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Synonyms

Reward-based learning; Trial-and-error learning; Temporal-Difference (TD) learning; Policy gradient
methods

Definition

Reinforcement learning represents a basic paradigm of learning in artificial intelligence and biology. The
paradigm considers an agent (robot, human, animal) that acts in a typically stochastic environment and
receives rewards when reaching certain states. The agent’s goal is to maximize the expected reward by
choosing the optimal action at any given state. In a cortical implementation, the states are defined by
sensory stimuli that feed into a neuronal network, and after the network activity is settled, an action is
read out. Learning consists in adapting the synaptic connection strengths into and within the neuronal
network based on a (typically binary) feedback about the appropriateness of the chosen action. Policy
gradient and temporal difference learning are two methods for deriving synaptic plasticity rules that
maximize the expected reward in response to the stimuli.

Detailed Description

Different methods are considered for adapting the synaptic weights w in order to maximize the expected
reward (R). In general, the weight adaptation has the form

Aw=R-PI (1)

where R = £1 encodes the reward received upon the chosen action, and PI represents the plasticity
induction the synapse was calculating based on the pre- and postsynaptic activity. To prevent a systematic
drift of the synaptic weights that is not caused by the co-variation of reward and plasticity induction,
either the average reward or the average plasticity induction must vanish, (R) = 0 or (PI) = 0.

Reinforcement learning can be divided in these two, not mutually exclusive, classes of assuming that
(A) (PI) =0 or (B) (R) = 0. The first class encompasses policy gradient methods while the other, wider
class, encompasses Temporal Difference (TD) methods. Policy gradient methods assume less structure as
they postulates the required property ((PI) = 0) on the same synapse of the action selection module that
is adapted by the plasticity. TD methods also involve the adaptation of the internal critique since they
have to assure that the required property on the modulation signal ((R) = 0) holds for each stimulus
class separately.

A) Policy gradient methods In the simplest biologically plausible form, actions are represented
by the activity of a population of neurons. Each neuron in the population is synaptically driven by
feedforward input encoding the current stimulus (Fig. 1). The synaptic strengths are adapted according
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to the gradient of the expected reward across possible actions. Various learning rules emerge from the
different methods of estimating this gradient.

In formal terms, sensory stimuli define an input x, e.g. a spike train, that is fed to the network
characterized by the synaptic strengths w. This network generates an output ¥, say again a spike trains,
that depends on the synaptic weights w and the input 2. Based on y, an action A is selected (Fig. 1). The
action is eventually rewarded by a typically binary signal R(x, A) = +1 that is fed back to the network
where it modulates synaptic plasticity by a global factor. The stimulus choice, the network activity and
the action selection may have stochastic components. The probability function P, (A|z) that specifies
how likely action A is selected upon input z is referred to as action policy. A policy gradient method
considers the expected reward

(R) =) P(x)P,(Alz) R(x, A) (2)
z,A
and adapts the synaptic connection strengths w along the reward gradient, i.e. such that the expected
weight change satisfies (Aw) = n% with some small but positive learning rate n (Williams, 1992).

Hedonistic synapse In the current form, a synapse is assumed to estimate how the change in w affects
the likelihood P, (Alz). But this information may not be available at the single synapse. According to
the hedonistic synapse model (Seung, 2003), a synapse is only assumed to have access to the very local
information of whether there was a release or not (r; = £1) at time ¢ in response to a presynaptic spike,
and x; itself encodes the presence or absence of a presynaptic spike. We can then write P,(A|z) =
> P(A|r)P,(r|z), where P,(r|z) is parameterized by the variable w and the sum is taken across
release trains r. Plugging this into (2) and taking the derivative we obtain

d(R) d
W - Z Pw(xvrv A) R(xaA)%long(”ﬂx) . (3)

rx,A

Sampling this gradient leads to updates of w after taking action A in response to the presynaptic spike
train,

Aw =nR % log P, (r|x) . (4)

Note that in any case (Z- log Py(rlz)) =3, L p,(r|z) = 0 because > P,(r|z) = 1 and hence
(PI) = 0 as described after Eq. 1.

To obtain an online rule from (5) one low-pass filters % log P, (r+ | z+) to get an eligibility trace that
is then multiplied by R to calculate the synaptic update (Seung, 2003). If for simplicity we consider a
single time interval for a presynaptic spike to occur and an action to be taken, the rule (5) becomes

Aw=nR (r —p) =, (5)

where p = P,(r = 1|2 = 1) is probability of release that is parametrized by a sigmoidal function of w,
p=1/(14e ™). In the general case, the plasticity induction PI = (r — p) x is low-pass filtered with a
time constant that reflects the delay of the reward (see Online learning below).

Spike reinforcement Since there is only little correlation between specific synaptic releases and re-
wards to actions, a more efficient way to estimate the gradient % is to consider the dependence of
A on y, as expressed by Py (A[z) =3 P(A|y)Py,(y|z). Plugging this again into (2) and taking the

derivative we get for the sampled version

d
= —1 .
Aw =nR o og Py, (y|x) (6)
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Figure 1. Population reinforcement learning adapts the synaptic strengths w to the population
neurons based on /4 ingredients: the presynaptic activity x, the postsynaptic activity vy, the action A
encoded in the population activity, and the reward signal R received in response to the action, see
Urbanczik and Senn (2009).

To illustrate learning rule (6), we can again interpret x and y (= £1) to encode the presence or
absence of a spike in a given interval, with the probability p for ¥y = 1 being again a sigmoidal function of
u =Y, w;x;. Analogously to (5) we obtain the rule Aw = nR (y — p) = (Williams, 1992). Alternatively,
2 and y may encode firing rates with y = ¢(u) + &, where ¢(u) is a non-negative increasing function,
and ¢ some Gaussian noise. We then calculate - log P,,(y|z) o (y — ¢(u)) ¢/ (u) z, and the learning rule
becomes

Aw =nR (y— ¢(u)) ¢'(u) z (7)

This synaptic plasticity rule depends on 3 factors, (¢) the reward, (i7) the postsynaptic quantities (here
considered as a single factor) and (i4i) the presynaptic activity. For spiking neurons, the corresponding
learning rule has been introduced by Xie and Seung (2004) and has been further studied by Pfister et
al. (2006); Florian (2007); Frémaux et al. (2010).

Node perturbation In the framework of spiking neurons the exploration of the neuronal state space
is driven by the intrinsic noise present in the individual neuron’s spiking mechanism. A more efficient
exploration can be achieved if the noise enters from an external source and can therefore be explicitly
tuned. This idea leads to RL based on node perturbation (Fiete and Seung, 2006). In the simple coding
scenario considered above, node perturbation is formally equivalent to (7) and, with £ = y — ¢, it can be
rewritten as

Aw=nREP'x. (8)

Yet, node perturbation can also be generalized to conductance-based neurons driven by regular ‘student’
input and ‘exploration’ input and, as before, the plasticity induction PI = £ ¢’z can again be replaced by
a low-pass filtering to comply with delayed reward (Fiete and Seung, 2006).

Population reinforcement When assuming that a synapse has access to the downstream information
involved in choosing action A, e.g. via global neuromodulators, the gradient can be well estimated by
directly calculating the derivative of (2) with respect to w. The sampling version of this rule is then

4

A =
w anw

log P,(A|x). (9)



The action can itself be binary and e.g. depend on whether the majority of the population neurons did or
did not spike in response to the stimulus (Friedrich et al., 2011), or it can be continuous and e.g. depend
on the average population firing rate (Friedrich et al., 2014).

To give an example, we consider a population of N neurons with outputs y; = ¢(u;) + &; for i =
1...N that are obtained by a sigmoidal function ¢(u;) of the weighted input, u; = Zj w;; 5 , plus some
independent Gaussian noise &; of mean 0. For simplicity we assume ¢ to increase from —1 to 1 with
¢(0) = 0 and consider binary actions A = 1 or A = —1 that are taken stochastically based on the
population activity A = Tlﬁ > Yi, with P(A=1]A) = (14+tanh2A)/2 being a sigmoidal function of A.
Neglecting again the indices, the learning rule (9) can then be evaluated to (see Friedrich et al. (2014),
Eq. 21 therein)

Aw=nR (A —tanh A) ¢'(u) z. (10)

Note that the formal similarity to (5) and (7) where in the latter the ‘exploration term’ (y — ¢(u)) is
now replaced by (A — tanh . A). The population reinforcement learning rule (10), however, is composed
of 4-factors that originate from 4 different consecutive biological processing stages: (i) the presynaptic
activity, (i) a postsynaptic quantity, (#i¢) the population activity with the corresponding action, and (iv)
the reward. Explicit expressions for (7) and (10) in the case of spiking neurons are given in Spike-Timing
Dependent Plasticity, Learning Rules.

Online learning To obtain online learning rules one considers an ongoing stimulus z; that may e.g.
define spike trains up to a discrete time step t. Actions A; can be taken each moment ¢, and a reward
signal R, is potentially always present, although it is typically sparse. To express the weight change
at each time step t one considers the so-called synaptic eligibility trace e;. In the case of the rule (9)
this is defined as a low-pass filtering of the instantaneous plasticity induction PI; = % log Py (A¢ | ¢),
ie. egr1 = ver + Pl, with some discount factor v € [0,1). Here, the derivative of the log-likelihood is
evaluated as in (10), with the individual factors each being low-pass filtered to obtain a fully online rule.
The final rule then becomes

Aw; = nRey . (11)

By low-pass filtering the corresponding instantaneous plasticity induction terms PI; occuring in (5), (7)
and (8) (compare with the general form of Aw given in Eq. 1) one analogously obtains the online version
for these rules.

Assuming that the states x; are sampled from a Partially Observable Markov Decision Process
(POMDP), the online learning rule (11) can be shown to maximize the expected discounted future
reward

Vi = Z”Yk (Ritk) (12)
k=0

for each time step t, see Baxter and Bartlett (2001), Theorem 5, for the general case, and Friedrich et
al. (2011), Supporting Information, for population learning.

Phenomenological R-STDP models The gradient-based learning rules discussed so far prevent a
systematic weight drift by assuring that the plasticity induction in average vanishes, (PI) = 0. This
was also assumed in reward-modulated spike-timing dependent plasticity (R-STDP, Izhikevich (2007)).
Nevertheless, when considering specific (in vitro) data on plasticity induction one will typically have
(PI) # 0 in Eq. 1 (Sjostrom and Gerstner, 2010). It is therefore plausible that the reward signal itself in
average vanishes. One strategy to achieve this is to subtract the mean reward from the modulating factor
such that the learning rule, now reading as Aw = (R — (R)) - PI, is again unbiased. This leads to the
concept of actor-critique learning where a stimulus-specific internal critique adapts the global modulation
signal of the plasticity induction to prevent drifts even for individual stimuli. When the LTD-part in



the STDP window is suppressed and the remaining R-STDP is bias-corrected, the learning speed for
standard association tasks comes close to the one for gradient-based spike reinforcement (Frémaux et al.,
2010).

An elegant solution to solve the reward-bias problem is to assume that the internal reward signal is
shaped by a temporal kernel that sums up to zero across time, f R dt = 0, and hence a positive internal
reward signal must be followed or preceded by a negative one (Legenstein et al., 2008). What appears
as a computational trick is reminiscent to the observed relieve from pain in fruit flies (Tanimoto et al.,
2004), or the reward baseline adaptation in rodents (Schultz et al., 1997). Along similar lines, pairing
reward with differential Hebbian plasticity was also shown to be bias-free and asymptotically equivalent
to temporal difference learning (Kolodziejski et al., 2009).
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Figure 2. Actor-critic network for navigation. Based on the current position information the action
network choses action A that moves the agent towards the neighboring position closest to the site of
reward delivery (inside the U-shaped obstacle). The critic network calculates the TD error §; based on
the values V' and the reward signal Ry. The synaptic strengths wa and wy of the action selection and
the value representation network, respectively, are both adapted by a TD learning rule. Figure adapted
from Frémauz et al. (2013).

B) Temporal Difference (TD) learning TD methods represent a class of learning rules where the
modulatory feedback signal on the level of the synapse is again unbiased. These methods consider a
learning scenario where an agent navigates through different states to eventually reach a final rewarding
state.

The actor-critic version of TD learning is to calculate a value for each state, and to use the value
updates to also train the action selection network (Fig. 2). The value of a state x is defined as the
expected discounted future rewards when being in that state at time ¢ (Sutton and Barto, 1998),

V() =Y 7" (Reyr) (13)
k=0

where v denotes the discounting factor and the expectation (-) is taken over all future actions according
to a fixed policy m, see Sutton and Barto (1998). While this definition involves future rewards, an
online version would again need to estimate the quantity based on only past experiences. It is therefore
interesting to note that (13) can be rewritten in a recursive way as V™ (z;) = (Ry) + YV ™ (2141).



The value function V™ (x;) is assumed to be represented (and approximated) by the activity Vi, (x;) of
a given neuron, where w denotes the strength of synapses converging to that neuron and z; is the input to
the network. The synaptic strengths can be adapted online by gradient descent on the error function £ =
(V(x) — Vip(z))? with respect to w, where the expectation is over the states z (Sutton and Barto, 1998;
Frémaux et al., 2013). The weight change at time ¢ is therefore given by

dViy (x
Awy =1 (V™ (2y) — Vi (1)) % : (14)
w
Since the true value V(z;) is not known to the network it can be approximated as V™ (z;) ~ R(t) +

YV (x141) by using the recursive definition of V™ (). This leads to the learning rule

de ((Et)
Awy = noy———= 15
Wy = 1)0¢ dw (15)
where §; is called the temporal difference (TD) error and is given by
0 = Ry + vV (2t41) — Vi () (16)

If the network that encodes the value V,,(z) consists of a single neuron, say Vi, (z) = ¢(u) with u = wz,
then the synaptic learning rule can be expressed as

Awy = nd; ¢’ (u) x4 . (17)

As compared to the policy gradient rules above, the TD learning rule (17) is obtained by replacing the
reward R in Eq. 1 with the TD-d. Since this é converges to zero during learning, any systematic weight
drift is also suppressed.

TD learning in the form of actor-critic has been implemented in spiking neuronal networks (Castro
et al., 2009; Potjans et al., 2009; Potjans et al., 2011; Frémaux et al., 2013). In these implementations,
separate networks for the value representation and the action selection are considered, and the synaptic
strengths w in both networks are adapted based on the temporal difference §; (Fig. 2). An alternative
to this actor-critic learning is to learn values for state-action pairs (‘Q-values’) and choose actions based
on these values (‘SARSA’, see Sutton and Barto (1998)). Because the evaluation of a value for a state-
action pair in a standard neuronal implementation requires to actually choose that action, however, value
evaluation in order to decide for a single next action cannot be implemented in this straightforward form.

Policy gradient versus TD methods Both, online policy gradient and TD learning, maximize the
discounted future reward as expressed by (12) and (13). But while policy gradient methods do not
require specific structures on the network nor the task, TD methods do so. First, TD learning assumes
an internal representation of states x. Second, the definition of the TD-error involves two subsequent
states, and hence value learning requires to sample all the corresponding transitions. Third, to assign
values to a state, it is implicitly assumed that the history of reaching that state does not influence future
rewards. In fact, TD learning assumes that the underlying decision process is Markovian.

Gradient-based learning does not assume an internal representation of states to which values would be
assigned. Neither does gradient-based learning assume Markovianity of the underlying decision process
for convergence. When this decision process in not Markovian, TD learning can fail in both ways, by
either choosing inappropriate actions while correctly estimating values, or by incorrectly estimating the
values themselves (Friedrich et al., 2011). Yet, when the decision process is Markovian, TD learning
becomes faster than policy gradient learning (Frémaux et al., 2013). Note that a decision process can
always be made Markovian by expanding the state-space representation and including hidden states to
which again values need to be assigned. To model how the brain can create such hidden states, however,
remains a challenge (Dayan and Niv, 2008).



Cortical implementations Due to their conceptual simplicity, policy gradient methods may be im-
plemented in any cortical network that is engaged in stimulus-response associations and that receives
feedback via some global neuromodulator. TD learning was related to basal ganglia where specific net-
works were suggested to represent values (Daw et al., 2006; Wunderlich et al., 2012) and dopamine activity
was suggested to represent the TD-error d; (Schultz et al., 1997).

Both, policy gradient and TD learning are considered as model-free, although TD learning makes
use of some information about the underlying model. If more information is included such as state-
transition probabilities, the learning can again become faster as less sampling is required to explore the
reward function. TD learning methods and their extensions have in particular been proven successful
in interpreting human cortical activity during decision making tasks (for a review see Reward-Based
Learning, Model-Based and Model-Free).

Cross-References

Spike-Timing Dependent Plasticity, Learning Rules
Reward-Based Learning, Model-Based and Model-Free
Decision Making Tasks

Basal Ganglia — Decision Making
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