)

and as Ã is a sum of i.i.d. random variables {S̃m}, the right
probability is then evaluated by a standard Chernoff bound on
the binomial distribution.

The following lemma is used to bound the total number
of sequencing errors K, which, in turn, is used to bound the
cardinalities of Mκ and Mν :

Lemma 5. Let K be the total number of erroneously se-
quenced molecules. Let U ⊆ [M ]N be a sampling event, and
assume that peb(B(L)) = e−c·L

ζ

. Then, P[K ≥ κN | U ] ≤
e−c·κNL

ζ

for any κ ∈ (0, 1].

Proof outline: The proof is based on a Chernoff bound
over the N independent sequencing operations, for which the
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probability of error is at most e−c·L
ζ

. It requires, however, a
more refined argument, since the sequencing errors are not be
independent for a given codebook B(L).

The channel/decoder operation is more directly defined by
the set of erased molecules and the set of molecules with
undetected errors as

Me :=
{
m ∈ [M ]: x̂Lm = e

}
, (18)

Mu :=
{
m ∈ [M ]: x̂Lm 6= e, x̂Lm 6= xLm(j)

}
. (19)

Lemmas 4, and 5 are utilized to analyze the cardinality ofMe

and Mu. As it turns out, the dominating event is P[|Mσ|≥
σM ], to wit, the probability that the molecules have not been
amplified enough times, which is on the exponential order of
N , compared to the probability evaluated in Lemma 5 which
are on the exponential order of LN = Nβ logM .

Lemma 6. Consider a decoder D for a coded-index based
codebook. For the erasure set Me: If N/M = Θ(1) then

− logP [|Me|≥ θM ] ≥Mdb

(
θ||e−ϕτ NM

)
+ o(M) (20)

for all θ ∈ (e−ϕτ
N
M , 1]. If N/M = ω(1) then

− logP [|Me|≥ θM ] ≥ θτN · [1 + o(1)] (21)

for all θ ∈ (e−τ
N
M , 1]. For the undetected error set Mu:

− logP [|Mu|≥ θM ] ≥ c · (1−
√

2τ)θNLζ . (22)

Proof outline: By deriving relations between K and
|Mκ|, |Mν |, and then between these sets and |Mσ|, to |Me|
and |Mu|, and utilizing Lemmas 4 and 5.

Thus, as apparent from Lemma 6, and as discussed in
the introduction, for coded-index based codebooks, the type
of decoders, and the analysis in this paper, the effect of
sequencing errors is much less profound compared to erasures.

The random coding analysis is based on the following
lemma, which bounds the probability that an erroneous code-
word will be decoded, conditioned on a given number of
channel erasures and undetected errors.

Lemma 7. Let C be drawn from the coded-index based ran-
dom coding ensemble. Let XLM (0) = xLM (0) be arbitrary,
and let X̂LM be the output of the decoder conditioned on
the input xLM (0). Then, for θe, θu ∈ 1

M [M + 1] such that
θe + θu ≤ 1 and any j ∈ [|C|]\{0} it holds that

− 1

M
logP

[
ρ(X̂LM , XLM (j)) ≤ ρ(X̂LM , xLM (0))

∣∣∣∣∣ |Me|= θeM, |Mu|= θuM

]

≥ (Rbβ − 1)(1− θe − θu) logM −Θ(1). (23)

Proof outline: The proof is based on an argument
which counts the relative number of competing codewords
x̃LM in the coded-index based ensemble which have distance
ρ(X̂LM , x̃LM ) smaller than ρ(X̂LM , xLM (0)), followed by
an analysis of its asymptotic behavior with M .

The proof of Theorem 3 then follows from Lemma 7, by
conditioning over θe, θu, taking a clipped union bound over the
probability that one of the deMLRe− 1 competing codewords
causes an error, averaging over θe, θu via Lemma 6, and
analyzing the asymptotic behavior of the resulting expressions
for the different regimes of αM = N/M .
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Abstract—We consider FrodoKEM, a lattice-based cryptosys-
tem based on LWE, and propose a new error correction mecha-
nism to improve its performance. Our encoder maps the secret
key block-wise into the Gosset lattice E8. We propose three sets
of parameters for our modified implementation. Thanks to the
improved error correction, the first implementation allows to
reduce the bandwidth by 7% by halving the modulus q; the
second outperforms FrodoKEM in terms of plausible security by
10 to 13 bits by increasing the error variance; and the third one
allows to increase the key size. In all cases, the decryption failure
probability is improved compared to the original FrodoKEM.
Unlike some previous works on error correction for lattice-based
protocols, we provide a rigorous error probability bound by
decomposing the error matrix into blocks with independent error
coefficients.

I. INTRODUCTION

Quantum computers pose a threat since they are capable of
breaking most of the cryptographic systems currently in use.
Post-quantum cryptography refers to cryptographic algorithms
believed to be secure against a cryptanalytic attack by a quan-
tum computer. Lattice-based cryptographic constructions are
particularly promising candidates for post-quantum cryptogra-
phy because they offer strong theoretical security guarantees
and can be implemented efficiently. Therefore, lattice-based
cryptosystems are considered a safe avenue for replacing the
currently used schemes based on RSA and the discrete loga-
rithm. As of now, NIST is assessing and standardizing PQC
algorithms. In the third round submissions, three of the four
finalists in the public-key encryption and key-establishment
algorithms are lattice-based schemes, along with the majority
of the alternate candidates.

One of the most widely used cryptographic primitives based
on lattices is the Learning With Errors problem (LWE), intro-
duced by Regev [1], who proved a worst-case to average-case
reduction from the shortest independent vector problem (SIVP)
to LWE. It can be used to build a variety of cryptographic
algorithms and provides guarantees in terms of IND-CPA
and IND-CCA security. Later works introduced structured
variants of LWE such as Ring-LWE [2] and Module-LWE [3]
which involve ideal lattices and module lattices respectively.
Their cryptographic applications are generally more efficient
compared to LWE. However, in principle the additional al-
gebraic structure might make these variants more vulnerable
to attacks. Although currently there are no specific known
attacks targeting Ring-LWE or Module-LWE, much progress

has been made in recent works to exploit the structure of ideal
lattices and module lattices to solve lattice problems [4]–[6].
Thus, although the Module-LWE based scheme Kyber [7] was
selected as a finalist for the NIST PQC standardization Round
3, the plain-LWE scheme FrodoKEM [8] was selected as an
alternate candidate which may provide longer-term security
guarantees since it is less susceptible to algebraic attacks. From
the NIST’s perspective, although FrodoKEM can be used in
the event that new cryptanalytic results targeting structured
lattices emerge, the first priority for standardization is a KEM
that would have acceptable performance across widely used
applications.

In this paper, we aim at improving the bandwidth efficiency
and/or security of FrodoKEM, or at increasing the key size,
through an enhanced error correction mechanism. We note
that although the current security estimate for FrodoKEM
against known attacks is greater than the brute-force security
(except for Frodo-1344), the plausible security [8, Section 5.2],
which takes into account possible improvements in sieving
algorithms, is not. Improving the plausible security would give
FrodoKEM better guarantees for long-term security.

A modification of FrodoKEM has been proposed in [9] using
Gray labeling and error correcting codes in order to improve
the performance. However, the decryption failure analysis in
[9] assumes that the coefficients of the error are independent.
Unfortunately this assumption does not hold for FrodoKEM,
and as shown in [10], it can lead to underestimating the
decryption failure by a large exponential factor.

In this work, we propose a different approach where en-
hanced error correction is obtained through lattice encoding
and decoding rather than using error-correcting codes. More
precisely, our encoder maps the secret key block-wise into the
Gosset lattice E8. Lattice codes were used in previous works
for Ring-LWE based cryptosystems, such as the reconciliation
mechanism based on the D̃4 lattice for NewHope [11]. Due
to its optimal density and low-complexity quantization, the
E8 lattice was already used in KCL [12], a first round NIST
candidate. In our previous work [13], the E8 lattice was
employed to improve the security of the Module-LWE based
candidate KyberKEM.

The choice of an 8-dimensional lattice encoder is well-suited
to the parameters of FrodoKEM. In fact, due to its particular
structure, the error matrix can be decomposed into 8 blocks of
8 independent components, which makes a rigorous decryption
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error analysis possible. The encryption function used by the
original FrodoKEM implicitly uses the cubic lattice Z64 ∼=(
Z8
)8

. Accordingly, switching from Z8 to E8 allows us to
improve the security or bandwidth. We propose three sets of
parameters for our modified implementation. Thanks to the
improved error correction, the first implementation allows to
reduce the bandwidth by 7% by halving the modulus q, the
second improves the security level by 10-13 bits by increasing
the error variance, and the third allows to generate 192 bits
from Frodo-640 instead of 128 bits, as well as 256-bit key
instead of 192 bits in Frodo-976, with comparable security
and error probability.

Organization: This paper is organized as follows. In sec-
tion II, we provide essential mathematical and cryptographic
background for our work, then we develop the proposed
modification for FrodoKEM in section III. Section IV gives
an upper bound for the decryption error probability for our
algorithm, while section V derives its security analysis. In the
last section, we show the improvements made with regard to
security, bandwidth and key size.

II. NOTATION AND PRELIMINARIES

a) Notation: Given a set A ⊆ Rn, |A| stands for its
cardinality. All vectors and matrices are denoted in bold. The
function sign(·) outputs 1 for positive real input (including
zero) and −1 for strictly negative one. For x ∈ Rn we
denote bxe to be the rounding function of each component
of x, where ±1/2 is rounded to 0. We also denote cxd
to be the same as bxe except that the worst component of
x - that furthest from an integer - is rounded the wrong
way. More formally, if i0 = argmax

i
|xi − bxie|, then cxdi=

bxie+ sign (xi) · sign (|xi| − b|xi|e) if i = i0 and cxdi= bxie
if not. A constant vector (α, . . . , α) ∈ Rn is denoted by α.
For a, b ∈ Z, the operation (a+b) mod 2 is simplified to a⊕b.

b) Lattice definitions and properties: An n-dimensional
lattice Λ is a discrete subgroup of Rn that can be defined as
the set of integer linear combinations of n linearly independent
vectors, called basis vectors. The closest lattice point to x ∈
Rn is denoted by CVPΛ(x), and the Voronoi region V (Λ) is
the set of all points x ∈ Rn for which CVPΛ(x) = 0. The
volume of a lattice, which is a lattice constant, is defined to be
the volume of its Voronoi region. The Voronoi relevant vectors
of Λ are the vectors λ ∈ Λ such that 〈x, λ〉 < ‖x‖2 for all
x ∈ Λ \ {0, λ}. The minimal distance of the lattice is defined
as λ1(Λ) := min

v ∈ Λ \ {0}
||v||.

c) The Gosset lattice: We introduce the 8-dimensional
lattice E8 [14, p.121] which will be used throughout this paper.
This lattice has a unit volume, and is generated by the rows
of the matrix

GE8
=




2 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

0 −1 1 0 0 0 0 0

0 0 −1 1 0 0 0 0

0 0 0 −1 1 0 0 0

0 0 0 0 −1 1 0 0

0 0 0 0 0 −1 1 0

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2




The Voronoi relevant vectors of E8 form two sets: VR1 which
contains the first type of the form (±12, 06), and VR2 which
contains (±0.58) as the second type. Note that |VR1| = 112
and |VR2| = 128, so that the total number of Voronoi relevant
vectors is 240.

d) Error distribution: The error distribution required
for the LWE problem defined in the next section
is ideally a Gaussian-like distribution. Let Dσ(x) =

1√
2πσ

exp
(
−‖x‖2/2σ2

)
denotes the probability density func-

tion of a zero-mean continuous Gaussian distribution with
variance σ. A rounded Gaussian distribution Ψσ is obtained
by rounding a sample from Dσ to the nearest integer.

As in the FrodoKEM specifications [8], we use a discrete
and symmetric distribution χ on Z, centered at zero and
with finite support {−s, . . . , s}, which approximates a rounded
Gaussian distribution. In our case, χ is generated for different
values of σ and the support {−s, . . . , s} depends on the
chosen σ value. In a more detailed manner, given the target
standard deviation σ, we first construct a function χ̃ on
{−s, . . . , s} ⊆ Z as follows:

∀i ∈ {−s, . . . , s}, χ̃(i) =
1

216

⌊
216 ·

∫

[i− 1
2 ,i+

1
2 ]
Dσ(x)dx

⌉
.

The distribution χ is obtained from χ̃ by making small changes
in the numerator values of χ̃(i) in order to obtain a probability
distribution (the whole sum ends up to be 1) The sampling
algorithm for such a distribution is given in [8, Algorithm
5], and it is resistant to cache and timing side-channels. The
distance between Ψσ and χ is measured according to the Rényi
divergence, which indicates how far a discrete distribution P
is from another distribution Q. More formally, for a given
positive order α 6= 1, the Rényi divergence between P and Q
is defined as

Dα(P ||Q) =
1

α− 1
ln


 ∑

x∈suppP

P (x)

(
P (x)

Q(x)

)α−1

 .

The Rényi divergence can be used to relate the probabil-
ities of an event according to P or Q [8, Lemma 5.5].
This justifies why replacing the rounded Gaussian with a
distribution which is close in Rényi divergence will preserve
the security reductions [8, Corollary 5.6]. We use the script
scripts/Renyi.py in [11] to compute the Rényi diver-
gence between our chosen distribution χ and the rounded
Gaussian.

e) LWE problem: The security of FrodoKEM and our
modified version is based on the hardness of the LWE problem
[1]. Let n and q be positive integers, and χ an error distribution
over Z. Take s to be a uniform vector in Znq . The problem
consists in distinguishing uniform samples (a, b) ← Znq × Zq
from (a, 〈a, s〉+ e), where a

$←− Znq is uniform and e
χ←− Zq .

We use a variant of the original LWE problem, for which
the secret s is sampled from χ rather than U . A polynomial
reduction to the original decision LWE is given in [15].
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f) FrodoPKE: This section presents the basic algorithm
of FrodoPKE [8], which can be transformed into an IND-
CCA secure KEM called FrodoKEM [8] using the Fujisaki-
Okamoto (FO) transform [16], keeping the error probability
unchanged. FrodoPKE is designed to guarantee IND-CPA
security at three levels: Frodo-640, Frodo-976 and Frodo-
1344. The security of these levels matches the brute-force
security of AES-128, AES-192 and AES-256 respectively.
Each level is parameterized by an integer dimension n such
that n ≡ 0 mod 8, a variance σ and a discrete error dis-
tribution χFrodo which is close to the rounded Gaussian Ψσ

in Rényi divergence. The LWE modulus q in FrodoPKE is
either 214 or 215 depending on what level is adopted. A
sketch of the algorithm is given in Table I. Alice generates
A

$←− Zn×nq , then samples S,E← χn×n̄Frodo, computes the LWE
samples B = AS + E and outputs a public key (A,B).
Bob chooses S′,E′,E′′ ← χn̄×nFrodo, then computes the LWE
samples U = S′A+E′ and V = S′B+E′′. A message m in
{0, 1}` is generated unilaterally on Bob’s side and encoded into
Zn̄×n̄q using the function FRODO.ENCODE(·) [8, Algorithm
1]. Alice recovers m′ using the decoding mechanism [8,
Algorithm 2]. The two messages are the same except with
probability Pe = P{m′ 6= m}. The number of message bits
` ∈ {128, 192, 256} depends on the assigned security level.

Parameters: q; n ∈ {640, 976, 1344}; n̄ = 8

FrodoKEM’s distribution χFrodo

Alice (server) Bob (Client)
A

$←− Zn×n
q

S,E←− χn×n̄
Frodo S′,E′ ←− χn̄×n

Frodo ,

B := AS + E ∈ Zn×n̄
q

(A,B)−−−−→ E′′ ←− χn̄×n̄
Frodo

U := S′A + E′ ∈ Zn̄×n
q

V := S′B + E′′ ∈ Zn̄×n̄
q

m
$←− {0, 1}`

V′ := C−US ∈ Zn̄×n̄
q

(U,C)←−−−− C = V+FRODO.ENCODE(m)
m′ = FRODO.DECODE(V′)

TABLE I
SIMPLIFIED DESCRIPTION OF THE ORIGINAL FRODOPKE

III. PROPOSED MODIFICATION OF FRODOPKE

With the choice of parameter n̄ = 8 in FrodoKEM [8],
the message m ∈ {0, 1}` is encoded into a point of Z64

q .
In this section, we propose a modified version of FrodoPKE
where the encoder maps the key into a suitably scaled version
of the 64-dimensional lattice E8

8 , i.e. the product of 8 copies
of the Gosset lattice. Since E8 is the densest 8-dimensional
packing, this results in a more efficient encoding. Since all
integer operations in FrodoPKE are performed modulo q, we
identify the lattice points that are equivalent modulo qZ64.

Referring to Table I, the main adjustments are made for
the encryption and decryption algorithms FRODO.ENCODE(·)
and FRODO.DECODE(·) respectively. Following the approach
in [17], we search for a suitable scaling parameter β such
that qZ64 ⊆ (βE8)

8 ⊆ Z64, knowing that 2Z8 ⊆ E8 ⊆
1
2Z

8. Our aim is to define an encoding function from

{0, 1}` to (βE8)
8
/qZ64 ⊆ Z8×8. This function is one-

to-one if the number of points in (βE8)
8
/qZ64, which

is Vol
(
qZ64

)
/Vol

(
(βE8)8

)
, is greater than or equal to

2`. This condition is verified by setting β = q/2`/64 ∈
{q/4, q/8, q/16} for ` ∈ {128, 192, 256}.

The construction of the encoder is as follows. First, m ∈
{0, 1}` is partitioned into 8 substrings mi ∈ {0, 1}`/8, i =
0, .., 7. Each substring is mapped into βE8/qZ8 ⊆ Z8. For
simplification, each element in βE8/qZ8 is identified with the
corresponding coset leader in E8/2

`/64Z8. As an example,
for ` = 128, the value of β is q/4. Hence mapping 8 bits of
information into E8/2Z8 allows to map 16 bits into E8/4Z8.
Let f : {0, 1}8 −→ E8/2Z8 that maps b = [b1, b2, . . . , b8] ∈
{0, 1}8 as follows:




f(b) = [b1, . . . , b7,−1] ·GE8
mod 2 if b1 = 0 && b8 = 0

f(b) = [b1, . . . , b7, 0] ·GE8
mod 2 if b1 = 0 && b8 = 1

f(b) = [b1, . . . , b7, 1] ·GE8
mod 2 if b1 = 1 && b8 = 0

f(b) = [b1, . . . , b7, 2] ·GE8 mod 2 if b1 = 1 && b8 = 1

One can verify that f is a bijective function. We can map 16
bits into the quotient E8/4Z8 as follows: map the first 8 bits
into E8/2Z8, and the remaining ones into 2Z8/4Z8. This last
mapping is obtained by simply multiplying the input string by
2. This example can be extended to the cases ` = 192 and
` = 256 by considering the chain E8 ⊇ 2Z8 ⊇ 4Z8 ⊇ 8Z8 ⊇
16Z8. We denote the function that maps the remaining `/8−8
bits by g. The encoding function FRODO.ENCODE(·) can now
be changed to E8.ENCODE(·) as shown in Algorithm 1.

Algorithm 1 Gosset Lattice Encoding
1: function E8.ENCODE(m ∈ {0, 1}`)
2: mi : i=0,...,7 = (mi(`/8), . . . ,mi(`/8)+`/8−1) ∈ {0, 1} `8
3: Xi : i=0,...,7 = f(mi,0, . . . ,mi,7) ∈ E8/2Z8

4: X′i : i=0,...,7 = g(mi,8, . . . ,mi,`/8−1) ∈ 2Z8/2`/64Z8

5: Ri : i=0,...,7 = Xi + X′i ∈ E8/2
`/64Z8 ∼= βE8/qZ8

6: return Oi,j =
(
R(8−i+j) mod 8,j

)
0≤i≤7
0≤j≤7

Note that each substring mi is mapped into a vector in Z8,
which is encoded in a block

BLOCKi (O) = (Oi mod 8,0, . . . , Oi+7 mod 8,7) (1)

of 8 components of the output matrix O. Finally, E8.ENCODE
is a bijection from {0, 1}` to (βE8)

8
/qZ64.

The decoding algorithm E8.DECODE uses the CVPE8 algo-
rithm [18] presented in Algorithm 2 below.

Algorithm 2 Closest Vector Point in E8

1: function CVPE8 (x ∈ R8)
2: f = bxe ; g =cxd
3: y = (1⊕∑ fi) f + (1⊕∑ gi)g
4: f ′ = bx− 1

2e ; g′ =
⌋
x− 1

2

⌈

5: y′ = (1⊕∑ f ′i) f
′ + (1⊕∑ g′i)g

′ + 1
2

6: return argmin
y′′∈{y,y′}

‖x− y′′‖
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We describe the decoding protocol in Algorithm 3. It
concatenates the outputs of CVPE8 to form an element of
(βE8)

8
/qZ64. Since our lattice E8 is scaled by β, we use the

fact that CVPβE8 (x) = β · CVPE8

(
1
βx
)

.

Algorithm 3 Gosset Lattice Decoding
1: function E8.DECODE(N ∈ R8×8

q )

2: Yi : 1≤i≤8 = β · CVPE8

(
1
βBLOCKi(N)

)
mod q

3: Y = [Y1, . . . ,Y8] ∈ (βE8)
8
/qZ64

4: return m′ = E8.ENCODE−1 (Y) ∈ {0, 1}`

IV. RELIABILITY

In this section we aim to provide an upper bound for the
decryption error probability for our algorithm. Clearly, an error
occurs whenever the received message m′ differs from the
original one m, i.e., Pe = P {m 6= m′}. Following Table I,
the expression of V′ can be simplified as follows:

V′ = C−US = V + E8.ENCODE(m)− (S′A + E′)S

= S′ (AS + E) + E′′ + E8.ENCODE(m)− S′AS−E′S

= E8.ENCODE(m) + S′E + E′′ −E′S︸ ︷︷ ︸
E′′′

.

From this we can express the decoded message m′ as

m′ = E8.DECODE(V′)

= E8.DECODE (E8.ENCODE(m) + E′′′)

= m + E8.DECODE (E′′′) .

Each entry E′′′i,j in the matrix E′′′ is the sum of 2n products
of two independent samples from χ, adding to it another
independent sample also from χ:

∀ 0 ≤ i, j ≤ 7, E′′′i,j =
n−1∑

k=0

(
S′i,kEk,j − E′i,kSk,j

)
+ E′′i,j (2)

The distribution of E′′′i,j , denoted by χ′, can be efficiently com-
puted using the product of probability generating functions.
Due to equation (2), two entries of the matrix E′′′ which are
not on the same row or column are independent, and hence we
can extract 8 identically distributed blocks of 8 independent
coordinates from this error matrix, just as indicated in equation
(1). Decoding is correct whenever E8.DECODE (E′′′) = 0. For
this it is sufficient to have BLOCKk (E′′′) ∈ V (βE8) for all
k = 0, .., 7, i.e.,

〈BLOCKk (E′′′) ,v〉 < ‖v‖
2
2

2
, ∀v ∈ β (VR1 ∪ VR2) .

The error probability can thus be bounded by

Pe ≤
∑7

i=0
P
{
∃v1 ∈ VR1 : 〈BLOCKk

(
E′′′
)
,v1〉 ≥ β‖v1‖22/2

}

+
∑7

i=0
P
{
∃v2 ∈ VR2 : 〈BLOCKk

(
E′′′
)
,v2〉 ≥ β‖v2‖22/2

}
(3)

Since the error probability is independent of the choice
of Voronoi relevant vector for vectors of the same type
(because the distribution of each entry of E′′′ is symmetric,

centered at 0), without loss of generality we can choose
v1 = (1, 1, 0, 0, 0, 0, 0, 0) and v2 = (1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ).

This reduces the computations to just two cases. Choosing the
value of n and the modulus q, we can compute an upper bound
for the above expression for different values of σ. The R.H.S.
of equation (3) becomes:

8 · 112 · P
{
E′′′0,0 + E′′′1,1 ≥ β

}
+ 8 · 128 · P

{
E′′′0,0 + · · ·+ E′′′7,7 ≥ 2β

}
.

In order to upper bound Pe, we use the following.
Remark 1: A discrete distribution p taking values in Z is

unimodal with mode 0 if p(n + 1) ≤ p(n − 1) ∀n ≥ 0, and
p(n + 1) ≥ p(n) ∀n < 0. The convolution of two symmetric
discrete unimodal distributions is symmetric unimodal [19,
Theorem 4.7].

Since the distribution χ′ is symmetric unimodal, so are
the distributions χ′2, χ′4, χ′8 of the sum of two, four and
eight independent copies of E′′′i,j respectively. While χ′2 and
χ′4 can be calculated efficiently, the computation of χ′8
is slow. Thanks to unimodality, we can estimate the term
P
{
E′′′0,0 + · · ·+ E′′′7,7 ≥ 2β

}
by upper bounding χ′8 by a piece-

wise constant function.

V. SECURITY

a) IND-CPA security: Our scheme only modifies the
encoding and decoding functions, the choice of parameters q
and σ, and the error distribution. As shown in [8], the IND-
CPA security of FrodoPKE is upper bounded by the advantage
of the decision-LWE problem for the same parameters and
error distribution [Theorem 5.9, Theorem 5.10]. We note that
the security proof relies on the pseudorandomness of the
adversary’s observation (similarly to [20, Theorem 3.2]) and
thus the choice of encoding function has no effect on the
security level, which is only affected by the parameters and
error distribution. In terms of security against known attacks,
the best known bound is given by the BKZ attacks, which
involve both primal and dual attacks [21].

b) IND-CCA security: It was shown in [8] that applying
the Fujisaki-Okamoto transformation to the IND-CPA secure
protocol FrodoPKE yields an IND-CCA secure key encapsu-
lation mechanism FrodoKEM, even if they use different error
distributions, provided that the Rényi divergence between these
error distributions is small. In particular, FrodoKEM using the
finite support distribution χFrodo is IND-CCA secure provided
that the FrodoPKE protocol using a rounded Gaussian distri-
bution Ψσ is IND-CPA secure, and the classical IND-CCA
advantage Advind-cca can be upper bounded by [8, Equation
(3)] ∀α > 1:

qRO
|M|+

((
2·qRO+1
|M| + qRO · Pe + 3 · Advind-cpa

)
· et·Dα(P ||Q)

)1− 1
α

where qRO is the maximum number of oracle queries, |M| =
2` is the cardinality of the set of keys, and t = 2n(8+8)+64 is
the total number of samples (drawn from the error distribution
χ) used to generate E,S,E′,S′ and E′′ in Table I. In our case,
P = χ and Q is the rounded Gaussian Ψσ . The security loss
will be minimized by optimizing over the order α.
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VI. PERFORMANCE COMPARISON

In this section we show the performance of the proposed
modification of FrodoKEM. We propose three sets of parame-
ters: the first aims at improving the security level, the second
at reducing the bandwidth and the third at increasing the key
size. Note that for all sets of parameters, n and n̄ will remain
unchanged. The performance comparison is shown in Table II.
The security level refers to the primal and dual attack via the
FrodoKEM script pqsec.py with parameters n, σ, q.

a) Parameter set 1 - Reducing the bandwidth: For the
first set of parameters, we aim at reducing the bandwidth
while keeping the same security level. This is achieved by
reducing the modulus q by half, which in turn requires a
reduction in standard deviation σ in order to preserve a low
error probability1. Overall, the modulus to noise ratio of the
protocol is increased. Compared to the original FrodoKEM,
this allows to reduce the bandwidth by approximately 7% 2.

b) Parameter set 2 - Improving the security level: For
the second parameter set, we aim at increasing the plausible
security level3 while keeping the same bandwidth and a
similar error probability level as in the original FrodoKEM
protocol. To do so, we increase the variance σ while keeping
q unchanged. Note that we can increase σ because of the higher
error correction capability provided by our modified encoder.

c) Parameter set 3 - Increasing the key size: For the
last set of parameters, we aim to increase the key size for
Frodo-640 and Frodo-976 with comparable security and error
probability. We generate 192 bits from Frodo-640 instead of
128 bits, as well as 256-bit key instead of 192 bits in Frodo-
976. The modulus q remains unchanged.
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Optimal Simulation of Quantum Measurements via
the Likelihood POVMs

Arun Padakandla

Abstract—We provide a new and simplified proof of Winter’s
measurement compression [1] via likelihood POVMs. Secondly,
we provide an alternate proof of the central tool at the heart of
this theorem - the Quantum covering lemma - that does not rely
on the Ahlswede Winter’s operator Chernoff bound [2], thereby
requires only pairwise independence of the involved random
operators. We leverage these results to design structured POVMs
and prove their optimality in regards to communication rates.

I. INTRODUCTION

The design and analysis of quantum measurements play
a central role in both quantum information processing and
quantum physics. The outcome of a quantum measurement
being inherently random, a question of fundamental interest
[3], [4] is to quantify the amount of information it contains.
A series of works [5], [6] aimed at addressing this question
culminated in Winter’s measurement compression theorem [1].
Adopting a traditional information-theoretic modeling, Winter
provided an elegant and precise solution in the context of a
generic Positive Operator Valued Measurement (POVM).

Our motivation is to address the above question in a generic
scenario involving multiple centralized/distributed POVMs.
Suppose λ1, λ2, λ3 are three stochastically compatible POVMs
[7, Sec. 2.1.2]. Provided with the outcomes of (λ1, λ2), how
much additional information does the outcome of λ3 contain?
A second question of interest is to quantify the amount of
information contained in a distributed POVM λ1⊗λ2 operated
on a pair of distributed particles that are, in general entangled.
In this article, we take our first step towards addressing these
problems by providing a newer and much simplified proof of
Winter’s findings (Sec. III). We also demonstrate the generality
of these proof techniques in our study of ‘structured’ POVMs.

Firstly, we propose simulation of the original POVM with a
canonical class of likelihood POVMs that are much easier to
describe. While being the most natural for the problem at hand,
its performance analysis has remained elusive, leading Winter
and subsequent works to design and analyze more involved
POVMs. In fact, even the excellent tutorial-style exposition of
Wilde et. al. [4] and the more recent works [8] resort to the
latter involved POVMs. Our analysis of the likelihood POVMs
is based on the following crucial idea. Recognizing that the
outcome of the likelihood POVM on the original state has an
involved characterization that is not amenable for analysis, we
design a specific mixture of quantum states (Sec. III-B) as a
proxy for the original state. This mixture is so designed such
that the outcome of the likelihood POVM on it takes a simple
form (Sec. III-D). We are thus left with two questions. Does
the latter outcome closely approximate the outcome of the

original POVM on the original state? and does the proxy, i.e.,
the designed mixture, closely approximate the original state?
Identifying the right set of mathematical tools (Sec. III-C,
III-E), we reduce the above two conditions to instances of
the quantum covering lemma (QCL) [9, Chap. 17].

Our second contribution is a new proof of the QCL. Known
proofs of QCL are based on the Ahlswede and Winter’s
[2] operator Chernoff bound (OCB). The OCB requires that
the random operators be mutually independent. Its use for
the problem at hand precludes the simulation POVM to
have any additional structure. For example, relying on the
OCB simulation precludes proving optimality of a simulation
POVM with a ‘algebraic closure structure’ (Sec. IV). This
is because, if one picks a random POVM with an algebraic
structure, its operators are not mutually independent. Our
second contribution is a new proof (Lem. 1, Sec. III-E) of
the QCL that does not rely on the OCB and the underlying
concentration only requires pairwise independence. Building
on this we design - as an application of all our findings -
structured likelihood POVMs (Sec. IV) that simulate POVMs
with optimal communication costs (Thm. 2).

Winter’s finding [1] and the associated tools remain to be
a subject of continued interest. In addition to providing an
excellent exposition, Wilde et. al. [4] study single POVM
generalization of [1]. Anshu, Jain and Warsi [10] build on
their novel convex-split lemma (CSL) [11] to study the POVM
compression with side-information in the one-shot setting. The
recent work [12] provides a good account of the CSL and
QCL. More recently, Pradhan et. al. [8] study the problem of
distributed POVM compression using the Winter’s approach.
Our findings here has the potential to simplify the proofs
of the above works in the asymptotic IID setting. Enlarged
descriptions, detailed steps and complete proofs of our results
can be found in [13].

II. PRELIMINARIES AND PROBLEM STATEMENT

Notation : We supplement standard quantum information
theory notation with the following. For a positive integer n,
we let [n] =∆ {1, · · · , n}, [n] =∆ {0} ∪ [n]. All Hilbert spaces
are assumed to be finite dimensional. L(H), R(H), P(H),
D(H) denote the collection of linear, Hermitian, positive and
density operators acting on Hilbert space H respectively. For
s ∈ D(HA), |φs〉 ∈ HX ⊗ HA, with HX = HA, denotes a
purification of s, i.e., 〈φs|φs〉 = 1 and trX(|φs〉〈φs|) = s.

POVMs will play a central role in this article. M (H,Y)
denotes the set of all POVMs acting on H with outcomes in
Y . Often times, we denote a POVM λ = {λy ∈ P(H) :
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y ∈ Y} ∈ M (H,Y) by adding the outcome set as a
subscript, as in λY = λ. For POVM λ = {λy : y ∈ Y},
λ⊗n =∆ {λyn =∆ λy1⊗· · ·⊗λyn : yn ∈ Yn}. To reduce clutter,
we let λn = λYn = λ⊗n denote the same object. Associated
with a POVM λ = {λy : y ∈ Y} is a Hilbert space HY =∆

span{|y〉 : y ∈ Y} with 〈ŷ|y〉 = δŷy and the CPTP map E λ :
L(H) → L(HY), defined as E λ(s) =

∑
y∈Y tr(sλy) |y〉〈y|.

For a stochastic matrix (pY |W (y|w) : (w, y) ∈ W × Y),
we let E

Y |W
p : L(HW) → L(HY) denote the CPTP map

E
Y |W
p (a) =∆

∑
(w,y)∈W×Y pY |W (y|w) |y〉〈w| a |w〉〈y|. The

composition of CPTP maps L(HA)
E1→ HB , L(HB)

E2→
HC is denoted E2 ◦ E1. For an ensemble ρw ∈ D(H) :
w ∈ W with PMF pW (·) on W , χ(ρw; pW (w) : W) =∆

S(
∑
w∈W pW (w)ρw)−∑w∈W pW (w)S(ρw) denotes Holevo

information. SCD, WHP abbreviate spectral decomposition
and with high probability.

Problem Description: Let Hilbert space HA have dimension
dA. Let ρ ∈ D(HA) model the behaviour of a given sub-
atomic particle and λ =∆ λY =∆ {λy ∈ P(HA) : y ∈ Y} denote
a given POVM. We follow [1], [4] in modelling the following
question. Suppose a measurement modeled via POVM λY is
performed on the particle ρ ∈ D(HA), what fraction of the
randomness in the outcome is ‘intrinsic’ to the particle ρ, and
what fraction is ‘extrinsic’, or unrelated to ρ? To quantify this,
we design an ‘alternate n−letter measurement’ - a simulated
POVM - that is supplemented with an independent source
of common randomness of C bits/letter (Fig. 1) available
at both terminals. These C bits of common randomness are
statistically independent of the particle and are available to (i)
design this simulated POVM and (ii) postprocess its outcome
to simulate the outcome of the original POVM λY on ρ. We
require the outcome of the simulated POVM - both the post
measurement particle and the observed outcome Y n ∈ Yn -
to be statistically indistinguishable from that of the original
POVM λY . Enforcing this, we aim to quantify the minimum
rate R bits/letter that enables Bob reconstruct the classical
outcome. Characterizing all possible (R,C) pairs enables
us quantify the trade-off between intrinsic information and
extrinsic randomness contained in the outcome of POVM λY .

The above stated requirement is specified in terms of
demanding that the combined operators of the reference and
outcome post measurement of both the original POVM λ⊗nY
and the simulated one are statistically ‘close’. Adopting trace
distance to quantify ‘closeness’ we are led to the following.

Defn. 1. Suppose ρ ∈ D(HA), HX = HA and λ ∈
M (HA,Y) is a POVM. A sequence Ξ(n) ∈ M (H⊗nA ,Yn) :
n ≥ 1 of POVMs simulates λ on ρ if for all η > 0, ∃
Nη ∈ N such that for all n ≥ Nη , we have ||αO−αsp||1 ≤ η,
where αO =∆ (i⊗nX ⊗ E λ⊗n)(

∣∣φρ⊗n
〉〈
φρ⊗n

∣∣) and αsp = (i⊗nX ⊗
E Ξ(n)

)(
∣∣φρ⊗n

〉〈
φρ⊗n

∣∣).

Since the simulated POVM can utilize independent random-
ness at both terminals, we let (i) ρ⊗nK =∆ 1

K

∑
k∈[K] ρ

⊗n ⊗
|k〉〈k| model its input state, (ii) design the simulated measure-

Encoder/Alice

POVM λY
Particle ρ

y

Classical outcome

1. Original Measurement

Post-POVM particle
Decoder/Bob

2. Simulated Measurement

POVM μW Particle ρ

C bits of shared
randomness

w

Classical outcome

Noiseless link

R bits
w Post

processing

Post-POVM particle

y

y

Noiseless link∞ bits

Fig. 1. Illustrates original and simulated POVMs. The components in the two
blue ellipses must be statistically indistinguishable.

ment to be of the form θ =∆ {θk,m ⊗ |k〉〈k| : (k,m) ∈ [K] ⊗
[M ]} ∈M (HAnK , [K]× [M ]), where HAnK =∆ H⊗nA ⊗HK ,
HK = span{|k〉 : k ∈ [K]} and

〈
k̂
∣∣∣k
〉

= δk̂k. Essentially,
the simulated POVM θ observes the common randomness k
and chooses to perform the POVM {θk,m : m ∈ [M ]} ∈
M (H⊗nA , [M ]) and hands over the nature provided common
randomness k and the POVM outcome m to the Dec. Denoting
S (HAnK , [KM ]) ⊆ M (HAnK , [K] × [M ]) as the set of
POVMs of the above form, we define the quantity of interest.

Defn. 2. The communication cost of a simulation POVM θ ∈
S (HAnK , [KM ]) is ( logK

n , logM
n ). POVM λY on ρ can be

simulated at a cost (C,R) if ∀η > 0, ∃Nη ∈ N, such that
∀n ≥ Nη , there exists a θ ∈ S (HAnK , [KM ]) and a POVM
∆Yn ∈M (HK⊗HM ,Yn) such that logK

n ≤ C+η, logM
n ≤

R+ η and ||αO − αS||1 ≤ η, where

αO =∆ (inX⊗ E λn)(
∣∣φρ⊗n

〉〈
φρ⊗n

∣∣), αS =∆ Esim(
∣∣∣φρ⊗nK

〉〈
φρ⊗nK

∣∣∣), (1)

Esim =∆ (inX⊗trK⊗iYn) ◦ (inX⊗iHK⊗E ∆)◦(inX⊗iHK⊗E θ), (2)

HX = HA, inX abbreviates the identity map i⊗nX on L(H⊗nX ).

A. Communication Cost of Simulating λY on ρ

Winter [1] derived an elegant computable characterization
for the communication cost of simulating λY on ρ for the case
when both terminals wish to possess outcome of the simulated
POVM. We state below Wilde et. al.’s [4] generalization for the
case when only Bob wishes to possess the simulated outcome.

Defn. 3. For ρ ∈D(HA) and λY ∈M (HA,Y), let C(ρ, λY) be
a collection of triples (W, µW , pY |W ) wherein (i)W is a finite
set, (ii) µW ∈M (HA,W) is a POVM, and (iii) (pY |W (y|w) :
(w, y) ∈ W × Y) is a stochastic matrix such that

trW{(iX⊗E pY |W)◦(iX⊗E µ)(|φρ〉〈φρ|)}=(iX⊗E λ)(|φρ〉〈φρ|). (3)

For (W, µW , pY |W ) ∈ C(ρ, λY), let pW (w) =∆ tr(ρµw),

βw =∆
√
ρµw
√
ρ

pW (w)
, γw =∆

∑

y∈Y
pY |W (y|w)βw ⊗ |y〉〈y| , (4)
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Let RC (W, µW , pY |W ) =∆ χ(γw, pW (w) : W) and
R(W, µW , pY |W ) =∆ χ(βw, pW (w) :W).

Remark 1. For (W, µW , pY |W ) ∈ C(ρ, λY), we note
trW{(iX⊗E pY |W)◦(iX⊗E µ)(|φρ〉〈φρ|)}=

∑
w∈W pW (w)γw,

(iX ⊗ E λ) =
∑

y∈Y

√
ρλy
√
ρ⊗ |y〉〈y| , and hence (5)

ρ=
∑

w∈W
pW (w)βw,

∑

y∈Y

√
ρλy
√
ρ⊗ |y〉〈y| =

∑

w∈W
pW (w)γw. (6)

Theorem 1. POVM λY on ρ can be simulated at a cost (C,R)
iff there exists (W, µW , pY |W ) ∈ C(ρ, λY) for which R >
R(W, µW , pY |W ) and R+ C > RC (W, µW , pY |W ).

III. PROOF VIA UNSTRUCTURED LIKELIHOOD POVMS

Our first contribution is a simplified proof of achievability
of Thm. 1 via unstructured POVMs.

A. Proof Setup : Notations, Definitions and Likelihood POVM

Our aim is to design a simulation POVM and charac-
terize conditions under which ||αO − αS||1 can be made
arbitrarily small. Choose (W, µW , pY |W ) ∈ C(ρ, λY). Let
c : [K] × [M ] → Wn be a map and let wn(k,m) =∆

(w(k,m)1,· · ·, w(k,m)n) =∆ (c(k,m)1,· · ·, c(k,m)n). We let
µk,m =∆ µc(k,m)1 ⊗· · · ⊗ µc(k,m)n ∈ P(H⊗nA ), ω =∆ ρ⊗n and

Sk =∆
M∑

m=1

√
ωµk,m

√
ω

tr(ωµk,m)
, θk,m =∆

S
− 1

2

k

√
ωµk,m

√
ωS
− 1

2

k

tr(ωµk,m)
, (7)

where S−
1
2

k , as is standard, is the square root of the generalized
inverse of Sk. We let θk,0 =∆ I⊗nHA−

∑M
m=1 θk,m for all k ∈ [K].

Since µW is a POVM, we have 0 ≤ µc(k,m)i ≤ IHA for i ∈
[n], and hence 0 ≤ µk,m ≤ I⊗nHA implying 0 ≤ θk,m ≤ I⊗nHA .
By definition, we have ensured

∑M
m=0 θk,m = I⊗nHA for all

k ∈ [K]. We let θ =∆ {θk,m =∆ θk,m ⊗ |k〉〈k| : (k,m) ∈
[K]× [M ]} ∈ S (HAnK , [KM ]) be our chosen POVM.

We choose ∆ =∆ ∆Yn =∆

{∆yn=∆
∑

(k,m)∈[K]×[M ]

|k m〉〈k m| pnY |W (yn|c(k,m)) : yn ∈ Yn} (8)

as the post-processing POVM employed by the Dec. It is
straight forward to verify ∆ ∈M (HK⊗HM ,Yn) is a POVM.

B. Key Steps Outlining the Proof

The non-commutativity of quantum operations has obfus-
cated the analysis of the above defined POVM, leading studies
[1], [4] including the more recent ones [8] to adopt an alternate
simulation POVM leading to much complexity. The crucial
idea is to study the outcome α of the likelihood POVM on a
mixture state σAnK instead of the original state ρ⊗nK . Towards
that end, for a ∈ [K], let

Ta =∆ Sa
M have SCD Ta =

∑dnA
t=1 νta |xta〉〈xta| , i.e., (9)

〈xta|xt̂a〉 = δt̂t and σAnK =∆ 1
K

∑
a∈[K] Ta ⊗ |a〉〈a| . (10)

In order to bound ||αO − αS||1 we define

α =∆ Esim(|φσAnK 〉〈φσAnK |). (11)

Recognizing that α above and αS in (1) are the result of
applying the same CPTP map - Esim in (2)- on two different
states provides us with the right clue. Indeed, we have
||αO − αS||1 ≤ ||αO − α||1 + ||α− αS||1
≤ ||αO − α||1 + || |φσAnK 〉〈φσAnK | −

∣∣∣φρ⊗nK
〉〈
φρ⊗nK

∣∣∣ ||1.(12)

from the Triangular inequality and the fact that CPTP maps
shrink the trace distance [9, Eq. 9.69]. Through the rest of
the proof, we analyze each of the terms in the RHS of (12).
In Sec. III-C, we analyze the second term where we leverage
an elegant bound that relates the distance between states and
their ‘canonical purifications’. In Sec. III-D, we evaluate the
RHS of (11) and thereby knock off the inconvenient outer
normalizing factors S−

1
2

k in θk,m defined in (7)!

C. Relating distance between states and their purifications
Since tracing over components decreases the trace distance,
||σAnK − ρ⊗nK ||1 ≤ || |φσAnK 〉〈φσAnK | −

∣∣∣φρ⊗nK
〉〈
φρ⊗nK

∣∣∣ ||1.
However, we need an inequality in the reverse. The choice of
the ‘canonical purification’ [1], [9, Pg. 166] enables us suitably
reverse the above inequality. Specifically, by leveraging the
relationship between fidelity and trace distance [9, Thm. 9.3.1]
and the specific form of the ‘canonical purification’, we have

|| |φσAnK〉〈φσAnK| −
∣∣∣φρ⊗nK

〉〈
φρ⊗nK

∣∣∣ ||1 ≤ 4 4

√
||σAnK − ρ⊗nK ||1(13)

from [1, App. A, Lem. 14]. RHS of (13) is dealt in Sec. III-E.
D. Characterizing α = Esim(|φσAnK 〉〈φσAnK |) and αO

In characterizing α, we ought to evolve |φσAnK 〉〈φσAnK |
through three CPTP maps that define Esim in (2). Refer-
ring to (9), (10), we consider the purification |φσAnK 〉 =∆∑dnA
t=1

∑
a∈[K]

√
K−1νta |xta a xta a〉. From definition of

E θ, we have (inX ⊗ iHK ⊗ E θ)(|φσAnK 〉〈φσAnK |) =

dnA∑

t=1

dnA∑

v=1

∑

a∈[K]

∑

b∈[K]

∑

k∈[K]

∑

m∈[M ]

K−1√νtaνvb |xta a〉〈xvb b|

tr(θk,m |xta〉〈xvb|) tr(|k〉〈k| |a〉〈b|) |k m〉〈k m|

=

dnA∑

t=1

dnA∑

v=1

∑

k∈[K]

∑

m∈[M ]

K−1√νtkνvk |xtk k〉〈xvk k|

〈xvk|θm,k|xtk〉 |k m〉〈k m| (14)

=

dnA∑

t=1

dnA∑

v=1

∑

k∈[K]

∑

m∈[M ]

K−1 |xtk k〉〈xvk k|

〈xvk
√
νvk|θm,k|

√
νtkxtk〉 |k m〉〈k m| (15)

=

dnA∑

t=1

dnA∑

v=1

∑

k∈[K]

∑

m∈[M ]

K−1 |xtk k〉〈xvk k|
〈
xvk
√
Tk

∣∣∣θm,k|
√
Tkxtk

〉
|k m〉〈k m| (16)

=
∑

k∈[K]

∑

m∈[M ]

(√
Tkθm,k

√
Tk
)t

K
⊗ |k〉〈k| ⊗ |k m〉〈k m|

=
1

KM

∑

k∈[K]

∑

m∈[M ]

(
√
ωµk,m

√
ω)
t

tr(ωµk,m)
⊗ |k〉〈k| ⊗ |k m〉〈k m|(17)
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where (15) follows from shifting scalars
√
νvk,
√
νtk, (16)

follows from spectral decomposition in (9), (10), (·)t denotes
operator transpose and (17) follows from definition of θm,k
and Tk in (7), (10) respectively. Next, we evolve the state in
RHS of (17) through the CPTP map (inX ⊗ iHK ⊗ E ∆)(·) to
yield the state

1

KM

∑

k∈[K]
m∈[M ]

∑

yn∈
Yn

pnY |W(yn|c(k,m))
(
√
ωµk,m

√
ω)
t

tr(ωµk,m)
⊗ |k yn〉〈k yn|,

where the above follows from defn. (8). Finally, evolving
above state through CPTP map (inX ⊗ trK ⊗E ∆)(·) yields

α =
1

KM

∑

(k,m,yn)∈
[K]×[M ]×Yn

pnY |W (yn|c(k,m))
(
√
ωµk,m

√
ω)
t

tr(ωµk,m)
⊗|yn〉〈yn|.(18)

An identical sequence of steps yields1

αO =
∑

yn∈Yn

(√
ωλyn

√
ω
)t ⊗ |yn〉〈yn| . (19)

E. A new proof of the quantum covering lemma

Substituting (18), (19) and (13) in the RHS of (12), we have

||αO − αS||1 ≤ ||αO − α||1 + 4 4

√
||σAnK − ρ⊗nK ||1. (20)

Collating definitions of Sk from (7), Tk from (9) into σAnK
in (10), recalling ρ⊗nK (found after Defn. 1), recognizing the
block diagonal structure of ρ⊗nK and σAnK , we have

||σAnK − ρ⊗nK ||1 =
1

K

K∑

k=1

||ρ⊗n − 1

M

M∑

m=1

√
ωµk,m

√
ω

tr(ωµk,m)
||1

=
1

K

K∑

k=1

||ρ⊗n − 1

M

M∑

m=1

βc(k,m)||1 (21)

from the definition of βw in (4) and βc(k,m) =∆ βc(k,m)1⊗· · ·⊗
βc(k,m)n . Analogously defining γc(k,m) =∆ γc(k,m)1 ⊗ · · · ⊗
γc(k,m)n , recognizing α = 1

KM

∑K
k=1

∑M
m=1 γc(k,m) from

(18) and αO =
(∑

w∈W pW (w)γw
)⊗n

from (6), (19), we have

||αO − α||1 = ||γ⊗n − 1

KM

∑

k,m

γc(k,m)||1. (22)

where we have let γ =
∑
w∈W pW (w)γw. Noting ρ =∑

w pW (w)βw, one recognizes similarity in the RHSs (21)
and (22). Indeed, they are instances of the following QCL [9,
Sec. 17.4]. In this article, we outline a new proof and refer
the reader to [13] for details.

Lemma 1. Suppose pX(·) is a PMF on a finite set X , sx ∈
D(H) : x ∈ X and s =

∑
x pX(x)sx ∈ D(H). Suppose the

2nR elements of A = (Xn(1), · · · , Xn(2nR)) are identically
distributed according to P(Xn(i) = xn) = pX(n)(xn) ∀xn ∈
Xn,∀i ∈ [2nR], and pairwise independent, then

EP
{
||s⊗n − s(A)||1

}
≤ exp

{
−n

2
(R− χ(sx; pX : X ))

}
(23)

1This is a standard computation and can be verified in [4, Proof of Lem. 4]

where s(A) =∆ 1
2nR

∑2nR

m=1 sXn(m). In particular, there exists
a map c : [2nR0 ]× [2nR1 ]→ Xn such that

1

2nR0

2nR0∑

k=1

||s⊗n − 1

2nR1

2nR1∑

m=1

sc(k,m)||1 ≤ 2−
nη
8 (24)

if R1 > χ(sx; pX : X ) + 2η.

Remark 2. Lem. 1 yields an achievability of Thm. 1 if one
chooses (i) R0 = logK

n , R1 = logM
n to bound (21) and (ii)

R0 = 0 and R1 = logKM
n to bound (22).

Outline of a Proof : Let sx =
∑
yγy|x

∣∣ey|x
〉〈
ey|x

∣∣ :

x ∈ X , s =
∑
y pY (y) |fy〉〈fy| be SCDs, πηxn =∆

πηxn,pXγY |X1xn∈Tδ(pX) be a conditional typical projector of
sxn and2 πη =∆ πηpY the (unconditional) typical projector of s.
For a = (xn(m) : m ∈ [2nR]), let

s(a) =∆
2nR∑

m=1

sxn(m)

2nR
, w(a) =∆

2nR∑

m=1

πηπηxn(m)sxn(m)π
η
xn(m)π

η

2nR

w=∆
∑

xn

pnX(xn)πηπηxnsxnπ
η
xnπ

η and note w=EP{w(A)}. (25)

Let s(A), w(A) be corresponding random quantities. The
quantity of interestEP{||s(A) − s⊗n||1} ≤ T1 + T2 + T3

where T1 = EP{||s(A) − w(A)||1}, T2 = EP{||w(A) −
w||1}, T3 = EP{||w−s⊗n||1}. T1, T3 are handled in a straight
forward sequence of arguments leveraging (i) properties of
typicality projectors, gentle operator lemma and the bound
||AB||1 ≤ ||A||1||B||∞. These steps can be verified at [9,
Sec. 17.4.3] or [13]. Analysis of the crucial term T2 is where
our proof differs. Taking a clue from Cuff’s [14, Lem. 19]
proof of classical covering, letting v(A) =∆ w(A)−EP{w(A)},
we have

T2 = EP [||v(A)||1] = EP [tr{
√

(v(A)†v(A)}] (26)

= tr{EP [
√

(v(A)†v(A)]} ≤ tr{
√
EP [(v(A)†v(A)]} (27)

where (26) follows from definition of trace, (27) from linearity
of trace and the operator concavity [15, Thm. 2.6] of the square
root function (a consequence of the Lowner-Heinz theorem
[15, Thm. 2.6]). As fleshed out in [13], the RHS of (27) can
be upper bounded as

tr{
√

EP [(v(A)†v(A)]} ≤ 2−
n
2 (R−χ(pX ;sx:X )), (28)

thus completing the outline of our proof here.

IV. SIMULATION VIA ALGEBRAICALLY CLOSED POVMS

We briefly revisit the simulated POVM in Sec. III. Alice
possesses POVM operators θ =∆ {θk,m : 1 ≤ K, 0 ≤ m ≤M}
and Bob has a corresponding table c =∆ {wn(k,m) : 1 ≤
K, 0 ≤ m ≤ M}. On observing (common) random bits k∗,
Alice performs POVM {θk∗,m : 0 ≤ m ≤ M}. Bob chooses
wn(k∗,m∗), where m∗ is the POVM outcome, and evolves
this through the stochastic matrix pnY |W (·|wn(k∗,m∗)). The

2Note that πηxn = 0 if xn is not typical
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question we ask in this section is whether the table c, and the
corresponding POVMs θ be endowed with certain algebraic
structure? Specifically, suppose W is a finite field or a group,
can the table c be chosen to be a coset of a linear code?

Optimal compression requires that each outcome wn(k,m)
is an equally likely POVM outcome, forcing the entries of the
table to be pW−typical, where, we recall pW (w) = tr(ρµw).
Requiring table entries to be algebraically closed forces us
to choose entries wn(k,m) that are not pW−typical. Non-
pw−typical outcomes are extremely rare lending the simula-
tion protocol sub-optimal (in terms of communication rates).

Does this imply that the table cannot have algebraic prop-
erties? There is one way to get around this obstacle. Can we
add redundant operators and corresponding table entries in
a controlled manner to guarantee algebraic closure, yet not
suffer on the communication and common randomness rate?
The idea is to enlarge the table into a third dimension. Let
ĉ : [K]× [M ]× [B]→Wn be a map,

Ŝk=∆
∑

(b,m)∈
[B]×[M ]

√
ωµk,m,b

√
ω

tr(ωµk,m,b)
, θ̂k,m,b =∆

Ŝ
− 1

2

k

√
ωµk,m,b

√
ωŜ
− 1

2

k

tr(ωµk,m,b)
, (29)

and θ̂ =∆ {θ̂k,m,b ⊗ |k〉〈k| : 1 ≤ k ≤ K, 1 ≤ m ≤ M, 1 ≤ b ≤
B} be a POVM. On observing random bits k∗, Alice performs
POVM θ̂k∗ =∆ {θk∗,m,b : 1 ≤ m ≤ M, 1 ≤ b ≤ B}. Only
the component m∗ of the outcome (m∗, b∗) is communicated
to Bob. If the table has the desired property that for each
(k,m) ∈ [K] × [M ], there is a unique index b∗(k,m) ∈ [B]
such that wn(k,m, b∗(k,m)) is pW−typical, then Bob can
evolve wn(k∗,m∗, b∗(k∗,m∗)) through the stochastic matrix
pnY |W (·|wn(k∗,m∗, b∗(k∗,m∗))) and simulate the POVM out-
come. Since the POVM outcome is pW−typical WHP, Bob’s
choice would indeed be the correct POVM outcome WHP.

This provides us with the clue. For simplicity, let us assume
W = F2 to be the binary field. In order to prove achievability
in Lem. 1, we picked entries of table c independently and
randomly with distribution pnW . Instead, suppose we let table
Ĉ to be range of a generator matrix G ∈ F(c+r+β)×n

2 whose
entries are picked uniformly independently from F2 = {0, 1},
then its range is a random linear code with uniform pairwise
independent codewords. Common randomness specifies c bits.
For each choice of these c bits, we build a POVM with 2r+β

operators. Only r of the (r+β) outcome bits is communicated
to Bob. Having been provided c + r bits, Bob looks for a
unique collection of β bits for which the corresponding entry
in Ĉ that is pW−typical. Since the entries of Ĉ are uniformly
distributed, the expected number of pW−typical codewords in
any collection of 2β entries is 2β |Tη(pW )|

2n = 2−n(1−H(pW )−β).
Therefore, so long as β < 1−H(pW ), it is natural to expect
that Bob will find just one pW−typical entry whose index
agrees with the c+ r bits he has been provided. This suggests
that, if we can enlarge our table by a factor not greater
than 2n(1−H(pW )) and prove a QCL analogous to Lem. 1,
but with entries of the table A uniformly chosen from Fn2 ,
instead of pnW , then we can perform POVM simulation with

an ‘algebraically closed POVM’. This is indeed true. A proof
of Lem. 2 is similar to proof of Lem. 1 and is provided in [13].
We follow this up with a final statement on the existence of
structured POVMs for simulation. See [13] for a proof.

Lemma 2. Suppose pX(·) is a PMF on a finite field X = Fq
of size q, sx ∈ D(H) : x ∈ X and s =

∑
x pX(x)sx ∈ D(H).

Suppose the qnR elements of A = (Xn(1), · · · , Xn(qnR)) are
uniformly distributed and pairwise independent, then

EU
{
||s⊗n − s(A)||1

}
≤ exp

{
−n[R−χ(sx;pX :X )−log q+H(pW )]

2

}

where s(A) =∆ 1
qnR

∑qnR

m=1 sXn(m). In particular, ∃ a map
c : [qnR0 ]× [qnR1 ]→ Xn whose range is a coset such that

1

qnR0

qnR0∑

k=1

||s⊗n − 1

qnR1

qnR1∑

m=1

sc(k,m)||1 ≤ 2−
nη
8 (30)

if R1 > χ(sx; pX : X ) + log q −H(pW ) + 2η.

Theorem 2. Let ρ ∈ D(HA), λY ∈ M (HA,Y) and (W =
Fq, µW , pY |W ) ∈ C(ρ, λY), where W = Fq is a finite
field with q elements. Suppose c + r + β > RC (W =
Fq, µW , pY |W ) + log q − H(pW ) and r + β > R(W =
Fq, µW , pY |W ) + log q −H(pW ), where pW (w) = tr(ρµw) :
w ∈ W , then there exists a ĉ : [qnc] × [qnr] × [qnβ ] → Wn

whose range is a coset for which the POVM θ̂ =∆ {θ̂k,m,b ⊗
|k〉〈k| : 1 ≤ k ≤ qnc, 1 ≤ m ≤ qnr, 1 ≤ b ≤ qnβ} defined
through (29) simulates POVM λY on ρ with communication
cost (RC (W, µW , pY |W ),R(W, µW , pY |W )).
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Abstract—Transmission of classical information over a quan-
tum state-dependent channel is considered, when the encoder
can measure channel side information (CSI) and is required
to mask information on the quantum channel state from the
decoder. In this quantum setting, it is essential to conceal the
CSI measurement as well. A regularized formula is derived for
the masking equivocation region, and a full characterization is
established for a class of measurement channels.

I. INTRODUCTION

Security and privacy are critical aspects in modern com-
munication systems [1]. The classical wiretap channel was
first introduced by Wyner [2] to model communication in the
presence of a passive eavesdropper. On the other hand, Merhav
and Shamai [3] introduced a different communication system
with the privacy requirement of masking. In this setting, the
sender transmits a sequence Xn over a memoryless state-
dependent channel pY |X,S , where the state sequence Sn has
a fixed memoryless distribution and is not affected by the
transmission. The transmitter of Xn is informed of Sn and is
required to send information to the receiver while limiting the
amount of information that the receiver can learn about Sn.
The masking setting can also be viewed as communication
with an untrusted party, where Alice wishes to send Bob a
limited amount of information, and keep the source hidden
[4, 5]. Related settings are also considered in [6–8].

The field of quantum information is rapidly evolving in
both practice and theory [9]. Communication through quantum
channels can be separated into different categories. For clas-
sical communication, the Holevo-Schumacher-Westmoreland
(HSW) Theorem provides a regularized (“multi-letter”) for-
mula for the capacity of a quantum channel [10, 11]. Although
calculation of such a formula is intractable in general, it
provides computable lower bounds, and there are special cases
where the capacity can be computed exactly.

Another scenario of interest is when Alice and Bob share
entanglement resources. While entanglement can be used to
produce shared randomness, it is a much more powerful aid
[12]. E.g., using super-dense coding, entanglement assistance
doubles the transmission rate of classical messages over a
noiseless qubit channel. The entanglement-assisted capacity of
a noisy quantum channel was fully characterized by Bennett
et al. [13] in terms of the quantum mutual information.

Boche et al. [14] addressed the classical-quantum channel
with channel state information (CSI) at the encoder. The
capacity was determined given causal CSI, and a regularized

formula was provided given non-causal CSI [14]. The first
author [15] extended the results to a quantum-quantum channel
with random parameters, and further considered communica-
tion over quantum channels with parameter estimation at the
receiver, given either strictly-causal, causal, or non-causal CSI
at the encoder, and without CSI as well. The entanglement-
assisted capacity of a quantum channel with non-causal CSI
was determined by Dupuis in [16], and with causal CSI in
[17]. Considering secure communication over the quantum
wiretap channel, Cai et al. [18] established a regularized
characterization of the secrecy capacity.

In quantum channel state masking, analogously to the
classical model, the channel state system C store undesired
quantum information which leaks to the receiver [3]. This
could model a leakage in the system of secret information,
or could stand for another transmission to another receiver
(Charlie), with a product state, out of our control, and which
is not intended to our receiver (Bob), and is therefore to
be concealed from him. Thus, the goal of the transmitter
(Alice) now is to try and mask this undesired information as
much as possible on the one hand, and to transmit reliable
independent information rate on the other. Masking can also
be viewed as a building block for cryptographic problems of
oblivious transfer of information and secure computation by
untrusting parties. In a recent paper by the authors [19], we
have considered a quantum state-dependent channel, when the
encoder has CSI and is required to mask information on the
quantum channel state from the decoder. We have established
a full characterization for the entanglement-assisted masking
equivocation region with maximally correlated channel state
systems, and a regularized formula for the quantum masking
region without assistance.

In this paper, we consider a similar model of a quantum
state-dependent channel NEA→B , when the encoder has CSI
and is required to mask information on the quantum channel
state from the decoder. We derive a regularized formula for
the classical masking region and establish full characterization
for a class of measurement channels. Here, however, the
communication task is to send classical information, while
there are no entanglement resources available to Alice and
Bob. Specifically, the channel state systems are in an entangled
state |ϕE0EC⟩⊗n. Alice wishes to send a classical message m.
To this end, she measures the CSI systems En

0 and obtains
an outcome V . Based on the measurement outcome, Alice
encodes the quantum state of the channel input systems An in
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0

V
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1
nI(B

n;CnV )ρ ≤ L

|φE0EC〉⊗n En

N DBn m̂

T

m An

F

Fig. 1. Coding for a quantum state-dependent channel NEA→B given state
information at the encoder and masking from the decoder. The quantum
systems of Alice and Bob are marked in red and blue, respectively. The
channel state systems En and Cn are marked in brown.

such a manner that limits the leakage-rate of Bob’s information
on Cn from Bn, while the systems En

0 and Cn are entangled
with the channel state systems En (see Figure 1).

The quantum model involves three channel state systems,
En, En

0 , and Cn, as opposed to the classical case [3] of a
single random parameter. The systems En

0 can be thought
of as part of the environment of both our transmitter and
the source of Cn, possibly entangled if they had previous
interaction, while En belong to the channel’s environment.
Another significant distinction from the classical case is that
the measurement can cause a collapse of the wave function,
hence correlations can be lost. Thereby, it is essential to
conceal the CSI observation as well. In the present model,
the leakage requirement involves both the masked system Cn

and the measurement outcome V . Those subtleties do not exist
in the classical problem.

The full manuscript with proofs can be found in [20].

II. DEFINITIONS AND RELATED WORK

A. Definitions

The quantum state of a system A is a density operator ρA
on the Hilbert space HA. A pure state |ψAB⟩ ∈ HA ⊗ HB

is called entangled if it cannot be expressed as a product
of states. Define the quantum entropy, conditional entropy,
and mutual information, by H(A)ρ ≜ −Tr[ρA log(ρA)],
H(A|B)ρ = H(AB)ρ − H(B)ρ, and I(A;B)ρ = H(A)ρ +
H(B)ρ −H(AB)ρ, respectively.

A quantum state-dependent channel is defined as a lin-
ear cptp map NEA→B . Both the channel state systems and
the quantum channel have a product form, |ϕEE0C⟩⊗n and
N⊗n

EA→B . Given CSI, the transmitter has access to En
0 . We

will consider a secrecy requirement that limits the information
that the receiver can obtain on Cn. We will also be interested
in the special case of a measurement channel, MEA→Y , i.e.
a channel with a classical output.

A (2nR, n) classical masking code with CSI at the encoder
consists of the following: A message set [1 : 2nR], assuming
2nR is an integer, an encoding measurement T ≡ {T v

En
0
}, on

the CSI system En
0 , an encoding map F : (m, v) 7→ ρAn , and

a decoding measurement D ≡ {Dm̂
Bn}.

Alice chooses a message m ∈ [1 : 2nR] uniformly
at random. She measures the CSI systems En

0 , which are
entangled with the channel state systems, using the mea-
surement set T , and obtains a measurement outcome v.
Then, Alice prepares the input state ρm,v

An = F(m, v), and
transmits the systems An over n channel uses of NEA→B .
See Figure 1. The average post-measurement input state is
ρ̄mCnEnV An =

∑
v TrEn

0

(
T v
En

0
ϕ⊗n
CEE0

)
⊗ |v⟩⟨v| ⊗ ρm,v

An , and

the output is ρmCnV Bn = N⊗n
EA→B(ρ̄

m
CnV EnAn). Bob receives

Bn and measures his estimate m̂ for the message. The average
probability of decoding error is

P (n)
e (F , T ,D) = 1

2nR

2nR∑

m=1

[1− Tr (Dm
BnρmBn)] (1)

and the masking leakage rate is defined as

ℓ(n)(F , T ,D) ≜ 1

n
I(CnV ;Bn)ρ. (2)

A (2nR, n, ε, L) masking code satisfies P (n)
e (F , T ,D) ≤ ε

and ℓ(n)(F , T ,D) ≤ L. A rate-leakage pair (R,L) is called
achievable if for every ε, δ > 0 and large n, there exists a
(2nR, n, ε, L+δ) masking code. The classical masking region
RCL(N ) is defined as the set of achievable pairs (R,L).

Notice that the leakage rate (2) includes Alice’s observation
V of the CSI systems.

B. Related Work
We briefly review known results for the case where there

is no masking requirement. First, consider a quantum channel
PA→B without a channel state. Define

χ(P) ≜ max
pX(x),|ϕx

A⟩
I(X;B)ρ (3)

with ρXB ≡
∑

x∈X pX(x)|x⟩⟨x| ⊗ P(|ϕxA⟩⟨ϕxA|) and |X | ≤
|HA|2. The formula above is sometimes referred to as the
Holevo information of the channel [21].
Theorem 1 (see [10, 11]). The classical capacity of a quantum
channel PA→B that does not depend on a channel state,
without a masking requirement, is given by

CCl(P,∞) = lim
n→∞

1

n
χ
(
P⊗n

)
.

A single-letter characterization is an open problem for a
general quantum channel. Although calculation of a regular-
ized formula is intractable in general, it provides a computable
lower bound, and there are special cases where the capacity
can be computed exactly [22].

Next, we move to a quantum state-dependent channel
NEA→B with CSI at the encoder, in the special case where
the state is a classical random parameter S ∼ q(s). Let

R(N ,∞) ≜ sup
pX|S(x|s),φx

A

[I(X;B)ρ − I(X;S)] (4)
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where the supremum is over the ensembles {pX|S , φx
A}, with

ρSXB ≡
∑
s,x
q(s)pX|S(x|s)|s, x⟩⟨s, x|⊗NSA→B(|s⟩⟨s|⊗φx

A).

Theorem 2 (see [23]). The classical capacity of a random-
parameter quantum channel (NSA→B , S ∼ q(s)), with CSI at
the encoder and without a masking requirement, is given by

CCl(N ,∞) = lim
n→∞

1

n
R
(
N⊗n,∞

)
.

III. MAIN RESULTS

We state our results on channel state masking for the
quantum state-dependent channelNEA→B . We establish a reg-
ularized formula for the classical masking region and capacity-
leakage function for the transmission of classical information
over NEA→B . For the special class of measurement channels,
we obtain a single-letter formula.

Define

RCl(N ) =
⋃{

(R,L) : 0 ≤ R ≤ I(X;B)ρ − I(X;S)
L ≥ I(CS;XB)ρ

}
(5)

where the union is over the POVMs {Λs
E0
}, the conditional

distributions pX|S , and the collections of input states φx
A, with

ρECSXA =
∑

s∈S

∑

x∈X
pX|S(x|s)·

TrE0
(Λs

E0
ϕE0EC)⊗ |s, x⟩⟨s, x| ⊗ φx

A (6)

and ρBCSX = NEA→B(ρEACSX). Our main result on chan-
nel state masking is given below.
Theorem 3.
1) The classical masking region of a quantum state-dependent

channel (NEA→B , |ϕEE0C⟩) with CSI at the encoder is
given by

RCl(N ) =

∞⋃

n=1

1

n
RCl(N⊗n).

2) For a measurement channel MEA→Y with a classical CSI
system E0 ≡ S,

RCl(M) =
⋃

pX|S , φx
A

{
(R,L) : 0 ≤ R ≤ I(X;Y )− I(X;S)

L ≥ I(CS;XY )ρ

}
.

We only give the proof outline for the direct part in
Section IV, while the full proof can be found in [20].
Remark 1. In [20, Appendix A], we show that the union
can be exhausted with cardinality |X | ≤ (|HA|2 + 1)|HE |,
using Fenchel-Eggleston-Carathéodory lemma and similar ar-
guments as in [23]. Hence, in principle, the region RCl(N )
is computable. Nevertheless, for a general quantum channel,
we have only obtained a regularized characterization. As
mentioned in Section II-B, a single-letter capacity formula is
an open problem, even without a channel state.

Equivalently, we can characterize the capacity-leakage func-
tion. The following corollary is an immediate consequence.

Corollary 4.
1) The classical capacity-leakage function of a quantum state-

dependent channel (NEA→B , |ϕEE0C⟩) with CSI at the
encoder is given by

CCl(N , L) =

lim
n→∞

1

n
sup

Λs
En

0
, pX|S , φx

An :

I(CnS;XBn)ρ≤L

[I(X;Bn)ρ − I(X;S)] .

2) For a measurement channel MEA→B with a classical CSI
system E0 ≡ S,

CCl(M, L) =

sup
pX|S , φx

A : I(CS;XY )ρ≤L

[I(X;Y )− I(X;S)] .

To illustrate our results, we give a simple example.

Example 1. Consider a qubit channel NSA→B that depends on
a classical random parameter S ∼ Bernoulli(ε), hence E0 ≡
E ≡ C ≡ S. Such a random-parameter quantum channel
can be viewed as a random selection from a set of quantum
channels, {N s

A→B}s=0,1.. Let

N (0)(ρ) = ρ (7)

N (1)(ρ) = |ψ⟩⟨ψ| (8)

where |ψ⟩ is a given state in the same qubit space. In other
words, the parameter Si chooses whether the ith input system
is projected onto |ψ⟩. Ignoring the CSI at the encoder, the
model resembles the quantum erasure channel [21], except
that |ψ⟩ here is in the qubit space, whereas the “erasure state”
is orthogonal to it. Nonetheless, we note that if the decoder
knows the locations where the state is projected, then this
model is equivalent to the quantum erasure channel. Without
this knowledge at the decoder, it is less obvious.

By Theorem 3, the following rate-leakage region is achiev-
able for the random-parameter channel above,

CCl(N ) ⊇
⋃

0≤α≤ 1
2

{
(R,L) : R ≤ (1− ε)h(α),
L ≥ h ((1− ε)α)− (1− ε)h(α)

}

(9)

where h(x) is the binary entropy function. We can see the
tradeoff between the communication rate and the leakage.
Clearly, if the encoder constantly transmits |ψ⟩, then there is
no leakage, as the output is |ψ⟩ ⊗ · · · ⊗ |ψ⟩. Yet, the rate is
zero as well. Indeed, for α = 0, we achieve (R,L) = (0, 0).
On the other hand, taking α = 1

2 , we obtain the maximal rate
R = 1− ε, which is also the capacity of the quantum erasure
channel. However, the leakage is positive.

To show achievability, note that the bound on the rate on
the RHS of (5) can also be expressed as R ≤ H(X|S) −
H(X|B)ρ. Let the input ensemble be the basis {|ψ⟩, |ψ⊥⟩},
where |ψ⊥⟩ is orthogonal to |ψ⟩. The input distribution is
chosen as follows. Let V ∼ Bernoulli(α) be independent of
S. If S = 0, set X = V . Otherwise, if S = 1, then X = 0.
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IV. PROOF OUTLINE

To derive our results, we use the quantum method of types.
Let ρA =

∑
x pX(x)|x⟩⟨x|. Define the δ-typical projector

as Πδ(ρA) ≡
∑

xn∈Aδ(pX) |xn⟩⟨xn|, where Aδ(pX) is the
classical δ-typical set [21]. For every ε, δ > 0 and large n,

Πδ(ρA) ρ
⊗n
A Πδ(ρA) ⪯ 2−n(H(A)ρ−cδ) (10)

where c > 0 is a constant. The conditional δ-typical projector
Πδ(σB |xn) of an average state σ =

∑
x∈Y pX(x)ρxB is

defined as in [21, Definition 15.2.3]. For every ε′, δ > 0 and
sufficiently large n [21],

Tr(Πδ(σB |xn)ρx
n

Bn) ≥1− ε′ (11)

Tr(Πδ(σB |xn)) ≤2n(H(B|X′)σ+c′δ) (12)

Tr(Πδ(σB)ρ
xn

Bn) ≥1− ε′ . (13)

for all xn ∈ Aδ(pX), where ρx
n

Bn =
⊗n

i=1 ρ
xi

Bi
, and X ′ is

distributed according to the type of xn.
To show achievability, we extend the classical binning

technique to the quantum setting, and then apply the quantum
packing lemma and the classical covering lemma.

1) Classical Code Construction: Let δ > 0, and let
R̃ > R be chosen later. For every m ∈ [1 : 2nR], select a
sub-codebook of 2n(R̃−R) independent sequences, B(m) =

{xn(k) : k ∈ [(m − 1)2n(R̃−R) + 1 : m2n(R̃−R)]}, each
according to

∏n
i=1 pX(xi).

2) Encoding: To send a message m,
(i) Measure the CSI systems E0,i using the POVM Λs

E0
, for

i ∈ [1 : n]. Since the CSI systems are in a product state,
the measurement outcome is an i.i.d. sequence ∼ q(s),
where q(s) = Tr(Λs

E0
σE0

).
(ii) Given a measurement outcome sn, find a sequence

xn(k) ∈ B(m) such that (sn, xn(k)) ∈ Aδ(pS,X),
where pS,X(s, u) = q(s)pX|S(u|s). If there is more than
one, choose the first, and if none xn(1).

(iii) Transmit ρmAn =
⊗n

i=1 φ
xi(k)
A .

3) Decoding: Decode k̂ by applying a POVM
{Λk}k∈[1:2nR̃], which will be specified later. Declare
the estimate m̂ such that xn(k̂) ∈ B(m̂).

Analysis of Probability of Error and Leakage: First, con-
sider the error probability. By symmetry, we may assume
w.l.o.g. that Alice sends the message M = 1 using K.
Consider the following events,

E1 ={(Sn, Xn(k′)) /∈ Aδ1(pS,X) , for all k′ ∈ B(1)} (14)

E2 ={K̂ ̸= K} (15)

with δ1 ≡ δ/|S|. By the union of events bound,

P (n)
e (T ,F ,D) ≤Pr (E1) + Pr (E2 | E c

1 ) . (16)

By the classical covering lemma [24, Lemma 3.3], the first
term tends to zero as n → ∞, if R̃ − R > I(X;S) + ε1(δ).
Hence, we choose

R̃ = R+ I(X;S) + 2ε1(δ) . (17)

Next, we use the quantum packing lemma. Given E c
1 , we

have Xn(K) ∈ Aδ(pX). Now,

Πδ(ρB)ρBnΠδ(ρB) ⪯2−n(H(B)ρ−ε2(δ))Πδ(ρB) (18)

Tr
[
Πδ(ρB |xn)ρx

n

Bn

]
≥1− ε2(δ) (19)

Tr
[
Πδ(ρB |xn)

]
≤2n(H(B|X)ρ+ε2(δ)) (20)

Tr
[
Πδ(ρB)ρ

xn

Bn

]
≥1− ε2(δ) (21)

for all xn ∈ Aδ1(pX), by (10), (11), (12), and (13), respec-
tively. Thus, by the quantum packing lemma [21, Lemma
16.3.1], there exists a POVM Dk such that Pr (E2 | E c

1 ) ≤
2−n(I(X;B)ρ−R̃−ε3(δ)), which tends to zero as n → ∞, if
R̃ < I(X;B)ρ − ε3(δ). Hence, by (17), the probability of
decoding error tends to zero, provided that R < I(X;B)ρ −
I(X;S)− ε3(δ)− 2ε2(δ).

As for the leakage rate, observe that

I(Cn;Bn)ρ ≤ I(Cn;Xn(K), Bn)ρ

= I(Cn;Xn(K))ρ + I(Cn;Bn|Xn(K))ρ . (22)

Then, the first term is bounded by

I(Cn;M,Xn(K))ρ
(a)
= I(Cn;Xn(K)|M)ρ

≤ H(Xn(K)|M)ρ
(b)

≤ n(R̃−R)
(c)
= n(I(X;S) + 2ε1(δ))

≤ n(I(X;C, S) + 2ε1(δ)) (23)

where (a) holds since there is no correlation between M and
Cn, (b) follows as |B(M)| = 2n(R̃−R), and (c) is due to (17).
Moving to the second term in the RHS of (22),

I(Cn;Bn|Xn(K))ρ ≤ I(Cn, Sn;Bn|Xn(K))ρ

= H(Bn|Xn(K))ρ −H(Bn|Cn, Sn, Xn(K))ρ

≤ nH(B|X)ρ −H(Bn|Cn, Sn, Xn(K))ρ (24)

where the last inequality holds as H(Bn|Xn(K))ρ ≤∑n
i=1H(Bi|Xi(K))ρ = nH(B|X)ρ, since conditioning

does not increase the quantum entropy. Furthermore, given
Xn(K) = xn and Sn = sn, we have a product output state⊗n

i=1NEA→B(σ
si
EC ⊗ φxi,si

A ), where σs
EC denotes the post-

measurement state. Thus, it follows from (22)-(24) that

1

n
I(Bn;Cn) ≤ I(C, S;X) + I(C, S;B|X) + 2ε1(δ)

= I(C, S;X,B) + 2ε1(δ) . (25)

Thereby, the leakage requirement holds if I(C, S;X,B) ≤
L− 2ε1(δ). To show that 1

κRCl(N⊗κ) is achievable as well,
employ the coding scheme above for the product channel
N⊗κ. This completes the proof of the direct part.
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V. SUMMARY AND CONCLUDING REMARKS

We consider classical communication over a quantum state-
dependent channel NEA→B , when the encoder measures side
information and is required to mask information from the
decoder. This could model a leakage in the system of secret
information or a transmission to another receiver. In [19],
we have considered a similar model with entanglement as-
sistance, and derived a regularized formula for the quantum
masking region without assistance. Here, we have removed
the entanglement assistance, and considered the transmission
of classical information.

Masking can also be viewed as a building block for crypto-
graphic problems of oblivious transfer of information, such as
bit commitment or secure computation. Suppose that Alice is
a server that receives a query to perform a task on a quantum
computer, while also using a private source En

0C
n. To this end,

Alice uses En
0 to encode An, including a reference number m

(metadata). Next, she performs the computation map N⊗n
EA→B

on the systems EnAn, which are entangled with the private
source. The quantum output system Bn is delivered to the
agent Bob, who performs a measurement to view the metadata
m, and then use Bn as he wishes. The masking requirement
is to prevent Bob from recovering the server’s private source.
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Abstract—We consider lattice coding for the Gaussian wiretap
channel, where the challenge is to ensure reliable communication
between two authorized parties while preventing an eavesdropper
from learning the transmitted messages. Recently, a measure
called the secrecy function of a lattice coding scheme was proposed
as a design criterion to characterize the eavesdropper’s proba-
bility of correct decision. In this paper, the family of formally
unimodular lattices is presented and shown to possess the same
secrecy function behavior as unimodular and isodual lattices.
Based on Construction A, we provide a universal approach to
determine the secrecy gain, i.e., the maximum value of the secrecy
function, for formally unimodular lattices obtained from formally
self-dual codes. Furthermore, we show that formally unimodular
lattices can achieve higher secrecy gain than the best-known
unimodular lattices from the literature.

I. INTRODUCTION

In recent years, physical layer security based on information
theory has attracted a great deal of attention for secure appli-
cations in wireless communications in 5G and beyond (see [1]
and references therein). This line of research has evolved
from the classical wiretap channel (WTC) model introduced
by Aaron Wyner in his landmark work [2], which showed that
reliable and secure communication can be achieved simulta-
neously without the need of an additional cryptographic layer
on top of the communication protocol.

Since then, substantial research efforts have been devoted
to developing practical codes for reliable and secure data
transmission over WTCs. Among the potential candidates are
lattices, where in [3], [4] it was shown that a lattice-based coset
encoding approach can provide secure and reliable communi-
cation on the Gaussian WTC. In particular, it was shown that
for Gaussian WTC, the so-called secrecy function expressed in
terms of the theta series of a lattice (see the precise definition
in Section III) can be considered as a quality criterion of
good wiretap lattice codes: to minimize the eavesdropper’s
probability of correct decision, one needs to maximize the
secrecy function, and the corresponding maximum value is
referred to as (strong) secrecy gain.

Belfiore and Solé [5] studied unimodular lattices and
showed that their secrecy functions have a symmetry point.
The value of the secrecy function at this point is called
the weak secrecy gain. Based on this, the authors of [5]
conjectured that for unimodular lattices, the secrecy gain is
achieved at the symmetry point of its secrecy function. I.e.,
the secrecy gain of a unimodular lattice is equivalent to its
weak secrecy gain. Finding good unimodular lattices that attain

large secrecy gain is of practical importance. In [6], a novel
technique was proposed to verify or disprove the Belfiore
and Solé conjecture for a given unimodular lattice. Using this
method, the conjecture is validated for all known even extremal
unimodular lattices in dimensions less than 80. In another
work [7], the authors use a similar method as [6] to classify the
best unimodular lattices in dimensions from dimensions 8 to
23. For unimodular lattices obtained by Construction A from
binary doubly even self-dual codes up to dimensions 40, their
secrecy gains are also shown to be achieved at their symmetry
points [8].

This work first introduces a new and wider family of lattices,
referred to as formally unimodular lattices, that consists of lat-
tices having the same theta series as their dual. We then prove
that formally unimodular lattices have the same symmetry
point as unimodular or isodual lattices. Similar to the feature
of formally self-dual codes defined in coding theory, it is
expected that such a broader class of lattices can achieve higher
secrecy gain than the unimodular lattices. We pursue this
expectation via Construction A lattices obtained from formally
self-dual codes and give a universal approach to determine
their secrecy gain. For formally unimodular lattices obtained
by Construction A from even formally self-dual codes, we
also provide a sufficient condition to verify Belfiore and Solé’s
conjecture on the secrecy gain. (A code is called even if all of
its codewords have even weight, otherwise the code is odd.)

Furthermore, we present numerical evidence supporting the
conjecture of secrecy gain also for Construction A lattices
obtained from odd formally self-dual codes. For dimensions
up to 70, we note that formally unimodular lattices have
better secrecy gain than the best known unimodular lattices
described in the literature, e.g., [7]. Apart from finding good
formally self-dual codes from the literature, using the code
construction by tailbiting the rate 1/2 convolution codes [9,
App. C], we also obtain several formally self-dual codes
resulting in high secrecy gains. Due to page limitations, some
proofs and detailed discussions are omitted and can be found
in the extended version [9].

II. DEFINITIONS AND PRELIMINARIES

A. Notation

We denote by Z, Q, and R the set of integers, rationals, and
reals, respectively. Vectors are boldfaced, e.g., x. Matrices and
sets are represented by capital sans serif letters and calligraphic
uppercase letters, respectively, e.g., X and X . We use the
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customary code parameters [n, k] or [n, k, d] to denote a linear
code C of length n, dimension k, and minimum Hamming
distance d. Throughout this paper, we will focus on binary
codes only.

B. On Codes and Lattices
Let C be an [n, k] code and C⊥ ≜ {u : ⟨u,v⟩ = 0,∀v ∈

C }. The weight enumerator of a code C is given by

WC (x, y) =

n∑

w=0

Awx
n−wyw,

where Aw ≜ |{c ∈ C : wH(c) = w}|. The relation between
WC (x, y) and WC⊥(x, y) is characterized by the well-known
MacWilliams identity (see, e.g., [10, Th. 1, Ch. 5]):

WC (x, y) =
1

2n−k
WC⊥(x+ y, x− y). (1)

We have the following families of codes.
Definition 1 (Self-dual, isodual, formally self-dual codes):
• A code C is said to be self-dual if C = C⊥.
• If there is a permutation π of coordinates such that C =
π(C⊥), C is called isodual.

• A code C is formally self-dual if C and C⊥ have the
same weight enumerator, i.e., WC (x, y) =WC⊥(x, y).

Clearly, a self-dual code is also isodual, and an isodual code
is formally self-dual. Any code in these classes is an [n, n/2]
code and, by (1), its weight enumerator WC (x, y) satisfies
[10, eq. (7), p. 599]

WC (x, y) =WC

(
x+ y√

2
,
x− y√

2

)
. (2)

A (full rank) lattice Λ is a discrete additive subgroup of Rn,
which is generated as Λ = {λ = uGn×n : u = (u1, . . . , un) ∈
Zn}, where the n rows of G form a lattice basis. The volume
of Λ is vol(Λ) = |det(G)|.

If a lattice Λ have generator matrix G, then the lattice Λ⋆ ⊂
Rn generated by

(
G−1

)T
is called the dual lattice of Λ.

Remark 1: vol(Λ⋆) = vol(Λ)
−1.

For lattices, the analogue of the weight enumerator of a code
is the theta series.

Definition 2 (Theta series): Let Λ ⊂ Rn be a lattice, its
theta series is given by

ΘΛ(z) =
∑

λ∈Λ

q∥λ∥2

,

where q ≜ eiπz and Im{z} > 0.
Analogously, the spirit of the MacWilliams identity can be

captured by the Jacobi’s formula [11, eq. (19), Ch. 4]

ΘΛ(z) = vol(Λ⋆)
( i
z

)n
2

ΘΛ⋆

(
−1

z

)
. (3)

Note that sometimes the theta series of a lattice can be
expressed in terms of the Jacobi theta functions defined as
follows.

ϑ2(z) ≜
∑

m∈Z
q

(
m+ 1

2

)2
= ΘZ+ 1

2
(z),

ϑ3(z) ≜
∑

m∈Z
qm

2

= ΘZ(z), ϑ4(z) ≜
∑

m∈Z
(−q)m2

.

In lattice theory, we have similar concepts to self-dual
and isodual dual codes. Here, we also introduce formally
unimodular lattices.

Definition 3 (Unimodular, isodual, formally unimodular
lattices): A lattice Λ ⊂ Rn is said to be integral if the inner
product of any two lattice vectors is an integer.

• An integral lattice such that Λ = Λ⋆ is called unimodular
lattice.

• A lattice Λ is called isodual if it can be obtained from its
dual Λ⋆ by (possibly) a rotation or reflection.

• A lattice Λ is formally unimodular if it has the same theta
series as its dual, i.e., ΘΛ(z) = ΘΛ⋆(z).

Remark 2: The relations among unimodular, isodual, and
formally unimodular lattices are given as follows.

{
Λunimodular

}
⊂
{
Λisodual

}
⊂
{
Λformally unimodular

}
.

Proposition 1: If Λ is formally unimodular, then vol(Λ) = 1.
Consequently, unimodular, isodual, and formally unimodu-

lar lattices satisfy

ΘΛ(z) =
( i
z

)n
2

ΘΛ

(
−1

z

)
. (4)

Lattices can be constructed from linear codes through the
so called Construction A.

Definition 4 (Construction A): Let C be an [n, k] code, then

ΛA(C ) ≜ 1√
2
(ϕ(C ) + 2Zn),

is a lattice, where ϕ : Fn
2 → Rn is the natural embedding.

About Construction A lattices obtained from codes over F2,
it is known from [11, p. 183] that

• The volume is vol(ΛA(C )) = 2
n/2

|C | = 2(n−2k)/2.
• ΛA(C⊥) = ΛA(C )⋆.
A connection between the weight enumerator WC (x, y) of

a code C and a lattice ΛA(C ) can be established.
Lemma 1 ([11, Th. 3, Ch. 7]): Consider an [n, k] code C

with WC (x, y), then the theta series of ΛA(C ) is given by

ΘΛA(C )(z) =WC (ϑ3(2z), ϑ2(2z)).

Remark 3: It follows immediately from Lemma 1 that if an
[n, n/2] code C is formally self-dual then ΛA(C ) is a formally
unimodular lattice.

III. SECRECY FUNCTION OF A LATTICE

In the Gaussian WTC, the same coset encoding idea pro-
posed in Wyner’s seminal paper [2] for linear codes can be
implemented in a lattice scenario, and here we follow the
lattice coding scheme proposed in [4], [5].

In practice, two lattices Λe ⊂ Λb are considered. Λb is
designed to ensure reliability for a legitimate receiver Bob
and required to have a good Hermite parameter (that mea-
sures the highest attainable coding gain of an n-dimensional
lattice) [11]. On the other hand, Λe is aimed to increase the
eavesdropper confusion, so it should be chosen such that Pc,e,
the eavesdropper’s success probability of correctly guessing
the transmitted message, is minimized. The performance of
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the lattice Λe is measured in terms of the secrecy gain [4],
[5]; to be explained next.

Denote by σ2
e the variance of the additive Gaussian noise at

the eavesdropper’s side. Minimizing Pc,e is equivalent to [4]
minimizing

∑

r∈Λe

e−
∥r∥2/2σ2

e = ΘΛe

(
z ≜ i

2πσ2
e

)
,

subject to log2|Λb/Λe| = k. Note that Im
{
i/2πσ2

e

}
= Im{z} >

0, thus we consider only the positive values of τ ≜ −iz =
1/2πσ2

e > 0 for ΘΛe(z). Hence, the scheme is aimed at finding
a lattice Λe such that ΘΛe(z) is minimized, which motivates
the definition of secrecy function below. Note that in [12], it
is also argued that minimizing the theta series of Λe leads to
a small flatness factor, a criterion that directly relates to the
mutual information leakage to the eavesdropper, instead of the
success probability. Therefore, the optimization of ΘΛe(z) is
of interest in both scenarios.

Definition 5 (Secrecy function and secrecy gain [4, Def. 1
and 2]): Let Λ be a lattice with volume vol(Λ) = νn. The
secrecy function of Λ is defined by

ΞΛ(τ) ≜
ΘνZn(iτ)

ΘΛ(iτ)
,

for τ ≜ −iz > 0. As maximizing ΞΛ(τ) is equivalent to
minimizing ΘΛ(z), the (strong) secrecy gain of a lattice is
given by ξΛ ≜ supτ>0 ΞΛ(τ).

Ideally, the goal is to determine ξΛ. However, since the
global maximum of a secrecy function is in general not always
easy to calculate, a weaker definition is useful. We start by
defining the symmetry point.

Definition 6 (Symmetry point): A point τ0 ∈ R is said to be
a symmetry point if for all τ > 0,

Ξ(τ0 · τ) = Ξ
(τ0
τ

)
. (5)

Definition 7 (Weak secrecy gain [4, Def. 3]): If the secrecy
function of a lattice Λ has a symmetry point τ0, then the weak
secrecy gain χΛ is defined as χΛ = ΞΛ(τ0).

IV. WEAK SECRECY GAIN OF FORMALLY UNIMODULAR
LATTICES

This section shows that formally unimodular lattices also
hold the same secrecy function properties as unimodular and
isodual lattices [4].

Lemma 2: Consider a lattice Λ and its dual Λ⋆. Then,

ΞΛ(τ) = ΞΛ⋆

(1
τ

)
. (6)

A necessary and sufficient condition for a lattice Λ to
achieve the weak secrecy gain at τ = 1 is given as follows.

Theorem 1: Consider a lattice Λ with vol(Λ) = 1 and its
dual Λ⋆. Then, Λ achieves the weak secrecy gain at τ = 1, if
and only if Λ is formally unimodular.

Proof: By definition, we have

ΞΛ(τ) = ΞΛ

(1
τ

)
. (7)

Using Lemma 2, it follows from (7) and (6) that

ΞΛ

(1
τ

)
= ΞΛ(τ) = ΞΛ⋆

(1
τ

)
.

By Def. 5, this implies that ΘΛ(z) = ΘΛ⋆(z) for vol(Λ) = 1.
Conversely, from Def. 3, we see that (6) implies (7).

Note that Theorem 1 holds for isodual lattices as well, which
yields to [4, Prop. 1].

Corollary 1: Consider a lattice Λ with vol(Λ) = νn and its
dual Λ⋆. Then, Λ achieves the weak secrecy gain at τ = ν−2,
if and only if ν−1Λ is a formally unimodular lattice.

Equation (5) with τ0 = ν−2 holds for a lattice equivalent to
its dual. See [4, Prop. 2].

V. SECRECY GAIN OF FORMALLY UNIMODULAR LATTICES

Our goal in this section is to investigate the following
conjecture.

Conjecture 1: The secrecy function of a formally unimodular
lattice Λ achieves its maximum at τ = 1, i.e., ξΛ = ΞΛ(1).

Although we cannot completely prove Conjecture 1, we pro-
ceed to study the secrecy gain for formally unimodular lattices
obtained from formally self-dual codes via Construction A (see
Remark 3). Note that for linear codes, it is known that formally
self-dual codes that are not self-dual can outperform self-dual
codes in some cases, as they comprise a wider class and hence
may allow a better minimum Hamming distance or an overall
more favorable weight enumerator. This leads us to look for
improved results on the secrecy gain compared to unimodular
lattices [6]–[8].

Lemma 3: Consider a Construction A lattice ΛA(C ) ob-
tained from a formally self-dual code C . Then, its theta series
is equal to

ΘΛA(C ) =
WC

(√
ϑ23(z) + ϑ24(z),

√
ϑ23(z)− ϑ24(z)

)

2
n
2

.

Proof: Using Lemma 1 and the useful identities given
in [11, eq. (26), Ch. 4], the theta series ΘΛA(C ) becomes

ΘΛA(C )(z)

= WC (ϑ3(2z), ϑ2(2z))

(a)
= WC

(
ϑ3(2z) + ϑ2(2z)√

2
,
ϑ3(2z)− ϑ2(2z)√

2

)

= WC

(√
ϑ23(z) + ϑ24(z) +

√
ϑ23(z)− ϑ24(z)√

2
√
2

,

√
ϑ23(z) + ϑ24(z)−

√
ϑ23(z)− ϑ24(z)√

2
√
2

)

=
1

2
n
2
WC

(√
ϑ23(z) + ϑ24(z) +

√
ϑ23(z)− ϑ24(z)√

2
,

√
ϑ23(z) + ϑ24(z)−

√
ϑ23(z)− ϑ24(z)√

2

)

(b)
=

1

2
n
2
WC

(√
ϑ23(z) + ϑ24(z),

√
ϑ23(z)− ϑ24(z)

)
.

where (a) and (b) follow from (2).

International Zurich Seminar on Information and Communication (IZS), March 2 – 4, 2022

71



Lemma 4: Let s(τ) ≜ ϑ4(iτ)/ϑ3(iτ). Then, s(τ) is an
increasing function for τ > 0, and 0 < s(τ) < 1.

Remark 4: Let t(τ) ≜ s(τ)2. Then, 0 < t(τ) < 1 and t(τ)
is also an increasing function for τ > 0. Hence, according to
Lemma 4, given any t ∈ (0, 1), there always exists a unique
τ > 0 such that t(τ) = ϑ2

4(iτ)/ϑ2
3(iτ). Moreover, we have t(1) =

1/
√
2 by using the identity of ϑ3(i) = 21/4ϑ4(i) from [13].

Due to Remark 4, Lemma 3, and the fact that ΘZn(z) =
ϑn3 (z), now we are able to give a new universal approach
to derive the strong secrecy gain of a Construction A lattice
obtained from formally self-dual codes.

Theorem 2: Let C be a formally self-dual code. Then

[
ΞΛA(C )(τ)

]−1
=
WC

(√
1 + t(τ),

√
1− t(τ)

)

2
n
2

,

where 0 < t(τ) = ϑ2
4(iτ)/ϑ2

3(iτ) < 1. Moreover, define fC (t) ≜
WC (

√
1 + t,

√
1− t) for 0 < t < 1. Then, maximizing the

secrecy function ΞΛA(C )(τ) is equivalent to determining the
minimum of fC (t) on t ∈ (0, 1).

Example 1: Consider a [6, 3, 3] odd formally self-dual code
C with WC (x, y) = x6 + 4x3y3 + 3x2y4 [14]. Thus fC (t) =
WC (

√
1 + t,

√
1− t) = 4[1 + t3 + (1 − t2)3/2] and f ′C (t) =

12t(t −
√
1− t2). Observe that for 0 < t < 1/

√
2, we have√

1− t2 > 1/
√
2. Then, t −

√
1− t2 < 1/

√
2 − 1/

√
2 = 0.

This indicates that the derivative f ′C (t) < 0 on t ∈ (0, 1/
√
2).

Similarly, one can also show that f ′C (t) > 0 on t ∈ (1/
√
2, 1),

and t = 1/
√
2 is the minimum of fC (t). Hence, Remark 4

and Theorem 2 indicate that the maximum of ΞΛA(C )(τ) is
achieved at τ = 1. Also, one can get ξΛA(C ) ≈ 1.172. ♢

Using Gleason’s Theorem [15, Th. 9.2.1], an expression of
fC (t) can be shown if C is an even formally self-dual code.

Lemma 5: If C is an [n, n/2] even formally self-dual codes,
then we have

fC (t) = 2
n
2

⌊n
8 ⌋∑

r=0

ar(t
4 − t2 + 1)r, (8)

where ar ∈ Q and
∑⌊n

8 ⌋
r=0 ar = 1.

Next, we provide a sufficient condition for a Construction A
formally unimodular lattice obtained from even formally self-
dual codes to achieve the strong secrecy gain at τ = 1, or,
equivalently, t = 1/

√
2.

Theorem 3: Consider n ≥ 8 and an [n, n/2] even formally
self-dual code C . If the coefficients ar of fC (t) expressed in
terms of (8) satisfy

⌊n
8 ⌋∑

r=1

rar

(3
4

)r−1

> 0, (9)

then the secrecy gain of ΛA(C ) is achieved at τ = 1.
To prove this theorem, it is sufficient to show that the function
fC (t) as in (8) defined for 0 < t < 1 achieves its minimum
at t = 1/

√
2. The detailed proof is given in [9].

Example 2: Consider an [18, 9, 6] even formally self-dual
code C with

WC (x, y) = x18 + 102x12y6 + 153x10y8

+153x8y10 + 102x6y12 + y18.

By solving fC (t) = WC (
√
1 + t,

√
1− t) with (8) (see the

details of derivation provided in [9, App. B]), we find that
a0 = −29/16, a1 = 27/8 and a2 = −9/16. The condition (9) in
Theorem 3 for those coefficients is satisfied since 27/8−27/32 =
81/32 > 0. Thus, the secrecy gain conjecture is true for the
formally unimodular lattice ΛA(C ). ♢

VI. NUMERICAL RESULTS

Even though the result of Theorem 3 is restricted to formally
unimodular lattices obtained from even formally self-dual
codes, we have numerical evidence showing that Conjecture 1
also holds for formally unimodular lattices obtained from odd
formally self-dual codes. The secrecy gains of some formally
unimodular Construction A lattices obtained from (even and
odd) formally self-dual codes are summarized in Table I. Note
that all codes have the parameters [n, n/2] and the superscript
“(d)” refers to the minimum Hamming distance d of the code.
Their exact weight enumerators can be found in [9, App. D].
The highlighted values represent the best values found in the
respective dimensions, when comparing self-dual (sd), even
and odd formally self-dual (efsd and ofsd) codes.

Remark 5: We remark the following about Table I:

• “[·]” indicates the reference number.
• We use the sufficient condition (9) in Theorem 3 for the

even codes and the numerical derivative analysis with
Wolfram Mathematica [25] for the odd codes to confirm
the strong secrecy gain in Table I.

• For most dimensions n > 8, the secrecy gain of formally
unimodular lattices that are not unimodular outperform
the unimodular lattices (obtained from self-dual codes),
presented in [7, Tables I and II]. In some cases (e.g.
[12,6], [22,11]) we were unable to find good efsd codes
with different secrecy gains form the sd codes. Also, to
highlight the comparison with unimodular lattices, the
second column refers to the upper bound on the secrecy
gain of unimodular lattices obtained from Construction
A in [16, Tab. III] and not all of the values are known
to be achieved. Gains can be observed in dimensions
10, 12, 14, 20, and 22.

• It is known that the well-known Barnes-Wall lattice BW32

achieves the secrecy gain of 64/9 ≈ 7.11 [4, Sec. IV-
C], which is better than all the tabulated values in
dimension 32. However, because BW32 is not obtained
via Construction A, we did not address the details here.

• Observe that for codes of length 40, the self-dual code
in the table is a Type I (weights divisible by two), as
it presents a higher secrecy gain (ξΛA(Csd) ≈ 12.191)
compared to the Type II (weights divisible by four)
(ξΛA(Csd) ≈ 11.977). The same happens with codes of
length 32 and this confirms the advantage of this approach
as to the results in [8].

• Formally self-dual (isodual) codes without references in
Table I are constructed by tailbiting the rate 1/2 convolu-
tional codes. Details can be found in [9, App. C].
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TABLE I
COMPARISON OF (STRONG) SECRECY GAINS FOR SEVERAL VALUES OF EVEN DIMENSIONS n. CODES WITHOUT REFERENCES ARE OBTAINED BY

TAILBITING THE RATE 1/2 CONVOLUTIONAL CODES.

n Upper bound [16] C
(d)
sd ξΛA(Csd)

C
(d)
efsd ξΛA(Cefsd)

C
(d)
ofsd ξΛA(Cofsd)

6 1 − − C
(2)
efsd [15] 1 C

(3)
ofsd [14] 1.172

8 1.33 C
(4)
sd [15] 1.333 − − C

(3)
ofsd [14] 1.282

10 1.45 − − C
(4)
efsd [17] 1.455 C 4

ofsd [14] 1.478

12 1.6 C
(4)
sd [7] 1.6 C

(4)
efsd [18] 1.6 C

(4)
ofsd [14] 1.657

14 1.78 C
(4)
sd [7] 1.778 C

(4)
efsd [18] 1.825 C

(4)
ofsd [14] 1.875

16 2.21 C
(4)
sd [7] 2 C

(4)
efsd [19] 2.133 C

(5)
ofsd [14] 2.141

18 2.49 C
(4)
sd [7] 2.286 C

(6)
efsd [20] 2.485 C

(5)
ofsd 2.427

20 2.81 C
(4)
sd [7] 2.667 C

(6)
efsd [21] 2.813 C

(6)
ofsd [18] 2.868

22 3.2 C
(6)
sd [7] 3.2 C

(6)
efsd 3.2 C

(7)
ofsd [14] 3.335

30 5.84 C
(6)
sd [22] 5.697 C

(8)
efsd [23] 5.843 C

(7)
ofsd 5.785

32 7.00 C
(8)
sd [22] 6.737 C

(8)
efsd 6.748 C

(7)
ofsd 6.628

40 12.81 C
(8)
sd [22] 12.191 C

(8)
efsd 12.134 C

(9)
ofsd 12.364

70 130.15 C
(12)
sd [24] 127.712 C

(12)
efsd 128.073 C

(13)
ofsd 128.368

VII. CONCLUSION

This paper introduced the formally unimodular lattices, a
new class consisting of lattices having the same theta series as
their dual. We showed some properties of formally unimodular
lattices and their secrecy function behavior in the Gaussian
WTC. Furthermore, we investigated Construction A lattices
obtained from formally self-dual codes and gave a universal
approach to determine their secrecy gain. We found formally
unimodular lattices of better secrecy gain than the best known
unimodular lattices from the literature.

REFERENCES

[1] Y. Wu, A. Khisti, C. Xiao, G. Caire, K.-K. Wong, and X. Gao, “A
survey of physical layer security techniques for 5G wireless networks
and challenges ahead,” IEEE J. Sel. Areas Commun., vol. 36, no. 4, pp.
679–695, Apr. 2018.

[2] A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8,
pp. 1355–1387, Oct. 1975.

[3] J.-C. Belfiore and F. Oggier, “Secrecy gain: A wiretap lattice code
design,” in Proc. IEEE Int. Symp. Inf. Theory Appl. (ISITA), Taichung,
Taiwan, Oct. 17–20, 2010.

[4] F. Oggier, P. Solé, and J.-C. Belfiore, “Lattice codes for the wiretap
Gaussian channel: Construction and analysis,” IEEE Trans. Inf. Theory,
vol. 62, no. 10, pp. 5690–5708, Oct. 2016.

[5] J.-C. Belfiore and P. Solé, “Unimodular lattices for the Gaussian wiretap
channel,” in Proc. IEEE Inf. Theory Workshop (ITW), Dublin, Ireland,
Aug. 30 – Sep. 3, 2010.

[6] A.-M. Ernvall-Hytonen, “On a conjecture by Belfiore and Solé on some
lattices,” IEEE Trans. Inf. Theory, vol. 58, no. 9, pp. 5950–5955, Sep.
2012.

[7] F. Lin and F. Oggier, “A classification of unimodular lattice wiretap
codes in small dimensions,” IEEE Trans. Inf. Theory, vol. 59, no. 6, pp.
3295–3303, Jun. 2013.

[8] J. Pinchak, “Wiretap codes: Families of lattices satisfying the Belfiore-
Solé secrecy function conjecture,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Istanbul, Turkey, Jul. 7–12, 2013, pp. 2617–2620.

[9] M. F. Bollauf, H.-Y. Lin, and Ø. Ytrehus, “The secrecy gain of
formally unimodular lattices on the Gaussian wiretap channel,” Oct.
2021, arXiv:2111.01439v1 [cs.IT]. [Online]. Available: https://arxiv.org
/abs/2111.01439

[10] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1977.

[11] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups,
3rd ed. New York, NY, USA: Springer, 1999.

[12] C. Ling, L. Luzzi, J.-C. Belfiore, and D. Stehle, “Semantically secure
lattice codes for the Gaussian wiretap channel,” IEEE Trans. Inf. Theory,
vol. 60, no. 10, pp. 6399–6416, Oct. 2014.

[13] E. W. Weisstein, “Jacobi theta functions,” From MathWorld—A
Wolfram Web Resource. [Online]. Available: https://mathworld.wolfra
m.com/JacobiThetaFunctions.html

[14] K. Betsumiya and M. Harada, “Binary optimal odd formally self-dual
codes,” Des., Codes Cryptography, vol. 23, no. 1, pp. 11–21, 2001.

[15] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes.
Cambridge, U.K.: Cambridge University Press, jun 2003.

[16] F. Lin and F. Oggier, “Gaussian wiretap lattice codes from binary self-
dual codes,” in Proc. IEEE Inf. Theory Workshop (ITW), Lausanne,
Switzerland, Sep. 3–7, 2012.

[17] G. T. Kennedy and V. Pless, “On designs and formally self-dual codes,”
Des., Codes Cryptography, vol. 4, no. 1, pp. 43–55, 1994.

[18] K. Betsumiya, T. A. Gulliver, and M. Harada, “Binary optimal linear rate
1/2 codes,” in Proc. Appl. Algebra, Algebr. Algorithms Error-Correcting
Codes (AAECC), Honolulu, HI, USA, Nov. 15–19, 1999, pp. 462–471.

[19] K. Betsumiya and M. Harada, “Classification of formally self-dual even
codes of lengths up to 16,” Des., Codes Cryptography, vol. 23, no. 3,
pp. 325–332, 2001.

[20] N. J. A. Sloane and N. Heninger, The On-Line Encyclopedia of Integer
Sequences, OEIS Foundation Inc., Jun. 2006. [Online]. Available: http:/
/oeis.org/A123456

[21] J. E. Fields, P. Gaborit, W. C. Huffman, and V. Pless, “On the classifi-
cation of extremal even formally self-dual codes of lengths 20 and 22,”
Discrete Appl. Math., vol. 111, no. 1-2, pp. 75–86, Jul. 2001.

[22] J. H. Conway and N. J. A. Sloane, “A new upper bound on the minimal
distance of self-dual codes,” IEEE Trans. Inf. Theory, vol. 36, no. 6, pp.
1319–1333, Nov. 1990.

[23] S. Bouyuklieva and I. Bouyukliev, “Classification of the extremal for-
mally self-dual even codes of length 30,” Adv. Math. Commun., vol. 4,
no. 3, pp. 433–439, 2010.

[24] M. Harada, “The existence of a self-dual [70, 35, 12] code and formally
self-dual codes,” Finite Fields Th. App., vol. 3, no. 2, pp. 131–139, Apr.
1997.

[25] Wolfram Research, Inc., “Mathematica, Version 12.3.1,” champaign,
IL, 2021. [Online]. Available: https://www.wolfram.com/mathematica

International Zurich Seminar on Information and Communication (IZS), March 2 – 4, 2022

73



Reed-Muller Identification
Mattia Spandri, Roberto Ferrara, Christian Deppe

Institute for Communication Engineering, Technical University of Munich, Munich, Germany

Abstract—Ahlswede and Dueck identification has the potential
of exponentially reducing traffic or exponentially increasing rates
in applications where a full decoding of the message is not
necessary and, instead, a simple verification of the message
of interest suffices. However, the proposed constructions can
suffer from exponential increase in the computational load at the
sender and receiver, rendering these advantages unusable. This
has been shown in particular to be the case for a construction
achieving identification capacity based on concatenated Reed-
Solomon codes. Here, we consider the natural generalization of
identification based on Reed-Muller codes and we show that,
although without achieving identification capacity, they allow to
achieve the exponentially large rates mentioned above without
the computational penalty increasing too much the latency with
respect to transmission.

Index Terms—identification, verifier, encoder, latency, complex-
ity, Ahlswede, Dueck Reed-Solomon, Reed-Muller

I. INTRODUCTION

Ahlswede and Dueck’s identification is a different commu-
nication paradigm from Shannon’s transmission that promises
an exponential larger capacity, or equivalently an exponential
reduction in channel uses, at the trade-off of only allowing an
hypothesis test at the receiver instead of a full decoding [3].
Identification capacity on a noisy channel can be achieved by
concatenating a capacity-achieving identification code for the
noiseless channel with a capacity achieving transmission code
for the noisy channel [3]. In other words, it is enough to correct
the channel first and then apply some pre and post processing,
as also done to achieve secrecy in a wiretap channel.

As common for capacity results, the achievability proof
ignores the complexity of constructing the code, of the encoder
and of the decoder. In particular, since identification promises
an exponential increase in the rates, even simply reading
the chosen identity (sometimes still called message to make
the parallel with transmission) will incur some penalty. In
previous works [5, 7], we analyzed the time spent encoding and
the noiseless-channel error probability for capacity-achieving
noiseless identification codes based on concatenated Reed-
Solomon codes [14]. The result from those works was that,
with todays transmission speeds, it is generally faster to simply
send the unique string defining the identity than spend the time
encoding for identification. In order to make noiseless identi-
fication competitive in terms of latency, the use of Zech tables
was necessary to speed up the computation over finite fields,
however this option was limited to codes of small size, leaving
the open question of finding similarly fast identification-codes

We acknowledge support from the German Federal Ministry of Education
and Research (BMBF) to C. Deppe and R. Ferrara under Grant 16KIS1005.
Contact information: {roberto.ferrara,christian.deppe}@tum.de

at larger sizes. The codes from [14] are only one of possi-
ble identification capacity-achieving constructions, which can
generally be obtained via block codes satisfying the Gilbert-
Varshamov bound [1, Section III.B]. Other such constructions
are the algebraic codes of [10, 6] as pointed out in [14],
a construction based on hash functions [11], and the recent
construction of [8].

In this work, we naturally generalize to identification codes
base on Reed-Muller codes in order to increase the size of
the identities without increasing the size of the finite fields we
work on. We find that, although the small field sizes also limits
how low we can make the error probability, we can circumvent
this using multiple encoding [7] and efficiently reduce the error
without much impact on the other parameters.

The paper is structured as follows. In Sections II and III,
we quickly review identification and Reed-Muller codes. In
Section IV, we show that they still cannot achieve identifica-
tion capacity without concatenation. In Section V, we discuss
the implementation and show how it allows to achieve large
exponential increase in rates without much latency and false-
accept penalty compared to transmission. In the appendices, we
describe in detail how we measured the time cost of operations
in an attempt to predict the performance of the code.

II. IDENTIFICATION

We use the notation [n] = {0, ..., n − 1} for any natural
number n and the notation PW =

∑
x P (x)W (·|x) for a

probability distribution P and a channel W . An (n, I, ε)
identification code for Wn is a tuple {Ei, Vi}i∈[I] of prob-
ability distributions and verifier sets (like stochastic codes for
transmission) such that eij = |EiWn(Vj)− δij | ≤ ε, where
δij is the Kronecker delta (notice that eii are the usual errors
in transmission). No disjointness or limit on the intersection is
imposed on the verifier sets. The rate is defined as 1

n log log I
rather than 1

n log I , and the capacity is then the supremum of
achievable rates as usual. As mentioned already, we can focus
only on coding for the noiseless channel, like in [7], in which
case it is enough to construct the appropriate verifier sets Vi
and let Ei be the uniform distributions on these sets [3]. One
way to do this, is to construct the verifier sets sets using a
function fi : [R]→ [T ] for each identity i, such that [R]× [T ]
can be mapped one-to-one to the inputs of the noiseless
channel. These sets are then none other than the relation sets
Vi = {(r, fi(r))}r∈[R] ⊂ [R]× [T ] defined by fi. We call r the
randomness and fi(r) the tag. By construction, we can then
think of the encoder as choosing a random challenge in the
form of a randomness-tag pair (r, fi(r)) and sending it through
the channel, so that the receiver wanting to verify identity j
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will recompute the tag fj(r) and conclude that i = j if the
recomputed tag is equal to the received tag fj(r)

?
= fi(r) [2,

13, 5, 7]. With such a scheme eii will always be 0, while
eij is bounded by the fraction of collisions of fi and fj , the
number of outputs that coincide (see Eq. (10)). To limit eij ,
the number of collisions need to be limited, which makes the
set of such identification codes in one to one correspondence
with error-correction block codes: each codeword (a string of
symbols) defines a function from symbol positions to symbol
values and the distance of the code gives a bound on the false-
accept error probability [5]. For example, using Reed-Solomon
codes, the functions corresponding to the codewords are the
polynomials used to generate the codewords.

III. REED-MULLER CODES

For our purpose it will make sense to consider q-ary rather
than just binary Reed-Muller codes [9, 4, 12]. Let k,m ∈
N and q > k a prime power. Because of our application to
identification, we define the RMq(k,m) Reed-Muller code as
the collection of multivariate polynomials with m variables
and degree at most k over Fq . For this, we introduce some
notation first. We define |z| := ∑m

j=1 zj for any z ∈ [k]m.
We then define rz :=

∏m
j=1 r

zj
j for r ∈ Fmq . The Reed-Muller

code is then defined as

RMq(k,m) =




pw : Fmq → Fq :

pw(r) =
∑

z∈[k]m:|z|≤k
wzr

z



, (1)

where w = {wz}z∈[k]m:|z|≤k are the
(
k+m
m

)
coefficients in Fq .

In case of a Reed-Muller error-correction code, every polyno-
mial constructs a codeword by concatenating polynomial eval-
uations at different input points. The maximum blocklength is
the number of possible inputs, which results in a

[
qm,

(
k +m

m

)
, (q − k)qm−1

]

q

. (2)

block code. In identification, a functional encoding that can
compute a single letter of the codewords without computing
the whole codeword is preferred [5, 7]. For the Reed-Muller
code, this is the polynomial encoding. The size of the Reed-
Muller identification code is the number of distinct polynomi-
als, in bits this is

log I =

(
k +m

m

)
log q. (3)

However, only a transmission of

logC = (m+ 1) log q (4)

bits is needed, since only the challenge, composed of

logR = m log q and log T = log q (5)

bits of randomness and tag, is sent through the channel.
Thus for a single Reed-Muller code, the increase from the
transmission rate rT to the identification rate rID is

rID
rT

=
log I

logC
=

(
k+m
m

)

m+ 1
. (6)

compared to rID
rT

= k
2 of a Reed-Solomon code [13, 5]. If

multiple n challenges are sent, this reduces the error but also
reduces the rate increase to

(
k+m
m

)
/n/(m+ 1). The errors eij

are upper bounded by the fractional distance

E = 1− (q − k)qm−1
R

=
k

q
. (7)

This is independent of the number of variables m and less than
one because k < q. The error decreases as En = (kq )

n with
the number of challenges, because all challenges need to be
verified simultaneously.

IV. CAPACITY

In order to achieve identification capacity, the noiseless iden-
tification codes need to satisfy three simple conditions [14]1:

1) Randomness: asymptotically all the transmission rate is
used for randomness:

log T

logR
→ 0 ⇔ logR

logRT
→ 1 (8)

where C = RT is the size of the challenge;
2) Size: asymptotically the identification rate must equal

the randomness/transmission rate:

log log I

logR
→ 1; (9)

3) Error: asymptotically the error must go to zero

E = max eij = 1− 1

R
max
i 6=j

d(Ti, Tj)→ 0. (10)

It will be more convenient to use the equivalent condition

logE → −∞, (11)

Since Reed-Muller codes contain Reed-Solomon codes as
a special case, they are also able to achieve identification
capacity using concatenation of multiple codes. The question
is whether capacity can be achieved without concatenation,
which is not possible with Reed-Solomon codes [14]. Below
we prove that the conditions to achieve capacity cannot be
satisfied simultaneously, even taking into consideration the use
of multiple challenges, and the expansion of extension fields.

A. Without expansion

We first do the analysis without expansion for simplicity. We
begin with the randomness, Eq. (8), which simply requires

logRn

log Tn
=

log T

logR
=

1

m
→ 0 ⇒ m→∞

which is independent of the number of challenges. From the
error requirement, Eq. (11), we need to satisfy n log k

q =
n log k − n log q → −∞ which gives

n log q →∞ and n log q � n log k (12)

1In [14], these conditions are called “optimal” for identification in the sense
of achieving capacity, not in the sense of being optimal at finite blocklengths.
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For the size, Eq. (9), we can use the upper bound on the
binomial

(
a
b

)
≤
(
ea
b

)b
with e Euler’s number. We thus bound

log log I

n logR
=

log log q + log
(
k+m
m

)

nm log q
.
m log e(k+m)

m

nm log q

where we used that log log q/n log q → 0 by Eq. (12), then
for the same reason we can further bound

log e(k+m)
m

n log q
h

log
(
1 + k

m

)

n log q
. log(1 + k)

n log q

which goes to zero again by Eq. (12).

B. With expansion

A feature of the concatenated Reed-Solomon codes achiev-
ing identification capacity [14] is that the first code is defined
over Fqα but then each symbol is considered as a string of
α symbols in Fq . This allows to satisfy the randomness and
size requirement, while the second Reed-Solomon code takes
care of the error requirement. Here, we prove that expanding
symbols in Fqα is still not enough to satisfy the requirements
with Reed-Muller codes. We change all parameters to powers
of q, the expansion transforms the code as

[
(qα)q

γ

,
(
qβ+qγ

qγ

)
, (qα − qβ)(qα)qγ−1

]
qα

=
[
α(qα)q

γ

, α
(
qβ+qγ

qγ

)
, (qα − qβ)(qα)qγ−1

]
q

(13)

which has error

E = 1− (qα − qβ)(qα)qγ−1
α(qα)qγ

=
αqα − qα + qβ

αqα

and thus (with n challenges and then taking the log) we need

2nα log q ≥ n(logα+ α log q)� n log
(
αqα − qα + qβ

)

which gives in particular

nα log q � logα, log q, log qβ (14)

We use this on the size size requirement and obtain

log log I

logR
=

log log q + logα+ log
(
qβ+qγ

qγ

)

n(logα+ αqγ log q)
.

log
(
qβ+qγ

qγ

)

nαqγ log q
,

then with the same upper bound on the binomial get

log log I

logR
.
qγ log e q

β+qγ

qγ

nαqγ log q
=

1 + log qβ+qγ

qγ

nα log q
.

log
(
1 + qβ

)

nα log q

which again goes to zero.

V. PERFORMANCE

While Reed-Muller codes cannot achieve identification ca-
pacity, they were actually successful in our goal of implement-
ing large identification codes with end-to-end time comparable
with direct transmission and arbitrarily small error, as shown
in figures Figs. 1 and 2. In order to achieve this performance,
a combination of field size, computation optimization, and
multiple challenges was used.

101 103 105 107 109

bits of identity (log I)

10−5

10−3

10−1

101

103

105

tim
e 

(s
)

RS ID with NTL or PARI (×2)
RM ID (×2): non-recursive
RM ID (×2): identity generation
RM ID (×2): tag computation
RM ID (×2): tag computation (m ~ 20r)
RS ID with Givaro (×2)
transmission time

Fig. 1. Time cost of identity generation (red) and non-optimized (brown)
and optimized encoding (pink and black) for Reed-Muller identification codes
compared to the data from [7] (blue and orange: the cost of generation and
encoding for concatenated Reed-Solomon identification codes; green: the cost
of direct transmission with an experimental setup).

time (s)

10−3
10−2

10−1
100

101
102

103
104

rID /rT

100

101

102

103

104

105

106

107

108

E
n

10−28
10−24
10−20
10−16
10−12
10−8
10−4
100

RM ID with n=0
RM ID with n=1
RM ID with n=2
RM ID with n=3
RM ID with n=4
RM ID with n=5
RS ID

Fig. 2. Trade-off between time (generation, computation of n challenges and
transmission) the error and the size of the codes (shown for n = 1, ..., 6)
compared to the concatenated Reed-Solomon (pink points). The increased
number of challenges successfully reduces the error without meaningfully
impacting the computation time.

A. Field size

As identified in [7], the largest contribution to the compu-
tation time was the actual time of addition and multiplication
operations in the Sagemath implementation. Limiting the field
size to q < 216, where Zech tables of element logarithms are
used, was the first step in achieving faster computation. As
shown in Section A, this led us to addition and multiplication
times being essentially equal and constant across any field
size q < 216. Thus, choosing the largest field within the
constraint allows to increase the size (Eq. (3)) and lower the
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error (Eq. (7)). However, the bound q < 216 also puts a lower
bound on the error with a single challenge and thus multiple n
challenges need to be used to reduce the error exponentially.

B. Computational optimization

The most efficient way of computing a polynomial is clearly
to have it reduced into product of irreducible polynomials.
However, the cost of the reduction contributes to the iden-
tification encoding. A fully reduced polynomial of degree k
is computed in ∼ 2k operations. However, the same number
of operations is sometimes achieved by computing the non
reduced polynomial recursively. From a programming point
recursion might introduce noticeable overhead and memory
increase. Still, this means that we can optimize the number of
operations without reduction. Recursion over degrees turned
out to be too expensive and thus we use recursion only over
variables as

pw(r) =
∑

k′=[k]
rk

′
1 pwk′ (r2...rm),

where wk′ denote a partition of coefficients for polynomials
of degree k−k′ and m−1 variables. Even then, the recursion
turned out to be expensive as explained later below.

The computation time (times two, since the tag must be
computed at the sender and at the receiver) is plotted in
Fig. 1 in pink and black. For comparison, the brown points
are the computation times without recursion. The improvement
is larger than the caching optimization available for finite
field computation (mentioned in Section A). The pink points
actually form a band rather than a line, indicating that that
there is room for optimization even in the choice of parameters
k, m (q was already optimized as the largest q < 216).
Here is where we can see that the recursion still constitutes
an expensive contribution for large m; the black point are a
heuristic selection of parameters satisfying k/m ∈ [10, 50]
indicating that the fastest computations happen for k � m.
Section B describes a failed attempt to analytically predict
this behaviour and extract the optimal parameters.

Finally, the red points represent the time spend randomly
generating the identities w. We have timed the generation and
the encoding separately since this contribution might not be
relevant depending on the application. Since Fig. 1 is in log
scale, the generation time is minor compared to the total time.

C. Multiple challenges

Figure 1 only shows size and computational time and thus
does not show that the error of the Reed-Muller code increases
with k and thus the size (Eq. (7)), as opposed to the Reed-
Solomon code where it decreases. Multiple challenges can be
used to reduce the error [7] at the cost of increasing compu-
tation time and transmission size. The decrease is exponential
and thus only a small number of challenges is needed. The
trade-off is displayed in Fig. 2 where the Reed-Muller code
with a few challenges achieves points toward large size, small
computation time and small error, more efficiently than the
Reed-Solomon code.

105 1014 1023 1032 1041 1050 1059 1068

field size

10−7

10−6

tim
e 

(s
)

addition Givaro (q< 216) uncached
multiplication Givaro (q< 216) uncached
addition Givaro (q< 216) cached
multiplication Givaro (q< 216) cached
addition NTL (q= 2m ≥ 216)
multiplication NTL (q= 2m ≥ 216)
addition PARI (q≥ 216 and q≠ 2m)
multiplication PARI (q≥ 216 and q≠ 2m)

Fig. 3. Above: Time cost of addition and multiplication for all field sizes,
depending on the prime power either Givaro, NTL or PARI implementations
are used by Sage. With Givaro, there is an additional option to cache elements
for faster computation.

VI. CONCLUSION

We have shown that it is possible to implement identification
with latency comparable to current transmission speeds and
arbitrarily small error. Better codes might even be able to be
strictly faster than transmission in end-to-end identification.
In particular, Polar codes are a potential candidate as they
are characterized, among other things, by fast encoding times.
Future work will also focus on verifying the advantage of
identification in specific applications. Overall, our work shows
that identification could potentially be an important technology
in reducing traffic, load, latency in applications where the
amount of data eventually grows faster than the capacity of
the infrastructure.

APPENDIX A
FIELD ADDITIONS AND MULTIPLICATIONS

We measured the time spent performing additions and
multiplications at various field sizes q. The results are shown
in Fig. 3. As expected, for q ≥ 216 operation time increases
considerably and multiplication time is noticeably larger than
addition time. Multiplication and addition time is essentially
the same for q < 216 and, maybe unexpectedly, is independent
of q. Such result suggests that the optimal choice is to choose
the largest field size below 216 in order to reduce the error.

Finally, for q < 216 there is an option to cache field ele-
ments, which seems to improve operation times uniformly by a
factor ∼ 0.6. As seen in Sections B and V, other contributions
influence the computation time more than the cache, making
this factor not particularly relevant at the moment. We also
did not investigate the memory impact of enabling the cache,
which may be relevant in systems with limited memory, but
is left for future work.
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Fig. 4. Measured (black and pink) and estimated (red) time cost of Reed-
Muller identification, together with the time cost of Reed-Solomon identifica-
tion (orange and blue) and transmission (green) from [7] for comparison.

APPENDIX B
ANALYTIC TIME COMPLEXITY

We tried to estimate the time spent by the Reed-Muller iden-
tification encoder with the goal of estimating semi-analytically
the best parameters in terms of time, size and error. However,
the analysis of this estimation did not accurately predict the
best measured parameter. This is explained in detail below
together with possible further improvements.

The time estimation was done by simply counting the
number of additions and multiplications performed by the
recursive implementation of the polynomial. Let t+(q) and
t∗(q) be the times of performing one addition or multiplication
respectively, and let us assume that exponentiation has the
same cost as multiplication. The estimated time has a simple
recursive relation given by

C(q,m, 0) = 0 C(q, 1, k) = kt+(q) + 2kt∗(q)

C(q,m, k) = kt+(q) + kt∗(q) +
∑

k′∈[k]
C(m− 1, k − k′)

= kt+(q) + kt∗(q) +
∑

k′∈[k]
C(m− 1, k′)

When operation time is constant t+(q) = t∗(q) = t as for
q < 216, the above cost function satisfies

C(q,m, k) = tC(m, k)

where C(m, k) is C(q,m, k) calculated with t+ = t∗ = 1.
This suggests to use the largest field size below 216 in order
to reduce the error and increase the size of the Reed-Muller
identification code, since no penalty is incurred in choosing
these fields. The analysis can then focus on finding the best
parameters m and k that optimize the estimated encoding time
C(m, k). By induction, the highest order term in C(m, k) is
3k

m

m! , however, since already the exact computation of C(m, k)
did not lead to the desired results, we did not investigate further
how well 3k

m

m! approximates C(m, k).

The estimated time plotted against the size log I is shown in
the red points in Fig. 4 for r,m = 1, . . . , 50. The points form a
band with the same slope as measured points (black and pink),
suggesting that the bottom of the band could lead to optimized
parameters. We divided it in strips and the lowest was used for
the parameters measured in the black points, which however lie
among the slowest points of the measured parameters. We take
this as an indication that C(m, k) is too simple to give accurate
predictions. More accurate estimates could be achieved by
including the cost of recursion and variables assignment, which
is left for future work.
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Abstract—The problem of learning a channel decoder for an
additive noise channel whose noise distribution is nonparametric
is considered. The learner is provided with a fixed codebook and
a dataset comprised of independent samples of the noise, and
is required to select a precision matrix for a nearest neighbor
decoder in terms of the Mahalanobis distance. The objective of
maximizing the margin of the decoder is addressed. Accordingly,
a regularized loss minimization problem with a codebook-related
regularization term and a hinge-like loss function is developed,
which is inspired by the support vector machine paradigm for
classification problems. Expected generalization error bound for
that hinge loss is provided, and shown to scale at a rate of
O(1/(λn)), where λ is a regularization tradeoff parameter. A
theoretical guidance for choosing the training signal-to-noise
ratio is proposed based on this bound. A stochastic sub-gradient
descent algorithm for solving the regularized loss minimization
problem is proposed, and an optimization error bound is stated,
which scales at a rate of Õ(1/(λT )). The performance of the
proposed algorithm is demonstrated through an example.

I. INTRODUCTION

The choice of a proper channel decoder is a key element
in the design of a communication system, and is typically
based on rich expert knowledge on the statistical model of
the channel operation. In this paper, we address a scenario
in which such knowledge is not available. Specifically, we
consider an additive noise channel, whose noise distribution
is unknown, and is also not known to belong to any parametric
family. We develop a learning algorithm which selects a proper
decoder from the class of nearest neighbor (NN) decoders
with respect to (w.r.t.) the Mahalanobis distance (MD), based
on noise samples. The class of possible decoders is thus
parameterized by the precision matrix defining the MD.

The approach considered here follows the common practice
of partitioning the communication epoch to a training phase
– in which no data is transmitted, and the transmitter sends a
known signal which the receiver uses to select a decoder, and a
data phase – in which the decoder is fixed (or only tracks slight
variations in the channel statistics). Typically, a parametric
form is assumed for the channel statistics. Then, the training
phase is used to estimate the parameter and the decoder is cho-
sen to match the estimated parameter. In various scenarios of
interest, e.g. interference in massive multiple-input multiple-
output systems [1] or ultra low-latency communication [2],
parameter estimation, or even the parametric modeling itself,
may be inaccurate. In order to address such cases, in this

work we make no assumptions regarding the distribution of the
channel. This setting naturally motivates the use of machine-
learning methods, as they are typically distribution-free, that
is, do not make any assumptions on the data statistics, which
for the additive noise channel corresponds to the noise proba-
bility distribution function. The learning process we propose,
however, is strongly tailored to the given codebook used by
the encoder, and the additive structure of the channel.

Following [3], we consider the class of NN decoders, w.r.t.
the MD, that is, decoders parameterized by a precision matrix.
The optimality of this class of decoders for the additive
Gaussian noise channels motivates their usage when no as-
sumption is made on the noise distribution. Following similar
reasoning, for Gaussian noise, the signal-to-noise ratio (SNR)
scaling of the error probability is determined by the margin,
or minimal distance, between codewords (w.r.t. the MD). It
is thus plausible to use the same performance criterion for
general unknown noise distributions, and aim the learner to
select a decoder which maximizes this margin. Evidently, this
reasoning parallels the approach of support vector machines
(SVM), in which a learned classifier is not only required to
obtain low classification error on the training data, but also to
maximize the margin between the classes.

The contributions and the outline of the rest of the paper is
as follows. In Section II, we establish notation conventions and
formulate the learning problem. In Section III, we formulate
a maximum margin regularized risk minimization (RLM)
rule for the problem. In Section IV, we prove a O(1/(λn))
generalization error bound for the RLM, where λ is the
regularization tradeoff parameter, and n is the number of
noise samples. This tractable optimization problem suffers
from large complexity, mainly due to a O(n2) dependence.
To circumvent this, in Section V, we develop a stochastic sub-
gradient descent algorithm for the decoder learning problem,
and prove that Õ(1/ε) iterations suffices in order to obtain
a solution of accuracy ε. We stress that this bound does not
depend on the dimension of the channel or the number of noise
samples, which are abundant in many scenarios. In Section
VI, we exemplify the operation of the algorithm through
an example. All proofs, further discussions, simulations and
topics for further research are available in a full version of the
paper [4].
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II. FORMULATION OF THE DECODER LEARNING PROBLEM

We begin with a few notation conventions. Random vari-
ables or vectors are denoted by capital letters and specific
values they take are denoted by the corresponding lower case
letters. The expectation operator is denoted by Eµ[·] where µ is
the underlying probability measure. The indicator of an event
A is denoted by I{A}. All vectors are taken as column vectors.
The standard Euclidean norm for x ∈ Rd is denoted by ‖x‖
and the inner product by 〈x1, x2〉 or xT1 x2, interchangeably.
The Frobenius norm for a matrix A ∈ Rd×d is denoted
by ‖A‖F . The positive semi-definite (PSD) cone is denoted
by S+. For n ∈ N+, the set {1, 2, . . . , n} is denoted by
[n]. Standard Bachmann-Landau asymptotic notation is used,
where specifically, Õ(·) is such that the logarithmic factors
are hidden, namely, f(n) ∈ Õ(h(n)) ⇐⇒ ∃k : f(n) ∈
O(h(n) logk(h(n))).

Consider the problem of communicating over a d-
dimensional additive noise channel Y = X+Z, where Y ∈ Rd
is the channel output, X ∈ Rd is a codeword that is chosen
from a fixed given codebook C = {xj}j∈[m] with a uniform
probability, and Z ∈ Rd is a noise statistically independent of
the input X . The distribution µ of the noise Z is unknown to
the designer of the decoder, and is not known to belong to any
parametric family. Further consider the class of NN decoders
w.r.t. the MD

ĵ (y) ∈ arg min
j∈[m]

‖xj − y‖S (1)

, arg min
j∈[m]

√
(xj − y)

T
S (xj − y), (2)

where S ∈ Sd+ is a precision matrix (the inverse of a covariance
matrix). In what follows, a decoder from this class will be
identified by its precision matrix S.

For a decoder S, the expected error probability conditioned
that the j-th codeword was transmitted is given by

pµ (S | j) , Eµ
[
I
{

min
j′∈[m]\{j}

∥∥∥xj + Z − xj′
∥∥∥
S
< ‖Z‖S

}]
,

(3)
and the expected error probability averaged over all codewords
is given by pµ (S) = 1

m

∑
j∈[m] pµ (S|j) . A learner, which

does not know µ, is provided with n noise samples Z =
{Zi}i∈[n] drawn i.i.d. from µ (as well as the given codebook
C), and is required to find S which minimizes the expected
error probability. A common learning approach is empirical
risk minimization (ERM), in which the empirical average error
probability of the noise samples, given by

pZ (S) , 1

m

∑

j∈[m]

1

n

∑

i∈[n][
I
{

min
j′∈[m]\{j}

∥∥∥xj + zi − xj′
∥∥∥
S
< ‖zi‖S

}]
, (4)

is minimized by the learner. This ERM problem has been
studied in [3], and is difficult to solve, mainly due to the
loss function being discontinuous in S. Another disadvantage

of this approach is that it does not capture the structure of
the codebook and therefore its generalization bound depends
linearly on m, as was proved and discussed therein. Therefore,
in this paper, we take a different approach, and derive learning
rules which attempt to maximize the margin of the decoder.

The decoder learning problem resembles a multiclass clas-
sification problem, in which the decoder is required to classify
every channel output as the outcome of one input codeword.
Thus, as a starting point, we assume that the learner synthe-
sizes the following dataset of mn labeled samples, in which
each of the scaled codewords in the codebook is perturbed by
all noise samples {zi}i∈[n], namely D(Z) , {yk, lk}mnk=1 =⋃
j∈[m] Dj(Z),where Dj(Z) , {Γ · xj + zi, j}i∈[n], and

Γ > 0 is a scaling constant which determines the training SNR.
For the sake of brevity, we will omit from now on the explicit
dependence of D in Z. Let the zero-one loss for the multiclass
classification problem be denoted by `0−1(l

′
, l) , I[l′ 6= l]

and let the corresponding empirical average loss be denoted by
L0−1
D (S) , 1

mn

∑
k∈[mn] I{l̂ (yk) 6= lk}. A simple observation

is that the empirical average error probability over Z is
the same as the empirical average loss over D, that is,
pZ(S) = L0−1

D (S).
Despite the equivalence of the risk in both problems,

decoder learning is different from multiclass classification, and
standard SVM learning algorithms cannot be directly applied.
This, in fact, is apparent from the synthesized dataset: Unlike
datasets of regular classification problems, this synthesized
dataset has structure (multiple translations of the noise samples
dataset). Moreover, the training SNR is a design parameter
that can be chosen by the learner. One consequence of this
possibility is in contrast to standard classification problems,
in which the margin prevailing in the dataset determines
the sample complexity of the problem [5, Thm. 15.4], the
margin in the decoder-learning problem is a parameter to
be optimized. This can be used in order to achieve the best
generalization possible for a given dataset.

III. MAXIMUM MARGIN DECODER LEARNING
ALGORITHM

A NN decoder partitions the output space into m decision
regions, whose boundaries are d-dimensional hyperplanes.
This NN decoding rule maximizes the minimal MD between
each pair of codewords in the codebook, w.r.t. the noise
covariance matrix. As is well known, for Gaussian additive
noise channels at high SNR, this minimal distance dmin is the
dominant parameter in determining the decay rate of the error
probability w.r.t. the SNR, as evident from the upper bound
Pe ≤ (m − 1) · exp(−d2min/8σ

2) [6, Sec. 5.2] (where σ2 is
the Gaussian noise power). Naturally, such a bound does not
necessarily hold for non-Gaussian noise distributions. How-
ever, such a criterion is plausible to adopt for general noise
distributions in the absence of any other knowledge. Thus,
in this section, we formulate a maximum margin problem
for a decoder, which is partially analogous to the maximum
margin problem in SVM. The development of the optimization
problem will be made in several steps, which we next describe.
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Step 1 – maximization of the minimum margin: We begin
with the assumption that the dataset D is separable i.e.,
there exists a precision matrix S that achieves zero loss over
D. This assumption is analogous to the linear separability
assumption made for hard SVM, and will be relaxed in the
following steps, similarly to the way it is is relaxed for soft
SVM [5, Ch. 15]. The margin of a hyperplane w.r.t. a dataset
is defined to be the minimal distance between a point in
the dataset and the hyperplane [5, Ch. 15]. We denote the
difference between a pair of codewords indexed by (p, q)
by δpq , xp − xq. In addition, for a given ordered pair
of codeword indices (p, q) and a sample yi ∈ Dp

⋃
Dq

we denote the following transformation of the sample and
codewords apqi , (−1)I(i∈Dq)(yi− 1

2 (xp+xq)) . The learner’s
goal is to find a precision matrix S that maximizes the
minimum margin, over all codeword-pairs xp, xq ∈ C and
the learning problem is formulated as follows:
Claim 1. The maximum margin induced by a MD NN decoder
with precision matrix S is

max
S∈S+

min
1≤p<q≤m

min
i∈Dp∪Dq

aTpqiSδpq

‖Sδpq‖
. (5)

Step 2 – a convex lower bound: The problem (5) is not
necessarily convex, and therefore we proceed to maximize the
following convex lower bound on its value.
Claim 2. The optimization problem

maxS∈S+ min1≤p<q≤m mini∈Dp∪Dq
aTpqiSδpq

subject to max1≤p<q≤m ‖Sδpq‖ ≤ 1
(6)

is a convex lower bound on the value of (5).
Step 3 – minimum norm formulation: With the prospect

removal of the separability assumption, we next derive a
minimum norm optimization problem, so that every solution
to it is a solution to (6). This is similar to the equivalent
formulation of hard SVM from [5, Lem. 15.2].

Lemma 3. Every solution to the following minimum norm
problem is a solution to (6):

minS∈S+ max1≤p<q≤m ‖Sδpq‖2
subject to min1≤p<q≤m mini∈Dp∪Dq

apqiSδpq ≥ 1
.

(7)

Step 4 – relaxation of the separability assumption: Next,
we introduce slack variables in order to relax the assumption
that the dataset D is separable. This is similar to the relaxation
made for soft SVM [5, Ch. 15.2]. Following a short derivation,
the result is a RLM problem for a specific hinge loss function
over a transformation of the noise samples. Specifically, we
first denote ˚̀hinge(S, p, q, i) , max{0, 1 − apqiSδpq}, and
define the empirical risk L̊hinge

D (S) as the average hinge loss
of the induced binary linear classifiers {Sδpq} over the trans-
formed noise samples {apqi}, to wit,

L̊hinge
D (S) ,

2

m (m− 1)

∑

1≤p<q<m

1

2n

∑

i∈Dp

⋃
Dq

˚̀hinge (S, p, q, i) . (8)

The RLM problem is then given by

min
S∈S+

L̊hinge
D (S) + λ · max

1≤p<q≤m
‖Sδpq‖2 , (9)

where λ is a parameter that controls the tradeoff between the
two terms. In [3], a different surrogate hinge-type upper bound
for the average error probability loss over Z was proposed,
which was defined there as

L̄hinge
Z (S) , 1

n

∑

i∈[n]

1

m

∑

p∈[m]

max

{
0, 1− min

q∈[m]\{p}
‖xp + zi − xq‖S − ‖zi‖S

}
. (10)

We review the differences between these hinge-type losses in
light of two possible interpretations for the SVM optimization
problem. The first interpretation is that the SVM objective
function is a specific convex and continuous upper bound
to the non-convex and discontinuous zero-one loss function,
chosen so its ERM problem can be efficiently solved. The
regularization term is interpreted as Tikhonov regularization.
The second interpretation interprets the objective function as
a balance between increasing the margin and increasing clas-
sification errors. As is well known, for binary classification,
both interpretations lead to exactly the same optimization
problem [5, Ch. 15]. This is, however, not the case for
the decoder learning problem. The hinge loss (10) from [3]
follows the first interpretation, as a relaxation of the error
probability loss function. This approach leads to an ERM
problem with the hinge loss over the noise samples, and
an implicit regularization in the form of maximal eigenvalue
constraint. However, this hinge loss is not directly related to
the margin. In this paper, we follow the second interpretation
for maximizing the margin induced by the channel decoder.
This approach leads to the RLM problem with the hinge loss
over the transformed noise samples, and a codebook related
regularization in (9). We argue that for the channel decoding
problem the second approach is better since error probability
is strongly related to margin, as briefly discussed above.

Step 5 – inducing stability by a generalization of the
regularization: Various generalization bounds for SVM are
based on the stability of its learning rule. However, the
problem (9) is, in general, not stable because the regularization
term max1≤p<q≤m ‖Sδpq‖2 is indifferent to changes in direc-
tions orthogonal to the maximizer δpq . Nonetheless, we next
assume, without loss of generality, that Span{δpq}1≤p<q≤m =
Rd (if this is not the case, we can project the codebook and
noise samples to a lower dimension spanned by the codebook).
We next slightly modify the learning rule to a stable one, and
to this end, we consider a partition of the codeword pairs which
satisfies the following property.

Definition 4. A partition P =
⋃d+1
j=1 Pj of {(p, q)}1≤p<q≤m

is proper if Span[{δpj ,qj}d+1
j=1 ] = Rd for any set {δpj ,qj}d+1

j=1

of representatives, such that (pj , qj) ∈ Pj for all j ∈ [d+ 1].

A simple way of finding a proper partition is by first
finding a basis of Rd: {δpj ,qj}dj=1 ⊂ {δpq}1≤p<q≤m and then
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setting Pj = {δpj ,qj} ∀j ∈ [d], Pd+1 = {δpq}1≤p<q≤m \
{δpj ,qj}dj=1. Nonetheless, our following results hold for any
arbitrary proper partition. For notational convenience, we will
henceforth occasionally use a single index in [ 12m(m − 1)]
instead of double indices {(p, q)}1≤p<q≤m. The final RLM
rule for finding a maximum minimum margin decoder is
defined for a given positive parameters {ηi}i∈[d+1] which
satisfy

∑d+1
i=1 ηi = 1, and a proper partition {Pj}j∈[d+1], as

A (D) = arg min
S∈S+

L̊hinge
D (S) + λ

d+1∑

i=1

ηi ·max
j∈Pi

‖Sδj‖2 . (11)

IV. A GENERALIZATION ERROR BOUND

In this section, we state an average generalization error
bound for (11), through on-average-replace-one-stability argu-
ment, following the proof in [5, Sec. 13.3]. The generalization
error is the error inflicted by learning only from noise samples
and not the noise distribution itself. This generalization bound
can be used to evaluate the expected loss a solution to (11)
will achieve, given the empirical error. Furthermore, we will
also utilize it to obtain a theoretical guidance for choosing the
training SNR.

Theorem 5. Let A be the RLM rule (11). Then,

Eµ
[
L̊hinge
µ (A (D (Z)))− L̊hinge

D (A (D (Z)))
]

≤ 1

λnηmin
Eµ [h (C,Z)] , (12)

where h(C,Z) is a codebook and dataset dependent constant

h (C,Z) , max
1≤p<q≤m

max
i∈[n]

|〈zi, δpq〉| ‖δpq‖2 + 〈zi, δpq〉2 + ‖zi‖2 ‖δpq‖2 + 1
2 ‖δpq‖

4

min1≤p<q≤m ‖δpq‖2
.

(13)

Furthermore, if rx , maxx∈C ‖x‖ and the noise is bounded,
i.e., ‖z‖ ≤ rz w.p. 1, then

Eµ [h (C,Z)] ≤ 16rzr
3
x + 8r2zr

2
x + 8r4x

min1≤p<q≤m ‖δpq‖2
. (14)

We remark that (14) can be easily generalized for weaker
assumptions on the noise distribution tail, e.g. sub-Gaussian.
In [3], a Õ(m

√
d/n+

√
log (1/δ) /n) high-probability gener-

alization error bound was proved for the error probability loss
function, as well as a Õ(

√
d (d+m) /n +

√
log (1/δ) /n)

high probability generalization error bound for the surrogate
hinge-type upper bound (10). In comparison, here we prove
a O(1/(λn)) generalization error bound on the regularized
hinge loss over the transformed samples. The convergence rate
of this bound is much faster, however, this is only an average
error bound, and does not have a high probability guarantee.

Previous works (e.g., [7], [8]), discussed the question of how
to optimize the training SNR. Intuitively, on one hand, training
with a sufficiently high SNR leads to zero empirical error
for many decoders, not necessarily the one with the lowest
expected error. On the other hand, training with SNR too low

may produce a decoder which has high error probability (as
most evident from the extreme case of zero SNR), and might
be too pessimistic in assessing the error probability. In [8] a
rule-of-thumb for choosing the training SNR was proposed,
based on the capacity of the Gaussian channel. This rule,
however, did not take into account generalization error aspects.
Following the generalization error bound of Theorem 5, we
propose to tune the training SNR so that the empirical error
L̊hinge
D (A(D(Z))) roughly equals to the generalization bound

(12). With this training SNR, it is guaranteed that the expected
error is on the same order as the empirical error.

The generalization bound from Theorem 5 decreases with
increasing λ, whereas the empirical hinge loss in (11) increases
with increasing λ. Similarly to [5, Cor. 13.9], λ may be
optimized as follows:

Theorem 6. Let SB , {S ∈ S+ : maxj∈[ 12m(m−1] ‖Sδj‖ ≤
B}, denote ρ , maxp,q,i ρp,q,i, and let λ =

√
2ρ2

B2γn . Then,
the RLM rule (11) with S+ replaced with SB satisfies

Eµ
[
L̊hinge
µ (A (D (Z)))

]
≤ min
S∈SB

L̊hinge
µ (S)+ρB

√
8

γn
. (15)

Hence, for every ε > 0, if n ≥ 8ρ2B2

γε2 then for every distribu-
tion µ, Eµ[L̊hinge

µ (A(D(Z)))] ≤ minS∈SB L̊
hinge
µ (S) + ε.

It should be remarked, however, that the bound of Theorem
6 is not readily translated to a bound on the error probability
itself (unlike in binary classification).

V. A STOCHASTIC SUB-GRADIENT DESCENT ALGORITHM

In this section, we propose a stochastic sub-gradient descent
algorithm for solving (11), inspired by an algorithm for
classification called PEGASOS [9]. Its Õ(1/ε) run-time, for
an ε-accurate solution, is independent of the dataset size n,
which makes the algorithm especially suitable for learning
from large datasets, just as an offline design of the decoder.
Moreover, even if the decoder is learned online and the number
of samples is relatively small, a learning rule based on low-
complexity iteration is also attractive, since communication
devices are typically limited in computational power (as, for
example, motivates learning equalizers by the least mean
squares algorithm [10, Ch. 9]). In comparison, and as dis-
cussed in [11], the computational cost of solving a standard
SVM problem grows at least like O(n2), and even if the
solver is efficient in the data-laden regime, in which data is
virtually unlimited, it has a worse dependence on ε compared
to the sub-gradient descent algorithm [12]. The pseudo code of
our proposed algorithm is given in Algorithm 1 and requires
the following definitions. Let pa, qa be the codeword-pair
related to a transformed sample a, let δa , δpa,qa and
let j(t)k , arg maxj∈Pk

‖Stδj‖2. The sub-gradient of the
approximate objective at round t is:

∇t , λ
d+1∑

k=1

ηk

(
Stδj(t)k

δT
j
(t)
k

+ δ
j
(t)
k

δT
j
(t)
k

St

)
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Algorithm 1 RLM Sub-gradient Algorithm
input D ∈ Rd×n × Nn, λ ∈ R+, T ∈ N, c ∈ N
begin

Set S1 = 0
for t = 1, 2, . . . , T

Choose At ⊂ [nm(m − 1)], s.t. |At| = c, uniformly at
random.

Set St+1 ← ΠS+(St − 1
λt∇t)

end for
end
output ST+1

− 1

|At|
∑

i∈At

I
[
aTi Stδai < 1

] 1

2

(
δaia

T
i + aiδ

T
ai

)
. (16)

Notice that all matrix derivatives are w.r.t symmetric matrices.
In general, a gradient step may result in St+1 /∈ S+ hence
we include an obligatory projection step to the PSD cone.
According to [13, Ch. 8], the projection of a symmetric matrix
to the PSD cone w.r.t. the Frobenius norm is, ΠS+(S) ,∑d
i=1 max {λi, 0} vivTi , and this definition is used here. We

prove the following optimization error bound.

Theorem 7. Let S∗ be the RLM rule (11) and St be the hy-
pothesis generated by algorithm 1 at a random round t ∈ [T ].
Denote f(S) , L̊hinge

D (S) +λ
∑d+1
i=1 ηi ·maxj∈Pi

‖Sδj‖2, and
assume that for all t, each element in At is sampled uniformly
at random from the dataset (with or without replacement).
Then,

f (St)− f (S∗) = O

(
ln3 (T ) · ln (1/δ)

λT

)
(17)

with probability larger than 1
2 − 2δ ln (T ).

Since Theorem 7 guarantees a good solution with probabil-
ity close to 1

2 then, as discussed in [9], roughly two validation
attempts are required to obtain a good solution. The bounds
of Theorems 6 and 7 result the following total error bound.
First, the choice of the class of NN decoders, which do not
necessarily contain the optimal decoder for the true noise
distribution, inflicts an approximation error, which is difficult
to characterize in general. Second, learning the decoder based
on noise samples rather than the unknown noise distribution,
inflicts a generalization error, which was bounded in Theorem
6 with expected generalization error of O(1/(λnηmin)). Third,
solving the optimization problem only approximately, using
a finite number T of iterations of Algorithm 1, inflicts an
optimization error. Theorem 7 establishes that this error is
O(ln3(T )/λT ).

VI. AN EXAMPLE

In this section, we exemplify the empirical performance
of the proposed algorithm for a two-dimensional zero-mean
Gaussian mixture noise of l = 4 Gaussians Zi ∼ N (0,Ki),
and mixture weights {ωi}li=1. The learner is provided with a
codebook of m = 32 points, which is a 32-PAM constellation,

Figure 1. Left: train error probability vs. training iterations. Right: error
probability vs. various SNRs [dB]. St - blue, Ŝ - dashed.

and a training set with n = 100 i.i.d. noise samples. Addition-
ally, the tradeoff parameter is λ = 0.1, the training SNR is
16[dB] and the proposed Algorithm 1 has run for T = 100
iterations with a batch size of 1, and produced hypotheses
{St}Tt=1. We compare our results with Ŝ , ( 1

l

∑l
i=1 ωiKi)

−1

which is a reasonable choice but not necessarily optimal. The
left panel of Fig. 1 shows the fast convergence of the algorithm
to an approximately minimal error solution. The right panel
displays the error probability of the final hypothesis decoder,
under various SNR values, for each value a validation set
with 103 noise samples is used. We observe that the error
probability scales similarly for both ST and Ŝ, even for SNR
values that are significantly smaller than the training SNR.
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Abstract—We consider the estimation of an n-dimensional
vector s from noisy element-wise measurements of ssT , a problem
that frequently arises in statistics and machine learning. We
investigate a mismatched Bayesian inference setting in which
the statistician is unaware of some of the parameters. For the
particular case of Gaussian priors for the vector s and additive
noise, we derive the complete exact analytic expression for the
asymptotic mean squared error (MSE) in the large system size
limit. Our formulas demonstrate that estimation is still possible
in the mismatched case. Also, the minimum MSE (MMSE) can be
achieved by selecting a non-trivial set of parameters beyond the
matched case. Our technique is based on the asymptotic behavior
of spherical integrals and can be used as long as the statistician
chooses a rotationally invariant prior.

I. INTRODUCTION

Many problems in machine learning and statistics can be
expressed as estimating a low-rank matrix from its noisy
observation. Examples are sparse PCA [1], the spiked Wigner
model, community detection [2]. For the rank-one symmetric
case, the problem is formulated as follows: a vector s 2 Rn is
generated with i.i.d. elements distributed according to si ⇠ P⇤,
the matrix ssT is observed through an element-wise additive
white gaussian noise channel. The goal is to estimate the vector
s upon observing the noisy version of ssT .

The statistical and computational limits of this problem
have been extensively studied. Most works have so far con-
sidered the "Bayes-optimal" setting, in which the prior P⇤

and possibly other hyper-parameters (e.g., SNR) are known to
the statistician. In the Bayes-optimal setting, computing the
mutual information enables us to compute the minimum mean
squared error (MMSE) and derive the information-theoretical
limits of the estimation. The analytical but highly non-rigorous
replica and cavity methods rooted in statistical physics have
been used to derive expressions for the mutual information
between the true signal and the observation matrix [3]. These
expressions were already rigorously derived in early work
[4] for binary signals using Guerra-Toninelli interpolation [5].
Later the problem has been studied in much detail for general
signals, in [6] using approximate message passing (AMP)
and spatial coupling, in [7] by Guerra-Toninelli interpolation
and Aizenman-Sims-Starr methods. Further, [8], [9] used the
adaptive interpolation method to rigorously prove the limiting
expressions of mutual information and MMSE. All these
methods crucially rely on the assumption that the prior and
the parameters of the estimation problem are known to the
statistician. The Bayes law then induces remarkable identities

that enable the analysis to proceed. In the present case, we
lack such identities.

Despite the vast amount of work on this problem in the
Bayes-optimal setting, to the best of our knowledge, there
is no rigorous result for the mismatched case corresponding
to the realistic situation where the statistician does not know
the true prior or/and hyper-parameters, and can only make
assumptions about them. Mismatched inference for the scalar
and vector estimation problems has been considered in [10],
[11]. In particular, [10] proved a result relating the MSE in the
mismatched inference to the relative entropy of the true prior
and the statistician’s prior. We follow this work and define the
MSE similarly (up to natural modification for the matrix case).

The main contribution of this paper is to compute the asymp-
totic mismatched MSE for the rank-one matrix estimation
problem in the large n limit. Our approach uses results on
the spherical integrals from the mathematical physics literature
[12]. A primary assumption in our method that would be
difficult to dispense of, is the rotational invariance of the
statistician’s prior. Despite this restriction, we can study non-
rotation invariant true priors, non-symmetric matrix estimation,
higher-ranks (finite w.r.t n! +1). In this short note, we limit
ourselves to the theoretical limits of mismatched estimation
for the case of Gaussian priors (both for the true and the
statistician’s) and postpone the detailed study of the more
general cases to a forthcoming detailed work. As will become
clear in section III, already under this limited setting, the phase
transitions phenomenology is quite rich.

The rest of the paper is organized as follows. In Section II,
we introduce the setting and formulate the problem. Section
III describes the main result and discusses it in several special
cases, followed by the proof sketch of the main theorem in
Section IV. Lastly, we conclude the paper with some remarks
and possible future directions for this line of work.

II. PROBLEM SETTING

Suppose the ground-truth vector s 2 Rn is generated with
i.i.d. elements from P⇤ = N (0, �2), the observed matrix is

Y =

r
�

n
ssT + Z (1)

where we call (with an abuse of language) � 2 R+ the signal-
to-noise-ratio (SNR), and the noise matrix Z is a symmetric
matrix with i.i.d. N (0, 1) off-diagonal and N (0, 2) diagonal
entries. This model is called the Spiked-Wigner model. The
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purpose of the scaling factor 1p
n

is to make the inference
problem neither trivially easy nor completely impossible in
the large system limit.

The statistician is aware that the channel is additive Gaussian
and that the true prior is a centered Gaussian, but he does not
know the values � and �. He assumes values �0 and �0 as the
SNR and the prior variance. Following the Bayesian estimation
principle, he chooses the posterior mean as the estimate of the
ground-truth. Our goal is to compute the asymptotic MSE for
this mismatched estimation problem. Define the mismatched
matrix-MSE as

MSEn(�, �0, �, �0) :=
1

n2
EP⇤,PZ

h��ssT � hxxT i�0,�0
��2

F

i

where k.kF is the Frobenius norm, and h.i�0,�0 denotes the
expectation with respect to the posterior distribution from the
statistician’s point of view, that the SNR is �0 and x ⇠ P =
N (0, �02). Here we adopt the traditional statistical mechanics
notation for the internal (annealed) expectations

hf(x)i�0,�0 =

R
dxP(x)f(x)e�

1
4k
p

�
n ssT +Z�

q
�0
n xxT k2

F

R
dxP(x)e�

1
4k
p

�
n ssT +Z�

q
�0
n xxT k2

F

for any reasonable function f(x) such that the integrals are
finite.

Note that, when we are in the matched (Bayes optimal) case
�0 = �, �0 = �, the best achievable error is the matrix-MMSE
which is defined as

MMSEn(�, �) :=
1

n2
EP⇤,PZ

h��ssT � hxxT i�,�

��2

F

i

We necessarily have MSEn � MMSEn.
Notation:We often drop the n subscript to denote the asymp-

totic large n limit. We may also drop the parameter dependency
for notational simplicity.

III. MAIN RESULT

The main result is the following:

Theorem 1. Assume that the sequence (MSE)n�1 converges
uniformly in (�, �0) 2 K ⇢ R2

+. Then, for all �, �0 (strictly
positive) and (�, �0) 2 K, the asymptotic mismatched MSE is
given by eq. (2).

Remark 1. In the matched case, uniform convergence of the
sequence (MMSE)n�1 - except possibly at phase transition
points which form a set of measure zero - follows using the
concavity of mutual information with respect to �. Then, using
the I-MMSE relation [13], this allows to interchange limit and
derivative to go from asymptotic mutual information (a.k.a.
free energy) to asymptotic MMSE. For the present mismatched

MSE, we use a relation similar to I-MMSE but in terms of
mismatched free energies, which lack concavity w.r.t. � and �0.
Therefore almost everywhere uniform convergence is difficult
to establish from general principles. However, we conjecture
that it holds and that eq. (2) holds almost everywhere (i.e.,
except possibly at phase transition lines).

Remark 2. One can see that the normalized MSE, i.e.
��4MSEn, can be expressed as a function of the three
dimensionless variables ��4, �0�4, �2

�02 . This allows us to study
the problem for the case �2 = 1 and easily generalize the
analysis to other cases by rescaling the parameters.

The MSE is illustrated for the case of � = 1, � = 2 in
Fig. 1. The observed behavior is generic for ��4 > 1. We
observe one phase transition line and an intermediate region
where estimation better than chance is possible, in the sense
that the MSE is smaller than �4. We refer to the caption of Fig.
1 for details. In the case � = 1 and � < 1, or more generally
��4 < 1, it is easy to see from Eq. (2) that the intermediate
region disappears and the MSE is always greater or equal to �4

(the phase transition line is still present technically speaking).
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�
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2.5

3

Fig. 1: Plot of MSE according to Eq. (2) for � = 1, � = 2. The
solid leftmost (red) curve is a phase transition line (the MSE is
continuous but the derivative is discontinuous). On the left of this
curve MSE = �4 = 1. In the intermediate region between the solid
leftmost (red) curve and the dashed (red) curve the MSE takes values
less than �4 = 1. In this intermediate region estimation better than
chance is possible. On the dotted (green) curve the MSE attains the
MMSE(�, �) = 2

�
� 1

�2�4 = 0.75 (even though we do not have
�0 = �, �0 = � except for one point with a vertical tangent on the
curve). The MSE equals �4 = 1 on the dashed (red) line and takes
higher values in the region on the right hand side of this line. Note that
this is not a phase transition line, and the MSE is a perfectly analytic
function there. The analytical expressions of the phase transition line,
as well as dotted and dashed lines can easily be written down from
eqs. (2) and (3). For � = 1, � = 2 the dotted (resp. dashed) curves
have horizontal asymptotes �0 = 8 (resp. �0 = 2). See also figures 2
and 3 in [14].

lim
n!1

MSEn(�, �0, �, �0) =

8
><
>:

�4 +
�

1p
�0 � 1

�0�02
�2

if ��4  1, and �0�04 � 1

�4(1�
q

�
�0 )

2 + 2p
��0 + 1

�02�04 + 2
�0

�2

�02 (1�
q

�
�0 )� 2

��0�2�02 if ��4 � 1, and
p
��0 � 1

�2�02

�4 if o.w.
(2)
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A. Inference with Matched SNR
Suppose that the statistician fully knows the channel and

can choose �0 = �. The asymptotic mismatched MSE in the
limit n!1 is:

if �0  �, MSE =

⇢
�4 if �  1

�2�02
2
� � 1

�2�02 ( 2
�2 � 1

�02 ) if � � 1
�2�02

if �0 � �, MSE =

8
<
:

�4 if �  1
�04

2
� � 1

�2�02 ( 2
�2 � 1

�02 ) if � � 1
�4

�4 + 1
� � 1

�
3
2 �02

(2� 1p
��02 ) o.w.

For � = 1 the MSE is plotted as a function of SNR for
various values of �0 in Fig. 2. When �0 > �, we observe that
the MSE increases as the SNR increases (a similar behavior
occurs in Fig. 1 in [10] for the scalar case). Although this
happens when we are still in the regime of small SNR
and estimation is impossible, we find this behavior rather
counterintuitive.

0 2 4 6 8 10

0.5

1

1.5

�

M
SE

�0=0.5

�0=0.7

�0=1

�0=1.5

�0=1.7

Fig. 2: Behavior of the MSE for matched SNR �0 = �.

Remark 3. For �0 = �, �0 = �, we are in the Bayes optimal
setting and we recover the minimum MSE (MMSE) in the limit
n!1.

MMSE =

⇢
�4 if�  1

�4

2
� � 1

�2�4 if� � 1
�4

This expression is well known and derived previously by a host
of different approaches (see [1], [2], [6]–[8]).

As a sanity check of our result for the matched SNR case,
with a bit of work we can check explicitly thatZ 1

0

[MSE(�, �0, �, �)�MMSE(�, �)] d�

= 4DKL(N (0, �2), N (0, �02))
(3)

where DKL denotes the Kullback-Leibler divergence. This
sum-rule for vector channels is derived in [10] (with a factor
of 2 instead of 4 in the vector case).

IV. ANALYSIS

A. Mismatched free Energy and MSE
From the statistician’s point of view, the posterior distribu-

tion reads up to a normalizing factor

P{x|Y } / e�
1
4kY �

q
�0
n xxT k2

F P(x)

/ e�
�0
4nkxk4+ 1

2

q
�0
n Tr Y xxT

P(x)

(4)

where P is the normal distribution with iid entries and vari-
ance �0. In deriving the second line, we use the fact that
kY kF is a constant (because it is being conditioned on).
Note that, Y is symmetric and the upper (or lower) part is
distributed as (Yi,j)i<j ⇠ N (

q
�
nsisj , 1), and the diagonal

(Yi,i) ⇠ N (
q

�
nsisi, 2).

The partition function is defined as the normalization factor
of the last expression

Z(Y ) =

Z
dx e�

�0
4nkxk4+ 1

2

q
�0
n Tr Y xxT

P(x) (5)

and the mismatched free energy is defined as

fn(�, �0, �, �0) = � 1

n
EP⇤,PZ

[ln Z(Y )] (6)

Now we state a lemma relating the mismatched free energy
to MSE. This lemma does not require any assumption on
priors, and holds as long as the noise is additive Gaussian.
Keep in mind that both mismatched free energy and MSE are
functions of �, �0, �, �0, but for simplicity of notation, we drop
the arguments.

Lemma 1.

d

d�0
fn +(2�

r
�

�0
)

r
�

�0
d

d�
fn +

1

4

1

n2
E
⇥
kssT k2F

⇤
=

1

4
MSEn

(7)

Remark 4. Eq. (7) generalizes the classical I-MMSE relation.
Here the mismatched free energy cannot be related to a mutual
information. However, note that, in the special case where �0 =
� Eq. (7) simplifies slightly and combining with the I-MMSE
relation, we obtain that the difference of MSE and MMSE is
directly related to a derivative of a relative entropy, equivalent
to relations discussed in detail in [10] for vector channels.

Proof of lemma. We have

d

d�
fn = �1

4

1

n2

r
�0

�
EP⇤,PZ

h⌦
(sT x)2

↵
�0,�0

i

and by using a standard Gaussian integration by parts trick,

d

d�0
fn =

1

4

1

n2
EP⇤,PZ

h��hxxT i�0,�0
��2

F
�
r
�

�0
⌦
(sT x)2

↵
�0,�0

i

Putting these two equations together, the left-hand side of eq.
(7) is equal to

1

4

1

n2
EP⇤,PZ

h��hxxT i�0,�0
��2

F
� 2
⌦
(sT x)2

↵
�0,�0 + ksk4

i

=
1

4

1

n2
EP⇤,PZ

h��hxxT i�0,�0
��2

F
� 2 Tr ssT hxxT i�0,�0

+ kssT k2F
i

=
1

4
MSEn ⇤

Thus, the problem is reduced to computing the (mismatched)
free energy. The main idea is to exploit the rotational invari-
ance of the normal distribution that the statistician chooses.
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Changing variables x ! Ux, for an orthogonal matrix
U 2 Rn⇥n, the integral in eq. (5) becomes (|detU | = 1):

Z(Y ) =

Z
dx e�

�0
4nkUxk4+ 1

2

q
�0
n Tr Y UxxT UT

P(Ux)

=

Z
dxP(x) e�

�0
4nkxk4+ 1

2

q
�0
n Tr Y UxxT UT

Since this holds for any orthogonal matrix U , we can take
the expectation over the Haar measure on the group of n⇥ n
orthogonal matrices.

Z(Y ) =

Z
dxP(x) e

��0
4n kxk4

Z
DUe

1
2

q
�0
n Tr Y UxxT UT

(8)
where DU denotes the Haar measure.

In the next subsection, we will discuss computing the inner
integral in eq. (8).

B. Spherical Integrals

The spherical integral is defined as:

In(A, B) =

Z
DUen Tr AUBUT

(9)

where A, B 2 Rn⇥n, and DU denotes the Haar measure over
the orthogonal matrices. Note that, this definition can also be
extended to the unitary matrices. In the mathematical physics
literature, such integrals are often called Harish Chandra-
Itzykson-Zuber (HCIZ) integrals. The interest for these ob-
jects dates to the work of the mathematician Harish Chandra
[15], and they have been extensively studied and developed
in physics and mathematics. In particular, [12] derived the
asymptotics of spherical integrals when the rank of matrix B
is O(1) w.r.t n. We will apply this result for the rank-one B to
our problem . For simplicity of notation, we denote the integral
by In(✓, A), where ✓ is the only non-zero eigenvalue of B.

From the definition (9), one may notice that the integral only
depends on the eigenvalues of A,B. So, it is natural to expect
that the asymptotic of the integral depends on the limiting
spectral measure of the matrix A. The result of [12] is based on
the hypothesis that the spectral measure µA converges weakly
towards a compactly supported measure µ, and the minimum
and maximum eigenvalues of A converge to the finite values
�min, �max, respectively.

For a probability measure µ, the Hilbert (or Stieltjes) trans-
form is the map Hµ : R\supp(µ)! R, Hµ(z) =

R
1

z�t dµ(t).
This map is invertible, and denoting its inverse by H�1

µ (.), for
z in range of Hµ we define the R-transform of a probability
measure µ as Rµ(z) = H�1

µ (z)� 1
z .

Theorem 2 (Guionnet and Maïda [12]). Suppose µA con-
verges weakly towards µ. Let Hmin = limz!�min Hµ(z),
Hmax = limz!�max Hµ(z). Then:

lim
n!1

1

n
lnIn(✓, A)

= ✓⌫(✓)� 1

2

Z
ln(1 + 2✓⌫(✓)� 2✓t) dµ(t)

where

⌫(✓) =

8
<
:

Rµ(2✓) if Hmin  2✓  Hmax

�max � 1
2✓ if 2✓ > Hmax

�min � 1
2✓ if 2✓ < Hmin

C. Computing Free Energy

To apply the result from [12], we can rewrite the spherical
integral in eq. (8) as

In

�p�0
2n
kxk2, Yp

n

�
=

Z
DUe

n Tr Yp
n

U
p

�0
2n xxT UT

(10)

Yp
n

=
p
�

n ssT + 1p
n
Z, where 1p

n
Z is the suitably nor-

malized Wigner matrix whose limiting spectral measure is the
renowned semi-circle law with density µSC = 1

2⇡

p
4� t2.

At the same time, the spectral measure of Yp
n

converges
almost surely (a.s) as n!1 to the semi-circle law (see e.g.
proposition 1 in [16]). We have HµSC

(z) = 1
2 (z �

p
z2 � 4)

and RµSC
(z) = z.

Let �min and �max be the smallest and the largest eigenvalues
of Yp

n
, from the results in [17], as n!1 we have (a.s.)

�min = �2, �max =

(
2 if

p
��2  1p

��2 + 1p
��2

if
p
��2 � 1

So,

Hmin = �1, Hmax =

(
1 if

p
��2  1

1p
��2

if
p
��2 � 1

Theorem 3. For all �, �0, �, �0 positive, the asymptotic free
energy of the mismatched inference model is given in eq. (11).
Proof sketch. Eq. (8) can be written as

Z(Y ) =

Z
dxP(x) e

��0
4n kxk4+ln In

�p
�0

2n kxk2, Yp
n

�
(12)

Since P(x) is Gaussian, the integrand in (12) is a function of
kxk, so we can use spherical coordinates to reduce the integral
in (12) to a one-dimensional integral

Z(Y ) =
2�

n
2 +1

�(n
2 )

1

�0n

⇥
Z +1

0

d⇢ ⇢n�1e
� ⇢2

2�02 ���0
4n ⇢4+ln In

�p
�0

2n ⇢2, Yp
n

�

where ⇢ := kxk, and �(.) is the Gamma function. Changing
variable ⇢2

n ! ⇢, we obtain

Z(Y ) =
2�

n
2 n

n
2

�(n
2 )

1

�0n

⇥
Z +1

0

d⇢

⇢
e
�n

⇣
⇢

2�02 � 1
2 ln ⇢+�0

4 ⇢2�Jn

�p
�0 ⇢

2 , Yp
n

�⌘

(13)

where Jn

�
✓, Yp

n

�
⌘ 1

nIn

�
✓, Yp

n

�
. By Theorem 2, Jn

�
✓, Yp

n

�

converges to a deterministic function J(✓; µSC, �max).
We are interested in limn!1 fn = limn!1 E

⇥
�

1
n ln Z(Y )

⇤
. The prefactors in (13) are independent of Y and

International Zurich Seminar on Information and Communication (IZS), March 2 – 4, 2022

87



lim
n!1

fn(�, �0, �, �0) =

8
><
>:

� 1
4�0�04 + 1p

�0�02 � 3
4 + ln�0

1
4�0 if ��4  1, and �0�04 � 1

1
2 ln
p
��0�2�02 � 1

4�0�04 � ��4

4 +
q

�
�0

�2

2�02 + 1
2
p
��0�2�02 � 1

2 if ��4 � 1, and
p
��0 � 1

�2�02

0 if o.w.
(11)

the limit limn!1� 1
n ln{prefactors} equals � 1

2 +ln�0. Next,
we compute the asymptotic of the integral in (13), denoted
from now on by K(Y ). Let us define the function

 (⇢) =
⇢

2�02 �
1

2
ln ⇢+

�0

4
⇢2 � J(

p
�0
⇢

2
; µSC, �max) (14)

We can show that E
⇥
� 1

n ln K(Y )
⇤

is bounded above and
below by min⇢  (⇢) ± on(1). Therefore, we get:

lim
n!1

fn = min
⇢
 (⇢)� 1

2
+ ln�0

Solving this optimization problem, we find (11).

Once we have the expression for the free energy, we can
compute the MSE using Lemma 1. As explained in remark 1
this step uses the assumption that for (�, �0) 2 K ⇢ R2

+ the
sequence (MSE)n�1 converges uniformly.

V. CONCLUSION

Studying inference problems in settings where priors and
hyper-parameters are unknown or partially known and deriving
fundamental limits of estimation is a problem with practical
importance. We derived analytical formulas for asymptotic
MSE in estimating a rank-one matrix corrupted by additive
Gaussian noise when both the channel and prior are partially
known. In this short note, we have shown how to treat one
of the most straightforward such situations by using beau-
tiful asymptotic formulas of spherical integrals. The major
limitation of our technique is that the statistician assumes a
spherically invariant prior. This can be a Gaussian which has
the advantage of being factorized, but we can also treat a
uniform distribution over a sphere. Given such distributions
for the statistician, it is then possible to extend our analysis to
a broader class of problems, namely:

• Estimation of finite rank and rectangular matrices can be
accomodated (i.e., rank = O(1) w.r.t n! +1).

• The true prior does not need to be rotation invariant. Gen-
eral factorized priors can be accommodated, for example,
a Rademacher-Bernoulli mixture modeling sparse signals.

• A temperature parameter can be introduced by the statisti-
cian in his mismatched posterior distribution (with minor
modifications in the analysis).

These extensions result in a very rich phenomenology with
many possible phase transitions. Already in the simplest situ-
ation considered here, the MSE displays non-trivial features.
Other problems of interest are the construction of more general
estimators (non-Bayesian or non-Gibbsian), which can still be
analyzed through spherical integrals, as well as comparing the
analytical expressions of the MSE to algorithmic predictions,
for example, those based on AMP [18], Approximate Survey
Propagation [19], and spectral methods applied to mismatched
situations.
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