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Abstract—We study rate-distortion problems of a Poisson pro-
cess using a group theoretic approach. By describing a realization
of a Poisson point process with either point timings or inter-
point intervals and by choosing appropriate distortion measures,
we establish rate-distortion problems of a homogeneous Poisson
process as ball- or sphere-covering problems for realizations of
the hyperoctahedral group in Rn. Specifically, the realizations we
investigate are a hypercube and a hyperoctahedron. Thereby we
unify three known rate-distortion problems of a Poisson process
(with different distortion measures, but resulting in the same
rate-distortion function) with the Laplacian-`1 rate-distortion
problem.

I. INTRODUCTION

A homogeneous Poisson process can be described by event
(point) timings or inter-event (inter-point) intervals (compare
with the left and right columns in Fig. 1). Both descriptions
give rise to a group theoretic view point (conditioned on
a given number of points), namely the timing description
corresponds to the symmetric group and the interval de-
scription leads to the reflection group. The symmetries of
these groups (in combination with properly chosen distortion
measures) allow the corresponding rate-distortion problem to
be expressed as a ball- or sphere-covering problem.

Concretely, in Section II we consider the symmetries
in the symmetric group and its subgroup to describe the
point-covering rate-distortion problem and the queueing rate-
distortion problem, respectively, and show them to correspond
to `∞-ball covering. In Section III we consider the sym-
metries in the reflection group and its subgroup to describe
the exponential onesided `1-rate-distortion problem and the
Laplacian `1-rate-distortion problem, respectively, and show
them to correspond to `1-sphere covering.

We also introduce the concept of a natural choice of
distortion measure that guarantees that the distortion set for
a codeword has a similar shape to the source set, leading to
particularly easy formulations of the ball- or sphere-covering
problem and rate-distortion functions.

Finally in Section IV, we present the hyperoctahedral group
which can be realized as a hypercube or a hyperoctahedron.
Furthermore we show that the symmetric group and the
reflection group discussed previously1 give a construction of

J.-P. Pfister has been supported by the Swiss National Science Foundation
grants PP00P3_179060 and PP00P3_150637.

1The two groups that arise respectively from the timing and interval
description of the Poisson process, as considered in Sections II and III.

the hyperoctahedral group via the semidirect product, demon-
strating the connections between the hyperoctahedral group
and the symmetries of a Poisson process.

Notation and Definitions: We denote [n] = {1, 2, . . . , n}.
For r > 0, �n−11 (r) ,

{
x ∈ Rn :

∑n
i=1|xi| = r

}
denotes

the `1-sphere of radius r. Its first-orthant (“hyper-surface”)
(n−1)-simplex is 4n−1(r) ,

{
x ∈ Rn :

∑n
i=1 xi = r, xi ≥

0 ∀i ∈ [n]
}

.
The n-dimensional unit-cube is written as �n = [0, 1]n. By

voln we denote the n-dimensional Lebesgue measure. Vectors
are represented by bold font x; for sets we use a calligraphic
font X ; and groups are denoted by the Euler font G. The
logarithm log(·) is to base 2, cl(·) denotes the closure of a
set, and 1{statement} represents the indicator function, which
equals 1 if the statement holds true and 0 otherwise.

II. RATE DISTORTION AND `∞-BALL COVERING FOR THE
HOMOGENEOUS POISSON PROCESS

A. The Hypercube and the Symmetric Group

Each realization of a homogeneous Poisson point process
over the duration [0, T ] has some number of points n and can
thus be described by an n-tuple (t1, t2, . . . , tn) where t1 <
t2 < · · · < tn. Considering all permutations of each n-tuple
and without loss of generality setting T = 1, the (closure of
the) n-tuples and their permutations form a unit n-cube �n.
We will now associate this cube with a group denoted G

sym
n .

Consider the symmetric group Sn = {σ1, . . . , σn!} that in-
cludes all permutations σi on n objects, whose group operation
is composition ‘◦’, and whose identity element eSn = σ1 is
the identity mapping. For any permutation σ ∈ Sn, define the
(“hyper-volume”) n-simplex as

Sσ ,
{
t ∈ Rn : 0 < tσ(1) < tσ(2) < · · · < tσ(n) < 1

}
. (1)

Note that this n-simplex Sσ “triangulates” the n-cube �n, and
that the closure of the union of all these n-simplices forms the
n-cube �n (compare also with left upper quadrant of Fig. 1).

Definition 1: We define G
sym
n , {Sσ : σ ∈ Sn} to be the

associated group of the hypercube, where its group operation
‘∗’ is defined by means of the group operation ‘◦’ of Sn:

Sσj ∗ Sσi , Sσj◦σi . (2)

Note that the collection of ordered n-tuples describing a ho-
mogeneous Poisson process is a subgroup of Gsym

n . Moreover,
note that Gsym

n is isomorphic to Sn.
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0 Tt1 · · · tn

τ1 · · ·
τn

subgroup {σ1} of Sn:{(
1 · · · n
1 · · · n

)} n-simplex
Sσ1 =

{
t ∈ Rn :

0 < tσ1(1) < · · ·

< tσ1(n) < 1
}

t1

t2

Sσ1

dq

RD: source: t′ ∼ U([0, T ]n), t = sort(t′)

dist.: dq(t, x̂) =

{∑Nt(T )
i=1 ti −max{ti−1, x̂i} if (∗∗)

∞ otherwise

symmetric group
of all permutations:
Sn = {σ1, . . . , σn!}

∼=
n-cube
�n

{Sσ : σ ∈ Sn}
t1

t2

Sσ1

Sσ2

dpc

RD: source: t ∼ U([0, T ]n)

dist.: dpc(t, x̂) =


∫ T

0

x̂(s) ds if
∫ T

0

x̂(s)

n∑
i=1

δ(ti − s) ds = n

∞ otherwise

subgroup {h1} of Hn:

{(1, 1, . . . , 1)}

(n− 1)-
simplex

4n−1
(
n
λ

)
τ1

τ2

d1

RD: source: τ ′i ∼ 1
2λ e

−λ|τ |, τi = abs(τ ′i)

dist.: d1(τ , x̂) =

{
λ
n

∑n
i=1

∣∣τi − x̂i∣∣ if τi − x̂i ≥ 0 ∀i ∈ [n]

∞ otherwise

reflection group
of all reflections:
Hn = {−1,+1}n

∼=
`1-sphere
�n−11

(
n
λ

)
τ1

τ2
dnorm

RD: source: τi ∼ 1
2λ e

−λ|τ | (sgn(τi) = ±1)

dist.: dnorm(τ , x̂) =
λ

n

n∑
i=1

∣∣τi − x̂i∣∣

Fig. 1. Unification of four rate distortion problems. The left and right columns present the symmetries in the timing description (symmetric group) and the
interval description (reflection group), respectively. The upper and lower rows present the respective group or its subgroup. Each quadrant also illustrates its
own rate-distortion problem with its source set (in the blue box) and its natural distortion measure ‘dist’ (in the green box). In the left lower quadrant, we use
Cauchy’s two-line notation for permutation to denote σ1; and the (**) condition for finite distortion is Nx̂(T ) = Nt(T ) and Nx̂(s) ≥ Nt(s) ∀s ∈ [0, T ].
Note that the blue lines on the right column illustrate the region where the source is concentrated (when n→∞).

Proposition 2: The mapping ϕs : Sn → G
sym
n , σ 7→ Sσ is

an isomorphism.
Proof: We have ϕs(σj ◦ σi) = Sσj◦σi = Sσj ∗ Sσi =

ϕs(σj) ∗ ϕs(σi). In combination with the fact that ϕs is
bijective, this proves that it is an isomorphism.

Remark 3: Because of this isomorphism we henceforth also
refer to G

sym
n as the symmetric group.

From Proposition 2 we immediately get the identity element
of Gsym

n :

eGsym
n

= ϕs(eSn) = Sσ1

=
{
t ∈ Rn : 0 < t1 < t2 < · · · < tn < 1

}
. (3)

Thus, the subgroup {eGsym
n
} describes realizations of a ho-

mogeneous Poisson point process with n ordered points over
the duration [0, 1] (compare also with left lower quadrant of
Fig. 1).

B. Rate-Distortion Problem on the Symmetric Group

When considering a rate-distortion problem for a certain
source, sometimes there exists a natural choice of a distortion
measure that “preserves” the geometry of the source. The most
typical example is the `2-distortion measure for the Gaussian
source, where the `2-distortion ball has the same fundamental
shape2 as the source ball. Based on such a geometric picture

2Recall that for large n, with very high probability the source output
sequences lie in a thin sphere. Thus when refering to to the “source shape”
we actually consider the geometry of the typical sequences.

one can then use the idea of sphere- or ball-covering to derive
(the converse to) the rate-distortion theorem (see, e.g., [1]).

In the following we will show how such a natural choice
of distortion measure can be found for the symmetric group
G

sym
n (n-cube) and for its subgroup {eGsym

n
} (n-simplex) and

how they lead to two well-known rate-distortion problems of
the homogeneous Poisson process, namely the point-covering
distortion problem [2], [3] and the canonical queueing distor-
tion problem [4]. We will refer to these two cases as `∞-ball
covering for the homogeneous Poisson process.3

In the following we call the n-cube �n or the n-simplex
Sσ1

the source set and denote it by T . Then we define the
distortion set Ex̂(D) for a given codeword x̂ ∈ X̂ and for
an allowed distortion D (normalized by the total duration T ,
yielding 0 < D ≤ 1) as

Ex̂(D) ,
{
t ∈ T : d(t, x̂) ≤ D

}
. (4)

A distortion measure d(·, ·) is said to be natural if the
distortion set defined in (4) preserves the geometry of the
corresponding source set T in the sense it is neccessary that

there exists a unique x̂ ∈ X̂ such that Ex̂(1) = T . (5)

Note that due to the normalization of timings we can set T = 1
without loss of generality.

3Other rate-distortion problems for the Poisson process that we do not
consider here can be found, e.g., in [5]–[8].
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1) Point-Covering Distortion: A rate-distortion codeword
for the homogeneous Poisson process for the point-covering
distortion is a {0, 1}-valued signal x̂ on the interval [0, 1]
(see [2], [3]). The signal x̂ partitions [0, 1] into a 1-valued,
Lebesgue-measurable set Ax̂ and a 0-valued set Ac

x̂. The
point-covering distortion measure dpc(t, x̂) between a point
process realization t and a codeword x̂ is the Lebesgue
measure of Ax̂, if Ax̂ covers t; and is infinite otherwise (see
also ‘dist.’ in left upper quadrant of Fig. 1).

Let t be a Poisson point pattern of n points. Each codeword
x̂ with Ax̂ of Lebesgue measure D (0 < D ≤ 1) gives the
distortion set Ex̂(D) ⊂ Rn:

Ex̂(D) =
{
t ∈ �n : dpc(t, x̂) = D

}
=
{
t ∈ �n : tk ∈ Ax̂, ∀k ∈ [n]

}
(6)

for D = vol1(Ax̂). Clearly voln(Ex̂(D)) = Dn. The minimal
number of distortion sets needed to cover the n-cube is thus
voln(�n)/ voln(Ex̂(D)) = 1/Dn. This gives the minimal
number of log(1/D) bits per point (i.e., per dimension).

When again including the duration T , we note that for a
homogeneous Poisson process of rate λ, the expected num-
ber of points E[n] = λT . The resulting minimal average
number of bits per unit time is therefore lower-bounded
by E[n]

T log(1/D) = λ log(1/D), which is indeed the rate-
distortion function for the Poisson process with the point-
covering distortion measure [2], [3].

We have shown how the rate-distortion problem of the
homogeneous Poisson process with point-covering distortion
can be understood as covering an n-cube with the distortion set
in (6). This cube covering perspective is similar to the converse
proof given in [3], [9]. The resulting rate-distortion function
shows this simple form in principle because the distortion set
in (6) is matched to the source set, i.e., in other words, the
point-covering distortion is a natural distortion measure for
T = �n in that it satisfies (5). The geometry of the distortion
set in Rn matches that of the symmetric group G

sym
n .

2) Canonical Queueing Distortion: In this section, we
describe point process realizations of n points over [0, T ] as
a tuple t of timings such that t1 < t2 < · · · < tn. Thus,
when the timings are normalized by the duration T , we have
t ∈ Sσ1

, and T = Sσ1
is the source set (see also left lower

quadrant of Fig. 1).
For the queueing rate-distortion problem, a codeword x̂

is also a point process realization over [0, T ] with timing
description in the same ordered fashion x̂1 < x̂2 < x̂3 < · · · .

Let NP(·) be the counting function on the point process P.
The queueing distortion measure is defined as [4]

dq(t, x̂)

,


1
T

∑Nt(T )
i=1 ti −max{ti−1, x̂i} if Nx̂(T ) = Nt(T )

and Nx̂(s) ≥ Nt(s)∀s ∈ [0, T ],

∞ otherwise.
(7)

Without loss of generality, we continue this section by con-
sidering normalized timings for point process realizations

(timings normalized by the duration T ). The conditions under
which dq(t, x̂) is finite can be rewritten as follows.

Proposition 4: For two (normalized) point process realiza-
tions t, x̂ ∈ Sσ1

with Nx̂(1) = Nt(1) = n, the following
equivalence holds:

Nx̂(s) ≥ Nt(s) ∀s ∈ [0, 1] ⇐⇒ tk ≥ x̂k ∀k ∈ [n]. (8)

Following similar arguments as in Section II-B1, we will
proceed to show next how the rate distortion problem of the
homogeneous Poisson process with a canonical queueing dis-
tortion measure can be understood as covering the subgroup4

{eGsym
n
} (a simplex) with a natural distortion set.

Recall Definition 1 of the symmetric group G
sym
n consisting

of elements that are simplices of equal n-dimensional volume,
see (1). We now construct a bijection φ that maps each simplex
Sσ (defined through a permutation on n objects) to another
simplex S̃σ. The bijection φ is defined as follows:{

t1 = t̃1,

tk = 1−
∑n
i=k t̃i, for k > 1,

(9)

i.e., we obtain the following equivalence:

0 < tσ(1) < · · · < t1 < · · · < tσ(n) < 1 ⇐⇒

0 < 1−
n∑

i=σ(1)

t̃i < · · · < t̃1 < · · · < 1−
n∑

i=σ(n)

t̃i < 1. (10)

Thus, φ maps each element in G
sym
n to an element in G̃

sym
n =

{S̃σ : σ ∈ Sn}, and both groups consist of simplices of
equal n-dimensional volume, 1/n! . In particular, the identity
element eGsym

n
(recall (3)) maps to eG̃sym

n
:

φ(eGsym
n
) , eG̃sym

n
=

{
t̃ ∈ Rn :

n∑
k=1

t̃k < 1, t̃k > 0 ∀k ∈ [n]

}
.

(11)

On the other hand, based on (4), the distortion set under
distortion D is

Ex̂(D) =
{
t ∈ Sσ1

: dq(t, x̂) ≤ D
}
. (12)

Observe that for x̂ = 0, we have E0(1) = Sσ1 and therefore,
according to (5), the queueing distortion dq(·, ·) is a natural
distortion measure for the source set T = Sσ1

.
Note that for x̂ = 0 and arbitrary 0 < D ≤ 1

E0(D) = DSσ1
, (13)

where DSσ1
denotes Sσ1

scaled linearly by D. On the other
hand, for x̂ 6= 0, the distortion set Ex̂(D) is not necessarily
a simplex (this is caused by the max-function contained in
the queueing distortion measure (7)), but x̂ can be chosen
such that the volume of the distortion set is preserved in the
following sense: For Nx̂(1) = Nt(1) = n,

max
x̂∈Sσ1

voln
(
Ex̂(D)

)
= voln

(
DeG̃sym

n

)
= voln

(
DSσ1

)
. (14)

4We loosely say “covering a group”, but actually it means covering the
union of all sets that constitutes the group.
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Remark 5: Note that when D is very small, for all t ∈
Ex̂(D) the following holds:

x̂k+1 > tk ≥ x̂k ∀k ∈ [n− 1] and 1 > tn ≥ x̂n, (15)

and thus dq(t, x̂) =
∑Nt(1)
i=1 (ti − x̂i). Using this and Propo-

sition 4 we get the distortion set Ex̂(D) = x̂ + cl
(
DeG̃sym

n

)
,

which is an example of the distortion set shaped like a scaled
version of eG̃sym

n
in (11).

Following (14), the minimal number of distortion sets
needed to cover the source n-simplex T = Sσ1

is

voln(Sσ1
)

maxx̂∈Sσ1 voln(Ex̂(D))
=

voln(Sσ1
)

voln(DSσ1
)
=

(
1

D

)n
. (16)

This gives again log(1/D) bits per point (per dimension)
and, following the same arguments as in Section II-B1, we
obtain the minimal number of bits per unit time λ log(1/D).
This corresponds to the rate-distortion function for the Poisson
process with the canonical queueing distortion measure [4].

III. RATE DISTORTION AND `1-SPHERE COVERING FOR
THE HOMOGENEOUS POISSON PROCESS

We have shown in Sections II-B1 and II-B2 that with the
timing description of point process realizations, two known
rate-distortion problems for the homogeneous Poisson point
process (namely with point covering distortion and with the
canonical queueing distortion) can be understood geometri-
cally as minimal covering problems for the symmetric group
(cube) and its subgroup (simplex), respectively. It is natural
at this point to ask whether other interesting rate-distortion
problems arise by considering minimal coverings of another
group and its subgroup.

To that goal, recall that the inter-point interval τ of a ho-
mogeneous Poisson point process is exponentially distributed:

τ ∼ λ e−λτ 1{τ ≥ 0}. (17)

We now make the following two motivating observations:
1) If a vector of inter-point intervals describes the realization

of a Poisson point process according to (17), then it lies
close to a simplex 4n−1(n/λ) in Rn if n is large.

2) The number of symmetries of 4n−1(n/λ) in Rn can
be increased by reflections, through which the simplex
becomes the `1-sphere �n−11 (n/λ).

Based on these two observations and analogously to what
we have shown for the symmetric group in Section II, in
the rest of this section we study the reflection group and its
associated rate distortion problems, namely the Laplacian-`1
and the exponential onesided-`1 rate-distortion problems.

A. The Hyperoctahedron and the Reflection Group

We proceed to show that Grefl
n (corresponding to the `1-

sphere �n−11 (1), i.e., the boundary of a regular hyperoctahe-
dron in Rn) is isomorphic to Hn, a reflection group that is
the n-fold direct product Hn of the group H = {+1,−1}
under regular multiplication ‘·’. Moreover, we define for any
r = (r1, . . . , rn) and A ⊆ Rn,

r · A ,
{
x ∈ Rn : a ∈ A and xk = rkak ∀k ∈ [n]

}
. (18)

Definition 6: We define Grefl
n ,

{
h · 4(n−1)(1) : h ∈ Hn

}
with group operation ‘∗’ given as follows:(

h · 4(n−1)(1)
)
∗
(
h′ · 4(n−1)(1)

)
, (h · h′) · 4(n−1)(1), h,h′ ∈ Hn. (19)

We note that Grefl
n is isomorphic to Hn.

Proposition 7: The mapping ϕr : Hn → Grefl
n , h 7→ h ·

4(n−1)(1) is an isomorphism.
Proof: By its definition we obtain that ϕr is a bijection,

and (19) establishes the homomorphism.
Remark 8: Because of this isomorphism we henceforth also

refer to Grefl
n as a reflection group.

The identity element of Grefl
n is

eGrefl
n

= ϕr(eHn) = 4(n−1)(1) (20)

with eHn being the identity element of Hn.
We will show in the following section that the reflection

group Grefl
n and its subgroup {eGrefl

n
} with their respective

natural distortion measures yield the Laplacian-`1 and the
exponential onesided-`1 rate-distortion problem.

B. Rate-Distortion Problem on the Reflection Group

Similarly to the discussion for the symmetric group in
Section II-B, we now consider the rate-distortion and minimal
covering problem on the reflection group and its subgroup:
Grefl
n (`1-sphere �n−11 (1)) and {eGrefl

n
} (simplex 4(n−1)(1)).

Recall from Observation 1) of this section that the inter-
point interval realizations generated by (17) lie almost surely
in the thin shell around 4n−1(n/λ) (for a sufficiently large
number of intervals); compare also with the schematic in
right lower quadrant in Fig. 1. Furthermore, we implement
Observation 2) by labeling each inter-point interval with −1
or 1 equiprobably. This labeling creates a new source τs of
signed inter-point intervals that has a Laplacian distribution:

τs ∼
λ

2
e−λ|τs|, (21)

whose realizations of length-n sequences lie almost surely
in the thin shell around the `1-sphere �n−11 (n/λ) (compare
also with the schematic in right upper quadrant in Fig. 1).
We use again the notions of the source set T and natural
distortion measure introduced in Section II-B, and we consider
two source sets T = �n−11 (n/λ) or T = 4(n−1)(n/λ), with
their respective natural distortion measures. We refer to these
two cases as `1-sphere covering.

Again, using the same ideas based on the geometric picture
of source set and distortion set, one can derive the rate-
distortion functions for these two rate-distortion problems,
see for example [1]. In the following we will only briefly
summarize the results and omit their geometric derivations.

1) Laplacian-`1 Rate-Distortion Problem: The normalized
`1-distortion measure is defined as

dnorm(x, x̂) ,
λ

n

n∑
i=1

|xi − x̂i|, (22)
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where λ is the parameter of the Laplacian source in (21). It is
easy to verify that the normalized `1-distortion measure is a
natural distortion measure for T = �n−11 (n/λ). The following
lemma now follows from [10, Lemma 6].

Lemma 9: For a Laplacian source (21) and the normalized
`1-distortion measure (22), the rate distortion function is

RLaplacian(D) = log

(
1

D

)
1{0 < D ≤ 1}. (23)

2) Exponential Onesided-`1 Rate-Distortion Problem: The
normalized onesided `1-distortion measure is defined as

d1(x, x̂) ,

{
λ
n

∑n
i=1 |xi − x̂i| if xi − x̂i ≥ 0 ∀i ∈ [n],

∞ otherwise,
(24)

where λ is the parameter of the exponential source in (17).
Again, one can verify that d1(·, ·) is a natural distortion
measure for T = 4(n−1)(n/λ). The following lemma now
follows directly from [10, Lemma 2].

Lemma 10: For an exponential source (17) and the normal-
ized onesided `1-distortion measure (24), the rate-distortion
function is

RExponential(D) = log

(
1

D

)
1{0 < D ≤ 1}. (25)

Note that when viewing n as the number of points in
a point process realization, the rate-distortion functions in
Lemmas 9 and 10 are the same function, measured in bits per
symbol (per point). This gives log(1/D) bits per point just
as the results in Sections II-B1 and II-B2. Therefore, when
considering the rate-distortion problem under the inter-point
interval description of a homogeneous Poisson process, we
can follow similar arguments as in Section II-B1 to get the
minimal number of bits per unit time λ log(1/D).

It is not a coincidence that all four rate-distortion functions
in Sections II-B1, II-B2, III-B1, III-B2 are the same. The
reason is that they all have their own natural distortion sets
matched to their source sets, i.e., they all satisfy the criterion
(5).

To this point, we have presented the rate-distortion problems
of the Poisson process as `∞-ball covering in Section II and
`1-sphere covering in Section III. One may wonder why it
exactly is `∞ and `1. We attempt to answer this question in
the following section by exploring the hyperoctahedral group.

IV. THE HYPEROCTAHEDRAL GROUP

In this section we use the following standard group-theoretic
definition for the semidirect product.

Definition 11 (Internal Semidirect Product): Let H1 and H2

be subgroups of G equipped with the group operation ‘·’ and
with the identity element eG. We say that G is the internal
semidirect product of H1 by H2, denoted G = H1 oH2, if
• H1 is a normal subgroup of G, i.e., g · H1 = H1 · g for

all g ∈ G;
• H1 ∩H2 = {eG};
• G = H1 ·H2.

The hyperoctahedral group (see e.g. [11]) On describes
the symmetries of an n-dimensional hypercube or of an n-
dimensional regular hyperoctahedron (cross-polytope).

Claim 12: The n-cube and the regular n-dimensional hype-
roctahedron have the same group of symmetries On.
Thus, both the n-cube and the regular n-hyperoctahedron are
realizations of the group of symmetries On. The order |On|
of the hyperoctahedral group On is |On| = 2nn!. For example
in three dimensions, O3 can be understood as a composition
of (rigid-body) rotation and mirroring, which gives |O3| =
2 · 24 = 48.

The n-cube and the n-hyperoctahedron do not only have the
same group of symmetries, they are actually geometric duals:
replacing the vertices of one by (n − 1)-dimensional faces
results in the other and vice-versa.

Now define an n-cube by its graph Qn = (V, E), where
V = {0, 1}n is the set of vertices and E is the set of
edges. Using this we can alternatively define the hyperoc-
tahedral group as the automorphism group Aut(Qn) of Qn
[12, Lecture 3]. Following standard notation, let Z2 , {0, 1}
be a group equipped with modulo-2 addition, and let Zn2
be its n-fold direct product. It is known that Aut(Qn) is
isomorphic (denoted by ∼=) to the internal semidirect product
of Zn2 by the symmetric group Sn [13], [12, Lecture 3]:
Aut(Qn) ∼= Zn2 o Sn. Clearly, Zn2

∼= Hn. And since by
Propositions 2 and 7 we have Sn ∼= G

sym
n and Hn ∼= Grefl

n ,
we obtain the following result.

Theorem 13:

On , Aut(Qn) ∼= Grefl
n oGsym

n . (26)

By the third condition in Definition 11 for the internal
semidirect product, we can understand Theorem 13 intuitively
as the construction of On by two of its subgroups: the
reflection subgroup Grefl

n and the symmetric subgroup G
sym
n .

Recall from the definitions of G
sym
n and Grefl

n (Definitions 1
and 6) that they are associated with a hypercube and a regular
hyperoctahedron respectively. Referring back to the graphical
summary of Sections II and III in Fig. 1, we conclude from this
section that the hyperoctahedral group unifies the two columns
of Fig. 1, demonstrating the symmetries of a Poisson process.
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