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SIMILAR NONLEAKY INTEGRATE-AND-FIRE NEURONS WITH
INSTANTANEOUS COUPLINGS ALWAYS SYNCHRONIZE*

WALTER SENNT AND ROBERT URBANCZIK?

Abstract. We reconsider the dynamics of pulse-coupled integrate-and-fire neurons analyzed by
Mirollo and Strogatz [SIAM J. Appl. Math., 50 (1990), pp. 1645-1662]. Lifting their restriction
to identical oscillators, we study the case of different intrinsic frequencies and thresholds of the
neurons as well as different but positive couplings. For nonleaky neurons, we prove that generically
the dynamics becomes fully synchronous for any initial conditions if the intrinsic frequencies, the
thresholds, and the couplings are not too different. For the case of linear evolution functions, this
confirms Peskin’s conjecture (1975) according to which nearly identical pulse-coupled oscillators, in
general, synchronize. It also shows that the requirement of concave evolution functions imposed by
Mirollo and Strogatz to ensure global synchronization is not necessary.

Key words. synchronization, pulse-coupled biological oscillators, integrate-and-fire, pacemaker
AMS subject classifications. 92A09, 34C15, 58F40

PII. S0036139998346038

1. Introduction. Synchronization phenomena are widespread in nature. They
occur in the rhythmic flashing of fireflies [7], in models of earthquake cycles [23], in
arrays of Josephson junctions [16] or semiconductor lasers [32], in neuronal networks
generating the circadian rhythm [11] or the pace of the heart [25], and in collective
high frequency oscillations of cortical cells [28, 10, 21]. A rich collection of examples
of biological oscillators and their synchronization is the book by Winfree [31]. For a
review on synchronization phenomena of pulse-coupled oscillators, see Perez et al. [24],
or the popular work of Strogatz and Stewart [26].

An adequate description of synchronization phenomena is often given by a popu-
lation of mutually coupled oscillators which interact by short pulses. Pulse-coupling
is contrasted to phase-coupling, where the oscillators smoothly interact during the
whole oscillation cycle (see, e.g., [19]). In 1975 Peskin introduced a model of pulse-
coupled oscillators for cardiac pacemaker cells and proved synchronization for two
coupled oscillators [25]. The research activity was revived 15 years later when Mirollo
and Strogatz succeeded to demonstrate global synchronization for this model with any
number of oscillators [22]. Their analysis, however, is restricted to identical oscillators
with equal weights, equal frequencies, and strictly concave evolution functions. We
show that in fact none of these assumptions are necessary.

Peskin’s model assumes N integrate-and-fire neurons of the form

dx,- .
with input I; > 0, threshold 6;, and leakiness v > 0. Whenever the activation
of jth oscillator reaches or exceeds its threshold, z; > 0;, the oscillator fires. As a
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consequence of the firing of j, the activation of any other oscillator ¢ is incremented by
the coupling w;; and immediately after firing the oscillator j is reset to zero. Moreover,
the firing of j may have caused other oscillators to fire at the same instant as well,
and subtleties arise in the definition of such an “instantaneous” interaction, especially
if the couplings can be negative. The main feature of this class of models is that
all oscillators which have fired synchronously have zero activation immediately after
firing. In what follows, all couplings are assumed positive, w;; > 0 for ¢ # j, and for
this case a simple characterization of the spike dynamics can be given (cf. (2.1) below).

Peskin conjectured that, first, for identical oscillators and almost all initial condi-
tions “the system approaches a state in which all oscillators are firing synchronously”
and that, second, “this remains true even when the oscillators are not quite identi-
cal” [25, p. 274]. While the first part of the conjecture was proven by Peskin for
N = 2, Mirollo and Strogatz proved it for an arbitrary size by induction over N, as
suggested by Peskin. Specifically, they proved global synchronization for a class of
identical oscillators with strictly concave evolution functions which includes the above
model under the restriction v > 0 (strict concavity), w;; = w, I; = Iy, and 6; = 1.
While their proof seems to be generalizable to small variations of the input I;, the
induction argument does not work anymore for small variations of the weights.

In trying to tackle the second part of Peskin’s conjecture Kuramoto was able to
show global synchronization in the limit of large populations and small couplings with
identical oscillators subject to small noise [20]. We shall show that small variations in
the input, weights, and thresholds can be treated rigorously for any size of population
and any size of coupling if one considers the linear oscillator model with v = 0 in (1.1).
Specifically, for almost all inputs I;, thresholds 6; and weights w;; which differ only
slightly, the dynamics converges to synchronous firing for any initial conditions xz. This
is rather astonishing since the concavity is a key element in both of the cited works.
Indeed, our method of proof is completely different from that of Mirollo and Strogatz
as well as of Kuramoto. Our result differs from the findings of Mirollo and Strogatz
in that for nonleaky neurons almost all networks with weak homogeneity converge
for all initial conditions to synchronous firing, while in their work with identical
neurons and concavity assumption the dynamics synchronizes for all parameter values
only for almost all initial conditions. Interestingly, for nonleaky neurons the case of
exactly identical oscillators and weights is exceptional in that it does not ensure
full synchronization.

Numerical investigations of the model with slightly perturbed parameters per-
formed by Bottani [3] actually show that often populations with strictly convex evo-
lution function (v < 0) of the neurons synchronize as well. In this case the neurons
initially drift apart until they again come closely together, but now shifted by one
cycle, and then synchronize. Once two neurons synchronize they stay together, form
a “condensation point,” and induce an avalanche of further synchronizations. Bottani
also argues that networks of identical linear neurons should become fully synchronous
for generic initial conditions in a suitably constructed thermodynamic limit. However,
it seems very difficult to treat the two above cases rigorously.

A generalization of Peskin’s model with « > 0, equal weights, inputs, and thresh-
old but with constant delays in the propagation of the pulses is numerically inves-
tigated in [12] and the case N = 2 is treated analytically. For positive delays and
positive weights the synchronous state is found to be unstable while it is stable for
positive delays and negative weights. Another model of pulse-coupled linear oscilla-
tors with a slightly different update rule which does not provide for synchronization is
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investigated in [18] and [13]. For this type of model global convergence to a periodic
state was shown under the severe homogeneity restriction that the sum of the weight
onto each oscillator must be constant. The restriction is technically necessary in or-
der to define a Liapunov function for the dynamics. Both the Liapunov function and
the complete identity of the neurons in the case of Mirollo and Strogatz allow us to
define a synchronization measure which monotonically decreases during the evolution
of the dynamics. As soon as the homogeneity assumptions are violated, however,
these standard techniques fail. The present work shows that global synchronization
can nevertheless be proven by combinatorial arguments for a weakly heterogeneous
ensemble of nonleaky neurons.

When considering more realistic biophysical models with a finite duration of the
synaptic response the conditions for synchronization become even more intriguing [17].
In this case only local stability analysis of the synchronous [14, 8] or asynchronous
state [2] can be performed. The local stability of the synchronous state turns out to
be dependent on the rise and decay times of the synaptic responses. For two mutually
coupled neurons with slow synaptic raise time it turns out that it is inhibition rather
than excitation which leads to perfect synchronization [30, 27]. Different local stability
criteria are known for weakly heterogeneous networks where the neurons and the
connections might slightly vary [8]. In general, analytical work only seems feasible
in the case of either two mutually connected neurons [4, 30, 27, 5] or in the case of
an infinite number of weakly coupled neurons [19, 29], and often only local stability
results have been obtained. In view of these difficulties and the wide range of different
synchronization phenomena it is important to analytically study networks in the limit
of instantaneous coupling and nonleaky integrate-and-fire neurons. As far as we know
this is the only example where global convergence to a fully synchronized state can
strictly be proven for weak network heterogeneities with an arbitrary finite number
of neurons.

2. Dynamics and main theorem. Before discussing two illustrative examples
we give an alternative, discrete definition of the dynamics. The formulation of the
main theorem will be followed by an outline of the proof and an explanation of the
inherent difficulties we have to cope with.

The dynamics. Since the dynamics in between spike events is of little interest, we
shall consider a discrete description of the model (1.1) where a discrete time increment
takes us from one instance when at least one neuron fires to the next such instance.
For simplicity, we consider only the case of linear neurons (y = 0). Given an z € RV
with 0 < z; < 6;, let t(x) be the next time point when a neuron reaches threshold and
let V(x) be the set of neurons reaching threshold simultaneously with this neuron.
Thus z; + I; t(x) < 6; for all neurons, and i € V(z) iff z; + I; t(z) = 0; (and since at
least one neuron has reached threshold V(x) # §)). We shall call V(x) the trigger set.
The neurons in V(z) spike at time t(z), add some weights to the other neurons, and
this may cause these to spike as well, perhaps leading to a chain reaction. Assuming
the interaction to be instantaneous, we denote by U(x) the set of all neurons which
spike at time ¢(x) and call this set the spike set. Immediately after time t(z) the
dynamics is in the state ¢(x) given by

0 , 1€ U(x),
(2.1) ¢(z)i = { i+ L)+ Y g Wiy 5 i EU(@) .

Since all of the weights are positive, it is possible to define U(z) without consider-
ing step by step the chain reaction. Let U be a set of neurons and assuming that the
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neurons in U spike, we would immediately after time ¢(z) have the state ¢y (z) given
by ¢y (z); = 0 for i € U and ¢y (z); = x4 + Lit(z) + .y wiy for i ¢ U. For U to
be an acceptable set, we require that for all indices (bU(:Eii € [0,0;). Since the w;; are
positive, the intersection of acceptable sets is acceptable, and there is thus a unique
minimal acceptable set and this is the spike set U(x). Hence we have ¢ = ¢y (4.

Since we are interested in the dynamics which results from iterating ¢, we shall
use the shorthand notation z* for ¢*(z). Note that in particular 2° = z and z¥
denotes the ith component of ¢*(x) with k& € Ny. By the trajectory of x we refer
to the sequence z* (k = 0,1,...). We shall say that the trajectory becomes periodic
if 28 = zF*" for a suitable n and all k& > ko and that the trajectory of the point z
becomes fully synchronous if ¥ =0 for alli = 1,..., N and all k > k.

Two examples. To gain some insight into the possible behavior, let us first discuss
the case of two neurons, N = 2. For simplicity assume that ; = I, = 1, for i = 1, 2;
thus the fully synchronous state is stable under the dynamics. Considering an initial
condition, z; = 0 and 0 < x5 < 1, neuron 2 will be the trigger. Further we either
have U(z) = {1,2}, and ¢(x) is fully synchronous, or ¢(x); =1 — 22+ w1z <601 = 1.
In the latter case, for the next step we obtain that either 22 is fully synchronous

or z% = x9 — wyg + wo; < #y and z% = 0. Therefore if wis = w9, we have that
either already ¢(z) is fully synchronous or 2 = z, and the trajectory is periodic

and asynchronous. However, if w1 # ws; the distance between the neurons changes
by w2 — w1 until the trajectory eventually becomes fully synchronous. For two
neurons with the above assumption the dynamics therefore becomes always fully syn-
chronous unless the neurons have identical parameter values and the dynamics may
be asynchronous with period 2. If the thresholds are unequal, say, 6, < 65, the fully
synchronous state is locally stable iff wy; > 63 — 6;. With the same arguments as
above one shows that under this restriction the dynamics may be asynchronous and
2-periodic if 65 — 01 = wy; — wy2 while it becomes always fully synchronous otherwise.

For N = 3 much more complicated dynamics is possible. While our simulations
indicate that for many choices of the parameters the fully synchronous state is globally
attractive if it is locally stable, one can construct nontrivial examples where this
is not true and complex periodic behavior arises. We again assume 6; = [; = 1
(therefore the fully synchronous state is always stable) but construct a weight matrix
with the property that if just two neurons are synchronous they will no longer spike
synchronously when one of them spikes the next time unless full synchrony sets in. Let
1,7, k be three different indices and consider the initial conditions 0 = z; = z; < xy.
Therefore neuron k will spike and if another neuron spikes together with k, either the
synchronization between ¢ and j is broken or we have full synchrony. Therefore we
need only consider the case U(z) = {k} and then obtain ¢(x); = 1 — a, + w;, and
¢(z); =1 — a2 + wj,. Assuming that w;, > w;r we have that V(¢(z)) = {i}. Now

j ¢ U(o(x)) is equivalent to x? =1+ wjr — wir + wj; < 1. Consequently, if

Wik > Wik = Wi < Wik — Wik

holds for any triple of different indices, any partial synchronization of just two neurons
will be broken on the first or second iteration of the dynamics unless full synchrony
is achieved.

A weight matrix satisfying the above conditions is given by

0 0 O
(2.2) B0w=|4 0 1] +w,
6 1 0
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Fic. 2.1. Superposition of the trajectories xf of the 3 neurons i = 1,2,3 with weight matriz
given by (2.2) and initial condition z° = (0,0,0.4). The full trajectory of ° quickly becomes periodic
but the period n is very long, n =729 (see also Figure 2.2).

where 1w;; = sin®(3i +5)/10. Of course the choice of w is rather arbitrary. On the one
hand, by including it in the definition of w, all w;; are positive. More importantly,
the choice ensures that the weights of w are rationally independent. This is motivated
by the fact that our subsequent analysis yields that rational dependencies between
the weights can give rise to exceptional behavior. Note that the first column of the
weight matrix represents the weights from neuron 1 onto the others.

As a consequence of the construction of w the asymptotic behavior can be much
more complicated than fully synchronous spiking. The trajectory, however, always
seems to become periodic although the period can be quite long (cf. the conjecture
in section 4). An example of this behavior for a specific choice of initial conditions
is shown in Figure 2.1. The fact that such a nontrivial periodic behavior exists,
even though the weights have no rational dependencies, is rather remarkable. The
stabilizing mechanism which accounts for this is that information about the initial
condition of a neuron is lost when it gets synchronized by another neuron. This is
considered in more detail in Figure 2.2.

The main theorem. Since networks with more than just two neurons can exhibit
complex behavior, our main goal is to give a condition on the parameters of the
network which guarantees that the dynamics becomes fully synchronous. We shall
show that in a fully connected network this is generically the case if the spiking of
any neuron has a similar effect on the other neurons. To make this precise we require
that for suitable parameters wj, €;; and u the following holds for any two different
indices i, j:

(2.3) 0 <wy; =wj(1+¢€;) with | ] <w.

Note that for small u the weights from one specific presynaptic neuron to all others
are similar while they may be different form those from another presynaptic neuron.
Abbreviating w = min; %, f = max; %’, and Af = max; %’ — min; %’ we require
Af < w and u to be small in the sense that

(2.4) 0<2u(w+6)+A0<w

must be satisfied. The condition roughly says that the fluctuation in the thresholds
together with the fluctuations in the weights (of one neuron onto the others) must be
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Fic. 2.2. For any initial condition with weight matriz given by (2.2) there seem to be infinitely
many times at which neurons 1 and 2 spike synchronously. Thus setting v = (0,0, z) and k=
(0,0,4(2)), where k is the minimal natural number such that = = m’g = 0, yields the return map
1 plotted above. When a neuron is synchronized by another one, some information about its initial
condition is lost and the return map 1 is piecewise constant. This stabilizing mechanism allows for
complex periodic behavior.

smaller than the weights themselves. Our main result then characterizes the generic
dynamics of such networks.

Main theorem. For almost all weights w;;, thresholds 0; and inputs I; satisfy-
ing (2.3) and (2.4), the trajectory of any point x € RN with 0 < z; < 0; becomes fully
synchronous.

Strategy of the proof. We will show that conditions (2.3) and (2.4) imply that
any two neurons which spike synchronously at some point will do so in the future.
The conditions ensure that the differences in the states of the neurons which build up
due to fluctuations in the weights are absorbed when one of the two neurons spikes.
The synchronization of two neurons constitutes irreversible progress towards full syn-
chronization and we shall show that sufficiently many partial synchronizations must
occur, except in cases where rational dependencies exist between the parameters of
the network. That the weights of the network are different, however, has an impor-
tant, consequence for the techniques which may be used in the proof. Even if a pair
of neurons i, j always spikes synchronously, it cannot be treated as a single particle.
The reason for this is that, depending on what the remaining neurons do, the trigger
of this particle may at some time be ¢ and at other times be j and the “weight” onto
this particle cannot be defined uniquely. This implies that induction over the number
N of neurons as in the case of identical oscillators is no longer possible.

However, the fact that any two neurons which spike synchronously once continue
to do so has an important consequence for the long term behavior of the trajectory: the
set of neurons is partitioned into groups of neurons which always spike synchronously.
A basic observation underlying our proof is that for such a trajectory, which we shall
call a partition, the interaction between neurons which never spike simultaneously is
largely unaffected by the complicated nonlinear synchronization effects. Hence the
findings of the N = 2 case carry over to larger systems in the following sense: For
generic parameters of the network a periodic partition is fully synchronous.

However, we still need to know that the trajectory does indeed become periodic.
The main idea here is that since the state space is bounded, we can on any trajectory
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find two different points x and y which are arbitrarily close. Since the points are
close one can hope that U(z) = U(y) and by analyzing the mapping ¢ one sees that
then the iterates will be close as well. For partitions, we are thus able to show that
U(z*) = U(y*) for all k and sufficiently close points z,y on the trajectory. This yields
that the sequence U(z*) is periodic, but we need to demonstrate that the sequence
z* becomes periodic. In fact it is possible to relate periodicity in the spike sets to
periodicity in the firings.

The line of the proof leads backwards through these steps. In Lemma 3.1 we show
that the periodicity of the spike trains leads to periodicity in the trajectory. Lem-
mas 3.2-3.4 show by means of a Lipschitz property for ¢ that, if the spike sets define
a partition, the periodicity of the spike trains is implied. This allows us to directly
conclude that a trajectory defining a partition will become periodic. Lemma 3.5 now
shows that for almost all parameter values such a trajectory actually must become
fully synchronous. It remains to show in Lemma 3.6 that the trajectory will even-
tually define a partition if the variation of the parameter values across the neurons
is small.

3. Proof of the main theorem. From (2.1) one easily sees that by applying
the rescaling

B =ai/L;, 0i=0;/I;, ity =wi/L;, I =1,

one arrives at an equivalent dynamical system, and thus we henceforth assume I; = 1.
Using this convention the spike dynamics (2.1) may be written in the more explicit
form as

(3.1) G(x)i = i + 0o, — Ta, + Y wy

JEU ()

for i ¢ U(z) and o in the trigger set V(z). Setting w;; = 0, we further have that the
right-hand side (RHS) of (3.1) is greater or equal to 6; iff i € U(x).

We shall say that the pair (V(z),U(x)) defines a spike event S(x). To S(z) we
may associate a remapping S, of the index set by defining

N | oay ieU(x),
s@={% i5ue

where a, is an element of V(x), e.g., the smallest one. In terms of this mapping, we
can relate the values of ¢ on two points z and y which lead to the same spike event

(S(z) = S(y)) by
()i — d(y)i = As, (i) — Aa,

for A=z —uy.

To analyze the dynamics in general, we need to introduce some further terminol-
ogy. We call the sequence S(z¥) (k = 0,1,...) the spike train of x and say that x
and y have the same spike train up to time n if S(z*) = S(y*) for k =0,...,n — 1.
Assuming this and setting A = x — y, by induction the iterates of z and y are re-
lated via

(32) TP =Y = A, ) — D (ayn )
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where 14, = Sy 0 Sy 0+ 08,1, In particular, independently of n we have the
Lipschitz condition [z™ — y™| < 2|Al, where |.| denotes the maximum norm.

Further note that if an index ¢ is not an image of ¢, ,, the value of 2™ will not be
changed by fluctuations in the ith coordinate of x as long as these fluctuations do not
alter the spike train. Therefore information about the initial condition z may be lost
during the dynamics, and such a loss is of course irreversible: the number of images
of 1 » cannot increase with n.

As a first step in analyzing the dynamics, we show that some properties of the
trajectory can be inferred from the knowledge of its spike train. We shall say that
a point  becomes spike periodic if S(z*) = S(z**") for a suitable period n and all
k > ko. An even weaker notion of periodicity will be useful in what follows as well. If
only U(z*) = U(2¥*+"), for a suitable n and all k > kg, we say that 2 becomes weakly
spike periodic.

LEMMA 3.1. If a point x is spike periodic, then its trajectory becomes periodic.

Proof. Let the spike period of z be n. Setting ¢ = ¢, due to spike periodicity
we have tz gn = # for any positive integer k, where ¢* is the k-fold composition of ¢
with itself. Since there are only finitely many mappings of the index set into itself,
the sequence ¢* must become periodic. That is for suitable ky and m, (fotim ko
holds for any nonnegative integer [. Setting A = ™" — x (3.2) yields that for any
integer [ > 0

=1

$§k0+(l+1)m)n . wgko+lm)n _ ALko @ - Abko (1)
Since the above RHS is independent of | and the state space is bounded, this RHS
must in fact vanish and the trajectory of z™*0 is periodic. O

In the following we shall be interested in situations where certain groups of neu-
rons always spike synchronously. We shall say that the trajectory of a point x is a
partition if U(z*) and U(z™) are either identical or disjoint for any n and k in Np.
For partitions a weaker version of the above lemma is available.

LEMMA 3.2. If the trajectory of x is a partition and weakly spike periodic, then
x becomes spike periodic.

Proof. Let n be the period of the spike sets U(2*). Since the trajectory is a
partition, the index mapping ¢ ,, is constant on each set U(xl) with [ < m. Due
to the weak periodicity one may in fact lift the restriction on [ when m > n, and in
this case for any [ and k there is a suitable v such that ¢« ,,,(i) = a € U(a') for all
i€ U(ah).

As the number of spike trains of a given length is finite, we can find two different
exponents k and k' such that =¥ and 2 have the same spike train up to time n (and
k — k' will then be a multiple of n). We shall show that the spike trains of zF and 2%
must be the same for all times. Assume them to be the same up to some time m > n.
By weak periodicity U(z**™) = U(2*+™), and now the remark in the preceding
paragraph together with (3.2) yields that for a suitable a and any i € U(2*+™)

xf+m B zi'cl+m = (zk B a:k,)a B (xk —a* )bmk,m(amk+m—1)’
The RHS is independent of ¢, and abbreviating it with ¢, we have xi-”m = xfurm +6
for all i € U(z**™). But this implies that the trigger sets of z**™ and z*¥'*™ are
identical, V (z"t™) = V(2*"+™™). Therefore the spike trains are the same up to time
m + 1 and thus for all times. This means that the trajectory of z* is spike periodic,
with a period which may perhaps be larger than n. ]
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The following simple observation will repeatedly be useful in what follows. Let x
and y be two points in R? and assume that z; < x5 but y; > yo. Then |21 12| < |2—v]
by the following case distinction:

r1—Y2 < X2 — Y2
Yy2—r1 < Yy — T1.

rr > Y2,

3.3 If
( ) €1 S Y2,

0 <
then 0 <

LEMMA 3.3. If the points x and y have the same spike sets up to time n, i.e.,
U(z!) =U(y') for 1l =0,...,n — 1, then the Lipschitz condition |z" — y"| < 2|z — y|
holds.

Proof. For [ = 0,...,n we shall construct N dimensional vectors A(®) and real
numbers §() such that the differences between the two trajectories satisfy xl —yl =

AZ(-I) + 60 and such that further the following relations hold:
(3.4) z—y=A0" JAUD <|AD] and |6UY] < |AD)

For | = n this immediately yields the lemma.

We proceed by induction and for the base case [ = 0 we get 6(9) = 0. Fixing some
[ >0 with I <n, weset o =ayu and 3= a,. Ifi ¢ U(z'), since U(z!) = U(y') we
have by (3.1)

Ay =l g (B — ) — (05— 1)
=l — gyt — 6O + (00 — 2!, +6D) — (85 — y}))

and thus set 609 = (0, — 2!, +6W) — (05 — ylﬂ) and AElH) = Agl). If i € U(al),

I+1 .
we set AT = 504D gince gt — 4 +1

implies the first one.
To prove the second inequality, note that (6, — 2L, +6W) < (65 — xlﬂ +6M) since

= 0. Thus the second inequality in (3.4)

a is a trigger for 2! and (0, —y,) > (05 — yfa) since 3 is a trigger for y!. Applying
the observation (3.3) to the two inequalities then yields

8] < max{| — 2, + 8" + bl | — 2k + 8"+ yhl}
= max{|AQ],|AD} <A@ D

LEMMA 3.4. If the trajectory of a point x is a partition, then x becomes weakly
sptke periodic.

Proof. Set wmin = min{w;;|i # j}. By boundedness of the state space, we
can find two different exponents m and n such that 42" — ™| < Wy, We claim
that U (2" %) = U(2™**) for all nonnegative integers k, i.e., that = becomes weakly
spike periodic. Otherwise let & > 0 be minimal such that U(z"**) # U(z™**).
We just need to show that U(2z"**) and U(z™**) are not disjoint, thus violating
the assumption that the trajectory is a partition. To lighten the notation set y =
2"k o = a,, 2z = 2™F* and B = «,. Further note that by the minimality of k we
may apply Lemma 3.3 and obtain 2|y — z| < wmin. Since a € U(y), we need only to
prove that also 8 € U(y). Conversely, assume that 5 ¢ U(y); then from (3.1) we get
05 > ys + 0o — Yo + Wga, and thus wmin < 0 — ys — (0o — Ya). Now

05 —ys — (0o — Vo) = 28 — Ys — ((0a — Ya) — (05 — 23))
<y — 2|+ 100 — ya) — (05 — 25)|.
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To bound the second summand, note that the pairs (6o — yo,0s — ys3) and (6, —
Za, 03 — z3) satisty the preconditions of (3.3) since « is a trigger for y and 3 a trigger
for z. Applying (3.3) yields that also |(0a — ya) — (05— 23)| < |y —z|. Hence 3 ¢ U(y)
implies Wpin < 2|y — z| and this is impossible by the construction of y and z. 0

LEMMA 3.5. For almost all weights wy;, any trajectory which is a partition and
is periodic has period 1.

Proof. First note that since the trajectory is a partition, for any index i there is
a unique set U(z!) such that i € U(z!) and we denote this set by U;. One then has
that ¢y ;(?) € U; and 14 (ay) = oy for any { > 0.

The next step will be to show that for [ > 0 the activation !

; can be written as

(3.5) zl = Ty 1 (6) = Tugylay—r) T Wi(l) — Wc(f) Lt @El)

2 =l

with suitable Wi(l) and @El) from the following sets:

N
Wi(l) S Z ijkQUjk | mji € Np s

jeU; k=1

N
@Z(-l) € {Z 210k | zi integer} .

k=1

In addition, if i ¢ U(z!"1), then Wi(l) can be chosen to be positive. For [ = 1 the
statements are an immediate consequence of (3.1). For the induction step first assume
that i € U(z!) and thus ¢z ;41(i) = tz11(ag). So 24t = 0 can be written in the
form (3.5) by setting Wi(Hl) = W(iljl) = Wélw)l and 95”1) = 0. For the case i ¢ U(x!)
we have tz111(4) = t5(7). Further ¢y 141(0u) = tz (), and by using (3.1) as well
as (3.5) for 2} and z!, = we obtain
l 1
=) T te WY wy WD 400 — 0+,
JEU(at)

We have already set Wéﬁj” = W(gljl and thus the induction step is completed by the
assignments

W= w0+ Yuy, and 00 =60~ 00, +4,..
JEU (2!)

Now assume that the period n of the trajectory is greater than 1. Then we can
find an [ such that U(z'~!) and U(2!) are disjoint and we may assume that this is
true for I = n. Further ¢;,(a.) = a, and using z7 = 4, (3.5) yields

0=, \(0,un) + WS =W +00Y.

Further since U(z" 1) and U(z™) are disjoint, o, & U(z™ 1), and so we may assume
that Wo(éz > 0. Now typn(agn-1) € Uy, , = U(z"""), and thus by periodicity
we have z,, (o, ;) = 0. Therefore the above equation means that the numbers
{wjr | j € U(z),k =1,...,N} are rationally dependent on {wjy | j € U(z" 1),k =
L,...,N}U{by | k=1,...,N}. i
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LEMMA 3.6. The conditions (2.3) and (2.4) imply that any neurons which spike
synchronously at some time will always spike synchronously in the future, i.e., for all
p,lo > 0 the relation Iéo = xé-o = 0 implies that :1:20“) =0& xéﬁp = 0.

Proof. Assuming lp = 0 and z; = x; = 0, let p; (p;) be the smallest natural
number such that 27" =0 (2} = 0).

If p; > pj, using (3.1) to compute 27, we obtain that for a suitable nonnegative ¢

p;—1
0; <t+W; where W; = Z Z Wi,
n=0 meU(z™)
pj—1
(36) 0; >t+ Wij + W, where W, = —Wjj + Z Z Wim,-
n=0 meU(z")
In particular, since w;; = 0, for suitable m; > 0 we have W; = >, mjpwj;, and
W; = Y, mpwig. As p; is the smallest number such that j € U(2Pi~!) we may
assume that m; = 0, and we may further assume m; = 0 since p; > p;. Using

the representation of the weights given in (2.3) this means that W;, W; € [A(1 —
u), A(1 + u)] for some nonnegative A. The second inequality in (3.6) allows us to
upper bound A by A < 6;/(1 — u). Combining the two inequalities in (3.6) yields
t—l—wij +W;—0; < t+WJ _gj and thus wi; < ‘Wz —Wj| + ‘01 _9j| <2ul+ ‘91 _0j|'
Using that w;(1 —u) < w;; and the upper bound on A we obtain that p; > p; implies
w;(1 —u) < 2u(maxy, 6x)/(1 — u) + maxy, 6, — miny, 6.

Conversely

maxy Hk — mink 9k: 2u maxy Gk
1—u (1—u)?

(3.7 wj > forj=1,...,N
implies that p; > p; and since this holds for all indices, it implies p; = p;. Condi-
tion (2.4) is just a more readable and more restrictive form of condition (3.7). O

We may now prove the following version of our main theorem.

THEOREM 3.7. For almost all weights satisfying (2.3) and one of the condi-
tions (2.4) or (3.7), the trajectory of any point x becomes fully synchronous.

Proof. According to Lemma 3.6 the conditions imply that two neurons which
spike synchronously once will do so in the future, and thus for any positive integer k
either U (2" )NU(2'**) = 0 or U(z!) C U(2'**). Since there are finitely many neurons,
from some [y onward all such inclusions must be equalities; that is, the trajectory of
z' is a partition. By Lemma 3.4 such a trajectory becomes weakly spike periodic,
by Lemma 3.2 it becomes spike periodic, and by Lemma 3.1 it actually becomes
periodic. Given the thresholds, for almost all weights this period now has length 1
according to Lemma 3.5 and this means that all neurons will eventually spike synchro-
nously. a

4. Discussion. One motivation of the present work was Peskin’s second conjec-
ture according to which nearly identical pulse-coupled oscillators become fully syn-
chronous. It turns out that, although somewhat unexpected after the work of Mirollo
and Strogatz, this conjecture is correct for linear neurons (7 = 0in (1.1)). The conjec-
ture still remains to be proven, however, for leaky integrate-and-fire neurons (v > 0).
Although the concavity has an additional synchronizing effect it changes the situation
for a proof drastically. This is reflected in the structure of the exceptional set: while
with v > 0 and identical oscillators the population synchronizes for all parameters but
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only for almost all initial conditions [22], it synchronizes with v = 0 only for almost all
similar parameters but for all initial conditions. Nevertheless, by using perturbative
arguments, it might be possible to extend our results to leaky neurons in the case that
the magnitude of 7 is small compared to the fluctuations of the network parameters.

An interesting question is whether for some other values of the parameters the
dynamics can be chaotic. For v = 0, our analysis suggests that this is not the case
and that the trajectory of any point x will eventually become periodic. Note that the
number of images of ¢, , cannot increase with n and it is reasonable to assume that
the cases where this number does not shrink to 1 correspond to periodic behavior and
rational dependencies of the parameters. If it does shrink to 1, however, x is contained
in a region in which all points have identical long term behavior. If there are only
finitely many such regions, the dynamics must again become periodic. Thus we conjec-
ture that a network of nonleaky pulse-coupled integrate-and-fire neurons with arbitrary
positive weights, thresholds, and inputs will always converge to periodic firing for any
wniatial conditions; neither chaos nor quasiperiodicity is possible. This is certainly true
for a network of two neurons but remains to be proven for N > 3. The corresponding
conjecture for leaky integrate-and-fire neurons is shown to be true for a pair of neurons
with identical positive weights and identical thresholds but different speeds [4].

In view of the different synchronization and phase-locking phenomena encoun-
tered in cortical measurements (see [10, 9] for references) it would be challenging
to characterize such periodic states and to focus onto patterns of partial synchrony.
For leaky integrate-and-fire neurons first steps in this direction are done by identify-
ing parameter regimes with partially synchronized, periodic, or quasi-periodic firing
patterns [1, 29, 15, 6]. The current model which may be prototypical for excitatory
networks with fast synaptic responses and weak leakiness suggests that these networks
have a tendency to periodic firing and, in particular, to full synchrony if the network
heterogeneity is weak.
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