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Learning in a neuronal network is often thought of as a linear superposi-
tion of synaptic modifications induced by individual stimuli. However,
since biological synapses are naturally bounded, a linear superposition
would cause fast forgetting of previously acquired memories. Here we
show that this forgetting can be avoided by introducing additional con-
straints on the synaptic and neural dynamics. We consider Hebbian plas-
ticity of excitatory synapses. A synapse is modified only if the postsy-
naptic response does not match the desired output. With this learning
rule, the original memory performances with unbounded weights are re-
gained, provided that (1) there is some global inhibition, (2) the learning
rate is small, and (3) the neurons can discriminate small differences in
the total synaptic input (e.g., by making the neuronal threshold small
compared to the total postsynaptic input). We prove in the form of a gen-
eralized perceptron convergence theorem that under these constraints, a
neuron learns to classify any linearly separable set of patterns, including
a wide class of highly correlated random patterns. During the learning
process, excitation becomes roughly balanced by inhibition, and the neu-
ron classifies the patterns on the basis of small differences around this
balance. The fact that synapses saturate has the additional benefit that
nonlinearly separable patterns, such as similar patterns with contradict-
ing outputs, eventually generate a subthreshold response, and therefore
silence neurons that cannot provide any information.

1 Introduction

Realistic synaptic efficacies vary within a limited range of values. Synap-
tic saturation induced by new stimuli to be learned can provoke a rapid
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deterioration of the memories acquired in the past. In general, neural net-
works with bounded synapses are forgetful (Parisi, 1986), and the memory
traces of past experiences are destroyed at a rate that is dramatically high:
if one assumes that the long-term changes cannot be arbitrarily small, the
memory trace decays exponentially with the number of stored patterns. The
neural network remembers only the most recent stimuli, and the memory
span cannot surpass a number of patterns that is proportional to the loga-
rithm of the number of neurons (Amit & Fusi, 1994; Fusi, 2002). Slowing the
learning process by changing a small fraction of synapses solves the forget-
ting problem, and it allows, in principle, storing an extensive number of ran-
dom uncorrelated patterns, as in the case of unbounded synaptic strengths
(Tsodyks, 1990; Amit & Fusi 1992, 1994; Brunel, Carusi, & Fusi, 1998). How-
ever, these studies were restricted to patterns with uniform statistics and
fixed coding level (i.e., with the same average number of active neurons per
pattern). Moreover, they focused on the maintenance of the memory trace,
not on the dynamic mechanisms to store and retrieve information. More re-
cent papers show that it is possible to store and retrieve real-world patterns
in networks of excitatory and inhibitory neurons(see, e.g., Amit & Mascaro,
2001). However, in all these works, the internal state of each synapse has an
unreasonably large number of stable states, and the synaptic dynamics are
almost unaffected by the boundaries.

Here we study the dynamics of a biologically realistic network with
distinct excitatory and inhibitory neurons, which is able to learn linearly
separable patterns. A previous work (Amit, Wong, & Campbell, 1989) ad-
dressed the problem of separation between excitation and inhibition, but it
did not consider the problems of realistic synapses whose weights are lim-
ited from above and from below. In this work, we assume that the synapses
are bounded, and they do not allow arbitrarily small changes. The qualita-
tive behavior of networks with realistic synapses does not strongly depend
on the number of synaptic states that can be preserved on long timescales
(Amit & Fusi, 1994; Fusi, 2002). Hence we consider the extreme case of binary
synapses. As can be formally proven (Tsodyks, 1990; Amit & Fusi, 1992, 1994;
Senn & Fusi, 2005), the weight assignment problem for binary synapses can
be solved by a stochastic learning rule, provided that the number of input
neurons is large compared to the number of patterns to be stored. To study
the mean field dynamics of a stochastic model with binary synapses, we
focus on the case of continuous synaptic states with multiplicative satu-
ration. Simulations with discrete synaptic states show that this mean field
description is accurate.

We consider a learning scenario in which each stimulus imposes a pat-
tern of activities to the neurons of the network. Given a specific activity
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pattern as an input to the neuron, the desired output is known and pro-
vided by a teacher (supervised learning). The teacher signal indicating
the right response might come from a different cortical area (e.g., a top-
down signal that encodes the class to which the current sensory stimulus
belongs), or it can be provided by the sensory stimulus (e.g., when a pat-
tern of activity is imposed to all neurons of a recurrent network, in which
each neuron can be regarded as both an input neuron and an output neu-
ron). The learning rule is designed to embed the imposed activity patterns
into the synaptic matrix. After learning, each pattern seen during training
can be retrieved without mistakes. In the case of a feedforward network,
this means that each input pattern produces the correct response indicated
by the teacher during the training. For a recurrent network, each pattern
imposed by the sensory stimuli becomes a fixed point of the network dy-
namics. Under additional stability conditions, these fixed points can also be
attractors of the network dynamics. In what follows, we restrict our analy-
sis to only two distinct responses of the output neurons and to feedforward
networks.

We show that a Hebbian learning rule with an additional stop-learning
condition will find the appropriate synaptic weights to produce the desired
response of a single output unit, provided that the two classes of input
patterns are linearly separable. In case of unbounded synapses with the
stop-learning condition, a successful learning is ensured by the classical
perceptron convergence theorem (Rosenblatt, 1962; Block, 1962; Minsky &
Papert, 1969; Diederich & Opper, 1987; Arbib, 1987; Hertz, Krogh, & Palmer,
1991). The perceptron learning rule embeds the patterns into the weight vec-
tor by adding or subtracting the input vector, provided that the postsynaptic
neuron does not yet give the required response. This is shown to give good
classification performance on real-world patterns (Amit & Mascaro, 2001).
In all these cases, the weight vector becomes longer and longer as more pat-
terns are learned. It is not clear a priori how a local algorithm could find an
appropriate weight vector if the individual components are restricted within
rigid boundaries. The simplicity of the convergence proof for the classical
perceptron rule hides several problems that would naturally emerge in any
realistic neural network. In particular, the unboundedness of the synapses
allows arbitrarily large weights. Many of the parameters that control the
convergence of the classical perceptron rule should be scaled to bring back
the synaptic weights into a limited range (see section 4 for more details).
Additional requirements are therefore necessary to guarantee the conver-
gence when the synaptic weights are bounded. This is particularly the case
when excitatory synapses have only two stable states corresponding to two
different excitatory efficacies. Only in the presence of global inhibition, with
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a learning rate that is small enough, and with a neuronal threshold that is
small compared to the total amount of excitation, will a successful learning
become possible. These constraints ensure that any set of linearly separable
patterns can be learned by a Hebbian rule with a stop-learning condition
and bounded synapses.

Learning with bounded synapses and the stopping condition has other
interesting consequences. It is well known that in the spontaneous activ-
ity state, the total postsynaptic current produced by only the excitatory
synapses is relatively high compared to the neuronal threshold. In fact,
10,000 afferents with a somatic amplitude of 0.2 mV and a spontaneous
firing rate of 1 Hz, say, would give a depolarization of 2 mV per millisec-
ond. With a voltage threshold of 20 mV, this would lead to a spontaneous
firing rate of roughly 100 Hz instead of 1 Hz. Only a strong balancing of
excitation by inhibition can resolve this puzzle and prevent the neurons
from constantly being active at a high rate, as already pointed out in sev-
eral works (see, e.g., van Vreeswijk & Sompolinsky, 1996; Amit & Brunel,
1997). Balanced excitation and inhibition emerge as a by-product of suc-
cessful learning with bounded synapses and the stop-learning condition.
Such successful learning requires a small neuronal threshold to prevent the
individual synapses from running into saturation. As a consequence, the
total excitation will be roughly cancelled by inhibition. Moreover, overlaps
in the patterns to be separated urge the synaptic weights to be roughly equal
(although complete equality would fully destroy the memory). In the case
of binary synapses, these overlaps would cause equal probabilities of being
potentiated.

Surprisingly, the constraint of bounded synaptic strengths turns out to
be advantageous when dealing with nonseparable sets of patterns. Due
to synaptic saturation, learning similar patterns with contradicting out-
puts tends to erase any synaptic structure, and eventually the postsynap-
tic response is suppressed by the global inhibition. Such a suppression
mechanism tends to shut down neurons that are trained with inconsistent
teaching signals, as it arises during training with nonseparable patterns.
This suppression mechanism prevents an erroneous activation of an output
neuron.

2 The Model

2.1 Neuron Model. We consider a single postsynaptic neuron that re-
ceives excitatory inputs from N presynaptic neurons, and an inhibitory in-
put that is proportional to the total activity of the N excitatory neurons (see
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Figure 1A). The postsynaptic neuron is either active or inactive, depending
on whether the total postsynaptic current h is above or below the neuronal
threshold θ◦. The total postsynaptic current is calculated by the weighted
sum of the excitatory synaptic input ξ j , minus a global inhibition. Global
inhibition is represented by an inhibitory neuron that sums all the excita-
tory inputs with the same weight. The activity of this inhibitory neuron is
assumed to be proportional to the total (excitatory) input (linear transfer
function). In a less abstract network, the inhibitory neuron would be repre-
sented by a population of inhibitory cells, with random connections from
the excitatory inputs and random connections to the outputs (see, e.g., Amit
& Brunel, 1997). Formally, the total postsynaptic current of the output neu-
ron is h = 1

N

∑N
j=1(G j − gI )ξ j , where ξ j can be any value from 0 to R. Notice

that the net effect of the inhibitory population can be regarded as a synaptic
shift, which also allows negative weights. The components ξ j of an input
pattern can be interpreted, for instance, as the firing rate of the presynaptic
neurons. The excitatory weights G j and the global inhibitory weight gI take
on real values in the interval [0, 1]. In the simulations with binary synapses,
the excitatory weights take on values J j = 0 or 1.

2.2 Training Protocol. During training, the input neurons are repeat-
edly presented with all the p patterns ξ of two classes C+ and C−. With
each presentation, the activities ξ j are imposed to the N presynaptic neu-
rons, and the postsynaptic neuron is clamped to the desired response (by
setting ξpost = 0 or 1, depending on whether ξ belongs to class C+ or C−,
respectively). The synaptic learning rule is designed such that, after suc-
cessful training, the total synaptic current h generated by a pattern ξ should
fall either above or below the threshold θ◦, depending on whether ξ is in
class C+ or C−.

2.3 Synaptic Dynamics. Upon presentation of a pattern ξ , the excitatory
weights are modified in a Hebbian way, depending on the pre- and post-
synaptic activities and the total (postsynaptic) current h. When the post-
and presynaptic cells are both active (clamped to ξpost > 0, ξ j = 1) and the
total synaptic current is not too large (h ≤ θ◦ + δ◦, with a learning margin
δ◦ ≥ 0), the weight G j is increased by q+ξ j (1 − G j ). The weight increase
is proportional to the learning rate q+, the presynaptic activity ξ j , and the
saturation factor (1 − G j ). When the postsynaptic cell is inactive (ξpost = 0),
the presynaptic neuron is active (ξ j > 0), and the total synaptic input not too
low (h ≥ θ◦ − δ◦), then the weight G j is decreased by q−ξ j G j . The weight
decrease is proportional to the learning rate q−, the presynaptic activity
ξ j , and the saturation factor G j . Summarized, the weight change at time t
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Figure 1: Neuronal architecture and sketch of the convergence proof. (A) We
consider a postsynaptic neuron receiving direct excitatory input from N presy-
naptic neurons (ξ j ), and indirect input through a inhibitory neuron with linear
input-output relationship. The excitatory weights (G j ) are subject to Hebbian
plasticity with weight saturation and a stop-learning condition. The globally in-
hibitory weight (gI ) is fixed. The postsynaptic response (ξpost) is the thresholded
total synaptic current h, but any other nonlinear input-output relationship that
dichotomizes the input is also possible. (B) The sets C+ (crosses) and C− (circles)
of patterns ξ are assumed to be linearly separable, with a separation vector S and
a threshold θ . Since S may contain negative components and components larger
than 1, it cannot in general be approximated by the excitatory weight vector G.
Only if the solution vector S (and with it the threshold θ ) is scaled down by �, and
if some global inhibition gI is present, is it possible to approximate the solution
vector, �S ≈ G I = G − gI 1, with a G that is far from saturation at the boundaries
0 and 1 of the hypercube. (C) The synaptic change �G triggered by pattern ξ

is decomposed into a linear and forgetting (saturation) part, �G = �L + �F .
Without global inhibition (gI = 0 and G I = G), synaptic saturation (�F ) may
prevent the weight vector G from being updated in the “correct” direction �L ,
in the sense that (�S − G I )�G > 0. In the example, we have (�S − G I )�G < 0;
the update moves G I away from the solution vector �S. This is because an up-
date of G I in the desired direction �L is distorted by the nearby boundaries
and, instead, G I moves in the direction of �G = �L + �F toward the upper
right corner. Such a distortion is not possible if G is close to the main diagonal
and far from 0 and 1 (achieved by a small �, and a gI in between 0 and 1; see
A). (D) A positive scalar product (�S − G I )�G > 0 ensures that the G I moves
toward �S, provided that the learning rate q is small (distance indicated by the
upper brace is smaller than that indicated by the lower brace).
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writes

Gt+1
j =

{
Gt

j + q+ ξ t
j (1 − Gt

j ) , if ξ t
post = 1 and ht ≤ θ◦ + δ◦ ,

Gt
j − q− ξ t

j G
t
j , if ξ t

post = 0 and ht ≥ θ◦ − δ◦ .
(2.1)

The condition on the total synaptic current ht represents a stop-learning
condition: learning stops as soon as the total synaptic current would be
able to reproduce the desired postsynaptic activity (with some margin δ◦
for overlearning). If the condition on ht in equation 2.1 with ξ t

post = 0 or 1 is
met, we speak of a synaptic update. Notice that the synaptic dynamics is en-
tirely determined by four parameters: q+, q−, θ◦, δ◦. The neuronal dynamics
requires an additional parameter gI setting the global inhibition.

The motivation to study learning rule 2.1 comes from a probabilistic
synaptic model with binary states. In this model, the synapse stochastically
flips its state on presentation of a pattern ξ , depending on the conditions on
the pre- and postsynaptic activities and the total current h. Downregulated
synapses (J j = 0) are potentiated with probability q+ξ j if ξpost = 1, ξ j > 0,
and h ≤ θ◦ + δ◦. Potentiated synapses (J j = 1) downregulate with probabil-
ity q−ξ j if ξ j > 0, ξpost = 0, and h ≥ θ◦ − δ◦. The dynamics of the expected
synaptic strengths, Gt

j = 〈J t
j 〉, can be well approximated by the dynamics

in equation 2.1. Note that the stochastic update can formally be described
by J t+1

j = J t
j + ζ+

j (1 − J t
j ) and J t+1

j = J t
j − ζ−

j J t
j , respectively, where ζ± are

random variables that are 1 with probability q±ξ t
j and 0 otherwise. Since the

fluctuations of the total postsynaptic current ht for different realizations of
the stochastic process ζ typically shrink to zero with growing N, the ex-
pected total current 〈ht〉 (which is again denoted by ht in equation 2.1) well
approximates the actual total current ht . A formal treatment of the stochastic
model with a convergence proof for linearly separable patterns is found in
Senn & Fusi (2005).

3 Results

3.1 Linearly Separable Patterns Can Always Be Learned. Given any
two sets C± of linearly separable patterns, a neuron endowed with global
inhibition and bounded synapses obeying the mean field dynamics of
equation 2.1 will always learn to correctly classify the patterns in a finite
number of presentations. The tighter the separation between the two classes
C±, the smaller the neuronal threshold θ◦, the learning margin δ◦, and the
learning rate q must be (for simplicity, we assume q+ = q− = q ).

More precisely, we assume that there is a separation vector S of length
‖S‖ = N (not necessarily binary and positive), and a separation threshold θ ,
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such that the classes are separated by S and θ with a positive margin (see Fig-
ure 1B). Writing this separation margin as δ + ε, the linear separability states
that ξ S > (θ + δ + ε)N for ξ ∈ C+, and ξ S < (θ − δ − ε)N for ξ ∈ C−. Notice
that θ and δ characterize the statistics of the patterns to be classified. They
should not be confused with δ◦ and θ◦, which are parameters of the synaptic
dynamics. Classification is then also possible for all separation vectors �S
that are scaled by a factor �, provided that the threshold and the margins are
also scaled by the same factor. These different solutions correspond to out-
put neurons that would separate the patterns around different thresholds at
the end of the training session (i.e., h > �θ + �δ for ξ ∈ C+ and h < �θ − �δ

for ξ ∈ C−). However, as we show, the synaptic dynamics will converge
(to a scaled separation vector) only if the scaling factor is small enough,
� ≤ εgI /(2R), where ε is the partial separation margin of the sets C±, gI =
min{gI , 1 − gI } is the distance of the inhibitory weight gI from the bound-
aries 0 and 1, and R is the maximal activity of an input ξ j (see Figure 1B).
The final weight vector to which the synaptic dynamics converges depends
on the parameters θ◦ and δ◦ of the synaptic dynamics. To guarantee the
convergence of the learning process, we need these two parameters to be
small enough, θ◦ ≤ �θ , δ◦ ≤ �δ. Note that the threshold scaling factor � is
not a dynamic variable of the learning process. The parameters θ◦ and δ◦
are always chosen at the beginning of the learning process and are never
changed. However, the learning process will actually converge only if θ◦
and δ◦ are chosen properly, with a size that depends on the separation mar-
gin (ε) of the patterns. The theorem guarantees that there is always a range
of scaled thresholds for which the learning process converges: if the scaling
factor � and the learning rate q = q± are small enough, then for any global
inhibition gI between 0 and 1 (i.e., between the minimal and maximal ex-
citatory weights), the synaptic dynamics 2.1 converges (i.e., all the patterns
will be correctly classified) in at most n◦ = 6/(q�εgI ) updates of the synaptic
weight vector. When the smallness conditions on q and � are also consid-
ered (see the appendix), this amounts to an upper bound for the number of
updates in the order of 1/ε4. This bound is valid for any presentation order
of the patterns to be learned and for any initial conditions for the synaptic
states. The rigorous formulation and proof of the theorem is found in the
appendix.

3.2 Sketch of the Proof. The idea behind the threshold scaling and the
global inhibition is to keep the synaptic strength Gt far away from the lower
and upper boundaries. This prevents the weight vector Gt from being dis-
torted by synaptic saturation. Let us write the synaptic update in the form
Gt+1 = Gt + q�Gt , where we assume equal learning rates for long-term



2114 W. Senn and S. Fusi

potentiation (LTP) and long-term depression (LTD), q+ = q− = q . The nor-
malized change �G can be decomposed into a linear and a forgetting (sat-
uration) part �L and �F , respectively. If the updating conditions are met,
we can write equation 2.1 in the form

�G = �L + �F =
{

ξ ∗ (1 − G) = (1 − gI )ξ − ξ ∗ G I , if ξ ∈ C+,

−ξ ∗ G = −gI ξ − ξ ∗ G I , if ξ ∈ C−,

(3.1)

where G I = G − gI 1 and ∗ is the component-wise product of vectors and
�F = −ξ ∗ G I . The linear term �L = (1 − gI )ξ in case of ξ ∈ C+ and �L =
−gI ξ in case of ξ ∈ C−, respectively, is the learning component, which is
parallel to the pattern to be learned (see Figure 1C). This linear term is
also present in the case of the classical perceptron learning with analog
unbounded synapses and would always bring Gt toward a solution vector.
Selecting a pattern ξ ∈ C+, for instance, we have ξ�S > �(θ + δ + ε)N by as-
sumption that the solution vector S (and therefore �S) separates the classes.
In the case that this pattern is not yet correctly implemented by the neuron,
that is, if hN = ξG I < �(θ + δ)N, the synaptic weight vector is updated by
q�G according to equation 2.1 (note that the last inequality is equivalent
to the update condition ht ≤ θ◦ + δ◦ in equation 2.1). By subtracting this in-
equality from the previous one, we get (�S − G I )ξ ≥ �εN. Multiplying with
the factor (1 − gI ) and using the definition of �L and gI = min{gI , 1 − gI }
given above, we obtain,

(�S − G I )�L ≥ �εgI N. (3.2)

The same estimate, equation 3.2, is obtained when ξ ∈ C− and �L has the
form −gI ξ . Were the forgetting part negligible, we would have �G ≈ �L ,
and equation 3.2 would ensure that total weight vector Gt

I moves toward
the solution vector �S, provided that the learning rate q is small. In fact, if
the angle between (ρS − G I ) and �G is smaller than 90 degrees, the weight
vector at the next time step, G I + q�G, is always closer to the target vector
ρS than G I was, ensuring that q is small enough (see Figure 1D).

In general, the forgetting part �F = −ξ ∗ G I is not negligible. Note that
this term is the same for both up- and downregulations (see equation 3.1). It
arises from the synaptic saturation and tends to bring G I = G − gI toward
0, where G j = gI for all j . In this asymptotic limit, no structure would
be present in the synaptic weight vector, showing that synaptic saturation
might neutralize previous learning steps (see Figure 1C). However, synaptic
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saturation is strongly reduced and can become negligible if all the weights
are far from the boundary. This is the case if the weight vector is close to
the main diagonal where all the synaptic strengths are roughly equal. If the
uniform component is subtracted by the global inhibition and if the neuronal
threshold is small, the remaining structure in the weight vector is enough to
separate the patterns. Given the separation threshold θ and the separation
parameter ε of the two classes, the neuronal threshold leading to a correct
separation must be in the range of εθ . More precisely, the convergence of
the weight vector is guaranteed with a threshold θ◦ = �θ , provided that
� ≤ εgI /(2R). In fact, it is possible to show that (�S − G I )�F ≥ −�2 RN, and
that for small �, the distortion by the synaptic saturation therefore vanishes.
Together with equation 3.2, we obtain (�S − G I )(�L + �F ) > 0, asserting
that the effective synaptic change �G = �L + �F , including the forgetting
term, points toward the target vector �S. Hence, provided that � is small,
convergence of the learning procedure is guaranteed as outlined above.

3.3 Convergence for Bounded Versus Unbounded Synapses. In the
classical perceptron, the smallness of the neuronal threshold and the synap-
tic parameters (θ , δ, q ) is not required because the synaptic weights can grow
unboundedly. In fact, when increasing the number of new patterns p to be
learned, the maximum synaptic weight Gmax constantly increases (with

√
p

in case of random patterns; see Figure 8 and section 4). This is because
each synaptic update pushes the effective weight vector G I in the direc-
tion of the separation vector. The smaller the separation margin between
the two classes to be separated, the larger the maximum weight becomes,
Gmax ∼ 1/ε. A renormalization of the synaptic weights after learning would
similarly lead to a small threshold, as it is necessary in the current frame-
work with bounded synapses.

This renormalization is also changing the estimate of the convergence
time. For unbounded synapses, the number of synaptic updates required
for convergence is inversely proportional to the learning rate and the sep-
aration margin, n◦ ∼ 1/(qε). It is inversely proportional to ε because the
component of the synaptic update vector in the direction of the separa-
tion vector cannot be larger than the difference of the overlaps between the
separation vector and the two classes, |S(ξ+ − ξ−)| < ε for ξ± ∈ C±. It is
inversely proportional to q because, by definition, the length of the synaptic
update vector is proportional to the learning rate. To prevent overshoot-
ing, however, q must be smaller than ε (see Figure 1D), yielding an upper
bound of n◦ ∼ 1/ε2 in the case of unbounded synapses. This is in agreement
with the estimate of the convergence time for the classical perceptron (see,
e.g., Hertz et al., 1991). Since for learning with unbounded synapses the
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maximum weight grows like 1/ε (see Figure 8), we may obtain an a pos-
teriori solution for the dynamics with bounded synapses by scaling all the
synaptic parameters (θ , δ, q ) by � = ε. As a consequence, the effective synap-
tic weight vector (G I = G − gI 1) approaches the scaled solution vector �S,
and the learning progress per synaptic update is limited by �ε (because
|�S(ξ+ − ξ−)| < �ε for ξ± ∈ C±). Hence, q and ε are scaled by �, and the
upper bound for the number of required updates in the case of bounded
synapses becomes n◦ ∼ 1/(qε) = 1/(�2qε) = 1/ε4. This upper bound takes
into consideration that the weight vector may need to travel in small steps
from the boundary into the narrow neighborhood of the hypercube cen-
ter where synaptic saturation can be neglected. If the postsynaptic neuron
was already involved in a learning task, its weight vector is likely to be in
this neighborhood, and learning may be as fast as without imposing these
bounds.

3.4 Global Inhibition and a Small Threshold Are Necessary. To test
the statement of the theorem and show the necessity of the different re-
quirements, we consider a simple numerical example. We randomly chose
a set of p = 10 patterns ξ with activities ξ j ( j = 1, . . . , N = 20), uniformly
distributed between 0 and R = 40 (to allude to realistic firing rates in terms
of spikes per second). The excitatory synaptic weights G j of the 20 synapses
were randomly initialized between 0 and 1. The two classes C+ and C− were
constructed by projecting the patterns onto a random separation vector S of
length N. Each pattern was tagged according to whether the projection was
above or below a separation threshold θ , which in turn was chosen to divide
the patterns in two groups, each containing five patterns. In our example,
we had θ = 17.3, and the resulting separation margins were δ = ε = 0.27.
In general, the model might not converge for a random choice of the
parameters of the synaptic dynamics (e.g., when we use θ◦ = θ and δ◦ = δ).
However, our theorem guarantees that there is scaled version of the pa-
rameters (θ◦ = �θ and δ◦ = �δ), which would allow the convergence of the
learning process. In our specific example, any � ≤ 0.3 allows learning all
the patterns without mistakes. As predicted, the separation of the post-
synaptic current, ht > θ◦ + δ◦ and ht < θ◦ − δ◦, for patterns ξ in C+ and
C−, respectively, is reached after a few updates of the synaptic strengths
Gt

j according to equation 2.1, with ht = 1
N

∑N
j=1(Gt

j − gI )ξ j (cf. Figure 2A).
The simulation confirms that learning makes always some progress due
to its linear part, in the sense that in case of a synaptic update, we have
(�S − G I )�L > 0, equation 3.2, while the forgetting (saturation) part may
work against this progress as (�S − G I )�F can become negative (see
Figure 2B).
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Figure 2: Any linearly separable set of patterns is learnable with limited synap-
tic strengths. (A) Evolution of the signed distance between the total postsynaptic
current and the learning threshold, ht(ξ ) − (θ◦ + δ◦), for patterns ξ of class C+,
and (θ◦ − δ◦) − ht(ξ ), for patterns of class C−. According to the update condition,
equation 2.1, learning stops as soon as these quantities become all positive, here
after a total of 69 pattern presentations (out of which 27 satisfied the condition on
ht and led to synaptic updates). Note that the monotonic convergence of the total
weight vector Gt

I toward the scaled solution vector �S does not imply that for
all patterns, the total input ht(ξ ) monotonically converges. Model parameters:
θ◦ = 5.2, δ◦ = 0.08, q = q± = 2 · 10−3, gI = 0.5. The same set of patterns is used
in Figures 3 to 6. (B) Evolution of the learning progress represented by the linear
part, (�S − Gt

I )�Lt (solid line) and the forgetting part, (�S − Gt
I )�F t (dashed-

dotted line). The quantities represent the learning progress due to the nonsatu-
rating and saturating part: they indicate by how much the two learning compo-
nents �F t and �Gt move the effective weight vector Gt

I = Gt − gI toward the
target vector �S. The flat parts correspond to presentations that did not trigger
synaptic updates because the patterns were already correctly implemented, and
the condition on ht in the update rule 2.1 therefore was not satisfied. As shown
in the proof, the linear part always supports learning, (�S − Gt

I )�Lt > 0, while
the forgetting part may counteract learning when Gt

I comes close to �S, as hap-
pens at the 48th, 58th, and 68th presentation, where (�S − Gt

I )�F t < 0. Such
forgetting could become dominant if the threshold (the scaling factor �) were
not small enough.

The value of global inhibition plays an important role, although it does
not need to be finely tuned to guarantee the convergence of the learning
process. As predicted by the theorem, many more learning steps are nec-
essary if gI is too close to the boundary 0 or 1 (see Figure 3A). In fact, the
theorem predicts that the number of synaptic updates required to learn the
patterns is roughly n◦ ∝ 1

gI
≈ 1

gI (1−gI ) . The chance of finding a configuration
of excitatory synapses that balance inhibition shrinks when gI tends to a
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Figure 3: Learning requires global inhibition and a small scaling factor. (A) The
number of iterations (in thousands) required to learn the random set of patterns
is minimal if the global inhibitory strength gI is roughly 0.5, as predicted by
the theory. An inhibitory weight close to 0 or 1 urges the excitatory weights to
“catch up” to the inhibitory weight, and the emerging synaptic saturation (“for-
getting”) strongly impairs the learning (cf. Figure 1C). The neuronal threshold,
the learning margin, and the learning rate were scaled by a factor of 1/100
(yielding θ◦ = 5.2 · 10−3, δ◦ = 8 · 10−5, q = 2 · 10−5) such that it is still possible to
separate the patterns with values of the global inhibition near 0 and 1. (B) Num-
ber of synaptic updates (in thousands) required for convergence as a function
of the scaling factor �, with the same learning rate q as in A. As predicted by
the theory, learning is impaired if the neuronal threshold, compared to the total
(excitatory) synaptic strength, is not small (� > 0.5; cf. Figure 1C).

boundary value. Similarly, only when the neuronal threshold is small, ex-
pressed by a small threshold scaling factor, will it be possible to converge to
a solution (see Figure 3B). The simulation result is expressed by the require-
ment � ≤ εgI /(2R) appearing in the theorem (see also Figure 1B). If global
inhibition is kept away from 0 and 1, the drawback of synaptic saturation
is fully compensated, provided that the learning rate and the threshold are
sufficiently small.

Global inhibition is necessary for a simple reason. For instance, the sep-
aration of the patterns into two classes may require an output ξpost = 0 to a
pattern with a high activity level f = 1

N

∑N
j=1 ξ j (many presynaptic neurons

strongly active). This is typically not possible with excitatory synapses alone
because a pattern with a high total activity would lead to a suprathreshold
response. However, if the activity level f is subtracted through global inhibi-
tion, h = 1

N

∑
G jξ j − gI f = 1

N

∑
(G j − gI )ξ j , the assignment of the output

0 becomes possible, even if the activity level of the pattern is high (choose
G j < gI for components j with strong input ξ j ). To simultaneously assign
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Figure 4: Individual synaptic modifications should be small and triggered only
if the required response is not matched. (A) To prevent overshooting, the learn-
ing rates q± must be a fraction of the separation parameter ε (width of the
bracelet: 2(ε + δ), corresponding to the separation margin between the two
classes, as indicated by the parallel dotted lines). Without the stop-learning
condition and without shrinking of the learning rates q± toward 0, the weight
vector Gt would be repeatedly attracted by the clusters (as appearing on the
right), while patterns not in these clusters start to get misclassified (as the left-
most cross). The dashed line shows the separation hyperplane after learning the
cluster of crosses. A subsequent learning of the cluster of circles would move the
hyperplane up again (arrows). (B) Same plot as in Figure 2B, but without stop-
learning condition on the total postsynaptic current ht in equation 2.1. The linear
part oscillates because the weight vector G periodically “overlearns” the pat-
terns, that is, is repeatedly attracted toward one cluster of patterns and thereby
starts to misclassify other patterns. In contrast, the forgetting part slowly con-
verges, showing that the final weight vector oscillates close to the main diagonal
where synaptic saturation is minimal and the weights are roughly equalized.

an output ξpost = 1 to a pattern with low activity level, the threshold must be
small. This is needed because tightly separated classes (ε small) require that
small differences in the inputs ξ j , independent of the size of ξ j , may turn
a subthreshold response into a suprathreshold response. After subtracting
the activity level f , this becomes possible with a small threshold.

3.5 A Small Learning Rate and the Stop-Learning Condition Are
Necessary. To prevent overshooting of the target vector �S, the learning
rates q± (= q ) must be small enough. A monotonic convergence toward
the target vector is expected if the learning rate is small compared to the
neuronal threshold. Since the threshold itself scales with the separation pa-
rameter ε, the learning rate must scale, for instance, with ε2. In fact, the con-
vergence is guaranteed if q ≤ �εgI /(2R2) (cf. Figure 4A). The requirement



2120 W. Senn and S. Fusi

of a small threshold is also confirmed by the simulations (see Senn & Fusi,
2004, in press).

Learning is also severely impaired if the stop-learning condition on the
total postsynaptic current ht in equation 2.1 is not imposed. Only if the
learning process stops when the desired output is reached is it possible to
learn any set of separable patterns. Otherwise, the dynamics may learn a
dominant cluster of patterns while other patterns far from such a cluster
may fall off from the correct classification (see Figure 4A). In fact, drop-
ping the stop-learning condition leads to sustained oscillations in the total
postsynaptic currents, and no further learning progress is achieved (see
Figure 4B). Although decreasing the learning rate will reduce the ampli-
tude of the oscillations to 0, the final position of the separation plane may
still not separate the two classes of input patterns. This is because without
the stopping condition, it is just the center of gravity of the patterns within
each class C± that determines the final position of the separation plane, and
this does not account for the outliers. Any learning rule that is able to learn
tightly separated classes must incorporate some form of stopping condition.

3.6 Learning Equalizes Synaptic Strengths and Balances Inputs. In
the absence of the stopping condition, the statistics of different synapses
tend to reflect the statistics of LTP and LTD events. If different synapses
share the same statistics, then the distribution of efficacies will also tend to
be equalized (i.e., be the same across different inputs). For example, in the
case of slow learning of random uncorrelated patterns with binary synapses,
the asymptotic potentiation probability (G∗) for all the synapses is given by
the ratio between the rate of potentiating events (q̃+) divided by the total rate
of events inducing potentiations or depressions (q̃+ + q̃−) (see Brunel et al.,
1998, and below). This is also confirmed for the case of analog and bounded
synapses. By the ongoing up- and downregulation of a synapse in the pres-
ence of the multiplicative saturation, the synaptic weights are driven toward
asymptotic states where the synaptic saturation and the Hebbian learning
are balanced. In the current example, this is expressed by the convergence
(�S − G I )�F → 0 (decaying curve in Figure 4B).

In the presence of the stopping condition, the final excitatory weights
reached after successful learning will always be close to the global inhibitory
weight, at least when the difficulty of the task (small ε) requires a small
threshold θ◦ and a small learning margin δ◦. The tighter the two classes
C+ and C− are separated, the less distortion by synaptic saturation can be
afforded, and the more uniform the synaptic distribution becomes. A rel-
atively uniform distribution of the excitatory synaptic weights G j around
the value of the global inhibition gI is enforced by a priori choosing a small
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Figure 5: Balancing and equalization of the synaptic weights through learning.
(A) The initial synaptic strengths G j (solid line) span the whole possible interval
between 0 and 1, scaled up by N. The two narrowly separated black lines repre-
sent the learning thresholds θ◦ ± δ◦, divided by the average presynaptic activity
of all patterns, R/2, to be comparable with the individual synaptic weights.
The dashed line at gI = 0.5 represents the global inhibitory weight (dotted line:
G j − gI ). (B) After faithful learning of the set of 10 patterns in 27 synaptic up-
dates (69 presentations; see Figure 2) the excitatory synaptic strengths G j became
roughly equal (solid line). Subtracting global inhibition (dotted line) makes the
effective synaptic weights fluctuating around the threshold. If the stop-learning
condition is not imposed, the weights equalize much less (dashed-dotted line,
shown after 200 synaptic updates).

threshold (small scaling factor �), depending on the separation margin of the
classes to be learned (see Figures 1B and 1C). Hence, the balancing of exci-
tation and inhibition, and the equalization of the synaptic weights, appears
as a by-product of learning. This is also confirmed by our simulations. Due
to their random initial values, the weights span the whole possible range of
values before learning (see Figure 5A). After a few synaptic updates evoked
by the initially incorrectly classified patterns, the weights all adopted
roughly the same value (see Figure 5b, solid line). If the stop-learning con-
dition is discarded, the weights are less equalized because for the small set
of random patterns (p = 10), the asymptotic strengths varies considerably
(see Figure 5b, dashed-dotted line). Weight equalization (but not necessary
the balancing by inhibition) would also emerge without the stopping condi-
tion, but the number of patterns and the number of synaptic updates must
be large.

3.7 Conflicting Patterns Shut Down Neuronal Activity. An interesting
property of (multiplicative) synaptic saturation is that it tends to stabilize
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the synaptic weights (van Rossum, Bi, & Turrigiano, 2000; Rubin, Lee, &
Sompolinsky, 2001). This property can be advantageous when dealing with
similar patterns requiring different outputs, since in these cases, it leads to
a uniform distribution of the synaptic weights, which depends on the ratio
between the probability of inducing LTP and the probability of inducing
LTD. If this distribution is below the threshold of activation of the output
cell, the neuron will no longer respond to these patterns, and therefore will
not try to make an impossible classification of stimuli that would produce
contradictory responses.

To be more concrete, we stimulate our neuron with a set of input patterns
such that each synapse gets repeatedly potentiated and depressed. Accord-
ing to the update rule, equation 2.1, the equilibrium weight of synapse j is
then determined by the equation

�G j = q̃+(1 − G j ) − q̃−G j = 0, (3.3)

where q̃± represent the effective rates of up- and downregulations. These
rates are the product of the learning rates q±, the expected presynaptic ac-
tivity 〈ξ j 〉, and the relative frequency of requiring a postsynaptic response 1
or 0, respectively. Solving equation 3.3 for G j gives the unique equilibrium
weight G∗ = q̃+/(q̃+ + q̃−). For slow learning (small q±) this expression
does not depend on the specific order of presentation of patterns (Brunel
et al., 1998). The equilibrium weight G∗ is an attracting fixed point of equa-
tion 3.3, as shown by the negative derivative of �G j with respect to G j at the
fixed point, d�G j

dG j
= −q̃+ − q̃−. Whatever the initial synaptic weight is, the

saturation factors (1 − G j ) and G j in equation 3.3 always drive the synapse
to the unique steady state G∗. If the equilibrium weight is smaller than
the global inhibition, G∗ < gI , the total postsynaptic current would become
negative in response to an arbitrary stimulus ξ , h = 1

N

∑
(G j − gI )ξ j < 0.

Taking the stop-learning condition into account, however, the weights G j

are depressed only until the lower learning threshold θ◦ − δ◦ is reached,
h = 1

N

∑
(G j − gI )ξ j ≈ θ◦ − δ◦. In general, any attempt to train the output

neuron(s) to respond with different outputs to too similar input patterns
will eventually lead to a subthreshold activation. The case of a single pat-
tern for which contradicting outputs are required is formally treated in the
appendix (see theorem 2).

The neuronal suppressing mechanism is confirmed by the simulations.
As an example, we show the evolution of the total postsynaptic currents ht

for the case of 5 pairs of identical patterns ξ± (i.e., p = 10 and identical classes
C+ = C−). As predicted, the total postsynaptic currents eventually become,
or remain, subthreshold for all patterns (see Figure 6A). The downward
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Figure 6: Synaptic saturation suppresses neuronal activity in response to con-
flicting patterns. (A) Evolution of the total postsynaptic current ht in response
to the five patterns trained with conflicting outputs, that is, requiring once the
output ξpost = 0 and once ξpost = 1 for the same input patterns. After a transient
response (around update 200), the total postsynaptic currents of the five patterns
becomes subthreshold (horizontal line represents the neuronal threshold θ◦).
(B) Without synaptic saturation (modeled by setting �F = 0 in equation 3.1),
the postsynaptic currents do not become subthreshold. (C, D) The final distri-
bution of the synaptic weights G j (solid lines) corresponding to the simulations
in A and B with and without saturation, respectively (same initial weights as
in Figure 5A). Dashed line: global inhibition, gI ; double solid line: neuronal
threshold scaled by the presynaptic mean activity, 2θ◦/R; dotted line: G j − gI .
Learning the contradicting outputs homogenizes the weights in the presence of
synaptic saturation and leads to the uniform dominance of inhibition, and there-
fore the suppression of any neuronal activity (C). The final weight distribution
when the upper synaptic bound was relieved does not show the equalization,
and therefore does not lead to the activity suppression (D).

drift of the total postsynaptic current ht is caused by the synaptic satura-
tion, which strongly homogenizes the synaptic weights until excitation is
dominated by the global inhibition (see Figure 6C). In fact, without synap-
tic saturation (mimicked by cancelling the forgetting part �F = −ξ ∗ G I
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in the update rule, equation 3.1), the suppression effect vanishes and the
total postsynaptic currents incoherently become either sub- or suprathresh-
old (see Figure 6B). This is also reflected in the uncontrolled growth of the
synaptic weights beyond the upper boundary (see Figure 6D). Hence, teach-
ing the neuron to respond with different outputs to the same patterns will
uniformly depress the synaptic weights and silence the neuron.

3.8 Convergence for Binary Synapses with Stochastic Modifications.
We finally provide a partial account of the results that learning with discrete
synapses converges in a finite number of steps, provided that (1) the number
of neurons is large enough and (2) the small learning rate is replaced by small
transition probabilities between stable discrete states. If these conditions are
satisfied, the expected values of the binary synapses are well described by
the analog synaptic variables introduced in the model. As a consequence,
the convergence of the stochastic learning process with binary synapses is
well predicted by the deterministic one for analog synapses. More precisely,
one proves that the stochastic algorithm is likely to converge within some
finite number of updates, n◦(ε), which is bounded above by some power
of 1/ε. The probability of not converging within these updates shrinks as
1/N when the number of neurons N increases while the separation margin
ε is kept fixed (for a rigorous proof and simulations with highly correlated
patterns, see Senn & Fusi, 2005).

Simulations with binary synapses projecting to a single output cell con-
firm that the stochastic learning rule is successful (see Figure 7). The pa-
rameters of the learning dynamics are the same as in the simulations of the
deterministic example (see Figure 2), and the activities ξ j of the 10 patterns
are either 0 or 40, with probability of 0.5. As expected, the convergence in the
stochastic case is noisier, and it takes a larger number of presentations than
in the case with continuous synapses (see Figure 7A). With an increasing
number of neurons, however, the prediction of the synaptic dynamics by
the mean field equation, 2.1, becomes more reliable. The redundancy in the
synaptic encoding speeds up learning until it approaches the convergence
speed of continuous-valued (bounded) synapses. In fact, the number of pre-
sentations per pattern, required to correctly classify the stimuli, shrinks with
the increasing number of presynaptic neurons toward an asymptotic value
(see Figure 7B).

4 Discussion

We showed that despite the synaptic boundedness and despite restricting
plasticity to the excitatory synapses, any set of linearly separable patterns
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Figure 7: Convergence of stochastic learning in the case of binary synapses.
(A) Total synaptic input current ht as a function of time, evaluated for all 10
random, linearly separable patterns. Same parameters as in Figure 2, except
for the number of neurons, which is N = 100 instead of N = 20. The learning
process converges in about 150 presentations (15 presentations per stimulus).
(B) Number of presentations per pattern required for convergence, as a function
of the number of neurons N, for p = 10, 20, 40 random binary 0/1 patterns
with coding level f = 1/4. Other parameters: q± = .05, gI = 0.5. The classes are
constructed to be linearly separable. The neuronal threshold θ◦ and the learning
margin δ◦ are chosen to yield a maximal separation of the classes after projecting
the patterns to a solution vector S.

can be learned with a Hebbian rule incorporating a stop-learning condi-
tion. These biologically plausible restrictions, however, require (1) some
global inhibition, (2) a small learning rate, and (3) a threshold that is small
compared to the overall excitatory synaptic strengths. The restrictions are
shown to be necessary to prevent fast forgetting, which may arise during the
learning process by driving the synaptic strengths into saturation. As a by-
product of learning, the synaptic strengths roughly (but not fully) equalize,
and a rough balancing between the total excitation and inhibition emerges.
Synaptic saturation further causes a neuron to suppress its activity if it is
learned with similar patterns but opposing outputs.

4.1 Possible Implementations of the Stop-Learning Mechanism. The
stop-learning condition is necessary to protect past memories when the
same or similar patterns are insistently presented. There are many ways
of implementing such a stopping mechanism. It could be inherent to the
individual synapse, governed by the postsynaptic activity, or it can depend
on an external feedback. For instance, the synapse may not undergo poten-
tiation if the pre- and postsynaptic activities and the postsynaptic calcium
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concentration are above some critical level or below some minimal concen-
tration (see Fusi, 2003, for a spike-driven synaptic dynamics implementing
this mechanism). High calcium concentration might indicate that a neu-
ron, which is supposed to be active, is already responding as imposed by
the sensory stimulus or by the teacher, and that learning should stop. A
similar mechanism can be obtained by reducing the synaptic change when
the postsynaptic neuron is spending a large fraction of its time in the re-
fractory period (Amit & Mongillo, 2003). Unfortunately, experimental data
leave the question of such an intrinsic nonmonotonicity open (see, e.g.,
Cho, Aggleton, Brown, & Bashir, 2001). Another possibility would be that
the stop-learning signal is carried by an external signal, for instance, re-
lated to the reduction of dopamine release, as observed after successful
reinforcement learning (see, e.g., Fiorillo, Tobler, & Schultz, 2003). A similar
stop-learning phenomenon is observed in V4 of a monkey performing a
delayed match-to-sample task, where no learning effect is seen if the visual
stimuli are not degraded by noise and therefore easy to classify (Rainer, Lee,
& Logothetis, 2004).

4.2 Global Inhibition Sets the Equilibrium Distribution of the Exci-
tatory Weights. Global inhibition is a general property often assumed in
neural networks to normalize the total synaptic input. In fact, recent exper-
imental findings show that inhibitory neurons in the neocortex, but also in
the hippocampus, may form a large network, tightly coupled through gap
junctions (see, e.g., Amitai et al., 2002). In our framework, such a global
inhibition defines a range, far from saturation, into which the excitatory
weights will tend during the learning process. Since we restrict synaptic
plasticity to excitatory synapses, inhibition must be global to assert that any
set of linearly separable patterns with any correlations (i.e., clustering of
the patterns) can be learned. Nonglobal inhibition may lead to a strong and
unequal forgetting across the synapses due to unequal synaptic saturation,
unless inhibition is also plastic.

The supervised learning scenario with the stop-learning condition urges
the total postsynaptic currents to be clustered around the neuronal thresh-
old. Since the latter must be small relative to the synaptic bounds, the exci-
tatory current will be balanced by inhibition after learning. Since inhibition
is global, the excitatory synaptic strengths, moreover, become equalized.
Weight equalization and balancing by inhibition will always emerge from
the stopping condition, even when the synapses are not bounded, as long as
the threshold is small and the inhibitory weights are equal. If the stopping
condition is discarded and the synapses are bounded, weight equalization
arises (for large N and p) because the weights tend to an asymptotic state,
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which, for uniform random patterns, depends on only the ratio between the
effective rate for up- and downregulation. This asymptotic state, however,
is not necessarily related to the global inhibition. In fact, assuming that it is
dominated by the inhibitory weight has distinct computational advantages
in terms of neuronal silencing when learning does not converge (see below).

Weight equalization was also shown to emerge in an unsupervised learn-
ing scenario where the postsynaptic activity is not imposed by a teacher
signal, and hence no stopping condition can be defined explicitly (Rumsey
& Abbott, 2003). Instead of stopping any synaptic modification when the
desired output activity is reached, a slow anti-Hebbian term is shown to
smooth out large fluctuations in the synaptic weight structure caused by
Hebbian learning. Bounded synapses may also contribute to some synap-
tic equalization in an unsupervised learning scenario, but because of the
missing activity-dependent feedback, synaptic bounds are themselves not
sufficient.

4.3 Slow Learning Prevents Fast Forgetting. Slow learning becomes
important if the set of patterns to be learned is large. This is because slow
learning prevents the synaptic weights from overshooting, but also from
heading off into the saturation regime. In the continuous-valued synaptic
model, slow learning is implemented by a small learning rate (q ). However,
biological synapses do not admit arbitrarily small changes. Synapses must
be able to operate with a limited number of discrete states. In a discrete-
valued synaptic model, slow learning is achieved by making a selection of
a small number of synapses to be modified. Stochastic selection is an un-
biased way to choose the synapses to be changed (Tsodyks, 1990; Amit &
Fusi, 1992, 1994) and it can be naturally implemented by exploiting the vari-
ability in the neural activity (Fusi, Annunziato, Badoni, Salamon, & Amit,
2000; Fusi, 2002). There is an optimal learning rate that allows learning un-
correlated random patterns in a single shot and forgetting slowly. Below
this learning rate, every pattern should be presented more than once (Fusi,
1995; Brunel et al., 1998). The advantage is that the synaptic resources are
equally distributed among all the patterns to be stored. Our binary percep-
tron exploits slow learning for the same reason, and the stopping condition
introduces an extra selection mechanism. Interestingly, slow learning is ob-
served in some cortical areas: for instance, in inferotemporal and perirhinal
cortex (Miyashita, 1993; Yakovlev, Fusi, Berman, & Zohary, 1998; Erikson &
Desimone, 1999) where the internal representations of sensory stimuli form
in tens or hundreds of repetitions of the same pattern. The introduction of
other internal synaptic states would allow the same memory span and a
much reduced number of presentations (Fusi, Drew, & Abbott, 2005).
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4.4 Small Neuronal Thresholds Allow Separating Similar Patterns.
The assumption of a small neuronal threshold relative to the total excita-
tory synaptic strength seems to be satisfied in biology by virtue of the huge
number of excitatory synapses projecting onto a single neuron (Braitenberg
& Schütz, 1991). As we showed, the ratio between the neuronal threshold
and the total excitatory synaptic strength must decrease with the difficulty
of the learning task, that is, with decreasing separation margin between the
two classes to be learned (ε). Interestingly, this is needed also for the classi-
cal perceptron and for many other classical learning rules like the Hopfield
prescription. However, the requirement is veiled by the unboundedness of
the synapses and by the fact that usually the neuronal threshold is set to
0. Indeed, as the number of patterns (p) increases, the separation margin ε

typically becomes smaller, and more iterations are needed to converge. As
a consequence, for the classical perceptron learning (i.e., with unbounded
synapses), the maximum synaptic weight Gmax = maxi=1,...,N Gi increases
when more patterns (p) have to be learned or, more generally, when the sep-
aration margin ε goes to zero (see Figure 8). To enforce that the maximum
synaptic weights remains finite, say 1, all the synaptic weights, the thresh-
old (θ ), and the learning margin (δ) should be scaled by the same factor,
namely, the maximum weight Gmax. For random uncorrelated patterns, this
maximum weight Gmax roughly increases as the square root of the number
of random patterns,

√
p (see Figure 8, vertical and bottom horizontal axes),

but also as the inverse of the separation margin, 1/ε (see Figure 8, vertical
and top horizontal axes). The growth of Gmax with

√
p and 1/ε implicitly

confirms the theoretical result that in the limit of large N, the separation
margin ε shrinks as 1/

√
p (Köhler, Diederich, Kinzel, & Opper, 1990, equa-

tion 7). Notice that in models without the stopping condition, for example,
in the Hopfield model where the synaptic weights are explicitly set as the
sum over p patterns (Hertz et al., 1991), the maximum weight grows even
linearly with p. Clipping the synapses to a finite range at the end of the
learning process as in Sompolinsky (1987) and Amit and Mascaro (2001)
does not help, because this would require a buffer for temporarily stor-
ing the unbounded synaptic weights during the learning process, which
itself would require growing synapses. Our need of a proper scaling of the
threshold is not a unique feature of our model, but will be shared by any
model with bounded synaptic weights. We conclude that depending on
the difficulty of the learning task, learning with bounded synapses requires
some fine discrimination around the balance between excitation and inhibi-
tion. The correct tuning of the threshold-to-synaptic strength ratio could be
performed by additional homeostatic processes (see, e.g., Desai, Cudmore,
Nelson, & Turrigiano, 2002). Homeostatic plasticity may also tune the global
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Figure 8: Maximum synaptic weight Gmax as a function of the number of random
uncorrelated binary patterns p (bottom scale) and their separation margin ε

(top scale) for the classical perceptron with unbounded synapses. All the scales
are logarithmic. According to the graph, the maximum weight after learning,
Gmax = maxi=1,...,N{Gi }, increases with the square root of the number of patterns,
Gmax ∼ √

p, and with the inverse of the separation margin, Gmax ∼ 1/ε. The
number of neurons (fixed to N = 2000) was chosen such that for all the training
sets, the number of patterns was well below the maximal capacity, p < 2N. The
maximum weight increases because the number of synaptic updates required
to find an appropriate weight vector also grows with increasing complexity of
the separation task (growing p and decreasing ε). Recall that with each of these
synaptic updates, a component of the solution vector is added to the weight
vector, causing the latter to steadily grow in the direction of the solution vector.
If the synaptic weights are bounded, then the neuronal threshold should be
scaled with a quantity growing as Gmax, and hence growing with the difficulty
of the classification task. This shows that the threshold scaling in our perceptron
model with bounded synapses is the counterpart of the unlimited weight growth
in the classical perceptron, and therefore cannot be avoided. The initial values
of the synaptic weights were randomly chosen between −1 and 1.

inhibition (gI ) to dominate over the excitatory equilibrium weight (G∗), such
that neurons silence themselves in response to unstructured input.

4.5 Silencing Uncertain Neurons Allows Dealing with Nonseparable
Patterns. Suppressing the activity of a neuron trained to respond with dif-
ferent outputs to the same input patterns is an important property when
dealing with nonseparable patterns. This problem emerges when the max-
imal storage capacity is surpassed or the input patterns are inherently non-
separable. For example, as the number of random input patterns increases



2130 W. Senn and S. Fusi

(p > 2N), the chance that they are nonseparable, and therefore not clas-
sifiable by a neuron, also increases (Cover, 1965). Nonseparable patterns
would uniformize the synaptic weights by means of the synaptic satura-
tion, and their response would be suppressed by the global inhibition. The
same suppression mechanism can also be exploited to improve the classi-
fication of more complex data sets like Latex deformed characters (Senn
& Fusi, in press). Because patterns that are incorrectly classified typically
evoke a subthreshold response, the classification performance can be im-
proved by considering the response of several output neurons in parallel.
If these neurons behave in a different way (e.g., because of the stochastic
selection in the learning rule for binary synapses), then some output units
would respond correctly, while those that respond incorrectly are actually
silent. A similar mechanism has already been applied in Amit and Mascaro
(2001), where the authors consider several output units, each randomly con-
nected to a subset of input units. They also correctly classify a large number
of Latex deformed characters. In general, an additional second layer would
be required to judge whether the number of activated neurons is significant
for a correct classification of the input pattern.

Appendix

A.1 Perceptron Convergence Theorem for Bounded Synapses. The the-
orem asserts that with the classical Hebbian rule incorporating a stop-
learning condition, any set of linearly separable patterns can be learned with
bounded synaptic strengths, provided that the learning rate is small, there
is some global inhibition, and the neuronal threshold is small compared to
the overall sum of the presynaptic excitatory weights. For notational con-
venience, we consider equal learning rates for LTP and LTD, q− = q+ = q .

Theorem 1. Let C± be any sets of linearly (δ + ε)-separable activity patterns
ξ ∈ [0, R]N with separability threshold θ ∈ R and separability parameters δ ≥ 0,
ε > 0. Let us choose any globally inhibitory weight gI ∈ (0, 1), any scaling factor
� ≤ εgI /(2R), and any learning rate q ≤ �εgI /(2R2), where gI = min{gI , 1 −
gI }. Set the threshold of the postsynaptic neuron to θ◦ = �θ , and the learning
margin to δ◦ = �δ. Then, for any repeated presentation of the patterns ξ ∈ C± and
any initial condition G0 ∈ [0, 1]N, the synaptic dynamics 2.1 converges in at most
n◦ = 6/(q�εgI ) synaptic updates.

Note that the maximal number of stochastic updates, n◦, which is re-
quired to learn the patterns, is independent of the number of patterns p to
be learned. This apparent paradox arises because n◦ counts only the number
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of presentations that trigger synaptic updates, that is, those for which the
update conditions in equation 2.1 are satisfied. Since the patterns satisfying
these conditions are not known a priori, however, an online algorithm needs
to cycle repeatedly through all the p patterns. Hence, for a periodic cycling,
an upper bound for the number of presentations, t, until learning stops is
t◦ = pn◦ = 6p/(q�εgI ).

Proof. The condition on the linear separability of the sets C± states that there
is an S ∈ RN with ‖S‖2 = N and a separation threshold θ ∈ R such that ξ S >

(θ + δ + ε)N for ξ ∈ C+ (i.e., ξpost = 1), and ξ S < (θ − δ − ε)N for ξ ∈ C−

(i.e., ξpost = 0). Writing the learning rule 2.1 in the form Gt+1 = Gt + q�Gt

and assuming that the conditions for a synaptic update are satisfied, we
can decompose equation 2.1 into the linear and forgetting part according to
equation 3.1. Recall that the condition for a synaptic update is satisfied if
either h = 1

N G I ξ ≤ �(θ + δ) or h = 1
N G I ξ ≥ �(θ − δ) for ξ ∈ C+ and ξ ∈ C−,

respectively.

Learning with the linear part. According to the update and separabil-
ity condition for the case ξ ∈ C+, we have ξG I < �(θ + δ)N and ξ�S >

�(θ + δ + ε)N, respectively. Subtracting the first from the second inequality,
we get (�S − G I )ξ ≥ �εN. Similarly, for the case ξ ∈ C−, we have the two
conditions ξG I > �(θ − δ)N and ξ�S < �(θ − δ − ε)N, respectively, and by
subtraction, we get−(�S − G I )ξ ≥ �εN. Defining the linear part in the learn-
ing rule 3.1 by �L = ξ (1 − gI ) in case of ξ ∈ C+ and �L = −gI ξ in case of
ξ ∈ C−, respectively, we get the basic inequality, equation 3.2, presented
previously in the main text,

(�S − G I )�L ≥ �εgI N.

Controlling the forgetting part. We next estimate the impact of the for-
getting (saturation) term �F = −ξ ∗ G I . We show that updating G with
q�F either supports learning (in the sense of equation 3.2) or at least does
not move G I too far away from �S. Inserting the definition of �F , writing
ξ = √

ξ ∗ √
ξ , and applying the Cauchy-Schwartz inequality twice in the

form x y ≤ ‖x‖ ‖y‖, with equality if x = y, we get sequentially

(�S − G I )�F = G I (ξ ∗ G I ) − �S(ξ ∗ G I ) = (
√

ξ ∗ G I )2

− �(
√

ξ ∗ S)(
√

ξ ∗ G I )

≥ ‖
√

ξ ∗ G I ‖(‖
√

ξ ∗ G I ‖ − � ‖
√

ξ ∗ S‖). (A.1)
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When forgetting supports learning. In the case of ‖√ξ ∗ G I ‖ ≥ � ‖√ξ ∗ S‖,
the parentheses on the right-hand side of equation A.1 is nonnegative, and
one immediately concludes from it that (�S − G I )�F ≥ 0. Note that the
condition on the norm of G I roughly states that G I lies “behind” �S when
looking from the origin in the direction of

√
ξ . In this case, the forgetting

term �F speeds up, or at least does not counteract, the convergence of G I

toward �S. In fact, since �G = �L + �F , we obtain from (�S − G I )�F ≥ 0,
together with equation 3.2, that for any �,

(�S − G I )�G ≥ �εgI N, provided ‖
√

ξ ∗ G I ‖ ≥ � ‖
√

ξ ∗ S‖. (A.2)

When forgetting counteracts learning. We next consider the case that ‖√ξ ∗
G I ‖ ≤ � ‖√ξ ∗ S‖. Inserting this into equation A.1 while neglecting the term
‖√ξ ∗ G I ‖ in the parentheses on the right-hand side, we get the estimate

(�S − G I )�F ≥ −‖
√

ξ ∗ G I ‖ � ‖
√

ξ ∗ S‖ ≥ −�2 ‖
√

ξ ∗ S‖2 ≥ −�2 RN.

(A.3)

For the last inequality, we used the definition of the norm square, the fact
that ξ j ≤ R, and the assumption on the separation vector that ‖S‖2 = N
to obtain ‖√ξ ∗ S‖2 = ∑N

i=1 ξi S2
i ≤ R

∑
i S2

i = RN. Since the above estimate
cannot exclude that (�S − G I )�F becomes negative, we cannot preclude
that forgetting counteracts learning. However, since the scaling factor �

enters as the square, forgetting becomes disproportionally weak if � gets
small. Let us choose � ≤ εgI /(2R). Using again �G = �L + �F , we then
get from estimate A.3, together with equation 3.2, that

(�S − G I )�G ≥ �N(εgI − �R) ≥ �εgI N/2,

provided ‖
√

ξ ∗ G I ‖ ≤ � ‖
√

ξ ∗ S‖. (A.4)

Learning in the General Case Stops. We next show that with each synaptic
update, the distance from G I to �S decreases at least by some fixed quantity.
We conclude that the learning process must terminate, since otherwise the
distance from G I to �S would become negative. Let tµ denote the time(s)
when pattern ξµ is presented and the synapses are updated. At a subsequent
time step tµ + 1, there is Gtµ+1

I = Gtµ
I + q�Gtµ . Combining equations A.2 and

A.4, we estimate (�S − Gtµ
I )�Gtµ ≥ �εgI N/2, independently of the value of

‖√ξ ∗ G I ‖. Substituting Gtµ+1
I in the following line, multiplying the norm

squares out, inserting (�S − Gtµ
I )�Gtµ ≥ �εgI N/2, and choosing a learning
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rate q ≤ �εgI /(2R2) yields

‖�S − Gtµ+1
I ‖2 − ‖�S − Gtµ

I ‖2 = −2q
(
�S − Gtµ

I

)
�Gtµ + q 2‖�Gtµ‖2

≤ . . . . . . ≤ q N(q R2 − �εgI )

≤ −q�εgI N/2. (A.5)

Note that by definition of �G (see equation 3.1), we have ‖�Gtµ‖2 ≤ R2 N.
This is because the synaptic weights Gtµ

j are between 0 and 1, and the stimuli
ξ

µ

j are between 0 and R. Summing up the contributions of all the updates up
to time t evoked by the different patterns, Gt

I = G0
I + q

∑
t′
µ<t �Gt′

µ , while
repeatedly using estimate A.5, we get an estimate of the telescope sum,

‖�S − Gt
I ‖2 − ‖�S − G0

I ‖2 = ‖�S − Gt
I ‖2 − ‖�S − Gt−1

I ‖2

+ ‖�S − Gt−1
I ‖2 − ‖�S − Gt−2

I ‖2

+ − . . . ≤ −ntq�εgI N/2, (A.6)

where nt is the number of synaptic updates up to the ith presentation of a
pattern. From equation A.6, we immediately obtain

0 ≤ ‖�S − Gt
I ‖2 ≤ ‖�S − G0

I ‖2 − ntq�εgI N/2. (A.7)

Since ‖�S − G0
I ‖2 ≤ (�2 + g2

I + 1)N ≤ 3N, we conclude from
equation A.7 that ‖�S − Gt

I ‖2 ≤ 0 after nt = 6/(q�εgI ) updates. Hence,
the number of synaptic updates until learning stops must be smaller,
n◦ = 6/(q�εgI ). If we set � = εgI /(2R) and q = �εgI /(2R2), consistent with
the smallness requirements above, we obtain n◦ = 48(R/(εgI ))4. Note that
this estimate is independent of the initial state of the synaptic weight vector
G0 ∈ [0, 1]N.

A.2 Neuronal Silencing with Conflicting Patterns. To illustrate how
the perceptron with bounded synapses deals with strongly nonseparable
patterns, we consider a learning scenario with a single pattern ξ ∈ C±, for
which both outputs 0 and 1 are required. In the course of “learning”, the
response to this pattern ξ will eventually be suppressed, provided that
the global inhibition is strong enough. This shunting property is due to
the multiplicative synaptic saturation, and it is not present in the classical
perceptron with unbounded synapses (recall that a mean field description
of binary synapses naturally leads to a multiplicative saturation). For sim-
plicity, we assume that the input patterns are also binary.
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Theorem 2. Let us repeatedly present a pattern ξ ∈ {0, 1}N to the perceptron,
and alternately require the output ξpost = 0 and 1. Define the asymptotic synaptic
strength by G∞ = q+

q− + q+ , where q+ and q− are the learning rates for the up- and
downregulation, respectively. Assume that the asymptotic strength is dominated
by the global inhibition gI , that is, (G∞ − gI )ξ ≤ θ◦ − κ , where θ◦ is the neuronal
threshold, κ > 0, and ξ = 1

N

∑N
i=1 ξi is the mean activity of ξ . Assume that q− ≤

κ . Then for any initial condition of the synaptic weight vector G0 ∈ [0, 1]N, the
response to pattern ξ becomes subthreshold, ht = 1

N

∑N
i=1(Gt

i − gI )ξi < θ◦, after

t ≈ −2 log κ

q− presentations.

The theorem can easily be generalized with the same proof to the case
of C+ = C−, where C± contains more than only one pattern ξ . Interestingly,
the estimate of the convergence time holds independent of the size of the
LTP rate q+. The basic idea of the proof is to show that a sequence up- and
downregulations of a synaptic weight Gt

j (with ξ j > 0) will always bring
this toward its asymptotic state G∞. The same convergence property is also
shown to hold for the case of stimulations with random patterns in the
absence of the stopping condition in the learning rule (Brunel et al., 1998).

Proof. We show that whenever the total current at time t − 1 is suprathresh-
old, ht−1 ≥ θ◦, it will decrease within the subsequent two updates by at
least q−κ . Let us first assume that at time t − 1, the total postsynaptic cur-
rent is above the LTP threshold, say, ht−1 = θ◦ + ht−1

+ > θ◦ + δ◦, with some
ht−1

+ > δ◦. When considering pattern ξ as a member of class C− at time
t − 1, no potentiation is triggered due to the stop-learning condition, and
we have ht = ht−1. When considering pattern ξ in the next time step t as
belonging to class C+, a downregulation is triggered. Since by assump-
tion we have (G∞ − gI )ξ ≤ θ◦ − κ , we can subtract this inequality from
ht = 1

N

∑N
i=1(Gt

i − gI )ξi = θ◦ + ht−1
+ and obtain

1
N

∑ (
Gt

i − G∞)
ξi ≥ κ + ht−1

+ . (A.8)

According to equation 2.1, the expected change of synapse j at an LTD
step is �Gt

i = −q−Gt
iξi . With this and equation A.8, total change in the

postsynaptic current at time t can be estimated by

ht+1 − ht = 1
N

∑
�Gt

iξi ≤ −q−

N

∑ (
Gt

iξi − G∞)
ξi ≤ −q−(

κ + ht−1
+

)
.

(A.9)
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The first inequality holds because G∞ ≥ 0, and the second inequality holds
because of equation A.8 and because for ξ j ∈ {0, 1} we have ξ 2

i = ξi . Since
ht = ht−1, we conclude that ht+1 − ht−1 ≤ −q−(κ + ht−1

+ ).
We next show that the same inequality still holds when, for instance,

a downregulation is immediately followed by an upregulation, and when
the total current is not yet subthreshold. Such a situation can arise when
θ◦ ≤ ht−1 ≤ θ◦ + δ◦. Let us set again ht−1 = θ◦ + ht−1

+ . According to the learn-
ing rule 2.1, the synaptic weight after a downregulation at time t − 1 is
decreased by q−Gt−1

i ξi , and it becomes Gt
i = Gt−1

i (1 − q−ξi ). After a subse-
quent upregulation at time t, this weight is increased by q+(1 − Gt

i )ξi =
q+(1 − Gt−1

i (1 − q−ξi ))ξi . By summing up the contributions of the indi-
vidual components and using that ξ 2

i = ξi , we can compute the differ-
ence in the total current after first a down- and then an upregulation
as

ht+1 − ht−1 = − 1
N

∑
q−Gt−1

i ξi + 1
N

∑
q+ (

1 − Gt−1
i (1 − q−ξi )

)
ξi

= −(q+ + q−)
1
N

∑
Gt−1

i ξi + q+ξ i + q+q− 1
N

∑
Gt−1

i ξi

≤ −(q+ + q−)
(
G∞ξ + κ + ht−1

+
) + q+ξ + q+q− 1

N

∑
Gt−1

i ξi

(A.10)

≤ −(q+ + q−)
(
κ + ht−1

+
) + q+q− (A.11)

≤ −q−(
κ + ht−1

+
)
. (A.12)

To get the first term in equation A.10, we were plugging in the inequal-
ity 1

N

∑
Gt−1

i ξi ≥ G∞ξ + κ + ht−1
+ . This latter inequality is derived in the

same way as equation A.8. To get the first term in equation A.11, we
were substituting G∞ = q+/(q+ + q−), and could cancel the term q+ξ i . To
get the second term in equation A.11, we used that both Gt−1

i and ξi are
between 0 and 1. Inequality A.12 holds if q− ≤ κ . The case where first
an up- and then a downregulation occurs leads to the same inequality,
A.12.

Taken together, equations A.9 and A.12 state that whenever the total
synaptic current at time t − 1 is above threshold, ht−1 = θ◦ + ht−1

+ ≥ θ◦, it
decreases within the next two presentations at least by the amount q−(κ +
ht−1

+ ). Since the reduction in ht−1 is due to the reduction of ht−1
+ , also κ + ht−1

+
is reduced within the two next time steps by the same amount, κ + ht+1

+ ≤
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(κ + ht−1
+ )(1 − q−). We conclude that the sequence κ + h2t′

+ (t′ = 0, 1, 2, . . .),
as long as h2t′

+ ≥ 0, is bounded above by a geometric series,

κ + h2t′
+ ≤ at′ = (

κ + h0
+
)
(1 − q−)t′

.

This geometric series {at′ }t′=0,1,... decays below κ (and therefore h2t′ =
θ◦ + h2t′

+ decays below θ◦) after t′
◦ steps, where t′

◦ = log( κ

κ+h0+
)/ log(1 − q−) ≤

log κ/ log(1 − q−) ≈ − log κ/q−. The last inequality holds because h0 ≤ 1
and therefore κ + h0

+ ≤ 1, and the approximation holds for small q−. Hence,
for any initial conditions with h0 ≥ θ◦, the total current h2t′

becomes sub-
threshold after t = 2t′ ≥ 2t′

◦ ≈ −2 log κ/q− presentations.
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