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Backward reasoning the formation rules
Walter Senn & João Sacramento

Synaptic plasticity during learning is as fundamental as it is hard to study. The underlying synaptic plasticity rule 
has now been inferred using only the firing rate statistics of visual neurons in monkeys before and after learning.

“There are few people however, who, if you 
told them a result, would be able to evolve 
from their own inner consciousness what 
the steps were which led up to that result,” 
explains Sherlock Holmes to his adjunct  
Dr. John Watson in A Study in Scarlet. “[T]he  
grand thing,” he carries on, “is to be able to 
reason backwards.” Lim et al.1, writing in 
this issue of Nature Neuroscience, reasoned 
backwards to deduce the synaptic plasticity 
rules from observed neuronal activities. By 
inspecting the neuronal responses in monkey 
visual cortex to novel and familiar stimuli, 
they inferred the synaptic plasticity rules that 
explain the response changes from novel to 
familiar stimuli.

As with Dr. Watson, one vaguely sus-
pects that the recorded activities would be 
enough to uncover the underlying network 
and its formation. But only in the course of 
the authors’ arguments do the proofs take 
shape that a specific synaptic plasticity rule 
causes the observed data. The analysis con-
firms what Bienenstock, Cooper and Munro 
predicted more than 30 years ago, albeit by 
pure theoretical reasoning at the time2. Today, 
after collecting new data on the neuronal 
responses in monkey visual cortex to novel 
and familiar stimuli during a passive and an 
active viewing task3, Lim et al.1 are able to 
draw further conclusions. They carefully dis-
entangled the firing rate statistics of these neu-
rons and inferred the changes in the synaptic 
strengths w between excitatory neurons of the 
infero-temporal cortex (ITC) that arise while  
viewing the same images thousands of times. 
They concluded that, roughly, the weights 
change according to

∆w r r≈ −( )post post preq � (1)

where rpost and rpre are the post- and presynap-
tic firing rates and θpost represents a dynamic 
plasticity threshold. Postsynaptic rates less than 

θpost induce long-term depression; larger rates 
induce long-term potentiation (LTP). Stability 
considerations require that this threshold θpost 
be highly correlated with rpost, although the 
data analysis does not tell whether this cova-
riation of θpost with rpost is delayed or not (we 
return to this point below). Moreover, most 
of the neurons respond with a rate lower than 
θpost, so that the neuronal activity across the 
population is reduced. This may serve as a 
synaptic explanation for the phenomenon 
known as repetition suppression4. However, a 
small fraction of neurons responds with a rate 
larger than θpost, and these neurons enhance 
their rate, leading to a sharpening of the neu-
ronal representation5 (Fig. 1e). Hence, the new 
analysis of the in vivo data now catches the 
postulated Bienenstock, Cooper and Munro 
rule in flagrante.

But how is it possible to infer the synap-
tic learning rule from only the activities of a 
few dozen putatively excitatory and inhibi-
tory neurons recorded in a viewing task? To 
understand this, a mathematical excursion is 
in order. We consider the population of ITC 
neurons that respond to the visual stimuli, 
ordered from left to right by their average fir-
ing rates r (Fig. 1b). Let pnov(r) be the frac-
tion of neurons responding with rate r to novel 
stimuli and pfam(r) be the corresponding frac-
tion responding to familiar stimuli (Fig. 1a). 
With repeated stimulus presentations, the 
neurons change their firing rates by virtue of 
the synaptic plasticity: neurons reducing their 
rate move to the left, whereas neurons increas-
ing their rate move to the right (Fig. 1b).

At some equilibrium rate ro, the neurons 
neither move left nor right. The number of 
neurons that have lower rates than ro (that is, 
are left of this point) must therefore be the 
same before and after the repeated stimulus 
presentation. In other words, the equilibrium 
point is at the crossing of the cumulative  
distribution functions for the novel and  
familiar stimuli, Pnov(r) and Pfam(r), and  
this defines the plasticity threshold θpost  
(ro,  with the addition of a shift; see below) 
arising in the rule in equation (1) (Fig. 1c). 
Next, to calculate the rate changes induced by 
the stimulus presentations, one needs to look 
for the rate rfam toward which a neuron that 
initially fires with rnov is pushed; formally, this 

means transforming Pnov backwards with the 
inverse of Pfam to get the desired rate 
r P P rfam fam nov nov= ( )( )−1 . This rate change cal-
culation assumes that the ordering of firing 
rates is preserved: that is, if a neuron responds 
on average to novel stimuli with a lower rate 
than another one, it will still do so for familiar 
stimuli. This order preservation allows us to 
assign a change rnov → rfam to an individual  
neuron that shifts its firing rate (Fig. 1b).

Finally, the rate changes need to be explained 
by a change in the excitatory-to-excitatory  
synaptic strengths; these synapses are  
believed to be the most plastic ones. For this, 
Lim et al.1 back-engineered the current h that 
leads to a given firing rate r by assuming that 
many independent synaptic inputs produce  
a (truncated) Gaussian current distribution. 
The median of that current distribution is  
then aligned with the median of the firing  
rate distribution, and the current-to-rate trans-
fer function r = φ(h) is read off. The change in 
the postsynaptic current then becomes 
∆h r r rP P( ) ( )= ( )( )( ) −− −−f f1 11

fam nov . By shifting this 
function ∆h(r) downward to compensate for 
the recurrent feedback and squeezing it by a 
factor that compensates for the presynaptic 
rate, one obtains the desired modification of 
the synaptic weight ∆w(r), expressed as a func-
tion of r = rpost (Fig. 1d).

To test their findings, Lim et al.1 constructed 
a recurrently connected network of rate-based 
excitatory and inhibitory neurons using the 
extracted postsynaptic dependency for the 
excitatory-to-excitatory weight changes. 
Because the overall firing rates decrease from 
novel to familiar stimuli, the plasticity rule 
extracted so far, however, would continuously 
decrease the average rate in the network. To 
compensate for this, the authors assume that 
the total excitatory synaptic strength onto a 
postsynaptic neuron remains constant during 
learning6. This invariance can be achieved  
by subtracting the average presynaptic firing 
rate rpre in the presynaptic factor of the weight 
change. The final learning rule the authors 
infer then has the form

∆w r r r= −( ) −( )s qpost pre prepost � (2)

where the function σ(rpost – θpost) acting on 
the deviation of rpost from θpost represents the 
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postsynaptic factor shown in Figure 1d. This 
type of plasticity applied to the excitatory- 
to-excitatory synapses alone was able to repro-
duce the observed changes in the firing rates, 
both the differential change in the excitatory 
neurons and the overall firing rate reduc-
tion in the inhibitory neurons. The fact that 
the excitatory neurons with the largest firing 
rates enhance their rates even further while 
most other excitatory neurons decrease their 
rate (Fig. 1e) rules out, at least in the exam-
ple chosen by Lim et al.1, a dominant role  

of homeostatic inhibitory-to-excitatory syn-
aptic plasticity7.

What Lim et al.1 offer is, in Holmes’s 
words, a method to “observe and to draw 
inferences from our observations” that  
can now be applied to existing and future 
data. Lim et al.1 have already applied it to 
recordings from a passive and active object 
viewing task, with the active task requir-
ing attention to report subtle differences in 
luminance. Consistent with the common 
knowledge that active engagement improves 
learning8, plasticity in ITC appears to be 
enhanced and shifted toward LTP for the 
active viewing task, although the details of 
how engagement modulates plasticity remain 
to be analyzed. As an intermediate result,  
the method also infers the current-to-rate 
transfer functions of the ITC neurons dur-
ing the tasks. For the passive viewing task,  
the transfer functions look qualitatively 
similar to the ones obtained from in vivo 
recordings in cat visual cortex9 or from  
in vitro recordings in rat barrel cortex10.  
It would be interesting to evaluate whether 
the ITC transfer functions increase their  
gain during active engagement11.

So far the method has been applied to either 
novel or familiar stimuli without tracking 
intermediate familiarity levels. Such interme-
diate levels could give hints to how the plas-
ticity rule changes in time and, in particular, 

how the plasticity threshold θpost varies dur-
ing learning. In the simulations, the thresh-
old was fixed for a given pair of neurons, and 
presynaptic normalization (equation (2)) was 
introduced instead. But theoretical reasoning, 
both for rate-based2 and spike-based12 plas-
ticity, predicts that it should slowly adapt to 
yield stimulus selectivity and stability. Yet the 
threshold may vary even on the fast, neuronal 
time scale, on the order of 10 ms, as it arises 
when interpreting θpost as the dendritic pre-
diction of somatic activity13. This would cast 
the Bienenstock, Cooper and Munro rule as 
an error-correcting rule, and the characteristic 
covariance reported by Lim et al.1 of θpost with 
the mean and even the s.d. of rpost would still 
be satisfied.

Now that we know how to access to the 
plasticity rule from activity distributions, 
inferring the connectivity pattern could soon 
be in our reach. With Dr. Watson, however, 
we may further need to take to heart the mas-
ter’s advice that “[i]n solving a problem of  
this sort, the grand thing is to be able to  
reason backwards”14.
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Figure 1  Inferring the plasticity rule from 
firing rate distributions. (a) Distribution of rate 
responses before (red) and after (blue) repeated 
stimulus presentations, shown here as  
log-normal to approximate the ITC recordings1.  
(b) Population of neurons (dots), aligned by their 
average response rates before (red) and after 
(blue) learning. (c) Neurons left of the intersection 
point (θpost) of the two cumulative distribution 
functions decrease their rates; neurons to the 
right increase them (arrows). (d) Intuitively, the 
rate change induced by learning is the difference 
between the two cumulative distribution functions 
(red minus blue curve from c). The rate changes 
are converted into a change of input currents  
(∆h, left axis) via a rate-to-current transfer function. 
The weight change ∆w for fixed presynaptic rate 
is equal to ∆h downshifted and squeezed (right 
axis; equation (2)). (e) In a network (here of 130 
neurons), the plasticity rule (equations (1) or (2)) 
sharpens the selectivity for recurring visual stimuli 
(top) by increasing firing rates that are above the 
threshold and decreasing those that are below. 
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