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Slow stochastic learning with global inhibition:
a biological solution to the binary
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Abstract

Networks of neurons connected by plastic all-or-none synapses tend to quickly forget previ-
ously acquired information when new patterns are learned. This problem could be solved for
random uncorrelated patterns by randomly selecting a small fraction of synapses to be modi-ed
upon each stimulus presentation (slow stochastic learning). Here we show that more complex,
but still linearly separable patterns, can be learned by networks with binary excitatory synapses
in a -nite number of presentations provided that: (1) there is non-vanishing global inhibition,
(2) the binary synapses are changed with small enough probability (slow learning) only when
the output neuron does not give the desired response (as in the classical perceptron rule) and
(3) the neuronal threshold separating the total synaptic inputs corresponding to di0erent classes
is small enough.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The strength of biological synapses can only vary within a limited range, and there
is accumulating evidence that some synapses can only preserve a restricted number
of states (some seem to have only two [4]). These constraints have dramatic e0ects
on networks performing as classi-ers or as an associative memory. Networks of neu-
rons connected by bounded synapses which cannot be changed by an arbitrarily small
amount share the palimpsest property (see e.g. [2]): new patterns overwrite the oldest
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ones, and only a limited number of patterns can be remembered. The more synapses
changed on each stimulus presentation, the faster is forgetting. Moreover, learning to
separate two classes of patterns with discrete synaptic weights is a combinatorially hard
problem (the ‘binary perceptron problem’, see [1]). Fast forgetting can be avoided by
changing only a small fraction of synapses, chosen randomly at each presentation.
Stochastic selection permits the classi-cation and memorization of an extensive num-
ber of random patterns, even if the number of synaptic states is reduced to two [2].
However, additional mechanisms must be introduced to store more realistic patterns
with correlated components. The solution we study here is based on the perceptron
learning rule: the synapses are changed with some probability only when the response
of the post-synaptic cell is not the desired one. This ‘stop-learning’ property might
be the expression of some regulatory synaptic mechanisms or the e0ect of a reward
signal. Together with global inhibition, a small synaptic transition probability and a
small neuronal threshold are suBcient to learn and memorize any linearly separable
set of patterns.

2. The model

Neuron model: We consider a single postsynaptic neuron which receives excitatory
inputs from N presynaptic neurons, and an inhibitory input which is proportional to
the total activity of the N excitatory neurons. The postsynaptic neuron is either active
or inactive, depending on whether the total postsynaptic current h is above or below a
threshold �0. The total current is calculated by the weighted sum of the synaptic inputs
�j, h= 1=N

∑N
j=1(Jj − gI)�j, where �j can take on any value from (and including) 0

to R. The excitatory weights Jj are binary, either 0 or 1, and the common inhibitory
weight gI is set to an analog value in between the excitatory weights, gI ∈ (0; 1).
Synaptic dynamics: During training the network is repeatedly presented with all the

p patterns � of two classes C+ and C−. At each presentation, the activities �j are
clamped to the N presynaptic neurons, and the output of the postsynaptic neuron is
clamped to the desired response (�post = 0 or 1, depending on whether � belongs to
class C+ or C−, respectively). The synaptic learning rule is designed such that, after
successful training, the total synaptic current h generated by a pattern � falls either
above or below the threshold �0, depending on whether � is in class C+ or C−.

Upon presentation of a pattern � the binary synapses Hip stochastically, depending
on the pre- and postsynaptic activities and the total current h. Downregulated synapses
(Jj =0) are potentiated with probability q+�j when the pre- and postsynaptic cells are
both active (�post ; �j ¿ 0) and the total synaptic current not too large (h6 �0+�0, with
a learning margin �0¿ 0). Potentiated synapses (Jj=1) downregulate with probability
q−�j when the presynaptic neuron is active (�j ¿ 0), the postsynaptic cell inactive
(�post = 0), and the total synaptic input not too low (h¿ �0 − �0). The factors q+ and
q− control the learning and forgetting rates of the network.
This rule can be formally summarized by introducing a random variable �±j which,

when presenting pattern �t at time t, is 1 with probability q±�tj and 0 otherwise. If
the Hebbian conditions for a synaptic potentiation are met, the synaptic state changes
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probabilistically according to J t+1
j = J tj + �

+
j (1− J tj ). If the conditions for downregu-

lation are met, then J t+1
j = J tj − �−j J tj . To approximate this dynamics we consider the

probabilities Gtj that synapse j is potentiated at time t. These probabilities represent
the expected synaptic weights, Gtj = 〈J tj 〉, and their dynamics is governed by

Gt+1
j =

{
Gtj + q+ �

t
j(1− Gtj); if �tpost¿ 0; �tj ¿ 0; and ht6 �0 + �0;

Gtj − q− �tjGtj; if �tpost = 0; �tj ¿ 0; and ht¿ �0 − �0:
(1)

Note that, since the Huctuations of ht for di0erent realizations of the stochastic process
� shrink to zero with growing N (see Fig. 2c below), the expected total current 〈ht〉,
obtained by replacing the J tj ’s with the Gtj’s, does well approximate the actual total
current ht .

3. Results

Given any two sets C± of linearly separable patterns, a neuron endowed with global
inhibition and the stochastic learning rule described above will always learn to correctly
classify the patterns in a -nite number of presentations. The tighter the separation be-
tween the two classes C±, the smaller the neuronal threshold �0, the learning margin
�0, and the learning rate q must be (for simplicity we assume q+ = q− = q). More
precisely, we assume that there is a separation vector S of length ‖S‖ = N (not nec-
essarily binary and positive), and a separation threshold �, such that the classes are
separated by S and � with a positive margin (Fig. 1a). Writing this separation margin
as � + � we have �S ¿ (� + � + �)N for �∈C+, and �S ¡ (� − � − �)N for �∈C−.
Classi-cation is then also possible by a separation vector which is scaled by a factor
%, provided that also the threshold and the margins are scaled by the same factor.
These di0erent solutions correspond to output neurons which would separate the pat-
terns around di0erent thresholds at the end of the training session (e.g. h¿%� + %�
for �∈C+). However, as we show, the synaptic dynamics can only converge to the
separation vector corresponding to a small enough scaling factor, %6 � KgI=(2R), where
% depends on the partial separation margin �, the ‘distance’ KgI = min{gI; 1 − gI} of
the global inhibitory weight gI from the weight boundaries 0 and 1, and the maxi-
mal input strength R (Fig. 1a). Given such a scaling factor and any global inhibition
gI between 0 and 1, the synaptic dynamics (1) converges (i.e. all the patterns will
be classi-ed correctly) in at most n0 = 6=(q%� KgI) synaptic updates, provided that the
learning rate is small enough, q6 %� KgI=(2R2). This is valid for any presentation order
of the patterns to be learned and for any initial conditions for the synaptic states. A
similar upper bound on the number of synaptic updates for the stochastic dynamics
holds with probability 1−O(1=N ). Importantly, the separation margin �+ � is assumed
to be independent of N . As N increases while p remains -xed, the constant margin
implies some redundancy in the coding (e.g. many neurons encode the same stimulus
activity).
Proof sketch: The idea behind the threshold scaling and the global inhibition is to

keep the expected synaptic strength Gt=〈J t〉 away from the lower and upper boundaries
of the synaptic eBcacies. This prevents the weight vector Gt from being distorted by
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Fig. 1. Sketch of the proof: (a) Sets C+ (crosses) and C− (circles) of patterns � are assumed to be linearly
separable, with a separation vector S and a threshold �. Since S may contain negative components and
components larger than 1, it cannot in general be approximated by the vector G of the synaptic potentiation
probabilities. Only if the solution vector S (and with it the threshold �) is scaled down by %, and if some
global inhibition gI is present, is it possible to approximate the solution vector, %S ≈ GI = G − gI1, with a
weight vector G laying within the unit hypercube, far from saturation at 0 and 1. (b) Without global inhibition
(gI =0 and GI =G), synaptic saturation (MF) may prevent the weight vector G to be updated in the ‘correct’
direction ML, in the sense that (%S − GI)MG¿ 0. In the shown example we have (%S − GI)MG¡ 0, i.e.
the update moves GI away from the solution vector %S (where � = 1 in panel (b)). This is because an
update of GI in the desired direction ML is distorted by the nearby boundaries and, instead, GI moves in the
direction of MG =ML+MF towards the upper right corner. Such a distortion is not possible if G is close
to the main diagonal and far from 0 and 1 (achieved by a small % and gI in between 0 and 1, see (a)).
(c) A positive scalar product (%S − GI)MG¿ 0 ensures that the GI moves towards %S, provided that the
learning rate q is small (distance indicated by the upper brace is smaller than that indicated by the lower
brace).

synaptic saturation. The expected synaptic change MGt , where Gt+1 =Gt + qMGt , can
be decomposed into a ‘linear’ and a ‘forgetting’ part. If the updating condition in (1)
is met we have:

MG =ML+MF =

{
� ∗ (1− G) = (1− gI)�− � ∗ GI if �∈C+;

−� ∗ G =−gI�− � ∗ GI if �∈C−;
(2)

where GI =G − gI1 and ‘∗’ is the componentwise product of vectors. The linear term
ML = (1 − gI)� in case of �∈C+ and ML = −gI� in case of �∈C−, respectively, is
the learning component which is parallel to the pattern to be learned (Fig. 1b). This
linear term is also present in the case of the classical perceptron learning with analog
unbounded synapses, and would always bring Gt toward a solution vector: Selecting
�∈C+, for instance, we have �%S ¿%(�+ �+ �)N by assumption of the separability,
and if the update condition on h is met, we have �GI¡%(�+ �)N as required in (1).
By subtracting the second from the -rst inequality we get

(%S − GI)ML¿ %� KgIN; (3)

where KgI is de-ned above. The same estimate is true for �∈C−. When the forgetting
part is negligible, we would have MG ≈ ML, and (3) would ensure that GtI moves
toward %S, provided that q is small (Fig. 1c). In fact, if the angle between (�S −GI)
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Fig. 2. Simulation results: (A) number of iterations per pattern as a function of the learning rate q and
the scaling factor %; (B) number of iterations per pattern as a function of the number of neurons N for
p = 10; 20; 40 (q = 0:05, f = 1

4 , � = 0:01); (C) correlated (down triangles) and uncorrelated components
(up triangles) of the variance of h as a function of N (p = 40) in a double log scale. The signal (crosses)
expresses the square of the average distance between the h produced by the two di0erent classes.

and MG is smaller than 90◦, the weight vector at the next time step, GI + qMG, is
always closer to �S than GI was, provided q is small enough.
The forgetting part MF = −�GI in (2) is due to the non-linearities of synaptic

saturation and tends to bring GI towards 0, where Gj = gI and no synaptic structure
would be present. Hence it might neutralize or even counteract learning as explained in
Fig. 1b. However, this negative e0ect is strongly reduced and can become negligible if
the weight vector is close to the main diagonal, i.e. if the expectation values of all the
synaptic strengths are roughly equal. It is possible to show that (%S−GI)MF¿−%2RN .
Hence, provided that the scaling factor % is small, convergence of the learning procedure
is guaranteed.
Simulations: We trained our binary perceptron with p random uncorrelated binary

patterns. Fig. 2A shows the number of iterations per pattern needed to converge to a
solution as a function of the scaling factor % and the learning rates (transition proba-
bilities) q= q+ = q− (with p= 10 and N = 100). As learning becomes too fast, or %
too large, the number of required iterations grows very quickly and, eventually, learn-
ing will not converge. If learning is too slow the number of iterations scales as 1=q,
but the convergence is always guaranteed. Similarly, the number of required iterations
grows as the global inhibition gI becomes close to 0 or 1 (not shown). Fig. 2B shows
the number of iterations per pattern for p=10; 20; 40 random uncorrelated binary pat-
terns (probability of an active neuron: f= 1

4) as a function of the number of neurons
N of the input layer. As expected, the -nite size e0ects decrease with N and the
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number of iterations tend asymptotically to a value which depends only on the number
of patterns. This is explained by the variance of ht , e.g. at time t = 10, obtained by
presenting 1000 times the same sequence of patterns with di0erent realizations of �
(Fig. 2C). The uncorrelated component of the variance (the variance that one would
have if di0erent synapses were statistically independent, i.e. without the global stopping
condition) scales as 1=N , and the correlated component (the remaining part) scales in
the same way and is always negative.

4. Conclusions

We have shown that stochastic learning allows a perceptron with binary excitatory
weights to converge in a -nite number of updates for any separable set of patterns,
provided that there is some global inhibition, a small neuronal threshold, and slow
learning. These ingredients rescue binary synapses from fast forgetting due to saturation
of the potentiation probabilities. They also allow to store as many patterns as in a
network with analogue unbounded synapses (proportional to N�, with � from 1 to
2, depending on the coding level f of the patterns, instead of logN , as obtained
without these ingredients, see [2]). The considered stochastic selection mechanism can
be implemented in terms of a detailed spike-driven synaptic dynamics by exploiting the
irregularity of the spike trains [3]. Indeed, the same mean spike frequencies are realized
by a large number of di0erent spike train realizations: some of them might induce long
lasting modi-cations while others would simply leave the synapse unchanged. In this
case, the stochastic selection mechanism is a property of the network, and not of the
single synapse.
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