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Numerous animal behaviors, such as locomotion in vertebrates, are pro-
duced by rhythmic contractions that alternate between two muscle groups.
The neuronal networks generating such alternate rhythmic activity are
generally thought to rely on pacemaker cells or well-designed circuits
consisting of inhibitory and excitatory neurons. However, experiments in
organotypic cultures of embryonic rat spinal cord have shown that neu-
ronal networks with purely excitatory and random connections may os-
cillate due to their synaptic depression, even without pacemaker cells. In
this theoretical study, we investigate what happens if two such networks
are symmetrically coupled by a small number of excitatory connections.
We discuss a time-discrete mean-field model describing the average ac-
tivity and the average synaptic depression of the two networks. Depend-
ing on the parameter values of the depression, the oscillations will be
in phase, antiphase, quasiperiodic, or phase trapped. We put forward the
hypothesis that pattern generators may rely on activity-dependent tuning
of synaptic depression.

1 Introduction

Spinal pattern generators rely on intrinsic spinal circuits activated by de-
scending signals from the brain stem that autonomously coordinate the
alternate rhythmic activity inducing walking or swimming. The basis of the
alternate oscillations is thought to consist of reciprocal inhibitory synaptic
interactions between two groups of neurons (Getting, 1989). We suggest
that this same functionality can be realized by depressing synapses with
purely excitatory connections between and within the two neural groups.
The proposed mechanism for pattern generation seems to be particularly
attractive since in the early stage of prenatal development, the inhibitory
connections are not yet developed but rhythmic activity can already be
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observed (Gao & Ziskind-Conhaim, 1995). Moreover, the transition between
different activity patterns does not need to be tuned by descending input
or additional circuits. Rather, these transitions may be induced by changing
the parameters controlling the dynamics of the synaptic depression with-
out affecting the connection strength between the networks. The synaptic
parameters themselves can be thought of as being activity dependent, and
this will allow the spinal cord to recall different rhythmic patterns in a
self-organizing way. An activity-dependent regulation of synaptic depres-
sion has indeed been found experimentally in other regions of the nervous
system (Markram & Tsodyks, 1996; Abbott, Varela, Sen, & Nelson, 1997),
and current network simulations suggest that this synaptic self-regulation
may indeed be necessary to generate spinal cord oscillations in a narrower
physiological parameter regime (Streit & Senn, 1997).

In embryonic rat spinal cord cultures, rhythmical activities are induced
by pharmacological blockage of inhibitory synaptic transmissions (Streit,
1993). A time-discrete mathematical model has been developed to investi-
gate the observed phenomena, and its analysis has shown that rhythmical
activities characterized by the synchronous firing of numerous neurons can
be obtained from randomly connected excitatory neurons with synaptic
depression (Senn et al., 1996). However, it is not clear whether the alternat-
ing activity typical for spinal pattern generators can also be based on such
mechanisms. To analyze this question, we investigated the activity gen-
erated by a symmetrical coupling between two identical networks (called
isotropic coupling), as it may occur between the two sides of the spinal cord.
We describe the state of a network by two time-dependent variables: the
average activity and the average synaptic depression. Guided by observa-
tions in organotypic cultures of embryonic rat spinal cord, the strength of
synaptic transmission between two neurons is taken to be depressed after
the occurrence of an action potential in the presynaptic cell and to return
to its normal value with an exponential time course. We found that the
time constant of the recovery from synaptic depression is an adequate pa-
rameter to control the dynamics of the coupled system. In the spinal slice
cultures, the time constant of synaptic depression could be pharmacolog-
ically modulated by atropin, leading to the speculation of a physiological
modulation by presynaptic receptors. Depending on this time constant, the
activities of the networks will either converge to a fixed value or show vari-
ous types of rhythmic behavior. We observe the following oscillations in the
two networks: inphase (0 degree phase lag), antiphase (180 degree phase
lag), out-of-phase (constant phase lag other than 0 or 180 degrees), quasiperi-
odic (oscillating amplitudes), phase trapped (oscillating phase lag), or phase
walkthrough (constant phase drift). In addition, we find bistability where
both inphase and antiphase oscillations are stable at the same parameter
values.

Coupled neural oscillators have been studied theoretically in different
contexts. They have been found to occur in the locomotion of the lamprey
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(Kopell, 1988), in circadian rhythms (Kawato & Suzuki, 1980), in paired
cell oscillations (Rinzel & Ermentrout, 1989; Sherman & Rinzel, 1992), in
short-term memory (Horn & Usher, 1991), and more recently in elementary
pattern recognition where they serve for dynamic feature binding and pat-
tern segmentation (Gerstner, Ritz, & van Hemmen, 1993; Wang & Terman,
1997). In the light of the recent discoveries of synaptic depression in neocor-
tex (Markram & Tsodyks, 1996; Abbott et al., 1997), one can ask whether the
different oscillation patterns that could emerge from synaptic depression
also play a role in higher cognitive functions.

From a mathematical point of view, coupled oscillators are classified ac-
cording to the strength of coupling, and different techniques have been
developed for different coupling strengths. If the coupling is weak, the
effect of the coupling depends on only the phase difference between the
oscillators. This approach of reducing each oscillator to a single-phase vari-
able is based on the average phase difference (APD) theory (Ermentrout &
Kopell, 1991), which until now has been used only in the context of time-
continuous systems. By applying these ideas to the time-discrete case, we
can explain phase-locking phenomena such as inphase and antiphase oscil-
lations (section 3). Unlike the time-continuous case where only phase-locked
solutions exist for isotropically coupled oscillators of the same frequency,
phase trapping is also possible in the time-discrete case. If the coupling
becomes stronger, the amplitudes of the oscillations are disturbed as well,
and quasiperiodicity can occur in both cases. The technique for investigat-
ing this stronger coupling is bifurcation analysis, which we apply to the
time-discrete model (section 4).

2 The Model

A neuron is considered to be a threshold element producing an action poten-
tial when the sum of incoming excitatory postsynaptic potentials (EPSPs)
exceeds some defined threshold value (see Figure 1a). The number of (exci-
tatory) synaptic connections projecting onto each of a population of cells is
assumed to be Poisson distributed with mean µ. Thus, the probability that
there are m connections onto a specific cell is µm

m! e−µ. This probability is as-
sumed to be the same for each cell in the network, a reasonable assumption
as long as one considers cultures of embryonic spinal cord. Although there
are on average µ anatomical connections ending up on a single cell, only
a fraction of these synaptic connections is functionally active and may in-
duce an EPSP in the postsynaptic cell. Obviously the presynaptic cell must
be active, but at the same time, the synaptic transmission must function
reliably. On average, the number of active connections is reduced to µatst,
where at ∈ [0, 1] is the average activity of cells and st ∈ [0, 1] is the average
synaptic reliability at time t. Thus, the probability that there are m active
connections projecting onto a cell at time t is (µatst)

m

m! e−µatst . If a cell needs m◦
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Figure 1: (a) Each neuron is modeled by a threshold element with time-
dependent synaptic reliability. The number of connections onto cell j is Poisson
distributed with mean µ. A possible action potential from cell i to cell j is trans-
mitted only with reliability sji ∈ [0, 1]. (b) Two weakly coupled networks with
random excitatory connections.

incoming EPSPs to exceed a set threshold, the probability of triggering an
action potential at time t+ 1 becomes∑

m≥m◦

(µatst)
m

m!
e−µatst = 1

0(m◦)

∫ µatst

0
xm◦−1e−x dx .

The equation is obtained by integrating the right-hand side m◦ − 1 times by
parts.

If the threshold is normalized to 1 and if K represents the height of an
average EPSP, the cell needs at least m◦ = 1

K EPSPs to reach threshold.
The average activity at+1 of the whole network at time t+ 1 is equal to the
probability that any single cell is activated. Thus,

at+1 = FK(µatst), where FK(y)
.= 1

0( 1
K )

∫ y

0
x

1
K−1e−x dx . (2.1)

In the embryonic spinal cord cultures of the rat, an EPSP is found to
be very large and is roughly 0.8 times threshold (which itself is ∼ 13 mV
above the resting potential; Streit, 1993). We therefore fix the height of an
undepressed EPSP at K = 0.8. In the same cultures, the average number of
connections is estimated to lie between 3 and 20. The average conduction
delay between two cells is∼14 ms, and this time delay is assumed to elapse
between time step t and t+1 in our model (Streit, Spenger, & Lüscher, 1991).
The long conduction delay is explained by the immaturity of the cells and
the fact that axons are not myelinated.

The average synaptic reliability st+1 is calculated from its value st and
the average activity at at the previous time step. Due to effects of synaptic
depression, st+1 becomes small if the previous activity at was large. The
synaptic reliability will therefore be depressed by a factor dτ (at), where
dτ (y)

.= 1 − ye−
1
τ is a linearly decreasing function in y. The constant τ is
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interpreted as the time constant of recovery from synaptic depression and
is referred to as the synaptic depression time (constant). It has been found
to be∼220 ms (Streit et al., 1991), which corresponds to 15 time steps in our
model. In addition, due to synaptic recovery effects, the synaptic reliability
st+1 should be small if it was small during the previous time step. This is
expressed by a further depression factor dτ (1 − st), a linearly increasing
function of st. Including both effects, the synaptic reliability st is given by

st+1 = dτ (at) · dτ (1− st), dτ (y) = 1− y · e− 1
τ . (2.2)

This same formula can also be derived by looking at the history of a
single synapse and a subsequent averaging over the ensemble. Let sji(t) be
the individual synaptic reliability of the connection from cell i to cell j at
time t. As a function of the activity of the presynaptic cell i during the past
two time steps t− 1 and t− 2, we set

sji(t) =



1, if cell i was active at neither time
t− 2 nor t− 1

1− e−
2
τ , if cell i was active at time t− 2

but not at t− 1
1− e−

1
τ , if cell i was active at time t− 1

but not at t− 2
(1− e−

1
τ )(1− e−

2
τ ), if cell i was active at time t− 1

and t− 2 .

(2.3)

The idea is to quantify the influence of a synaptic transmission that occurred
4t time steps before by depressing sji(t) with a factor (1 − e−4t/τ ). Taking
into account only the two preceding time steps and averaging over i and j
yields, together with the first-order approximation st−1 ≈ 1− at−2e−1/τ , the
final formula, equation 2.2 (cf. Senn et al., 1996).

We now consider two networks with identical parameter values that are
weakly symmetrically coupled in both directions (see Figure 1b). The aver-
age number of (excitatory) connections between cells of network i and j is
denoted by µji = µij (i, j ∈ {1, 2} , i 6= j). The number of connections be-
tween the networks is again assumed to be Poisson distributed with mean
µij. Thus, the average number of connections active at time t and terminat-
ing on a cell of the population i consists of active connections of its own
population and of the other population and sums to µiiai

ts
i
t + µija

j
ts

j
t. Here,

ai
t and si

t (i = 1, 2) denote the average activity and the average synaptic reli-
ability, respectively, of population i. From equations 2.1 and 2.2, we obtain
the time-discrete evolution of the coupled system:

a1
t+1 = FK(µa1

t s1
t + µ12a2

t s2
t ), a2

t+1 = FK(µa2
t s2

t + µ21a1
t s1

t ),

s1
t+1 = dτ (a1

t ) · dτ (1− s1
t ), s2

t+1 = dτ (a2
t ) · dτ (1− s2

t ). (2.4)
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In the following discussion, we qualitatively distinguish between weak
coupling, which essentially affects only the phases and frequencies of the in-
dividual oscillators, and medium-strength coupling, which also influences
their amplitudes. In the scenario of weak coupling, we set the average num-
ber µij of connections between cells of different networks to ∼ 0.001 (com-
pare this to the typical number µ ∼ 10 of intrinsic connections per cell),
and for medium-strength coupling we set it to 0.1. It is also possible for
pairs of networks to be strongly coupled, where µij is larger than ∼ 1. Such
oscillators produce only in-phase oscillations.

3 Weak Coupling: Average Phase Difference Theory

3.1 Average Phase Difference Theory for Discrete Time. In APD the-
ory, the description of an oscillator is reduced to a single phase variable. This
phase corresponds to the angle that fixes the position of the oscillator on the
closed curve representing the dynamics in phase space (cf. Figure 10b). The
interaction of two oscillators is then studied by its influence on the phase
difference between the oscillators. In the following, we apply this theory,
which originally was developed for continuous time (Kopell, 1988), to the
present case of discrete time.

We assume that the mapping (at, st) → (at+1, st+1) of the uncoupled
system is smooth and that there is a stable invariant closed curve describing
the uncoupled oscillator. We also assume that the uncoupled mapping is
transformed in such a way that on the closed curve, it shows a constant
increment of the phase θt, θt+1−θt = ω. This is always possible if the rotation
number ω/2π of the invariant closed curve is irrational (Guckenheimer &
Holmes, 1990; Denjoy’s theorem). The constantω is interpreted as the radial
frequency of the phase-variable θ . (Note that the radial frequency ω can be
negative, while the natural frequency f = |ω|/2π of the oscillator is always
positive.) Now we consider two weakly symmetrically coupled identical
oscillators with smooth coupling function hε(θ i

t , θ
j
t ) with

0 < |hε | ≤ ε ¿ 1 . (3.1)

The coupling is supposed to change the (instantaneous) radial frequency ω
of oscillators i by some quantity hε , depending on the actual phases θ i

t and
θ

j
t of oscillator i and j, respectively. The function h = hε(θ i

t , θ
j
t ) defined this

way describes the acceleration of the frequency of oscillator i during one
time step caused by the coupling. Thus, the equations 4θ i

t ≡ θ i
t+1 − θ i

t = ω,
(i = 1, 2), of the uncoupled system become in the presence of symmetric
coupling:

4θ1
t = ω + hε(θ1

t , θ
2
t ), 4θ2

t = ω + hε(θ2
t , θ

1
t ). (3.2)

If ε is small, the phase difference between the two oscillators does not change
too much during n (À 1) iterations as long as n¿ 1/ε. Moreover, if ω/2π is
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irrational, the iterated points θ i
0 = 0 , θ i

1 ≈ ω , θ i
2 ≈ 2ω, . . . , θ i

n ≈ nω start to
sample the invariant curve (ε-)densely and (ε-)uniformly, and this allows
averaging the coupling effect over the closed curve. Hence, dropping the
index ε, the average influence of the coupling at phase lagφ is approximately

H(φ) = 1
2π

∫ 2π

0
h(θ, θ + φ) dθ, (3.3)

and this represents the average acceleration per time step of one oscillator
if it lags the other by φ. For a numerical evaluation of the function H, we
refer to section A.1 (an algorithm in the time-continuous case is presented
in Williams & Bowtell, 1997). The average phase increments of the two
isotropically coupled oscillators may now be written as

4θ1
t = ω +H(φt), 4θ2

t = ω +H(−φt), (3.4)

where φt = θ2
t − θ1

t . The condition that the two oscillators are phase locked
is φt+1 − φt = 0. From equation 3.4, one calculates

φt+1 − φt = 4θ2
t −4θ1

t = H(−φt)−H(φt) = −2Hodd(φt) = 0, (3.5)

where Hodd(φ)
.= 1

2 (H(φt) − H(−φt)) denotes the antisymmetric part of H.
Thus, two solutions θ1

t and θ2
t are phase locked with constant phase lag

φ◦ if and only if Hodd(φ◦) = 0. The solutions are stably phase locked if,
for any small deviation φt from φ◦, the successive phase lags φt+1, φt+2, . . .

converge back to φ◦. It is a simple result from the iteration theory of real
functions that a function φt+1(φt) is stable at φ◦ if it crosses the diagonal
φt+1 = φt with an angle less than 45 degrees—that is, if | dφt+1

dφt
| < 1 at this

point (consider Figure 1b in Senn et al., 1996, with a replaced byφ, or consider
the standard book of Collet & Eckmann, 1986). According to equation 3.5,
one hasφt+1 = φt−2Hodd(φt), and the last equality turns out to be equivalent
to

0 <
dHodd(φ)

dφ

∣∣∣∣
φ=φ◦

< 1 . (3.6)

Thus, equation 3.6 is the condition that the two oscillators, locked at lag φ◦,
are actually stably locked. Notice that the upper bound is due to the time
discretization and does not occur for continuous time (Kopell, 1988, formula
3.7). To make a rigorous statement, we must restrict ourselves to rotation
numbers ω/2π , which are badly approximated by rational numbers—that is,
which satisfy for some c, ν > 0 the relation∣∣∣∣ ω2π − p

q

∣∣∣∣ ≥ c
q2+ν for all p ∈ Z and q ∈ N . (3.7)
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This condition is necessary to exclude a self-locking of the coupled oscilla-
tors on a rational frequency, which could make the approximation in equa-
tion 3.3 bad. Our investigations lead to the following theorem:

Theorem 1. Suppose the mapping describing the uncoupled system exhibits a
stable invariant closed curve with rotation number ω/2π ∈ R \ Q being badly
approximated by rationals. We assume a coupling of the form in equation 3.2 with
coupling function hε satisfying equation 3.1. Then, for small ε, the dynamics of
the coupled system in equation 3.2 is approximated by the averaged equations (see
equation 3.4). The number of phase-locked solutions of equation 3.4 is even and,
enumerating them according to increasing phase lag, at most, every second of these
solutions is stably phase locked. If there are exactly two phase-locked solutions,
the corresponding phase lags must be φ◦ = 0 and φ◦ = π , and at least one of
them is unstable. A solution locked at lag φ◦ is stable if and only if equation 3.6 is
satisfied. The change of the radial frequency ω from the uncoupled oscillation to the
phase-locked oscillation is approximately given by H(φ◦).

Remark. The restriction of ω/2π to numbers that are badly approximated
by rational numbers is rather severe since, although these numbers have full
measure, the parameter values leading to an invariant curve with rational
rotation number generically form open-dense sets (the so-called Arnold
tongues; cf. Arnold, 1965) in the parameter space. On the other hand, the
parameter values with irrational rotation numbers generically have positive
measure as well (Herman, 1983; Guckenheimer & Holmes, 1990).

Proof of Theorem 1. Since the uncoupled mapping exhibits an invariant
curve, it is possible to define the coupling function hε(θ i

t , θ
j
t ) together with its

average H(φ) (cf. section A.1). If the rotation numberω/2π of the uncoupled
mapping is irrational, the angles θt = tω+ θ◦ (t = 1, 2, . . .) of the uncoupled
system are uniformly distributed (see, e.g., Hlawka, 1979) and for small ε, the
temporal average of the interactions converges to the spatial average H(φ)
in the same way as this is the case for multiple-pulse-coupled oscillators
(Ermentrout & Kopell, 1991). In the time-discrete case, we are faced with the
additional problem that the single oscillator might be self-locked onto a fixed
frequency and a fixed phase and that this self-locking force could dominate
the influence of the coupling between the two networks. It remains to be
proved in a mathematically rigorous way that ifω/2π is badly approximated
by rationals, the self-locking can be excluded, since for small perturbations,
the locking at the frequency ω/2π is of lower order than the interaction
hε (cf. Arnold, 1965). For small ε, the qualitative dynamics of the coupled
system in equation 3.2 will then be the same as for the averaged system in
equation 3.4.

To discuss the approximation in equation 3.4, we note that according
to equation 3.5, every zero φ◦ of Hodd leads to a phase-locked solution of
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equation 3.4, and φ◦ represents the constant phase lag from the first to the
second oscillator. Now, the origin φ◦ = 0 is always a zero of Hodd since Hodd is
antisymmetrical, that is, Hodd(−φ) = −Hodd(φ). Similarly, φ◦ = π is always
a zero since Hodd is antisymmetrical with respect to π , that is, Hodd(π −
φ) = −Hodd(π +φ). This last equation follows from the antisymmetry (with
respect to 0) and the 2π periodicity of Hodd. But the antisymmetry with
respect to π implies that every zero must occur symmetrically to π . Since
these zeros are generically nondegenerate (i.e., H′odd(φ◦) 6= 0; see above),
every new zero appears pairwise in the interval (0, 2π) (cf. Figure 2b). To
prove the stability statements, one asserts that generically at every second
zero, the function Hodd crosses the zero line with positive slope. According
to the criterion in equation 3.6, an upward crossing corresponds to a stably
phase-locked solution if, in addition, the slope is < 1. Thus, at most every
second zero can be stable. In case of exactly two zeros (which must be 0
and π ) either the inphase, the antiphase, or neither is stable. The statement
about the frequency follows directly from equations 3.4, from which the
frequency of an oscillation locked at lag φ◦ is found to be ω +H(φ◦).

Apart from the restriction imposed onto the rotation number, there is
another important difference between APD theory for discrete and contin-
uous time. For continuous time, the phase-locked solutions for isotropic
coupling generically arise in pairs symmetrically to the zero lag. Since for
continuous time the stability criterion does not include the upper bound in
equation 3.6, there is generically at least one attractive phase lag, and any
oscillation will eventually stably phase-lock. For discrete time, however,
the phase-locked solutions may all be unstable since there is no guarantee
that every second zero of H will also satisfy the upper bound in equa-
tion 3.6. In such a case, the phase either waxes and wanes (phase trapping)
or shows a constant drift (phase walkthrough). Thus, two weakly isotrop-
ically coupled time-discrete oscillators will, after some transient, be either
phase locked, phase trapped, or phase walkthrough. In case of phase trap-
ping, the phase lag can show any dynamical behavior known from iteration
theory of one-dimensional maps such as 2k periodicity, almost periodicity,
and chaos (Collet & Eckmann, 1986). For continuous time, phase-trapped
solutions were first investigated by Wever (1972) and Kronauer, Czeisler, Pi-
lato, Moore-Ede, & Weitzman (1982) by means of an additional amplitude
consideration.

3.2 Application of APD Theory to the Time-Discrete Model. In order
to apply the theorem to the system (see equation 2.4) we have to ensure that
the rotation number of the uncoupled oscillation (µij) is irrational. This is
the case if the limit set of an iterated point of the uncoupled system forms
a closed curve in the (a, s)-phase plane. It turns out that for the mapping,
there is indeed a high chance of finding parameter values (µ, τ,K)with such
an invariant closed curve. According to the remark above, there is always
a nonvanishing chance to get an irrational rotation number by randomly
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Figure 2: A zero φ◦ of the function Hodd represents stable oscillations with phase
lag φ◦. (a,b) For very weak coupling strength µij = 0.0001 the phase lag φ◦ = π
satisfies the stability criterion (see equation 3.6), and the antiphase oscillation
is therefore stable. (c,d) For weak coupling with µij = 0.02 the slope of Hodd is
positive at the zero φ◦ = 0, and the in-phase oscillation is now stable.

choosing the parameter values. The chance to pick out “bad” parameter
values from an Arnold tongue, which then lead to a discrete orbit with a
rational rotation number is smaller the weaker the coupling is.

As an example, we consider the uncoupled system for the parameter
values µ = 9.0, τ = 9.5, and K = 0.8 and calculate the function H(φ) for the
two coupling strengths µij = 0.0001 and µij = 0.02 (see Figures 2b and 2d
and section A.1 for more details). Looking at the zeros of the asymmetric part
Hodd shows that in both cases, there are phase-locked solutions at φ◦ = 0 and
φ◦ = π . However, applying the criterion in equation 3.4, only the antiphase
solution at coupling strength µij = 0.0001 (see Figure 2b, φ◦ = π ) and
the inphase solution at µij = 0.02 (see Figure 2d, φ◦ = 0), for which the
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Figure 3: (a) One network may “stumble” and oscillate twice in a silent period
of the other (µ = 10, τ = 12, µij = 0.002). (b) The corresponding phase diagram
(a1, a2, s2) shows that the trajectory cuts off the blob of the a1-oscillation during
the time from 3.3–3.6 s (marked with ∗ ∗ ∗ in a and b) while for 3.9–4.2 s, the
trajectory follows the invariant curve (◦ ◦ ◦).

slope of Hodd at the zero is positive, are stably phase locked. Starting at the
same initial condition, the system will converge after some transients to a
stable antiphase oscillation (see Figure 2a) or to a stable in-phase oscillation
(see Figure 2b). For some intermediate values of the coupling strength, the
function Hodd will cross the φ−axes at phase lags different from 0 and π ,
and out-of-phase oscillations with stable lags φ◦ 6= 0, π can be observed.
In general, increasing the coupling strength tends to stabilize the in-phase
solution.

An interesting anomaly is discovered for some parameter values, which
we call a stumbling solution. For these parameter values, one may have two
oscillations of one network against one oscillation of the other network. Af-
ter a transient period, the network eventually will phase-lock (see Figure 3).

4 Medium-Strength Coupling: A Bifurcation Analysis

If the coupling strength is increased by two orders of magnitude, we find
new phenomena such as bistability (stable inphase and antiphase oscilla-
tions) and quasiperiodicity (oscillating amplitude). To explain these phe-
nomena, we fix the coupling strength between the networks at µij = 0.1
and discuss the bifurcations induced by changing the synaptic depression
time τ and the coupling strength µwithin the networks. First we transform
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the system of coupled oscillators into appropriate coordinates to study the
inphase and antiphase oscillations. This canonical transform is given by the

linear mapping (a1
t , s1

t , a2
t , s2

t )
S7−→ (a+t , s+t , a−t , s−t ), where

a+t
.= a1

t + a2
t

2
, s+t

.= s1
t + s2

t

2
and

a−t
.= a1

t − a2
t

2
, s−t

.= s1
t − s2

t

2
.

(4.1)

Analyzing the steady-state equations of system 2.4, we can show that there
is at most one attracting fixed point within the open cube (0, 1)4. This fixed
point has the coordinates (Pf ix,Pf ix), where Pf ix = (a◦, s◦) is the “second”
intersection point of the nullclines CK,µ+µij = {(a, s) | a = FK((µ + µij)as) }
and Cτ = {(a, s) | s = dτ (a)dτ (1− s) } (see Senn et al., 1996).

For in-phase solutions, the coordinates a− and s− vanish, while for (“pure”)
antiphase solutions, one has a+t = a◦ and s+t = s◦ for all t. The fixed
point within these new coordinates is S((Pf ix,Pf ix)) = (Pf ix, 0). Let 8 :
(a+t , s+t , a−t , s−t ) 7−→ (a+t+1, s+t+1, a−t+1, s−t+1) be the mapping (see equation 2.4)
in the new coordinates. The crucial point is that the linearization of8 at the
fixed point diagonalizes to

d8|(Pf ix,0) =
(

d8+ 0
0 d8−

)
, (4.2)

where d8± are 2 × 2 matrices (cf. section A.2). The tangent space decom-
poses into a direct sum E+ ⊕ E− ' R2 × R2 on which d8+ and d8− act,
respectively. E+ is the space of the in-phase solutions and is spanned by the
coordinates (a+, s+) while E− is the space of the antiphase solutions and is
spanned by (a−, s−) and translated to the fixed point. The stability of the
fixed point within the subspaces E+ and E− is determined by the stability of
the corresponding restricted tangent mappings d8±. These linear mappings
are stable if their eigenvalues have modulus smaller than 1 and unstable if
the modulus is larger than 1. As shown in section A.2, the eigenvalues of
d8+ and d8−, denoted by λ+, λ+ and λ−, λ−, respectively, are complex
conjugates and their modulus is calculated as

|λ±| =
√
(µ± µij)ηετ (s◦ + (1− ετ )a◦), (4.3)

where we abbreviated

η
.= fK((µ+ µij)a◦s◦) , fK(y)

.= 1
0(1/K)

y
1
K−1e−y and ετ = e−

1
τ . (4.4)
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Figure 4: (a) Bifurcation diagram forµ = 16. (b) Bifurcation diagram forµ = 10.
At τ+ and τ− a Naimark-Sacker bifurcation in the plane E+ and E−, respectively,
occurs. At τQ, the invariant circle bifurcates into an invariant torus, which again
merges into a circle at τ q. The following abbreviations are used: s = stable, u =
unstable, F = fixed point, I = in-phase oscillation, A = antiphase oscillation,
Q = quasiperiodic oscillation.

4.1 Bifurcations with Respect to the Depression Time Constant τ . By
tuning the synaptic depression time τ , we find that |λ−| < 1 and |λ+| < 1
for τ smaller than some critical value τ+ (see Figures 4a and 4b). This shows
that the fixed point is stable for τ < τ+. At τ = τ+ the eigenvalue λ+
crosses the unit circle and generates a (forward, supercritical) Naimark-
Sacker bifurcation (the discrete analog of a Hopf bifurcation for flows) in
the subspace E+. From this bifurcation, a stable invariant curve C+ close
to the subspace E+ emerges, and this curve is composed of all in-phase
solutions with different starting values. There is a second Naimark-Sacker
bifurcation if the fixed point loses its stability in the directions of E− as well.
This happens at τ = τ− when the eigenvalue λ− crosses the unit circle (see
Figures 4a and 4b). At this point, an invariant curve C− emerges within E−,
which comprises the antiphase solutions for different starting values. At its
birth, when C− is still near the fixed point, C− is unstable since the fixed
point is unstable in the directions E+ orthogonal to C−.

In the case µ = 16 (see Figure 4a), C− and thus the antiphase solutions
become stable at some value τQ > τ− (e.g., through a backward torus bifur-
cation, which was not clearly identified numerically). Independent of this
stability change of the antiphase solutions, the in-phase solution remains
stable for all values τ > τ+. As the bifurcation diagram (see Figure 4a)
shows, we have bistability, in other words, the stability of the in-phase and
antiphase oscillations at the same parameter values. Figure 5 shows that for
τ = 9, both solutions may stabilize after a few oscillations. If the synaptic
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depression time τ is increased also, first the in-phase and then the antiphase
cycle disappear, and this leads to the extinction of any activity.

Fixing the connectivity parameter at µ = 10 (see Figures 4b and 6), we
further observe a bifurcation of the stable invariant curve C+ into a stable
invariant 2-torus. This occurs at parameter value τ = τQ, where C+ itself
loses its stability. The limit set of a trajectory then consists of either the 2-
torus itself (as for τ = 10 in Figure 6), a finite number of closed curves
(see Figure 7a), or a finite number of points. These different limit sets arise
if the components of the corresponding rotation vector (ω1/2π,ω2/2π) are
both irrational (2-torus), if one is irrational and the other rational (collec-
tion of closed curves), or if both are rational (collection of isolated points).
Here, ω1 and ω2 are the radial frequencies of the activity oscillations and
the slower amplitude oscillations, respectively. The phenomenon of hav-
ing two oscillations with different time scales is sometimes referred to as
quasiperiodicity. Between τ = 11 and τ = 12, the 2-torus splits again and
forms a 3-torus (not shown in the bifurcation diagram) since we find three
frequencies corresponding to a rotation vector (ω1/2π,ω2/2π,ω3/2π) (see
Figure 7b). The three different frequencies represent the fast frequency of
the original oscillation (∼6.3 Hz), the slower frequency of the amplitude os-
cillations (∼3 ·10−2 Hz), and the slowest frequency of the amplitude-bound
oscillations (∼ 3 · 10−4 Hz). In the phase space, the corresponding trajec-
tory moves on a 3-torus isomorphic to the direct product of three circles.
If only the first two oscillations are present, the trajectory lies on a 2-torus
embedded in [0, 1]4 (see Figure 7a). Examining the oscillations in Figure 7b
more closely, one sees that the two solutions are phase trapped; the phase
difference itself may oscillate (see Figure 8a). At τ = τ q, the attracting 2-
torus collapses to a stable cycle, which now represents a stable alternating
oscillation (as for τ = 15 in Figure 6). Figure 8b shows that the different os-
cillation types found for static values of τ are also present if the parameter
τ is increased dynamically. For mathematical correctness, we mention that
in general, the limit sets in the phase space with irrational rotation numbers
can also be homeomorphic to Cantor sets (1-, 2-, or 3-Cantori) and this is
even the “typical” case in some measure theoretic sense (Herman, 1983).

4.2 Bifurcations Within the Parameter Plane (µ, τ). We next investigate
the activity patterns as a function of the connectivity number µ and the
depression time constant τ (see Figure 9). From a phenomenological point
of view, the possible oscillations we find for a pair of parameter values (µ, λ)
are either in phase or, more frequently, antiphase. This behavior coincides
well with the prediction of the local fixed-point analysis—with the fact
that for (|λ−| < 1, |λ+| > 1), an in-phase and for (|λ−| > 1, |λ+| > 1) an
antiphase solution emerge. By the same local analysis, the activity converges
to the fixed point (Pf ix,Pf ix) if both eigenvalues have modulus smaller than
1 and the activity dies out if this fixed point does not exist at all. Thus, the
classification of the fixed point yields the following criterion (cf. Figure 9):
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Figure 5: For particular parameter values (µ = 16, τ = 9,µij = 0.1, K = 0.8), the
in-phase and the antiphase solutions are stable. This situation is possible only if
the (pairwise complex conjugated) eigenvalues of the linearized mapping (see
equation 2.4) at the fixed point have modulus greater than 1 (|λ−| = 1.012,
|λ+| = 1.019). (a) With starting values (a1

0, s1
0) = (0.2, 0.1) and (a2

0, s2
0) = (0.2, 1),

the activities synchronize. (b) With different starting values (a1
0, s1

0) = (0, 1) and
(a2

0, s2
0) = (0.2, 1), the activities eventually lock antiphase.

Phenomenological criterion. Letλ± be the eigenvalues (see equation 4.3) of the
tangent mappings dφ± restricted to the subspaces E− and E+. Then, the long-term
behavior of the two network activities may be classified by

1. no fixed point 6= 0: extinction of both activities.

2. |λ−| < 1 , |λ+| < 1: convergence of both to a constant activity a◦ 6= 0.

3. |λ−| < 1 , |λ+| > 1: stable in-phase oscillation.

4. |λ−| > 1 , |λ+| > 1: typically a stable antiphase oscillation (if |λ−| and |λ+|
are not too large, a stable in-phase solution may coexist).

The criterion explains the dynamical behavior in Figure 8b where a
change of the synaptic depression time τ from 4 to 10 and from 10 to 15
evoked the transition from convergence to in-phase oscillation and eventu-
ally to antiphase oscillation. For τ = 4 we calculated |λ−| = 0.939 < 1 and
|λ+| = 0.950 < 1 (convergence); for τ = 10 we calculated |λ−| = 0.995 < 1
and |λ+| = 1.005 > 1 (in-phase oscillation) and for τ = 15 we obtained
|λ−| = 1.011 > 1 and |λ+| = 1.021 > 1 (antiphase oscillation).

The regions of the two-dimensional bifurcation diagram for the coupled
networks almost coincide with the one for the isolated network (Senn et al.,
1996). Whenever the activity of the isolated network dies out, converges, or
oscillates, so do the activities of the coupled network. The in-phase oscilla-
tions occur only in a narrow strip of parameter values (|λ−| < 1 and |λ+| > 1)



1266 W. Senn et al.

0

0.2

0.4

0.6

0.8

1

4
9

10
15

0

0.2

0.4

0.6

0.8

1

a1tau

a2

-

+ :

+

:-:Q

alternating oscilla
tions

attra
cting invariant 2-torus

attra
cting fix

ed point

attra
cting inphase solution

τ

= 9τ Neimark-Sacker bifurcation in E

Neimark-Sacker bifurcation in E

= 15
τ

ττ = 4 1a

2

= 10
τ Torus bifurcation  

τ

a

Figure 6: Orbits in the (a1, a2)-plane for different values of the synaptic depres-
sion time. The connectivity parameters are µ = 10 and µij = 0.1. A time plot
of the corresponding activities is shown in Figure 8b, and in Figure 4b, the full
bifurcation diagram is depicted.

at the borderline between converging activity (|λ−| < 1 and |λ+| < 1) and
antiphase oscillations (|λ−| > 1 and |λ+| > 1) (cf. Figure 9).

4.3 Estimating the Frequencies. In a first-order approximation, the fre-
quencies f , f+, and f− of the uncoupled, the in-phase, and antiphase os-
cillations can be identified by those of the linearization at the fixed point—
that is, by the rotation angles of the mappings d8◦, d8+, and d8−, respec-
tively. Here, d8◦ represents the linearization of the uncoupled system with
µij = 0 at the corresponding fixed point P̄f ix = (ā◦, s̄◦). Using the abbre-
viation η̄ = fK(µā◦s̄◦) and η = fK((µ + µij)a◦s◦), we obtain the following
relation for the linearized frequencies (cf. section A.3):

Lemma 1.

cos(2π f ) = µη̄s̄◦ + ετ (1− ετ ā◦)√
µη̄ετ (s̄◦ + (1− ετ )ā◦)

and

cos(2π f±) = (µ± µij)ηs◦ + ετ (1− ετ a◦)√
(µ± µij)ηετ (s◦ + (1− ετ )a◦)

.
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Figure 7: (a) A quasiperiodic orbit with two frequencies lies on a 2-torus gener-
ated by 5000 iterations of equation 2.4. Notice that the trajectory jumps clockwise
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more frequencies are involved at different timescales. The activity a1 is shown
during intervals of 20, 600, and 1480 iterations. (µ = 10, τ = 12, µij = .1.)
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Figure 8: (a) Plotting the oscillations from the first network shown in Figure 7b
(solid line) together with the oscillations of the second network (dashed line)
reveals a quasiperiodic solution that is phase trapped. (b) While increasing the
synaptic depression time τ , the dynamics change from convergence to a con-
stant activity (τ = 4, t = 0, . . . , 0.5 s), to stable in-phase oscillation (τ = 10,
t = 0.5, . . . , 0.8 s), and eventually to stable antiphase oscillation (τ = 15,
t = 1, . . . , 3 s). The numbers in the figure give the period lengths of the os-
cillations in seconds. (Other parameter values: µ = 10 and µij = 0.1.)
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Figure 9: The four regions in the parameter space (µ, τ) for which the phe-
nomenological criterion in section 4.2 predicts the following behavior: (1) ex-
tinction of any activity, (2) convergence to the constant activity a◦, (3) stable
in-phase oscillations, and (4) typically stable alternating oscillations. Superim-
posed are the two lines corresponding to the running parameter in the bifurca-
tion diagrams of Figure 4, and the circles refer to the parameter values chosen
in Figures 5–8. The four different gray levels are determined by the evaluating
formula (see equation 4.3). (Other parameters: K = .8, µij = .1.)

Evaluating these formulas for µij = 0.1 and for the parameters (µ, τ) with
values lying in the domain (1 ≤ µ ≤ 25 , 1 ≤ τ ≤ 18) of Figure 9, one
finds the relation f < f+ < f−. This confirms the frequency differences we
measured in the case that both the in-phase and the antiphase solutions are
stable (see Figure 10a): coupling the two oscillators with medium strength
increases the frequencies of the oscillators, and the increase is larger for
antiphase oscillations than for in-phase oscillations. That the antiphase os-
cillation is faster than the in-phase oscillation can also be seen by laying the
in-phase and antiphase planes E+ and E− above each other and tracing two
points on the invariant in-phase and antiphase curve C+ and C−, respec-
tively (see Figure 10b). After 10 iterations, the point on the antiphase curve
is moved by an angle 4θ farther to the right than the corresponding point
on the in-phase curve. The validity of the inequality f+ < f− is restricted
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Figure 10: (a) One (in-phase) solution from Figure 5a (solid curve, frequency f+),
one (antiphase) solution from Figure 5b (dashed curve, frequency f−), and the
uncoupled solution (dotted curve, frequency f ) are plotted for t = 0, . . . , 2.2 s.
As predicted by the local fixed-point analysis (section 4), we find f < f+ < f−.
(b) Corresponding plots in the phase plane (a, s). The in-phase oscillations with
larger amplitudes correspond to the outer invariant circle C+, while the inner
invariant circle C− corresponds to the antiphase oscillations. After 10 iterations
(≈ 0.14 s) the “in-phase” and “antiphase” map turned the square and the circle
on the horizontal line onto the upper square and circle, respectively. A point
on the inner antiphase curve is therefore turned by an angle 4θ “faster” to the
right than a point on the outer in-phase curve. This again shows that f+ < f−.

by the following condition (which, however, is satisfied for the considered
parameter values):

Theorem 2. Let f+ and f− be the frequencies of the linearized in-phase and
antiphase solutions. Then for small µij > 0, one has f+ < f− if and only if
ετ

1−a◦ετ
s◦

< µη.

We emphasize that the theorem makes a statement about the frequencies
of the linearized mapping at the fixed point. The interesting point is that
these linearized frequencies fit the relation for the true frequencies in the
case of medium-strength coupling (but not necessarily in the case of weak
coupling). If we ask how these frequencies change with parameters µ and
τ , we find that the frequencies do not change as long as the ratio µ/τ is con-
stant. Increasing the average number of connections µwithin each network
accelerates the oscillations by the same factor as it does by decreasing the
synaptic depression time. That this statement holds fairly well can be seen
from Figure 4 in Senn et al. (1996), where both frequencies were plotted as
functions of the parameters µ and τ . The decrease in frequency when the
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synaptic depression time becomes longer can be seen in Figure 8b. The fre-
quencies corresponding to the values τ = 4, 10, 15 are 10 Hz, 7.1 Hz, and
5.6 Hz, respectively. Notice that for τ = 15, the in-phase frequency during
the short transition time is 5 Hz, which is indeed smaller than the antiphase
frequency of 5.6 (≈ 1/.18)Hz after the transient. This is exactly what the
theorem predicts.

5 Summary and Discussion

We have investigated the oscillation types of two weakly connected time-
discrete networks induced by synaptic depression. The parameters that
determine the oscillation pattern are not only the coupling strength be-
tween the networks but also the degree of connectivity among an individ-
ual network and the dynamics of the synaptic depression. By developing
a discrete version of the APD theory, we showed that for weak coupling
(µij ∼ 10−4µ), an increase in the coupling strength can change a stable an-
tiphase oscillation into a stable in-phase oscillation. For medium-strength
coupling (µij ∼ 10−2µ), we further encountered quasiperiodic oscillations
for which the amplitude itself oscillates. In addition, stable in-phase and
antiphase solutions for the same parameter values may coexist. A bifurca-
tion analysis with respect to increasing synaptic depression time showed
that from a rest point, an in-phase solution emerges through a Naimark-
Sacker bifurcation. This inphase solution evolves to a quasiperiodic solution
through a torus bifurcation. The phase lag changes from inphase to out of
phase, and eventually a stable antiphase oscillation establishes itself. From
a local fixed-point analysis, we deduced that coupling two oscillating net-
works generally increases the frequency; in case of bistability, the antiphase
frequency is again higher than the in-phase frequency.

The transition from in-phase oscillations to antiphase oscillations is in our
case either induced by increasing the synaptic depression time constant or
decreasing the coupling strength between the networks. Roughly, increasing
the depression time constant has the same effect on the dynamical behav-
ior as decreasing the coupling strength. This is also true if one considers the
change of frequency as a function of either the synaptic depression time or
the coupling strength: increasing the synaptic depression time and decreas-
ing the coupling strength between the networks lower the frequency (of the
linearization at the fixed point (cf. Senn et al., 1996, Figure 4). This supports
the suggestion of Kopell (1988) that physiological oscillators always speed
up with excitatory input.

In our situation, an increase of the depression time constant destabilizes
the in-phase oscillations. Destabilization of synchrony is also known to oc-
cur for increasing axonal delays (Crook, Ermentrout, Vanier, & Bower, 1997)
or when increasing the rise time of the excitatory synaptic connections (van
Vreeswijk, Abbott, & Ermentrout, 1994; Hansel, Mato, & Meunier, 1995).
On the other hand, it is well known that for increasing coupling strength
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between two oscillators, an antiphase oscillation will turn into an in-phase
oscillation (Schillen & König, 1991; Sherman & Rinzel, 1992). This feature
is used to train networks with a Hebbian learning rule to perform mem-
ory tasks (Horn & Usher, 1991) or to solve the binding problem (Wang &
Terman, 1997). Our investigation suggests that these same tasks can be re-
alized by learning the synaptic depression time constant where instead of a
Hebbian increase of the coupling strength, the depression time constant of
a synapse showing coincident presynaptic and postsynaptic activity is de-
creased. Such a network of oscillators based on depressing synapses would
have the advantage of allowing for a richer dynamical behavior than a clas-
sical oscillator network based on pairs of excitatory and inhibitory cells with
static synapses. (Note that one excitatory cell with N depressing synapses
projecting onto it would correspond to one excitatory cell with N static
synapses together with N inhibitory cells, which would regulate the re-
sponse of these synapses.) It remains to be explored whether this additional
dynamic complexity may improve the capacity of an oscillatory-based as-
sociative memory in storing spatiotemporal patterns.

For locomotion, traditional pattern generators are based on the idea that
different activity patterns are induced by either tuning the coupling strength
between the networks or changing the network configuration through cen-
tral input (Grillner, 1981; Kopell, 1988). This study, however, suggests that
spinal pattern generators may consist as well of unstructured excitatory
neural networks characterized solely by the dynamics of their synaptic de-
pression. The fact that different oscillatory behavior can emerge by chang-
ing the parameters of the synaptic depression opens the possibility of an
activity-dependent self-regulation of the pattern generator. In order to test
this hypothesis experimentally, we have started to perform multisite record-
ings of weakly coupled dissociated spinal networks and hope to be able to
modulate the dynamics of synaptic depression at the different sites phar-
macologically.

Appendix

A.1 Calculation of the Function H(φ). We assume that the uncoupled
system has an invariant closed curve C◦ with irrational rotation number
and first want to transform C◦ to a circle with constant rotation angle ω (in
Figure 10, this curve coincides approximately with C+). According to Denjoy
theory, such a transformation is possible if the mapping on the invariant
curve is at least twice continuously differentiable (Guckenheimer & Holmes,
1990); it may not be possible if the mapping is less smooth (Herman, 1983).
Let αt be the cumulated angle of an iterated point measured with respect to
some zero direction and center Pf ix. Since the mapping on the curve C◦ is
injective and continuous (and thus monotonic), the average rotation angle
ω = limt→∞ αt/t is well defined, and ω/2π represents the rotation number.
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The transform αt
g7→ θt of α to the new angle coordinate θ with constant

rotation is now defined by

θt = g(αt) = tωmod 2π (t = 0, 1, 2, . . .) . (A.1)

Numerically this is done by iterating the uncoupled mapping (see equa-
tion 2.4) to obtain the list of angles (α0, α1, α2, . . . , αN)mod 2π and by as-
signing this list to the equidistant new angles (0, ω, 2ω, . . . ,Nω)mod 2π .
Continuous continuation leads to a coordinate transform α(mod 2π) ↔ θ

of the circle onto itself with the property in equation A.1 and which is again
continuous and monotonic. All calculations were performed by MATLAB1

and to implement the function FK we used the built-in function gammainc.
Next we consider the two weakly coupled oscillators: the first at phase

θ1 and the second at phase θ2 in the new angle coordinates. We define the
function h(θ1, θ2) as the deviation from the constant rotation angle ω of
the first oscillator for one iteration step, which is caused by the coupling.
Thus, setting θ i

t := θ i for i = 1, 2, we calculate θ1
t+1 in the presence of

the coupling via (θ1
t , θ

2
t ) 7→ (α1

t , α
2
t ) 7→ (α1

t+1, α
2
t+1) 7→ (θ1

t+1, θ
2
t+1) and put

h(θ1, θ2) := θ1
t+1−(θ1

t +ω) (while taking care of the 2π periodicity). To obtain
H(φ)we calculate a list h(θ, θ + φ), θ ∈ [0, 2π ], and average h(θ, θ + φ) over
one cycle of θ (cf. equation 3.3).

A.2 The Local Fixed-Point Analysis. We consider the mapping (see
equation 2.4) within the diagonalized coordinates (4.1), 8: (a+t , s+t , a−t , s−t )
7−→ (a+t+1, s+t+1, a−t+1, s−t+1), and calculate its linearization at the fixed point
(Pf ix, 0), Pf ix = (a◦, s◦). We make the ansatz

a1
t = a◦ + αt , a2

t = a◦ ± αt ,

s1
t = s◦ + σt , s2

t = s◦ ± σt ,

and consider the mapping (αt, σt) 7−→ (αt+1, σt+1) in the two cases ±. Writ-
ing the derivative of 8 at the fixed point according to equation 4.2, one
obtains

d8± =
 ∂a±t+1

∂a±t

∂a±t+1

∂s±t
∂s±t+1

∂a±t

∂s±t+1

∂s±t

 = ( ∂αt+1
∂αt

∂αt+1
∂σt

∂σt+1
∂αt

∂σt+1
∂σt

)

=
(

(µ± µij)ηs◦ (µ± µij)ηa◦
−ετdτ (1− s◦) ετdτ (a◦)

)
, (A.2)

where we used the abbreviations from equations 2.2 and 4.4. Now one makes
use of the fact that the eigenvalues of d8+ and d8− are complex conjugated.

1 MATLAB, The Language of Technical Computing, MathWorks Inc., Version 2 (1996),
http://www.mathworks.com.
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This follows from the fact that d8± is composed of a genuine rotation (cf.
proof of lemma 2 in Senn et al., 1996). Let us denote the eigenvalues of d8+

and d8− byλ+,λ+, andλ−,λ−, respectively. Their modulus can be calculated
directly by means of the determinant, without knowing λ± explicitly:

|λ±|2 = det
(
d8±

) = (µ± µij)ηετ (s◦ + (1− ετ )a◦) . (A.3)

A.3 Proof of Lemma 1 and Theorem 2. Identifying the frequencies f ,
f+, and f− of the uncoupled, in-phase, and antiphase oscillations with those
of the corresponding linearization, we have

λ = |λ|ei2π f , λ± = |λ±|ei2π f± , (A.4)

where λ, λ+, and λ− are eigenvalues of d8◦, d8+, and d8−, respectively.
(We assume that f, f± > 0; otherwise we take the complex conjugate of the
eigenvalues.) The formula in the lemma for cos(2π f±) is obtained according
to

cos(2π f±) = Re(λ±)
|λ±| =

trace(d8±)
2|λ| = (µ± µij)ηs◦ + ετdτ (a◦)√

(µ± µij)ηετ (s◦ + (1− ετ )a◦)
.

The first equality follows from equation A.4. The fact that the real part of
λ± is half the trace of d8± follows from the fact that d8± is composed of
a genuine rotation (Senn et al., 1996) and thus has the complex conjugated
eigenvalues λ± and λ± in their Jordan normal form. The trace of d8± is read
from equation A.2, and with equation A.3, we obtain the third equality. The
formula for cos(2π f ) is obtained in the same way.

To prove theorem 2, we must show the equivalence of f− < f+ and
ετ

1−a◦ετ
s◦

< µη for small µij. According to Lemma 3 in Senn et al. (1996), the
period of the uncoupled system is ≥ 4 and therefore the rotation angle ω
is less than π/2. Thus, the relation f− < f+ is equivalent to cos(2π f−) <
cos(2π f+), and by the lemma we get

(µ− µij)ηs◦ + ετdτ (a◦)√
1− µij

µ

<
(µ+ µij)ηs◦ + ετdτ (a◦)√

1+ µij

µ

.

If we apply the binomial expansion

1√
1± µij

µ

= 1∓ µij

2µ
+O

(
µij

µ

)2

,

the first-order term µij/µ cancels and, neglecting higher-order terms, the
relation transforms after some algebraic manipulations to ετdτ (a◦) < µηs◦ .
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