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A recent experiment showed that neurons in the primary auditory cortex
of the monkey do not change their mean firing rate during an ongoing
tone stimulus. The only change was an enhanced correlation among the
individual spike trains during the tone. We show that there is an easy way
to extract this coherence information in the cortical cell population by pro-
jecting the spike trains through depressing synapses onto a postsynaptic
neuron.

Understanding how information about the world is represented and read
out from large neuronal populations is one of the most challenging tasks of
neuroscience. Recent experiments indicate that the timing of the individual
spikes might be used to represent external or internal stimuli while the mean
firing rate could even be constant (Vaadia et al., 1995; Mainen & Sejnowski,
1995; Meister, Lagnado, & Baylor, 1995; Alonso, Usrey, & Reid, 1996). At the
same time, theoretical analysis of spike trains showed that individual spike
times are much more reliable than those for random trains with the same
mean and variance (de Ruyter van Steveninck, Lewen, Strong, Koberle, &
Bialek, 1997). This raises the question of how the information encoded in a
neural population is read out by a postsynaptic cell if this cell receives the
same number of spikes during its integration time.

The list of experimental evidence that spike timings and correlation
among spike trains may carry important information was recently enlarged
by the study of deCharms and Merzenich (1996) on anesthetized monkeys.
They recorded individual cells and local field potentials in the primary au-
ditory cortex (AI) of the monkey while stimulating with a pure tone. Apart
from transient activity increase at the tone onset and offset, the activity av-
eraged over different presentations and different locations turned out to
be the same during and before the tone. However, during the tone stimu-
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lus, the correlations among the individual spike times of two simultaneous
recordings were significantly higher than before or after the stimulus. It was
recently demonstrated that fast synaptic depression may facilitate transmit-
ting synchronous activity of neuronal ensembles (Tsodyks & Markram, 1996,
1997; Abbott, Varela, Sen, & Nelson, 1997). We therefore propose that the in-
formation about the presence of the ongoing tone stimulus that is distributed
over the AI neurons could be read out through frequency-dependent de-
pressing synapses.

To test our hypothesis, we simulated the output of 500 AI cells by ran-
dom spike trains (see Figure 1c) exhibiting the same statistical properties
as reported in deCharms and Merzenich (1996). There is experimental evi-
dence to assume that before and during the tone, the neurons fire in short
bursts (R. C. deCharms, personal communication, 1997), say, with bursts of
three to four spikes within 40–50 ms, repeated every 200–250 ms. During the
tone, the burst onsets are assumed to be synchronized within groups of 100
neurons that are randomly assembled anew for each burst. Such a scenario
is similar to the activity in the monkey frontal cortex during a reaching task,
where synchronization among rapidly associated subgroups occurs in the
presence of a constant mean firing rate (Vaadia et al., 1995). Since in our
simulation the bursting times of the groups alternate during the ongoing
tone, the overall firing rate of the population remains constant, apart from
the short onset and offset of the tone when most cells burst together (see Fig-
ure 1d). Spike trains generated by this scheme produced cross-correlations
(see Figure 1a), which match those calculated from the actual recordings (cf.
deCharms & Merzenich, 1996).

The synaptic depression was modeled by assuming a limited amount of
synaptic neurotransmitter, which recovers with a slow time constant of 800
ms (Tsodyks & Markram, 1997). Whenever a presynaptic spike arrives, a
fixed fraction of 0.8 of the available transmitter is released. (More generally,
this fraction could be transiently raised by each spike, introducing a fast fa-
cilitating component, although this would not change the main results.) The
synaptic conductance rises instantaneously to an amplitude proportional to
the released transmitter and decays with a time constant of 3 ms.1 During a
burst, the response of such a depressing synapse rapidly decreases for suc-
cessive spikes due to the depletion of the transmitter and its slow recovery.
But during a nonbursting period, the transmitter has time to recuperate, and
this results in a strong postsynaptic response at the onset of the next burst.
If we compare this dynamic response with that for a nondepressed synapse
evoking on average the same postsynaptic potential, the depressed synapse
will have a larger response at the burst onset and a smaller response toward
the end of the about 50-ms-long bursts.

1 The maximal synaptic conductance was ḡ = .15 for the depressing synapses and
ḡ = .0073 for the nondepressing synapses. The synaptic reversal potential was 0 mV in
both cases.
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Figure 1: Applying a tone stimulus (b, amplitude envelope), the model auditory
cells respond at the onset and offset, but during the stimulus they correlate their
bursts only among randomly assembled subgroups (c, spike raster; a, cross-
correlations (CC) among spike trains). Since the mean firing rate is on the back-
ground level during the tone (d, spikes per second per neuron), a postsynaptic
neuron gathering the spike trains through synapses of constant weight would
respond only at the stimulus onset and offset (e). With depressing synapses,
however, the postsynaptic neuron detects the correlated bursts and fires during
the tone as well (f).
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Feeding the synthetically generated spike trains into a leaky integrate-
and-fire neuron2 showed that the synaptic depression is indeed able to de-
tect the partial synchrony in the burst times. With nondepressing synapses,
the postsynaptic membrane potential follows the presynaptic mean firing
rate (see Figure 1d) and is continuously below threshold apart from the
tone onset and offset (see Figure c). With depressing synapses, however, the
partially synchronized bursts pushed the postsynaptic membrane potential
across threshold repeatedly during the stimulus (see Figure 1f). The spikes
are triggered at burst onsets when a group of recovered AI neurons starts
to fire. During such a burst, the postsynaptic membrane potential decreases
because of the synaptic depression and eventually falls below the potential
average. Since the bursts are not synchronized in the absence of the stimu-
lus, high responses at burst onsets are canceled by depressed responses at
burst ends before and after the tone (see Figure 1f). One could ask whether it
would be possible for a postsynaptic neuron with nondepressing synapses
to detect the synchrony by selecting any particular subpopulation of AI
cells. However, this is difficult since the composition of the synchronized
subgroups changes randomly.

The example shows that rapidly depressing synapses enable the brain to
extract coincidence information that otherwise would be hidden or would
require additional circuits. Since speed and strength of the depression are
known to be regulated by the timing between pre- and postsynaptic spikes
(Markram & Tsodyks, 1996), such a timing also determines the capacity for
extracting the coincidence information in the presynaptic population. The
message and its decoding mechanism appear to be dynamically interwoven,
and this generates the power of cortical information processing but also
makes it difficult to break the neural code.
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