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Systematic temporal relations between single neuronal activities or pop-
ulation activities are ubiquitous in the brain. No experimental evidence,
however, exists for a direct modification of neuronal delays during Hebb-
ian-type stimulation protocols. We show that in fact an explicit delay
adaptation is not needed if one assumes that the synaptic strengths are
modified according to the recently observed temporally asymmetric learn-
ing rule with the downregulating branch dominating the upregulating
branch. During development, slow, unbiased fluctuations in the transmis-
sion time, together with temporally correlated network activity, may con-
trol neural growth and implicitly induce drifts in the axonal delays and
dendritic latencies. These delays and latencies become optimally tuned
in the sense that the synaptic response tends to peak in the soma of the
postsynaptic cell if this is most likely to fire. The nature of the selection
process requires unreliable synapses in order to give successful synapses
an evolutionary advantage over the others. The width of the learning
function also determines the preferred dendritic delay and the preferred
width of the postsynaptic response. Hence, it may implicitly determine
whether a synaptic connection provides a precisely timed or a broadly
tuned “contextual” signal.

1 Introduction

The temporal structure in any type of cognitive or behavioral task such as
memory recall, motor execution, or navigation must be reflected in the tem-
poral activity of neurons or neuronal populations. Time in this neuronal
correlate is often considered to be encoded in the synaptic strengths that
map to a phase advance of a postsynaptic neuron (Roberts, 1999; see also
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Hopfield & Brody, 2000, 2001). Time may also directly be encoded in axonal
propagation delays and dendritic latencies. While in the case of a represen-
tation in synaptic weights the timing of a postsynaptic cell may be adapted
by any synaptic modification, there is no experimental evidence for a direct
adaptation of axonal and dendritic delays. Here we show that a temporally
asymmetric spike-time-dependent synaptic modification may substitute for
such a direct adaptation of delays in favor of an implicit adaptation through
selection. According to these rules, the synaptic efficacy is upregulated if
the presynaptic action potential (AP) is elicited before the postsynaptic AP,
while it is downregulated otherwise (Markram, Lübke, Frotscher, & Sak-
mann, 1997; Bi & Poo, 1998; Feldman, 2000). The high temporal resolution
occurring in these synaptic rules is puzzling, especially in view of the wide
range of possible delays and latencies encountered in the brain. On the one
hand, the temporal order of the pre- and postsynaptic signals can be distin-
guished with a remarkable sensitivity, which may fall below 10 ms. On the
other hand, substantial delays may be encountered between the generation
of the presynaptic AP, the excitatory postsynaptic potential (EPSP) at the
synaptic site, and the maximal response of the EPSP in the soma of the post-
synaptic cell (see Figure 1a). We show that despite this temporal discrepancy,
the learning rule can select the correct pre- and postsynaptic delays (where
“correct” means that the somatic response peaks when the postsynaptic cell
is most likely to fire), provided that the synaptic transmission is unreliable.
We also show that in the presence of small, unbiased delay fluctuations,
the learning rule makes the delays drift until the correct timing is achieved.
In order to prevent an unbounded growth of the synaptic weights during
this drift, it is sufficient to require that the downregulating branch in the
learning rule dominates the upregulating branch in strength (cf. Abbott &
Song, 1999; Kempter, Gerstner, & van Hemmen, 1999). The paradigm of
delay adaptation through selection may be of particular importance in the
developing nervous system, where it could explain the temporal fine tuning
of specific synaptic pathways.

The idea that delays may be selected through an adaptation of synaptic
weights was explored early in theoretical works focused on learning spa-
tiotemporal activity patterns (Sompolinsky & Kanter, 1986; Kühn & van
Hemmen, 1991; Gerstner, 1993; Natschläger & Ruf, 1998). Delay selection
is also a key mechanism for localizing sound signals. It has been suggested
that during the ontogenetic development of the barn owl auditory system,
synaptic connections with matching delays are selected through an asym-
metric learning rule (Gerstner, Kempter, van Hemmen, & Wagner, 1996; see
also Carr & Friedman, 1999). Other theoretical works discuss learning rules
that explicitly adjust the synaptic delay as a function of the pre- and postsy-
naptic activities (Hüning, Glünder, & Palm, 1998; Eurich, Pawelzik, Ernst,
Cowan, & Milton, 1999). Instead of postulating an explicit form of delay
adaptation, however, we claim that delay learning is a natural consequence
of a temporally asymmetric modification of the synaptic strength. Our anal-
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Figure 1: The model. (a) The different signal delays between a presynaptic neu-
ron (or a neuronal population) A and a postsynaptic neuron B. The total forward
delay is composed of an axonal delay Dax, a (vanishing) synaptic delay Dsyn,
and the dendritic latency consisting of a forward dendritic (propagation) delay
D f

den and the EPSP rise time trise measured in the soma, Dlat
den = D f

den+ trise. At the
peak of the EPSP, there is an enhanced probability that neuron B will fire. An
AP generated in the soma of neuron B arrives with a backward dendritic delay
Db

den at the synaptic site S. (b) The synaptic weight w is modified depending on
the local time difference 4tsyn between the EPSP and the backward AP at site
S (inset, 4tsyn = (tA + Dax) − (tB + Db

den)). This rule, together with slow delay
fluctuations and unreliable synaptic transmissions, induces a drift of the total
forward delay from A to B toward the most probable spike time difference tB−tA

between the two cells. Depending on the time difference, α, that corresponds to
the maximum of the learning function, the final synaptic position will be either
close to the soma (α small) or far on the apical dendritic tree (α large). Hence,
the shape of the learning function determines whether a synaptic connection
tends to trigger a postsynaptic AP (through a proximal synapse) or whether it
tends to support the postsynaptic activity by a slow contextual EPSP (through
a distal synapse), respectively.

ysis can be generalized to reinforcement learning, which may work with a
similar type of asymmetric learning rule, although on a larger timescale
and on the level of neuronal populations. An example of learning motor se-
quences within the basal ganglia–thalamocortical feedback loop outlined in
Section 7 shows that the same delay structure between a presynaptic spike,
the synaptic release, the postsynaptic spike, and the backward reinforce-
ment signal may also occur within cortical circuitries (compare the stages
A, S, and B in Figures 1a and 8).

1.1 Integration Field of a V1 Cell: An Example. As a first example for
delay adaptations, we consider the integration field of a layer 5 pyrami-
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dal cell in the primary visual cortex. This cell is driven by feedforward
visual input through the lateral geniculate nucleus (LGN), which synapses
on the dendritic shaft in layer 4 (Nieuwenhuys, 1994). At the same time,
the cell receives lateral input onto the apical dendritic tree from neighbor-
ing cortical columns (cf. Figure 1b). In vivo experiments show that the cell
horizontally integrates neuronal activity over a cortical patch of roughly 1
cm in diameter (Bringuier, Chavane, Glaeser, & Frégnac, 1999). This cor-
tical integration field corresponds to a visual receptive field on the retina
of roughly 10 degrees. However, only nearby cortical input, corresponding
to visual stimulation within 2 degrees of the receptive center, can activate
the cell, while peripheral horizontal input provides only subthreshold in-
put. The weak peripheral horizontal input can also be delayed up to 50
ms. It is assumed that these delays are mainly due to the slowly conduct-
ing horizontal pathways, which show axonal conductance velocities rang-
ing from 0.1 to 0.3 m per second. The existence of the different latencies
between the feedforward vertical input onto the proximal region and the
peripheral intracortical input onto the distal portion of the apical tree sug-
gests that the latencies are adjusted to optimize the somatic summation
(Bringuier et al., 1999). Our simulations show that the temporally asym-
metric learning rule is in fact a means to tune these intracortical delays
optimally.

1.2 Outline of the Basic Mechanisms. To explain the basic mechanisms,
we consider a neocortical cell (or population of cells) A and a layer 5 pyrami-
dal cell B with different delay lines from A to B. In a first scenario, we assume
that the feedforward input triggers in sequence an AP in cell A and in cell B
at times tA < tB, respectively. The presynaptic AP arrives at the synaptic site
at time tA +Dax, while the backpropagating postsynaptic AP arrives at the
same location at time tB + Db

den, with Dax and Db
den being the axonal delay

and backward dendritic delay of the corresponding synaptic connection,
respectively (see Figure 1a). Assuming a competitive Hebbian modification
among the synaptic connections (realized by a learning function with long-
term depression, LTD, dominating long-term potentiation, LTP; cf. Song,
Miller, & Abbott, 2000), only these synapses experiencing the strongest up-
regulation survive; all the others are suppressed. In other words, the rule
selects the connections for which the local time difference measured at the
synaptic site, tsyn, corresponds to the maximum of the learning function,
tsyn = −α (see Figure 1b). Hence, the optimal delay line satisfies the condi-
tion 4tsyn = (tA + Dax) − (tB + Db

den) = −α. Assuming that the maximum
of the learning function covers the sum of the (forward) dendritic latency
and the backward dendritic delay, α = Dlat

den + Db
den, this equation reduces

to Dax + Dlat
den = tB − tA. As dendritic latency Dlat

den, we define the sum of
the EPSP propagation delay and the rise time of the somatic EPSP. The last
equation confirms our expectation that if cell A should support the firing of
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cell B, the total forward delay should match the typical spike time difference
between these cells.

In a second scenario, we assume that the third input provides only sub-
threshold input and that the spike in cell B is finally elicited by the synaptic
responses from cell A. In this case, the spike time tB is roughly given by
tB = tA + Dax + Dlat

den. If, as above, we insert this expression in the condi-
tion (tA + Dax) − (tB + Db

den) = −α, we obtain Dlat
den + Db

den = α. Hence, in
the second scenario, the rule selects the connections for which the sum of
the forward and backward dendritic delays corresponds to the peak of the
learning function. For instance, if the maximum of the learning function is
given by α = 9 ms, that synaptic pathway is selected whose EPSP triggers 7
ms after the synaptic releases a postsynaptic AP, which itself peaks after 2 ms
back at the synaptic site. It is tempting to speculate that the match between
the total dendritic delays and the peak in the learning function determines
the position of a synapse on the dendritic tree and that different learning
functions (different α’s) prefer different synaptic positions (see Figure 1b).

To make our reasoning on the pre- and postsynaptic delay selection phys-
iologically more plausible, we are weakening the assumptions in two ways.
First, we do not require that the full spectrum of possible delay lines must
initially be present. Rather, we assume only a small number of synaptic
connections (say, 10) from A to B with similar pre- and postsynaptic delays.
These delays, however, are assumed to exhibit slow stochastic fluctuations
caused, for instance, by the dis- and reappearance of synapses at different
dendritic locations or by the modulation of active membrane conductances.
The fluctuations, together with the asymmetric synaptic modifications, are
enough to induce drifts in the average axonal and dendritic delays toward
optimality. Second, we do not restrict ourselves to the above scenarios ac-
cording to which the firing of cell B is determined always by the third input
or always by the firing of cell A. Rather, we assume some degree of temporal
correlation in the Poisson activities of the two cells A and B, which is im-
plicitly induced by third input and depends on the strength of the synaptic
connections. In this generalized scenario, the axonal delay and the dendritic
latency are both shifted toward optimality; they are adapted such that their
sum becomes equal to the typical spike time difference, Dax+Dlat

den = tB− tA.
Note that there are different ways to distribute the total delay on the indi-
vidual components Dax and Dlat

den. In fact, after the adaptation process, the
additional relation Dlat

den + Db
den = α is satisfied, and this implicitly deter-

mines Dlat
den and therefore the time course of the somatic EPSP. Hence, in

the generalized scenario, the learning rule not only adjusts the correct total
delay from A to B but also determines whether the corresponding somatic
EPSP is sharp (α small) or wide (α large).

The simultaneous selection of axonal and dendritic delays deserves a
closer look. It starts with the observation that the learning rule cannot dis-
tinguish between delay lines with axonal and backward dendritic delays



588 Walter Senn, Martin Schneider, and Berthold Ruf

of the form Dax + ε and Db
den + ε simply because the argument 4tsyn =

(tA +Dax)− (tB +Db
den) of the learning function depends on the difference

between these delays only. For instance, two delay lines, the second hav-
ing a 3 ms longer axonal and a 3 ms longer backward dendritic delay than
the first, both have the same signal time difference at the synaptic site and
therefore go through the same synaptic modifications. Assuming that the
forward dendritic latency is equal to the backward dendritic delay, however,
the somatic EPSP of the second delay line peaks systematically 6 ms (= 2ε)
after the EPSP of the first and therefore favors a different postsynaptic spike
time. A way nevertheless to select between the two delay lines is to intro-
duce unreliable synaptic transmissions and modify the synaptic strength
only if neurotransmitter was released. A synapse that then actively sup-
ports a postsynaptic spike will have more chances to be upregulated than a
synapse that does not, and this resolves the above ambiguity. From a general
point of view, any selection process is built up on some source of random-
ness. In our case, the selection of the appropriate axonal delay requires slow
delay fluctuations, while the selection of the appropriate dendritic latency
requires unreliable synaptic transmissions.

1.3 Integration Field of a V1 Cell: Some Implications. Coming back to
the introductory example, A is an orientation-selective layer 5 pyramidal
cell in the primary visual cortex of a cat, and B is a nearby neural population
in the same cortical area. According to our reasoning, the axonal delays plus
the dendritic latencies from B to A should reflect the time differences with
which the corresponding retinal positions are most likely to be stimulated.
Since an orientation-selective cell is more sensitive to motions orthogonal
to the preferred orientation, the integration field should be more developed
along this orthogonal orientation. For instance, we expect from our model
that the subthreshold receptive field of such a cell is largest along the or-
thogonal orientation and that along this same orientation, the propagation
velocity is highest. Both predictions seem to be confirmed to some degree
by the in vivo recordings of Bringuier et al. (1999). In fact, the statistics of
the orientation-selective cells (Figure 4 in the cited work) show an average
width of the subthreshold receptive field of 5 and 12 degrees in the preferred
and its orthogonal orientation, respectively, and a common latency of 50 ms
across these differently sized half-diameters. A selection of different axonal
delays is further confirmed by the statistics of the apparent speed of hori-
zontal propagation, which ranges from 0.05 to 0.6 m per second. According
to our model, the receptive field asymmetries concerning the axonal de-
lays would be enhanced if, during rearing, the kittens were exposed to fast
motions in exclusively one direction. A similar confirmation of the model
concerning the adaptation of the dendritic latency is more difficult due to
the lack of data. However, the intracellular recordings show that the relative
width of the subthreshold depolarization is narrower for stimuli within 2 de-
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grees of the receptive field center than for stimuli in the periphery (Figure 1
in Bringuier et al., 1999). This is in agreement with the anatomical finding
that feedforward input projects proximal to the soma, while horizontal cor-
tical connections project onto the distal apical tree (Nieuwenhuys, 1994).
According to our model, this synaptic distribution would be the result of a
self-organizing process, provided that the modification of proximal (feed-
forward) synaptic projections is governed by a narrower learning function
than distal (horizontal) ones.

1.4 Overview. This article is organized as follows. In section 2, we for-
malize the model and state the assumptions on the synaptic modifications
and the delay fluctuations. In section 3, we introduce spike correlations be-
tween the inputs onto our neuron and derive the population equation for the
dynamics of the synaptic strengths. In section 4, we consider the change in
the average delays induced by the weight modifications under the assump-
tion of fixed spike correlations between the pre- and postsynaptic sites. In
section 5, the spike correlation is allowed to be influenced by the synaptic
modifications, and we study the induced shift in the dendritic latencies at
fixed axonal delays. In section 6, the general case is treated where correlated
spike activity jointly entrains axonal and dendritic delays in the presence
of stochastic delay fluctuations and unreliable synaptic transmissions. Sec-
tion 7 provides physiological evidence for our assumptions and ends with
an example of delay learning between different cortical regions.

2 The Model

We consider different delay lines from a presynaptic neuron (or neuronal
population) A to a postsynaptic neuron B. The delay lines may vary in the
axonal pathway and the synaptic position on the dendritic tree (see Fig-
ure 1a). Each delay line is specified by an axonal delay, Dax, a (negligible)
synaptic delay, Dsyn, a forward dendritic (propagation) delay, D f

den, the EPSP

rise time in the postsynaptic soma, trise (to which, together with D f
den, we

refer as the dendritic latency), and a backward dendritic delay, Db
den, specify-

ing the delay of the postsynaptically generated AP back to the subsynaptic
site (the site in the dendritic tree adjacent to the synapse). If pre- and post-
synaptic APs are triggered at times tA and tB, respectively, the EPSP faces
the postsynaptic AP at the subsynaptic site with a time difference

4tsyn = (tA +Dax +Dsyn)− (tB +Db
den) = 4t+ δ, (2.1)

where 4t = tA − tB and δ = Dax +Dsyn −Db
den (cf. Figure 2b). Note that δ is

the relative delay encountered at the subsynaptic site for the case of equal
spike times.
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Figure 2: The synaptic learning function and the different delays after learning.
(a) The learning function ψ◦(4tsyn) for the synaptic weights as a function of the
time difference between the pre- and postsynaptic signals at the subsynaptic site
(full line, see equations 2.2 and 2.1). For repetitive regular stimulations (ς = 0)

the average axonal delay Dax and the average dendritic latency D
lat
den = D

f
den +

trise are adapted according to the derivative ψ ′◦ (dashed line, cf. equations 4.3
and 5.5). The delay adaptation has an attracting fixed point 4tsyn = −α and a
repulsive fixed point 4tsyn = β. (b) The different delays involved in the signal
transmission from neuron A to neuron B and back to the synaptic site. The
bent curve represents the learning function ψ◦ centered at the time when the
backpropagated AP reaches the subsynaptic site. The choice of the delays reflects
the steady-state behavior when 4tsyn = −α.

The synaptic strength w is assumed to be up- or downregulated depend-
ing on the sign of the local time difference 4tsyn. Specifically, we assume that
w is modified proportionally to the bi-alpha-shaped function of the local
time difference,

4w ∼ ψ◦(4tsyn) =


γ

α
|4tsyn|e−

(4tsyn)2

2α2 , 4tsyn < 0

− γ
β
|4tsyn|e−

(4tsyn)2

2β2 , 4tsyn ≥ 0,
(2.2)

with appropriate constants α, β, γ > 0 (see Figure 2a). The form of ψ◦ is
such that the weight is maximally upregulated if the presynaptic spike pre-
cedes the postsynaptic spike by α ms, and it is maximally downregulated
if the presynaptic spike follows the postsynaptic spike by β ms. The nor-
malization is such that the absolute values of the peaks of the LTP and
LTD branches are independent of their widths α and β, respectively. We
assume that the proportionality factor in equation 2.2 is the actual weight
itself, 4w = wψ◦(4t). If w expresses the number of quantal release sites, for
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instance, the factor w states that each site separately undergoes long-term
modification in that it vanishes or forms another nearby release site. The
same factor emerges if one deduces equation 2.2 from kinetic schemes gov-
erning the involved neurotransmitter receptors and secondary messengers
(Senn, Tsodyks, & Markram, 2001). To avoid a blowing up of the synaptic
strengths, our analysis will use the intrinsic normalization property of the
learning rule, which is obtained when the downregulation dominates the
upregulation (β > α; see equation 3.5).

Next, we consider slow stochastic fluctuations in the axonal delays and
dendritic latencies. We observe that according to equation 2.1, it is reason-
able to group those delay lines together with the same relative delay δ. This
is possible since only the time difference 4tsyn = 4t + δ of the signals mea-
sured at the subsynaptic site enters in the synaptic dynamics of equation 2.2.
We may therefore parameterize the synaptic weights with the relative delay,
w(t) = w(δ, t). Due to the linear scaling factor occurring in the rule, these
lumped synaptic weights are adapted according to 4w(δ, t) = w(δ, t)ψ◦(4t).
Similarly, stochastic changes in the axonal and dendritic delays are relevant
only for the synaptic dynamics as far as they change the relative delay δ. For
an individual pathway, this relative delay may be shortened or extended
by changing the axonal delay, Dax, the backward dendritic delay, Db

den, or
both. To take account of these fluctuations, we assume that for each delay
line, the relative delay δ may change during a time interval T by 4δ with a
small probability ε ≥ 0. With probability 1 − 2ε, the delay of the synaptic
pathway δ does not change. On the level of the lumped weights w(δ, t), this
dynamics can be expressed by

w(δ, t) = εw(δ − 4δ, t− T)+ (1− 2ε)w(δ, t− T)

+ εw(δ + 4δ, t− T). (2.3)

If the timescale T of these fluctuations is long compared to the timescale of
the synaptic adaptation, the two processes do not interfere, and the dynam-
ics for the lumped weights is the same as that for the individual connec-
tions. On a timescale longer than T, we are dealing with derivatives, and
taking the limit 4δ,T → 0 we obtain after simple algebraic manipulations
∂w(δ,t)
∂t = ε

∂2w(δ,t)
∂δ2 , provided that lim4δ,T→0

(4δ)2
T = 1. Thus, the slow, unbi-

ased stochastic fluctuation introduces a diffusion of the synaptic weights
along the relative delays.

The general scenario we consider is that neuron B fires, with some jitter,
|4t| after neuron A (note that in this case 4t < 0). The firing time tB depends
on additional input from a third population onto B (as, e.g., forward input
from the LGN; see Figure 1b) but may also be influenced by the firing of
neuron A itself. The basic mechanism is that the rule 2.2 selects delay lines
for which the pre- and postsynaptic signal time difference at the subsynaptic
site equals the maximum of the learning function, 4tsyn = 4t+ δ = −α. The
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stochastic process, equation 2.3, of building new delay lines (i.e., of assigning
positive weights to delay lines with previously vanishing weights) ensures
that after a while, there is always a delay line with an appropriate relative
delay δ and nonvanishing w. If the LTD branch of the learning function
dominates the LTP branch, β > α in equation 2.2, delay lines that do not
meet the above condition will be suppressed. If, in addition, we introduce
synaptic transmission failures, those delay lines that do satisfy 4t+ δ = −α,
but do not support the postsynaptic spike by virtue of their total forward
delay, that is, for which D f

tot = Dax +Dsyn +D f
den + trise 6= 4t, will eventually

be suppressed as well.

3 Weight Modification Induced by Correlated Activity

We assume that the pre- and postsynaptic neurons are firing with some
instantaneous Poisson rates fpre and fpost, respectively, which are themselves
correlated to some degree. Let us consider a delay line with relative delay
δ as defined in equation 2.1, and let us assume that the synaptic strength is
modified according to equation 2.2. The change in w accumulated in the time
interval T (À α, β) preceding the current time t can then be approximated by

4w(t) ≈ w(t̄)
∫ t

t−T
dt′
∫ t−t′

t−t′−T
dτψ◦(τ + δ) fpre(t′ + τ) fpost(t′), (3.1)

with some appropriate value t̄ between t−T and t. Assuming that the indi-
vidual weight changes in equation 2.2 are small, we obtain, on a timescale
that is large with respect to T, the differential equation

dw(t)
dt
≈ 4w(t)

T
= w(t)

∫ ∞
−∞

dτψ◦(τ + δ)C(τ ; t), (3.2)

with correlation function

C(τ ; t) = 1
T

∫ t

t−T
dt′ fpre(t′ + τ) fpost(t′). (3.3)

Observe that the integral domain in equation 3.2 can be extended to infinity
since T is larger than the width of ψ◦. Note further that in equations 3.1
and 3.2, we assume that the decay of the synaptic memory (i.e., of w) is on
an even longer timescale, so that all the changes are accumulated without
degradation. Next, we require that the instantaneous pre- and postsynaptic
firing rates are correlated in the sense that there is a tendency for the post-
synaptic neuron to fire around 4t± ς ms after or before a presynaptic spike
(after for 4t < 0, before for 4t > 0). Thus, we assume a correlation function
of the form

C(τ ; t) = cG(4t, ς, τ )+ f pre f post(t), (3.4)
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with a constant presynaptic mean frequency f pre; a postsynaptic mean fre-

quency f post(t), which may depend on the synaptic weight w(t) but is not
correlated with the presynaptic spikes; a spike correlation factor c ≥ 0; and

G(4t, ς, τ ) = (2πς2)−
1
2 exp(− (4t−τ)2

2ς2 ) being a gaussian distribution around
4t with standard deviation ς . For the specific choices of the learning func-
tion 2.2 and the correlation function 3.4, the integral in equation 3.2 can be
analytically calculated. One obtains

dw(t)
dt
= w(t)(cψς(4t+ δ)− ψ◦ f pre f post(t)), (3.5)

where ψς(4t) =
∫∞
−∞ ψ◦(τ )G(4t, ς, τ )dτ is approximately

ψς(4t) ≈


γα2

(α2+ς2)
3
2
|4t|e−

(4t)2

2(α2+ς2) , 4t < 0

− γβ2

(β2+ς2)
3
2
|4t|e−

(4t)2

2(β2+ς2) , 4t ≥ 0,
(3.6)

and−ψ◦ =
∫∞
−∞ dτψ◦(τ ) = −γ (β−α). Note that forβ > α, one has−ψ◦ < 0.

A negative integral of the learning function was postulated in Abbott and
Song (1999) and Kempter et al. (1999) to normalize the synaptic weights and
stabilize the postsynaptic potential in a subthreshold regime. There is in fact
later experimental evidence that for synaptic connections onto pyramidal
cells in layer II of the rat barrel cortex, the width of the LTD window, β,
is larger than the one of the LTP window, α, and that the overall integral
over the learning function is negative (Feldman, 2000). The exact form of
ψς is a smoothed version of equation 3.6, and the approximation is strict
for α = β. The shape of ψς is thus again of the original form depicted in
Figure 2a, but now with maximum at 4t = −

√
α2 + ς2 and minimum at 4t =√

β2 + ς2. Note that for vanishing variance in the spike time differences, ς =
0, one retrieves equation 2.2. The effective learning window for a synapse
exposed to gaussian distributed spike time differences appears therefore to
be downscaled and broadened.

To close the feedback loop, we split the uncorrelated postsynaptic fir-
ing rate arising in equation 3.4 into a part originating from the specific
presynaptic neuron and a constant background rate due to the remaining
afferents,

f post(t) =
∑
δ

w(t) f pre + f
o
post, (3.7)

where the sum extends over the different synaptic delay lines from the
specific presynaptic neuron (with weights w = wδ). In writing a linear sum,
we assume that the postsynaptic neuron is operating in a linear regime
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of its input-output function. We also assumed that the specific presynaptic
neuron affects the correlation function 3.4 only by the overall synaptic input
without considering the temporal structure of the interaction (but compare
equation 6.1). Inserting equation 3.7 into 3.5 yields

dw(t)
dt
= w(t)

[
cψς(4t+ δ)− ψ◦ f

2
pre

∑
δ

w(t)− ψ◦ f pre f
o
post

]
. (3.8)

Observe that in the presence of noncorrelated spike activity, c = 0 in equa-
tion 3.4, the synaptic weight would asymptotically decay toward zero due
to the negative overall integral over the learning function. Furthermore, the
synaptic strength cannot grow to infinity due to the negative feedback loop
represented by the second term in the brackets.

Finally, we consider a family of delay lines whose weights may stochas-
tically fluctuate among nearest neighbors according to equation 2.3. In the
limit of a continuum of delay lines, the fluctuations result in a diffusion term
that adds to equation 3.8,

dw(δ, t)
dt

= w(δ, t)
[

cψς(4t+ δ)− ψ◦ f
2
pre

∫ ∞
−∞

w(δ, t) dδ − ψ◦ f pre f
o
post

]

+ ε ∂
2w(δ, t)
∂δ2 . (3.9)

To reveal the structure of this population equation for the synaptic weights,
we rewrite it in the form

dw
dt
= w[ψς(4t+ δ)− c1〈w〉 − c2]+ ε ∂

2w
∂δ2 , (3.10)

with 〈w〉 = ∫∞
−∞ w(δ, t)dδ and constants c1 = ψ◦ f

2
pre and c2 = ψ◦ f pre f

o
post.

The correlation factor c was absorbed in the learning function ψς .

4 Induced Delay Shift for Fixed Spike Correlations

Let us consider the supervised learning scenario by imposing the stationary
spike statistics, equation 3.4, between the pre- and postsynaptic neuron.
Thus, besides some uncorrelated component, the time differences of the
signals at the synapse with delay δ are gaussian distributed around 4t + δ
with standard deviation ς . We are interested in the dynamics of the relative
delays δ, which are implied by the weight modification 3.9.

To gain insight into this dynamics, let us first neglect the stochastic re-
newal process and consider the synaptic modification in the form 3.10 with
ε = 0. Due to the normalization term −c1〈w〉 in equation 3.10, the delay
adaptation is then purely governed by a selection process, selecting those
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connections that experience the strongest potentiation. (To prove this, we
first observe that due to the negative feedback induced by the uncorrelated
spikes—the term −c1〈w〉—and the saturation toward zero—the factor w—
the weights w(δ, t) do always converge to a steady state. In this limit, either
w(δ, t) = 0 or ψς(4t+ δ)− c1〈w〉 − c2 = 0. Since −c1〈w〉 − c2 is independent
of δ, there are only discrete values of δ satisfying the latter equation. Now
let us assume that the delay line δα with 4t+ δα = −α representing the max-
imum of ψς initially has a positive weight, w(δα, 0) > 0. Since according
to equation 3.10 weights with ψς(4t + δ) − c1〈w〉 − c2 > 0 are potentiated
while others are depressed, we conclude that in the steady state, the de-
lay line δα survived. Following the reasoning above, we then must have
ψς(4t + δα) − c1〈w〉 − c2 = 0, while for all other delay lines, w(δ, t) = 0.
In general, exactly those delay lines survive for which, among the initial
weight distribution, the value ψς(4t+ δ) is maximal (and positive).)

If we next consider stochastic fluctuations of the delays, ε > 0 in equa-
tion 3.10, then the delays may shift beyond their initial regime, and delays
can finally be selected that were not present among the initial configura-
tion. As can be guessed from the analysis, the relative delays δ in general
will shift such that the average time difference at the synaptic sites becomes
4t + δ = −α. To formalize this statement, we consider the average delay δ
defined by the center of gravity of the δ distribution,

δ(t) =
∫∞
−∞ δw(δ, t) dδ∫∞
−∞ w(δ, t) dδ

= 〈δw(δ, t)〉
〈w(δ, t)〉 , (4.1)

where the brackets represent the integral over δ. Note that δ = Dax+Dsyn−
D

b
den. The dynamics of δ is obtained by differentiating equation 4.1 with

respect to time,

δ̇ = 〈δẇ〉〈w〉 − 〈δw〉〈ẇ〉〈w〉2 = 1
〈w〉 (〈δẇ〉 − δ〈ẇ〉), (4.2)

and inserting for ẇ the weight modification 3.10. As we show in Section A.1,
the equation can then be reduced to

d
dt
δ ≈ σ 2ψ ′ς (4t+ δ), (4.3)

where ψ ′ς is the derivative of the learning function 3.6. The dynamics 4.3
has exactly two stationary solutions, δα and δβ , corresponding to the zeros
4tsyn = 4t + δα = −

√
α2 + ς2 and 4tsyn = 4t + δβ =

√
β2 + ς2 of ψ ′ς (cf.

Figure 2a). To investigate the stability, we consider the second derivative of
ψς at these points and find ψ ′′ς (−

√
α2 + ς2) < 0 and ψ ′′ς (

√
β2 + ς2) > 0. We

conclude that the delay δα is attracting with domain of attraction (−∞, δβ),
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while the delay δβ is repulsive. The standard deviation of the delay distri-
bution at the attracting steady state can qualitatively be approximated by

σ ≈ 4

√
2ε

|ψ ′′ς (−
√
α2 + ς2)|

=
(
ε
√

e
γ

) 1
4 α√

α2 + ς2
, (4.4)

(see Section A.2). Since the σ steeply increases with small ε, we conclude
from equation 4.3 that small delay fluctuations are enough to make the delay
drifting. Moreover, due to the term ψ ′′ς , the steady-state weight distribution
is broad for learning functions with a flat peak.

To summarize, for fixed and nonflat pre- and postsynaptic spike corre-
lations, the synaptic pathways develop such that a presynaptic signal on
average meets a postsynaptic signal at the synaptic site with a time dif-
ference of 4tsyn = −

√
α2 + ς2 ms, where α is the peak of the LTP function

and ς is the width of the gaussian part in the spike correlation function
3.4. In particular, the average spike time difference 4t can be compensated
by appropriate delays Dax and Db

den as long as, on average, the presynaptic
signals arrive at the synaptic site not later than

√
β2 + ς2 ms after the back-

propagated spike (cf. Figure 2). Two assumptions are crucial for these delay
adaptations: (1) the small stochastic fluctuations in the delays and (2) the
negative integral over the learning function leading to a normalization of
the synaptic weights through the uncorrelated spikes.

4.1 Simulation Results. To examine the quality of the approximation
4.3, we simulated a stochastic version of equation 3.10 with discrete weight
updates and discrete random delay fluctuations after each pairing of pre-
and postsynaptic spikes. The spike time differences 4t = tA − tB were sam-
pled from a gaussian distribution with mean 4t = −20 ms, standard de-
viation ς = 3 ms, and a sampling rate of f pre = 20 Hz. We have chosen
seven delay lines with axonal delays Dax evenly distributed between 9.4
and 11.6 ms and 17.4 and 18.6 ms, respectively (left and right rectangu-
lar curves in Figure 3a). The synaptic delay and the backward dendritic
delay were fixed to 1 ms, Dsyn = Db

den = 1, so that δ = Dax. After each
spike pair, we evaluated the learning function 2.2 and set for the weight
change 4w(δ, t) = w(δ, t)ψ◦(4t + δ). The parameters for ψ◦ were α = 5 ms,
β = 7 ms, and γ = 3.5. The allowed range for the relative delays δ was
between δmin = 9 and δmax = 21 ms, with mesh width 4δ = 0.2 ms. The
additional stochastic delay fluctuations were implemented by replacing a
synaptic weight w(δ, t) after each presynaptic spike with probability ε = 0.1
by one of its two neighbors w(δ±4δ, t); see equation 2.3. Finally, the different
weights were reduced after each pairing by−c1w(δ, t)〈w〉with c1 = 0.3 and
〈w〉 =∑60

i=0 w(δmin+ i4δ, t)4δ. The remaining parameter in equation 3.10 was
set to c2 = 0, thus assuming f

o
post = 0.
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Figure 3: Axonal delay adaptation with fixed synaptic and dendritic delays
(= 1 ms) and with gaussian spike time differences fluctuating around 4t = −20
ms. (a) Evolution of the axonal delays Dax for two different initial distributions
(left and right rectangular curves), shown after 120 ms (corresponding to two
pairings, circled curves) and after 20 sec (corresponding to 400 pairings, curves
with dots) when converged to a gaussian distribution centered at Dax = 14.2 ms.
(b) Time evolution of the average axonal delay Dax(= δ) corresponding to the
simulations in a (blurred lines) and according to the approximation 4.3 (dashed
lines). The steady state for Dax is well predicted by equation 4.3, according to
which Dax adapts such that eventually the argument of ψ ′ς , 4t + Dax, is equal
to the zero −

√
α2 + ς 2 of ψ ′ς (which itself corresponds to the peak of ψς ; cf.

Figure 2a). In fact, in the steady state, we have 4t + Dax = −20 + 14.2 = −5.8
and−

√
α2 + ς 2 = −5.83. Without jitter in the spike time differences (ς = 0), the

average axonal delay Dax would be roughly 1 ms longer (dot at 100 sec). Other
parameters: α = 5 ms and ς = 3 ms.

The simulation was run for 100 seconds biological time (which is de-
termined by the learning rate γ ). From both rectangular initial distribu-
tions, the weights w(δ, t) converged to a gaussian distribution centered at
δ = Dax = 14.2 ms with standard deviation σ = 0.8 (see Figure 3a). The time
course of Dax, obtained by evaluating equation 4.1 with the corresponding
weights from the simulation, can be matched with the dynamics 4.3 with
σ = 0.2 (see Figure 3b). Although, due to the different approximation steps,
the two σ ’s do not coincide (the one from equation 4.4, for comparison,
would be 0.31), the steady state for the average axonal delay (≈ 14 ms) is
well predicted by the dynamics 4.3. Note that the jitter in the spike times
shortens the average axonal delay (the dot in Figure 3b).

5 Induced Delay Shift for Variable Spike Correlations

We next consider an unsupervised learning scenario according to which the
presynaptic neuron may directly influence the postsynaptic spike time tB,
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which in turn affects the synaptic strength from the considered presynaptic
neuron. To investigate this feedback loop, we first consider the simplified
scenario where the postsynaptic spike is exclusively triggered by the presy-
naptic input. We further simplify matters by fixing the axonal and synaptic
delays to some constant value, say, Dax = Dsyn = 0, and focus on the adap-
tation of the dendritic delays and latencies.

To take account of the dependencies among the different dendritic delays,
we parameterize the synapses on the dendritic tree by their distance D from
the soma and identify this distance by the forward dendritic delay, D f

den ≡
D. Since distal synapses induce a longer (and smaller) somatic EPSP, we
assume for the rise time a monotonically increasing function of the distance,
trise = R(D). For the backward dendritic delay, we assume a monotonically
increasing function, Db

den = B(D). The somatic EPSP induced by synapse D
is assumed to have the form

ER(D)(t) = t
R2(D)

· e− t
R(D) , for t ≥ 0, (5.1)

and ED(t) = 0 for t < 0 (see the inset of Figure 4b). To obtain the time course
of the somatic voltage induced by a single presynaptic spike at time tA, we
integrate over all synaptic connections,

V(t) =
∫ ∞

0
w(D, t)ER(D)(t− (tA +D)) dD, (5.2)

where w(D, t) denotes the synaptic weight of the connection from neuron A
to neuron B with forward dendritic delay D (recall that Dax = 0). We further
assume that the postsynaptic neuron is sufficiently depolarized such that
the input from neuron A alone may push the postsynaptic voltage across
some fixed threshold θ . The postsynaptic spike time tB is then given by the
first crossing of θ . If θ is in the upper third of the maximal depolarization,
equation 5.2, say (cf. also the inset in Figure 4), and the delay distribution is
not too wide, we may roughly estimate

tB ≈ tA +D+ R = tA +D
lat
den. (5.3)

Here, D and R represent the average forward dendritic delay and the average

rise time of the somatic EPSPs, respectively, and D
lat
den ≡ D+R is the average

dendritic latency. The averages are taken with respect to the synaptic weight
distribution. For instance, for the average dendritic latency, we have

D
lat
den(t) =

∫∞
−∞Dlat

den(D)w(D, t)dD∫∞
−∞ w(D, t)dD

, (5.4)
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Figure 4: Adaptation of the dendritic latency, with postsynaptic spikes triggered
by the specific presynaptic neuron. (a) Evolution of the weight distribution as a
function of the dendritic latency Dlat

den = D f
den+ trise, with snapshots of the initial

distributions (left and right rectangular curves), after 120 ms (slightly deformed

circled curves), and after 60 sec (nearly identical gaussians centered at D
lat
den ≈ 8

ms). (b) Time evolution of the average dendritic latency D
lat
den = D

f
den + trise

corresponding to the two simulations in a (full lines) and the approximation
5.5 with σ = 0.2 (dashed lines). Superimposed is the evolution of the spike
time difference tB − tA (dashed-dotted lines) for the two simulations in a. The
average dendritic latency is implicitly adapted such that in the steady state, the

argument ofψ ′◦ is equal to the first zero, D
den
tot ≡ D

lat
den+D

b
den = α (cf. equation 5.5

and Figure 2a). In fact, from D
lat
den ≈ 8, trise = 4 and D

b
den = 1

2 D
f
den one calculates

D
b
den ≈ 2, D

den
tot ≈ 10, and this is in the range of α = 10.5 (cf. also Figure 2b). The

inset shows the normalized EPSP according to equation 5.1) with the threshold
crossing at 3

4 trise (horizontal and vertical dashed lines).

with Dlat
den(D) = D + R(D). To estimate the shift in D

lat
den induced by the

synaptic modifications, we have to relate D
lat
den with the average synaptic

time difference 4tsyn. From equation 2.1 we get 4tsyn(D) = tA − (tB + B(D)).

Setting tA = 0 and inserting equation 5.3 yields 4tsyn = −D
lat
den − B, where B

is the average backward dendritic delay defined similarly to equation 5.4.
If the synaptic weights w(D, t) are now subject to the dynamics 3.9, with δ
replaced by D, we obtain (see Section A.3)

d
dt

D
lat
den ≈ −σ 2ηψ ′◦(−D

lat
den − B), with η = B′(D)(1+ R′(D))

1+ R′(D)+ B′(D)
. (5.5)

Here, σ represents the standard deviation of the distribution of the forward
dendritic delays D. It is given by equation 4.4 with ς = 0.
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The unique attracting steady state of equation 5.5 is again given by the

zero of ψ ′◦ with ψ ′′◦ < 0, that is, by 4tsyn = −D
lat
den − B = −α. Thus, assum-

ing small, unbiased fluctuations in the synaptic positions (encoded by D)
together with repeatedly suprathreshold input from the considered presy-
naptic neuron, the synaptic population slowly shifts toward an average

position D with total average dendritic delay D
den
tot ≡ D

lat
den + B ≈ α. Ob-

serve that the derivative of B(D) enters as a factor in equation 5.5 and that
therefore the postsynaptic delay is adapted only if the backward delay is a
nonconstant function of the synaptic position. The reason is that we assume
a simultaneous occurrence of the synaptic releases, and if the backward den-
dritic delay would be the same for all synapses, each synapse would see the
same local time difference between the forward and backward signal. For
B(D) = const, therefore, no shift in the average dendritic latency is expected.
Note further that the sign in equations 4.3 and 5.5 is different. This reflects
the fact that in order to change from an initial 4tsyn with−α < 4tsyn < 0 to the
final 4tsyn = −α, either the axonal delay has to decrease, as in equation 4.3
(at fixed spike times tA, tB), or the dendritic latency has to increase, as in
equation 5.5 (and thereby increasing tB).

5.1 Simulation Results. To test the dynamics 5.5 qualitatively for the

average dendritic latency D
lat
den, we simulated again the discretized version

of equation 3.10. We initially chose eight and seven delay lines with den-
dritic latencies Dlat

den equally spaced within 4.2 − 5.6 ms and 10.4 − 11.6
ms, respectively (see Figure 4). The dendritic latency was decomposed of a
constant EPSP rise time R(D) = trise = 4 ms and a corresponding forward
dendritic delay D with Dlat

den = D+ trise. The backward dendritic delays were
half the forward ones, B(D) = 1

2 D. We further set ς = 0 and Dax = Dsyn = 0.
The presynaptic cell was stimulated with a frequency of 20 Hz, and when-
ever the sum of EPSPs crossed the threshold θ = 6.5 (cf. equation 5.2),
a postsynaptic spike was elicited. The weight changes were calculated by
evaluatingψ◦ at 4tsyn = tA−tB−B(D), where tA and tB are the corresponding
spike times of the pre- and postsynaptic neuron. The parameters inψ◦ were
α = 10.5, β = 14, γ = 0.7. To implement the other terms in equation 3.10,
we reduced the weights by −c1w(D, t)〈w〉 with c1 = 0.3 and c2 = 0, and
implemented the stochastic delay fluctuations as described in the previous
section.

The simulation was run for 60 seconds biological time. From both ini-
tial distributions, the weights w(D, t) converged to a gaussian distribution
centered at D = 4.8 ms (see Figure 4a). The time course of the spike time

differences 4t = tA − tB and of the average dendritic latency D
lat
den extracted

from the simulation described above are shown in Figure 4b. Superimposed

is the evolution of D
lat
den(t) obtained from the approximated dynamics 5.5.

According to the steady state of equation 5.5, the average total dendritic
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delay, Dden
tot ≡ D

lat
den+B(D) ≈ D+ trise+B(D) ≈ 11.2 ms, is related to the first

zero of ψ ′◦, that is, to α = 10.5. The difference arises from the fact that the
postsynaptic spike is typically triggered before the EPSP culmination, and
the effective dendritic latency is therefore smaller than the one considered

(see the inset of Figure 4b). Note that the time course of D
lat
den is roughly three

times slower than that of Dax (see Figure 3b) as predicted by the factor η = 1
3

obtained from the formula in equation 5.5.

6 Coevolution of Axonal Delays and Dendritic Latencies

In the previous simulations, we fixed either the dendritic or the axonal
delay, while only fluctuations in the other delay were considered. Under
this restriction, we showed that each of the delays will separately evolve
until the optimal timing imposed by the learning function is reached. For
fixed dendritic delays and fixed spike correlations, the axonal delays adapt
such that the induced EPSPs peak at the time the postsynaptic neuron is
expected to fire. For fixed axonal delays, in turn, the dendritic delays are
adapted such that they finally match the width of the learning window. Such
a self-organization toward unique delays, however, is no longer possible if
the fluctuations would affect both the axonal and the dendritic delays at the
same time. This is because the synaptic strength is changed based only on
the local time difference measured at the synaptic site, and this may be the
same for different pairs of axonal and dendritic delays. In fact, according
to equation 2.1, the local time difference is the same for all axonal and
backward dendritic delays with δ = Dax − Db

den = const and the stability
condition 4tsyn = 4t+ δ = −α (see the discussion after equations 4.3 and 5.5)
is formally met for all pairs of the form (Dax+ε,Db

den+ε)with ε > 0. The same
degeneracy is also present if Dax confluently changes with the width α of the
learning function. In either case, synapses are going to be strengthened that
are not causally contributing to the postsynaptic spike, although they see
the pre- and postsynaptic signal in the optimal timing (i.e., with αms delay).
It turns out that the unreliability of the synaptic transmission is the property
that prevents an acausal development by disadvantaging synapses that are
only “blind passengers” and do not contribute to the postsynaptic spike.

To reveal this point, we first observe that if the synaptic modification is
induced, for example, by via activation of the postsynaptic NMDA recep-
tors, a synaptic release, and not just a presynaptic spike, must occur to cause
the synaptic modification. Let us now consider two unreliable delay lines
with the same release probability Prel < 1 and the same relative delay δ,
but different axonal and dendritic delays and thus different total forward
delays. Let us assume that the EPSP of the first delay line falls preferentially
together with a subthreshold depolarization caused by a third input onto
the same postsynaptic neuron. In this case, the EPSP from the first delay line
is expected to trigger more often a spike than the EPSP from the second. This
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implies that compared to the second delay line, the synaptic release from
the first line is stronger correlated with a postsynaptic spike, and since the
occurrence of a release is a prerequisite to induce a synaptic change, the first
delay line is more often upregulated. The second delay line, which shows
the same number of releases with the same local time difference, is less up-
regulated since these releases do not exhibit the strong correlation with an
immediately following spike. Additional uncorrelated postsynaptic spikes
may downregulate both weights such that only the first delay line survives.

To formalize this reasoning in the general case, we reparameterize the
synaptic weights according to w(Dax,D), where D ≡ D f

den again abbreviates
the forward dendritic delay. We consider a postsynaptic priming scenario
with additional synaptic input from other neurons onto B roughly 4t after
the activity of the presynaptic neuron A. In addition, we now assume that
the individual releases may also influence the timing of the postsynaptic
spikes in a statistical sense. To simplify matters, we again assume a linear
transfer function with threshold at 0 and, to reduce the number of constants,
with gain 1. Instead of the correlation between the (instantaneous) pre- and
postsynaptic firing rate, it is now the correlation between the presynaptic
release rate and the postsynaptic firing rate given a release that determines
the synaptic weight change. To describe the weight change of the synapse
(Dax,D) formally, we introduce the postsynaptic firing rate fpost(τ,Dax,D; t)
conditional to a presynaptic spike at time t+ τ and a subsequent release at
synapse (Dax,D). In extension of equation 3.7, this conditional postsynaptic
firing rate is

f post(τ,Dax,D; t) = f prew(Dax,D; t)ER(D)(τ +Dax +D)+ · · ·

+Prel f pre

∑
D′ax 6=Dax,D′ 6=D

w(D′ax,D′; t)

×ER(D′)(τ +D′ax +D′)+ f
o
post. (6.1)

Note that since we assume a release at synapse (Dax,D), no factor Prel occurs
in the first term on the right-hand side. In favor of the notational load, we
set Dsyn = 0. The last term f o

post represents the contribution of uncorrelated
afferents to the postsynaptic firing rate. By considering the effect of the in-
dividual spikes onto the instantaneous postsynaptic rate, we now obtain an
additional dependency of the spike correlation function 3.3 on the individ-
ual synapses and the relative presynaptic spike times τ . Substituting f pre(t)

with f rel(t) and f post(t) with fpost(τ,Dax,D; t) in equation 3.4, we obtain a
conditional release-spike correlation function for synapse (Dax,D) of the
form

C(Dax,D)(τ ; t) = cG(4t, ς, τ )+ f rel f post(τ,Dax,D; t). (6.2)
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Recall that the first term represents the contribution to the correlation func-
tion caused by a postsynaptic spike induced by other input. Instead of equa-
tions 3.2 and 3.8 we now get

dw(Dax,D; t)
dt

=w(Dax,D; t)
∫ ∞
−∞

dτψ◦(τ+δ)C(Dax,D)(τ ; t)≈w(Dax,D; t)cψς(4t+ δ)+ (1− Prel) f prew(Dax,D; t)ψR(D)(−Dden
tot )

· · · + f rel

∑
D′ax,D

′
w(D′ax,D′; t)ψR(D′)(−D′ ftot + δ)− ψ◦ f rel f

o
post

 , (6.3)

where Dden
tot = D+ R(D)+ B(D) is the sum of forward dendritic delay plus

the EPSP rise time plus backward dendritic delay, δ = Dax − B(D), and
D′ ftot = D′ax+D′ +R(D′) is the total forward delay of another delay line. The
≈ in equation 6.3 comes from the approximation of the EPSPs by gaussian
functions of normalized area, with center τ + D′ ftot and standard deviation
R(D′), so that the integrals reduce to the evaluation ofψR(D′) given by equa-
tion 3.6.

For Prel = 1 we recover in equation 6.3 our problem that the learning
rule cannot distinguish between delay lines (Dax,D)with common relative
delay δ (since then the bracket in equation 6.3 is independent of Dax and
D). If the synapses are unreliable, however, the second term in the brackets
becomes positive, and the synaptic weights evolve differently for each delay
line. Due to this positive feedback term, delay lines for which the value
ψR(D)(−Dden

tot ) is large have an evolutionary advantage on the other delay
lines with the same δ. Provided that

√
α2 + R(D)2 does not vary too much,

the value of ψR(D) is largest for that delay line satisfying Dden
tot ≡ D+R(D)+

B(D) ≈
√
α2 + R(D)2. Note that the analogous condition is satisfied for

the attracting steady state of the dynamics 5.5, which we deduced under
the assumption of fixed axonal delays. On top, the first term in the brackets
favors delay lines for whichψς(4t+δ) is maximal and thus delays satisfying
4tsyn ≡ 4t + δ = 4t + Dax − B(D) ≈ −

√
α2 + ς2. Together with the previous

condition, this fixes the optimal axonal delay Dax, as well as the optimal
forward dendritic delay D, characterizing the delay line. Recall that the latter
condition is also satisfied in the attracting steady state of the dynamics 4.3.
Note further that combining the two conditions while assuming R(D) ≈ ς
yields D f

tot ≡ Dax+D+R(D) ≈ −4t, and that this is also compatible with the
third term within the bracket in equation 6.3. Thus, the learning rule prefers
a total dendritic delay corresponding to the width of the effective learning
function and a total forward delay corresponding to the the average spike
time differences between the pre- and postsynaptic neuron (see Figure 5).
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Figure 5: Sketch of the joint adaptation of the axonal and dendritic delays in the
postsynaptic priming protocol. (a) Configuration of the different delays before
learning. (b) Repetitive stimulations of neuron A together with an increased
background firing rate (“priming”) of neuron B during the subsequent depolar-
ization |4t| later will lead to a drift of the axonal and dendritic delays such that
eventually the average total dendritic delay matches the width of the learning

function, D
den
tot ≡ D

f
den + trise + Db

den ≈ α, and the average total forward delay

matches the time delay of the depolarization, D
f
tot ≡ Dax +D

f
den + trise ≈ |4t|.

By comparing equations 3.8 with 6.3, we see that the negative feedback
loop preventing the synaptic weights from growing to infinity is lost when
we consider the spike correlation induced by the presynaptic neuron. The
stability property is regained if we consider synaptic projections from other
neurons being subject to the same type of synaptic modifications of the
weights. In fact, if the spike activity among the presynaptic neurons has an
uncorrelated component, an overall increase in the synaptic weights leads to
an enhanced component f

o
post and this establishes a negative feedback loop

through the last term in equation 6.3. Recall that a positive ψ◦ is equivalent
to a negative integral over the learning function ψ◦. Alternatively, we may
postulate that with each postsynaptic spike, the synaptic weight slightly de-
grades, independent of any spike timing (Kempter et al., 1999). In this case,
we obtain an additional term in the brackets of equation 6.3, which is pro-
portional to −( f

o
post + f rel

∑
D′ax,D

′ w(D′ax,D′; t)). Since this term is equal for
all delay lines, it acts only as a normalization without distorting the weight
distribution and therefore changes neither the average axonal nor dendritic
delays. Finally, small, unbiased stochastic fluctuations in the axonal and
dendritic delay will cause the average delays to move toward the steady
state given by the above conditions Dden

tot ≈
√
α2 + R(D)2 and D f

tot ≈ −4t.
Similarly to the last term in equation 3.9, these stochastic fluctuations will

appear in equation 6.3 as a diffusion term of the form ε
(
∂2w
∂D2

ax
+ ∂2w

∂D2

)
.
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6.1 Simulation Results. To test whether the unreliability of the synap-
tic transmission indeed helps to select a specific configuration among the
two-dimensional parameterization of delay lines, we combined the “super-
vised” and “unsupervised” learning scenario from the previous sections.
We initially distributed 20 delay lines with axonal delays Dax between 8.5
and 11.5 ms and forward dendritic delays D ≡ D f

den between 4.5 and 7.5
ms and set for the corresponding synaptic weights w(Dax,D) = 0.4, while
the remaining weights were zero. The backward dendritic delay of each
delay line was half the forward dendritic delay, B(D) ≡ Db

den(D) = 1
2 D, and

the EPSP rise time was set to R(D) ≡ trise = 3 ms. The common release
probability was Prel = 0.5, and the threshold of the postsynaptic neuron
was set to θ = 20 mV. We stimulated the presynaptic neuron with a peri-
odic train of f pre = 20 Hz and primed the postsynaptic cell with a 10 mV
subthreshold depolarization between 25 and 27 ms after each presynaptic
spike (cf. Figure 5). This induces the additional spike correlation described
in equation 6.2 with 4t = 26 ms and ς ≈ 1 ms. Whenever the postsynaptic
potential, composed of this depolarization and the sum of the evoked EP-
SPs (cf. equations 5.1 and 5.2) crossed the threshold, a postsynaptic spike
was elicited unless a spontaneous spike was already triggered within 5 ms
before. The postsynaptic cell showed a spontaneous background firing rate
f

o
post = 3 Hz, which was increased to an instantaneous Poisson rate of 30

Hz during the 2 ms period of the additional depolarization. For each pair
of synaptic release and postsynaptic spike, we modified the correspond-
ing synaptic weight according to 4w = wψ◦(4tsyn) with learning function
ψ◦ given by equation 2.2 and local time difference 4tsyn given by equa-
tion 2.1. The parameters of ψ◦ were α = 14 ms, β = 20 ms, and γ = 0.8.
To prevent an infinite synaptic growth, we reduced the synaptic weights
after each postsynaptic spike by 0.01 times w times the sum of all synap-
tic weights, as discussed at the end of the last paragraph. To simulate the
stochastic fluctuations, we assumed a two-dimensional mesh grid of ax-
onal and dendritic delays (Dax,D) with a granularity of 0.2 ms. After each
presynaptic spike, we redistributed each synaptic weight with probability
0.1 by 80% of its own weight and 5% of the weights of the four neigh-
bors.

The simulation was run for 35 minutes biological time. Although initially
the presynaptic neuron could not contribute to the firing of the postsynaptic
cell, it learned to do so after 28 minutes of correlated spike activity (see
Figure 6a). After this period, the postsynaptic spikes were always evoked
by the EPSPs from the presynaptic cell, which were strengthened by the

rule. The connections adapted their total forward delay such that D
f
tot ≡

Dax + D
f
den + trise = 27.0 ≈ −4t = 26 ms, and this led to a peak of the

EPSPs during the period of the additional postsynaptic depolarization (see
Figure 6b and the dashed-dotted line in Figure 7a).
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Figure 6: Postsynaptic activity during the priming protocol (cf. Figure 5). (a)
Raster plot of the postsynaptic spikes. Only each tenth trial is shown. During the
time interval 25–27 ms after a presynaptic spike, a postsynaptic depolarization
increased the probability of a spontaneous postsynaptic spike. After 28 minutes
of simulated time (corresponding to ∼34,000 pairings) the presynaptic neuron
learned to trigger the postsynaptic spike during the period of the postsynaptic
depolarization (darker points top right). (b) Same as in a but superposed with the
sum of EPSPs induced by the presynaptic neuron. The horizontal lines indicate
the period of the additional postsynaptic depolarization. For parameter values,
see the text.

The simulation shows that it is possible to learn the peak EPSP implicitly
with a precision of almost 1 ms, although the widthα of the learning function
itself is more than 10 times broader. To explain this fact, we inspect the
different dendritic delays after reaching the steady state (see Figure 7a).
Toward 30 minutes simulation time, the total dendritic delay eventually

fully covers the learning window, D
den
tot ≡ D

f
den + trise + D

b
den = 13.5 ≈√

α2 + (trise)2 = 14.3 ms, as predicted by the theoretical consideration above
(see Figure 7a; cf. the sketch in Figure 5). Independent of the width of the LTP

branch, the total forward delay D
f
tot adapts toward the typical spike time

difference 4t and thus eventually supports existing temporal structures in
the spike activity, as long as the width α of the learning function can be

absorbed by the total dendritic delay D
den
tot .

Finally, the stochastic synaptic transmission (Prel < 1) led to a unique
average axonal delay Dax ≈ 17 ms and a unique average forward den-

dritic delay D
f
den ≈ 7 ms after the application of the stimulation protocol

(see Figure 7b). Without transmission failures (Prel = 1), an elongated ridge
would evolve in the (Dax,D f

den)-space corresponding to those delays with
fixed synaptic time difference 4tsyn between the pre- and postsynaptic sig-
nals. This shows that unreliable synapses are in fact necessary for a unique
development of the axonal and dendritic delays.
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Figure 7: Implicit adaptation of the different delays during the postsynaptic
priming protocol (cf. Figure 5). (a) The evolution of the mean axonal delay and
mean dendritic latency during the simulation shows that the synaptic modi-
fication implicitly adjusts the different delays according to equations 4.3 and
5.5, such that eventually the average total forward delay matches the aver-

age spike time difference, D
f
tot = Dax + D

lat
den = |4t| = 26 ms, and such that

the total average dendritic delay matches the width of the learning function,

D
den
tot = D

lat
den + D

b
den ≈ α (with D

lat
den = D

f
den + trise). (Lower thick line: Dax,

dots: Dax +D
f
den, dashed-dotted line: D

f
tot = Dax +D

f
den + trise, upper thick line:

D
f
tot +D

b
den, upper dots: Dax + α, shaded band: time of subthreshold input.) (b)

Distribution of the axonal and forward dendritic delays at the initial configura-
tion (left blur) and after 35 minutes of the simulated time (right blur). The gray
level is coding the synaptic weight corresponding to the different delays. With-
out transmission failures, the final distribution of the delays would be smeared
out within the two dashed lines.

7 Discussion

The work presented here extends the idea of delay selection by showing
that slow stochastic fluctuations in the axonal and dendritic delays lead to
delay drifts beyond the original delay distributions (cf. Figures 3 and 4).
We showed that during correlated pre- and postsynaptic activity, the tem-
porally asymmetric synaptic modification implicitly (1) adjusts the total
forward delay composed of the axonal, synaptic, forward dendritic delay
and EPSP rise time until it matches the statistically dominant time difference
between the pre- and postsynaptic spikes, and (2) tunes the total dendritic
delays composed of the forward dendritic delay, the EPSP rise time, and
the backward dendritic delay until it fits the width of the effective learning
function (cf. Figures 5, 6, and 7). Although the evolution of these delays is
perturbed by uncorrelated spontaneous activity, the precision of the delay
adaptation may be of an order higher than the width of the learning func-
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tion itself. Interestingly, the tight selection of the optimal delays is possible
only if the synaptic transmission is unreliable. This unreliability gives the
“successful” delay lines an evolutionary advantage over the others. To sta-
bilize the self-organization of the different delays, one must assume that the
integral over the learning function is negative. Thus, three properties are
important for an activity-dependent development of axonal delays and den-
dritic latencies through asymmetric weight modifications: slow, unbiased
delay fluctuations, unreliable synapses, and LTD dominating LTP.

7.1 Physiological Evidence for the Hypothesized Mechanisms. The
shape of the temporally asymmetric learning function (see equation 2.2 and
Figure 2) is motivated by different recent experiments (Markram et al., 1997;
Zhang, Tao, Holt, Harris, & Poo, 1998; Bi & Poo, 1998; Feldman, 2000). These
experiments do not allow discriminating among axonal, synaptic, and den-
dritic delays as defined in equation 2.1. Instead, they provide the change
in the synaptic strength as a function of the spike time differences tA − tB
between the two neurons recorded from. In these experiments, the neurons
lay nearby, and in case of cortical recordings, they mostly synapse on each
other’s proximal dendritic tree. As a consequence, the axonal and dendritic
delays appear to be small, and the time difference at which maximal upreg-
ulation is observed corresponds roughly to our time difference α defining
the peak in the learning function 2.2. Depending on the experimental study,
this peak lays between −25 and 0 ms.

Different sources for the pre- and postsynaptic delays exist. Axonal prop-
agation velocities for horizontal cortico-cortical connections are on the order
of 0.2 m per second, corresponding to a propagation time of 50 ms for cells
that are 1 cm apart, while the propagation velocities of vertical fibers are
roughly 10 times faster (Bringuier et al., 1999). Considerable delays may also
be present postsynaptically. In passive dendritic structures, delays up to 30
ms and more were calculated for the time difference between the centroids
of an injected current, the locally induced EPSPs, and the EPSP propagated
into the soma (Agmon-Snir & Segev, 1993). The peak-to-peak time from a
distal EPSP to the forward propagated somatic EPSP and from the somatic
AP to the backpropagated dendritic AP can both reach up to 8 ms (Segev,
Rapp, Manor, & Yarom, 1992; Stuart & Sakmann, 1994). In addition to these
peak-to-peak delays, the signal is delayed by the rise time of the somatic
EPSP, which is on the order of 3 to 10 ms or more. Moreover, in active den-
dritic structures, transient potassium currents can delay the generation of a
postsynaptic AP by tens up to hundreds of milliseconds (McCormick, 1991).

The small delay fluctuations we assume may come along with the ap-
pearance of new dendritic spines and synapses observed during induction
of long-term modifications or their unspecific stochastic disappearing (En-
gert & Bonhoeffer, 1999; Toni, Buchs, Nikonenko, Bron, & Muller, 1999).
Other sources of delay fluctuations may be new axonal collaterals bifur-
cating from an existing synaptic connection and targeting onto a different
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dendritic subtree. The axonal and dendritic delays of such new connections
may have slightly changed due to different channel densities or morpho-
logical properties of the corresponding axonal collateral or the dendritic
subtrees (Engert & Bonhoeffer, 1999; Maletic-Savatic, Malinow, & Svoboda,
1999). Variable delays are particularly present at the developmental stage of
the central nervous system during which neurites can grow with speeds up
to 50 µm per hour (Gomez & Spitzer, 1999). This speed is indirectly propor-
tional to the frequency of the endogenous Ca2+transients and it is tempting
to relate the Ca2+signals decelerating neurite growth with the Ca2+signals
accelerating synaptic long-term changes once the connections are formed
(see Bliss & Collingridge, 1993). Evidence for the formation of new connec-
tions during the development is given by the functional differences between
the axonal arborization of cortical V1 cells in young and adult cats. In the
juvenile animal, horizontal axon collaterals often form connections only in
a restricted proximal region, while they are found on distal axon terminals
in the adult animal (Katz & Shatz, 1996). In pyramidal cells, dendritic la-
tencies may change during the gated growth of the apical tree toward the
pial surface, where it integrates input from the superficial layers (Polleux,
Morrow, & Glosh, 2000). The hypothesis that the emergence and selection of
interneuronal delays might be guided by a temporally asymmetric learning
rule is further supported by the fact that this type of synaptic modification
is particularly prominent in embryonic cultures (Bi & Poo, 1998, 1999) and
in cortical slices of animals younger than 2 or 3 weeks (Markram et al., 1997;
Feldman, 2000), while long-term plasticity cannot be found at synapses from
the thalamic input after this stage (Crair & Malenka, 1995; Feldman, Nicoll,
Malenka, & Isaac, 1998).

There are two possible concerns related to recent experimental findings
that are worth discussing. First, we would like to emphasize that short-
term synaptic plasticity, as found between cortico-cortical pyramidal cells
(Markram, Pikus, Gupta, & Tsodyks, 1998), does not fundamentally change
the existing picture of delay adaptation. Short-term depression, for instance,
is believed to reduce the vesicle release probability as a function of the
presynaptic activity, and hence could be easily incorporated in our analy-
sis where the release probability explicitly enters. On a phenomenological
level, synaptic depression pronounces changes in the presynaptic firing
rates, which may even support the temporal structure between the pre- and
postsynaptic cells (compare also Tsodyks & Markram, 1996; Abbott, Varela,
Sen, & Nelson, 1997; and Senn, Segev, & Tsodyks, 1998). In this context,
the long-term modification of synaptic depression (Markram & Tsodyks,
1996) has a similar effect on delay selection as the long-term modification of
the absolute synaptic strength. Second, recent findings show that for CA1
pyramidal neurons in the hippocampus, the shape of the somatic EPSP is
independent of the synaptic location on the dendritic tree (Magee & Cook,
2000). In our framework, this implies that there is no one-to-one correspon-
dence between the synaptic location and the peak of the learning function.
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It should be emphasized, however, that experimental support for the loca-
tion independence of the synaptic response in mammals is present only in
hippocampal neurons and, to some degree, in motoneurons (see Magee &
Cook, 2000, for references). In contrast, neocortical layer 5 pyramidal cells,
for instance, actively attenuate synaptic inputs from the apical tree to the
soma and show a wide range of somatic EPSP rise times (Berger, Larkum,
& Lüscher, 2001). These neurons can well be integrator and coincidence
detector in one (Larkum, Zhu, & Sakmann, 1999), and therefore require a
mechanism that determines whether a synaptic input should supply contex-
tual information (by a broad, distally generated EPSP) or timing information
(by a sharp, proximally generated EPSP).

7.2 Some Predictions. Synaptic delay lines and their modification have
recently been the focus of an experimental study in cultured networks of
embryonic rat hippocampus (Bi & Poo, 1999). This work shows that the
different mono- or polysynaptic delay lines between two neurons may in-
deed play a crucial role in the induction of either LTP or LTD. If paired
pulse stimulation of a presynaptic neuron triggers an AP in a postsynap-
tic neuron through a specific pathway, then the strength of that and pu-
tative shorter pathways are upregulated, while pathways with putative
longer delays are downregulated. Our investigation suggests that simulta-
neous single pulse stimulations at two different locations with interpulse
intervals of 10, 30, and 50 ms would shift, after minutes of repetitions, the
(axonal) delays of the pathways toward 10, 30, and 50 ms, respectively. Be-
sides studying network effects, it would be interesting to investigate in vitro
synaptic modifications at neurons with delayed responses and test whether
the learning windows are in fact broadly tuned to match the dendritic laten-
cies. In the context of subthreshold receptive fields (Bringuier et al., 1999),
our work predicts an asymmetric distribution of horizontal propagation
velocities in the primary visual cortex of cats reared under unidirectional
background motions (see Section 1). Another prediction is that due to the
self-organization of the synaptic locations, distal synapses with slow so-
matic EPSPs should have broader learning functions than proximal ones
with fast somatic EPSPs. In fact, for certain connections to layer IV spiny
stellate cells, the peak of the spike-based temporal modification function is
measured to be at tpost − tpre = 60 ms (Cowan & Stricker, 1999).

7.3 A Further Example: Learning Delays Between Cortical Areas. Our
analysis also applies to the problem of delay adaptation between neuronal
populations with correlated activities. As an example, we may consider
the learning of finger sequences, say, for playing a music instrument. The
storage and recall of such sequences require a temporal control of the activ-
ity in the motor cortex from which the appropriate spinal motor patterns
are recruited. According to a current hypothesis, the automation of motor
sequences is a form of habit learning, which involves the basal ganglia–
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Figure 8: Learning time delays between neuronal populations. (a) Sequences
of finger movements, for example, for playing a music instrument, require the
temporal control of activity in the motor cortex. For instance, when looking
at the notes a − b, the visual stimulus activates through cortico-cortical path-
ways in sequence the populations A and B in the motor cortex at times tA and
tB = tA + |4t|. When automatizing such finger sequences, the corresponding
activity pattern is believed to be stored in the basal ganglia (S), from where it
can be retrieved through the basal ganglia–thalamocortical feedback loop. (b)
The temporal structure between the activities at the sites A, B, and S in the
motor cortex and the basal ganglia, respectively, is similar to that considered
for a single synaptic connection (see Figure 1a, where A, B, and S stand for the
presynaptic soma, the postsynaptic soma, and the synaptic site, respectively),
although it may extend over a larger timescale. A reinforcement signal from B
to S (mediated, e.g., by dopamine projections) modifying the strength of the re-
lay S according to a temporally asymmetric rule may similarly select pathways
through S that support a sequence of activities in the upper area. Assuming a
variety of delay lines with stochastic transmission, our analysis predicts that
after repeated presentation of the visual stimulus sequence, the total forward
delay through S will eventually match the time difference between the cortical
populations A and B, DAS + D f

SB = |4t|. This is possible even in the presence
of a delay Db

SB of the reinforcement signal. In this case, the forward delays are

selected such that in addition, D f
SB +Db

SB = α holds where α is the peak in the
learning function of the relay S (cf. also Figure 5).

thalamocortical feedback loop (Petri & Mishkin, 1994; Rolls & Treves, 1998).
Such learning is driven by an external input and probably internally in-
volves a delayed reinforcement signal. Let us assume that looking in se-
quence to two notes, say a− b, the visual input eventually evokes through
the parietal pathway a well-timed activity at sites A and B, respectively, in
the motor cortex (see Figure 8a; cf. also Ungerleider, 1995). During the many
repetitions of the finger sequence, the basal ganglia are taught by the motor
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cortex to store a mirror image of the cortical spatiotemporal activity pattern.
The input from the basal ganglia to the motor cortex, which correctly pre-
dicts the ongoing visual input, may evoke a reinforcement signal back to the
basal ganglia, for instance, through dopamine projections, which strength-
ens the appropriate pathways through a temporally asymmetric rule. After
learning, the motor sequence can be retrieved in the habit mode by a se-
quence of look-ups from the basal ganglia, thereby freeing motor cortex for
other, higher-level tasks.

The temporal structure between the two cortical populations and the cor-
responding memory trace in the basal ganglia is similar to that between a
pre- and postsynaptic neuron and the connecting synapses (see Figure 8b).
Since the reinforcement signal intrinsically has a delay beyond the tem-
poral precision of the motion, an additional gating mechanism is required
that takes this delay into account. Our analysis shows that a temporally
asymmetric learning rule is enough to solve this timing problem. Put into
a general framework, the problem is to adjust the delay from A to B, given
that the tuning mechanism is located at some intermediate site S, and hence
receives itself only delayed signals from A and B. It is not evident how such
a delay adaptation can work at all. Summarized, the constraints are:

Implicitness: No explicit mechanism exists for a directed adaptation of
the individual delays. Rather, the average delay of different nearby de-
lay lines can only implicitly be adapted by strengthening or weakening
the connections in the presence of slow, unbiased delay fluctuations.

Locality: There is no view that tells the time elapsed between the events
at the two sites. Rather, only the time differences between a forward
and a backward signal can be locally measured at the site S in between
the two signal sources.

Directionality: In adapting the delay line based on the local time dif-
ferences, one should take into account the backward delay from site
B to site S and the fact that this backward delay may be different from
the corresponding forward delay.

Recurrence: The change in the connection strengths may itself influence
the activity at location B and thus change the statistics of the temporal
relationship between the signals at the two locations.

As we showed, a temporally asymmetric learning rule may simultaneously
cope with all these constraints.

7.4 Comparison with Recent Theoretical Work. The apparent impor-
tance of temporal relationships among cortical activities motivated different
studies on delay adaptations. Hüning et al. (1998) suggested that synaptic
delays should adapt proportionally to the negative temporal derivative of
the EPSP with peak centered at the postsynaptic spike time. Such an explicit



Activity-Dependent Development of Axonal and Dendritic Delays 613

delay adaptation, which assumes the temporal modifications of intracellu-
lar messenger cascades, however, is difficult to motivate, apart from the fact
that the effective synaptic delays measured in central synapses are in the
range of 0.4 ms (Lloyd, 1960), a number that is down-corrected in a later
study to 0.17 ms (Munson & Sypert, 1979). Other works suggested that delay
changes should have qualitatively the same form as the learning function
for the synaptic weights (Eurich, Cowan, & Milton, 1997). If deduced from
the modification of the synaptic strength, however, the rule for the delay
adaptation is not given by the derivative of the EPSP and is not identical
to the original weight modification. In contrast, as our analysis shows, the
best motivated form for an explicit delay adaptation is given by the deriva-
tive of the original weight modification function (cf. Figure 2a). In a series
of other works, delay modifications are suggested to result from two inde-
pendent processes: delay selection through weight modification and delay
shifts through explicit delay adaptation (Eurich, Ernst, & Pawelzik, 1998;
Eurich et al., 1999). However, no physiological evidence for an explicit delay
adaptation exists so far, and, as we argue, no such rule is in fact necessary.
In the presence of weak delay fluctuations and stochastic synaptic trans-
missions, a temporally asymmetric synaptic weight modification is enough
to explain axonal and dendritic delay shifts. While the adaptation of the to-
tal forward delay occurs independent of the peak in the learning function,
this peak implicitly determines the width of the somatic EPSP. Hence, dur-
ing development, the rule controls axonal delays and dendritic latencies to
support stimulus-driven temporal structures and generate different types
of causal relationships between neuronal activities.

Appendix

A.1. Proof of Equation 4.3. Defining the normalized density p(δ) =
p(δ, t) = w(δ,t)

〈w〉 of connections from neuron B to neuron A with relative
delay δ we may write

δ =
∫ +∞
−∞

δp(δ)dδ ≡ 〈δp(δ)〉,

where by definition 〈.〉 denotes the integral over δ. Inserting the expansion

ψ(4t+ δ) ≈ ψ(4t+ δ)+ (δ − δ)ψ ′(4t+ δ) (A.1)

into the rule 3.10 and averaging with respect to δ, we get

〈ẇ〉 ≈ 〈w〉ψ(4t+ δ)+ 〈w(δ − δ)〉ψ ′(4t+ δ)

− c1〈w〉2 − c2〈w〉 + ε
〈
∂2w
∂δ2

〉
. (A.2)
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This approximation is good if we assume that the width σ of the delay
distribution is narrow compared to the width 2(α+ ς) of ψ . Evaluating the
integral in the last term of the right-hand side, we find 〈 ∂2w

∂δ2 〉 = 0, since we
may assume that the derivative ∂w

∂δ
at the boundaries δ = ±∞ vanishes.

Since

〈w(δ − δ)〉 = 〈wδ〉 − 〈w〉δ = 〈w〉 〈wδ〉〈w〉 − 〈w〉δ = 0,

the second term in equation A.2 cancels as well. Multiplying the remainder
of equation A.2 with δ, we get

δ〈ẇ〉 ≈ δ〈w〉ψ(4t+ δ)− δ〈w〉(c1〈w〉 + c2). (A.3)

By equation 3.10 and the Taylor expansion, equation A.1, we also approxi-
mate after averaging

〈δẇ〉 ≈ 〈δw〉ψ(4t)+ (〈δ2w〉 − 〈δw〉δ)ψ ′(4t)

− 〈δw〉(c1〈w〉 + c2)+ ε
〈
∂2(δw)
∂δ2

〉
. (A.4)

Again, the last term on the right-hand side vanishes by partial integration
with boundary conditions w±∞ = ∂w±∞

∂δ
= 0. The factor in the second term

reduces to

〈δ2w〉 − 〈δw〉δ = 〈δ
2w〉
〈w〉 〈w〉 −

〈δw〉
〈w〉 δ〈w〉 = (δ

2 − δ2
)〈w〉 = σ 2〈w〉,

where σ 2 is the variation of the delay distribution given by the density p(δ).
Using 〈δw〉 = δ〈w〉, equation A.4 simplifies to

〈δẇ〉 ≈ δ〈w〉ψ(4t+ δ)+ σ 2〈w〉ψ ′(4t+ δ)− δ〈w〉(c1〈w〉 + c2). (A.5)

Subtracting equation A.3 from A.5, we obtain

〈δẇ〉 − δ〈ẇ〉 ≈ 〈w〉σ 2ψ ′(4t+ δ),
and combining this with equation 4.2, we get the desired rule, equation 4.3,
governing the adaptation of the average relative delay.

A.2 Proof of Equation 4.4. We first show that the weight distribution
is nonsingular. To this end, we derive the differential equation for σ 2 and
show that for small σ 2, we always have dσ 2

dt > 0. Substituting equation 3.10
for dw

dt , one calculates

d
dt
σ 2 = d

dt
(δ2 − δ2

) = d
dt

( 〈δ2w〉
〈w〉 −

〈δw〉2
〈w〉2

)
= · · · =

= 2ε + (δ2ψ − δ2ψ)+ 2δ(δψ − δψ),
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where the overlining denotes the average with respect to the normalized
density p(δ). At the course of this calculation, we used that by partial in-
tegration with boundary conditions w±∞ = ∂w±∞

∂δ
= 0, one finds 〈 ∂2

∂δ2 w〉 =
〈δ ∂2

∂δ2w〉 = 0 and 〈δ2 ∂2

∂δ2 w〉 = 2〈w〉. Assuming that σ 2 → 0, the density p
would become a delta function, and the average would commute with the
product. Hence we would also have (δ2ψ − δ2ψ)→ 0 and (δψ − δψ)→ 0,
and therefore d

dtσ
2 → 2ε. But this contradicts the above assumption, and

we conclude that in fact, σ 2 cannot shrink to zero.
We can now fit the nonsingular steady-state distribution with the gaus-

sian w̃(δ) = w(δ) exp(− (δ−δ)22σ 2 ). Inserting w̃ for w in equation 3.10 and eval-
uating at δ and δ ± σ yields 0 = ψ(−

√
α2 + ς2) − c1〈w̃〉 − c2 − ε/σ 2 and

0 = ψ(−
√
α2 + ς ± σ) − c1〈w̃〉 − c2. Eliminating c1〈w̃〉 + c2 and using the

approximation ψ(−√α + ς) − ψ(−√α + ς ± σ) ≈ −ψ ′′(−
√
α2 + ς2)σ 2/2

gives ψ ′′(−
√
α2 + ς2)σ 2/2+ ε/σ 2 = 0, from which equation 4.4 follows.

Finally, the total synaptic weight at the steady state can be qualitatively
approximated by 〈w̃〉 ≈ (γ e

1
2 − ε/σ 2)/c1 with σ given by equation 4.4. Since

〈w̃〉 = σ
√

2πw(δ), the maximal weight at steady state is roughly w(δ) ≈
ψ(−
√
α2+ς2)−ε/σ 2

c1σ
√

2π
.

A.3 Proof of Equation 5.5. For fixed presynaptic delays, we have, ac-
cording to equation 5.3,

dDpost

dt
= dtB

dt
= dtB

dD

dD
dt
≈ (1+ R′(D))

dD
dt
, (A.6)

where D is the average forward dendritic delay and R(D) ≈ R(D) the av-
erage rise time. Since we are interested in replacing the factor dD/dt in
equation A.6 by a term containing the learning function ψ◦, we first replace
the change in D by a change in B from where we bridge toψ◦. Thus, we first
write

dD
dt
=
(

dB

dD

)−1 dB(D)
dt

. (A.7)

In the same way as we deduced equation 4.3 in Section A.1 (note that there

we have
d4tsyn

dt = d(4t+δ)
dt = dδ

dt ) we may approximate the change of the
average time difference 4tsyn = tA +Dpre − (tB + B) at the synaptic site by

d4tsyn

dt
= −dtB

dt
− dB

dt
≈ σ 2

Bψ
′
◦(4t), (A.8)
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where σB is the standard deviation of the distribution of B(D). Solving equa-

tion A.8 for dB
dt , identifying dB

dt ≈ dB(D)
dt , and inserting into equation A.7 yields

dD
dt
≈
(

dtB

dt
− σ 2

Bψ
′
◦

)(
dB(D)

dD

)−1

. (A.9)

Inserting equation A.9 into A.6 and solving for tB, we obtain

dtB

dt
≈ −σ 2

Bψ
′
◦

B′−1(1+ R′)
1+ B′ + R′

.

Estimating the standard deviation of the backward delay, σB, by the one
for the forward dendritic delay, σB ≈ B′(D)σ , yields the desired formula,
equation 5.5.
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Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of
synaptic efficacy by concidence of postsynaptic APs and EPSPs. Science, 275,
213–215.

Markram, H., Pikus, D., Gupta, A., & Tsodyks, M. (1998). Potential for multi-
ple mechanisms, phenomena and algorithms for synaptic plasticity at single
synapses. Neuropharmacology, 37, 489–500.

Markram, H., & Tsodyks, M. (1996). Redistribution of synaptic efficacy between
neocortical pyramidal neurons. Nature, 382, 807–810.

McCormick, D. (1991). Functional properties of slowly inactivating potassium
current in guinea pig dorsal lateral geniculate relay neurons. J. Neuroscience,
66, 1176–1189.

Munson, J., & Sypert, G. (1979). Properties of single fibre excitatory postsynaptic
potentials in triceps surae motoneurones. J. Physiol. (London), 296, 329–342.
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