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Abstract. The equilibrium form of a crystal is the shape which minimizes the total surface
tension for a given volume. The surface tension itself is considered to be a function of the
orientation of the crystal face within the crystal lattice. This function of orientation is identified
with the stable norm on the second homology classes of a Riemannian 3-torus. Minimizing the
total surface tension of the crystal leads to an equilibrium form which corresponds to the dual
unit ball of the stable norm. We outline the connection between surface tension and stable norm
and interpret the differentiability properties of the stable norm in terms of the crystal shape.
The differentiability properties, in particular, prove Sohnke’s reciprocity law estimating the size
of crystal faces.
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1. Introduction

At the end of the last century Gibbs and Curie proposed regarding a crystal as a
body which minimizes its total surface tension for a given volume. The solution of
this isoperimetric problem (constant volume, minimal surface tension) goes back
to the crystallographer G. Wulff and has been improved up to broad generality.
The isoperimetric problem implicitly assumes the knowledge of the surface tension
as a function of the orientation of the crystal face. In 1915 P. Ehrenfest suggested
a means of characterizing the surface tension in a purely geometric fashion based
on the coordination polyhedra of the crystal [6]. It was at the beginning of the 50s

that C. Herring and L. D. Landau established some differentiability properties of
the surface tension as a function of the surface orientation [8, 9]. They considered
Van der Waals interactions between surface steps which raise the surface tension.
For a modern survey of such molecular effects see [6].

In our approach we go back to Ehrenfest’s geometrical point of view and ex-
plain the same phenomena in a pure differential geometrical frame work. The Van
der Waals interactions between the steps translate into a deformation of the local
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space geometry. Instead of the additional interaction energy of a step we speak
of an enlargement of the metric in R3. Instead of a single crystal face which lo-
cally minimizes the free energy we speak of a minimal surface with respect to the
periodically deformed metric. The well-known differentiability properties of the
surface tension turn out to be the consequences of the renormalization process in
our geometrical interpretation (Section 2). Whether the surface tension exhibits a
non-differentiability at a face orthonormal to some vector γ ∈ R3 depends on how
the vector γ lies within the crystal lattice. The degree of the non-differentiability
is equal to the rational dependency of the components of γ (cf. theorem 1 and
2). Solving the isoperimetric problem, the differentiability properties of the sur-
face tension produce a surprisingly self-similar collection of faces of the minimizing
body (Section 3). Finally, we describe a 3-dimensional example extending Ehren-
fest’s 2-dimensional one (Section 4).

From a crystallographical point of view, the importance of the crystal model
discussed here consists in its simplicity and its power to explain some characteristic
properties of crystal forms from a pure geometrical point of view. It is remarkable
that the presence of a Z3-periodic crystal lattice alone provokes the typical face
shape structure of a crystal and that it even induces Sohnke’s reciprocity law. To
explain the crystal shape in a first approximation it is in particular not necessary
to understand any of the complex mechanisms of chemical reaction, condensation
or diffusion.

From a mathematical point of view, our main contribution is to stress the close
relationship between the surface tension of a crystal and the mathematical object
of the stable norm. We consider the surface tension of a crystal as a function of the
orientation of the corresponding crystal face. The crystal face itself may be seen
as representing a 2-dimensional real homology class on the torus T 3 = R3/Z3.
The surface tension then is a function on these homology classes, namely the
stable norm on H2(T 3,R), the 2-dimensional real homology classes of (T 3, g), with
respect to some metric g. Roughly speaking, the stable norm of such a homology
class is the minimal (g-)area of a 2-cycle representing that class. There is a one-to-
one correspondance between real 2-dimensional homology classes v ∈ H2(T 3,R)
and normal vectors γ ∈ R3 which are normal to planes in R3 going through the
origin. Note that the projection of a plane in R3 onto the torus T 3 represents
a real 2-cycle in T 3 which is uniquely defined up to normalization. The normal
vector γ(v) corresponding to the homology class v is called rotation vector of v.
For integer homology classes v ∈ H2(T 3,R), which have integer rotation vectors
γ(v) ∈ Z3, the stable norm ‖v‖st is the least area of a 2-dimensional subtorus in
T 3 with rotation vector γ(v). For rational homology classes the stable norm ‖v‖st
is obtained by a normalization procedure from the stable norm on integer classes
and for real classes by an additional limit process.

The stable norm of a real homology class may also be obtained by lifting the
metric g on the torus to a metric g̃ on R3 and by measuring the average g̃-area
of the lifted minimal 2-cycle. Note that, due to the projection R3 → R3/Z3, any
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surface Fγ ⊂ R3 homeomorphic to a plane and lying in a bounded strip orthogonal
to γ, i.e. with dist(x,Fγ) ≤ const for every x ∈ R3 with xγ = 0, represents a
homology class v with rotation vector proportional to γ. Let us restrict ourselves to
rotation vectors γ with Euclidean norm 1, γ ∈ S2 = {x ∈ R3 : ‖x‖Eucl. = 1}, and
let us moreover assume that the surface Fγ is g̃-minimal with respect to compact
variations. Then the stable norm ‖v‖st of the homology class v with rotation
vecor γ(v) ∈ S2 is the average (g̃-)area of Fγ :

‖v‖st = lim
r→∞

Ag̃(Fγ ∩B3
r )

r2π
, v ∈ H2(T 3,R) with γ(v) ∈ S2 , (1)

where Ag̃ denotes the g̃-area and B3
r denotes the unit ball B3

r = {x ∈ R3 :
‖x‖Eucl ≤ r}. Actually, the right-hand side of (1) defines the ‘homotopical stable
norm’ rather than the ‘homological stable norm’, cf. [14]. Although the ‘homolog-
ical stable norm’ of a vector v in general is smaller or equal than its ‘homotopical
stable norm’, the two coincide for ‘non-pathological’ metrics.

The connection between the stable norm and the surface tension is the follow-
ing: We consider a Z3-periodic metric g̃ on R3 which is a small perturbation of the
Euclidean metric. Such a perturbation will be interpreted as Z3-periodic distor-
tion of the space metric which is introduced by presence of the crystal molecules.
A crystal face orthogonal to some unit vector γ in R3 is identified with a bounded
domain of a (g̃-)minimal surface Fγ as described above. The surface tension φ(γ)
is obtained in a natural way as the average (g̃-)area of the ‘crystal face’ Fγ and
thus is equal to the stable norm of the homology class corresponding to γ. The
description of the surface tension in terms of the average area is a geometrical
version of the notion of the specific surface free energy given in physical literature
as e.g. [8]

The notion of the stable norm is directly related to the notion of the min-
imal average action which arises in the context of variational problems for non-
parametrized minimal surfaces in the torus T 3. In this case one restricts to surfaces
represented as graph of a (C◦-)function u : R2 → R and the variational problem
consists in minimizing the integral

∫
F (x, u, ux) dx over all compact domains of

R2. The variational integrand is a function F : R2 × R × R2 −→ R which is
Z3-periodic in the first 3 variables (x1, x2, u) ∈ R3 and which satisfies the Legen-
dre condition and some further differentiability constraints, cf. [10, 11] For every
‘rotation vector’ α ∈ R2 one defines the minimal average action by

A(α) = min
u

lim
r→∞

1
r2π

∫
B2
r

F (x, u, ux) dx,

where B2
r = { x ∈ R2 : ‖x‖Eucl ≤ r } is the disc with radius r and center 0 ∈ R2.

The minimum is taken over all maps u : R2 −→ R with |u(x)−α ·x| ≤ const , i.e.
over all ‘surfaces’ lying in a bounded strip orthogonal to (−α, 1). The standard
example is the Dirichlet integrand F = 1

2‖ux‖2Eucl whose ‘minimal solutions’ u
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are exactly the harmonic functions u(x) = αx+ const . Within this mathematical
setting, the surface tension of a crystal face lying - with respect to the crystal
lattice Z3 - orthogonal to γ = (−α, 1) is identified by the minimal average action
A(α)/‖γ‖. For a survey of the mathematical objects introduced here we refer to
[4] and the citations therein.

Let us now specify the problem of crystal shape. Let W ⊂ R3 be any body
with a fixed volume vol3W and measurable boundary ∂W . Assume that to almost
every boundary point x ∈ ∂B the exterior normal γ(x) ∈ S2 exists. According to
the approach of Gibbs and Curie, the crystal with surface tension φ(γ) is realized
by the equilibrium form W ⊂ R3 which minimizing the total surface energy∫

∂W

φ(γ(x)) dx != min , under the constraint of vol3W being constant . (2)

The letter ‘W ’ stands for ‘Wulff crystal’ and will be identified with the dual unit
ball B∗φ of the norm φ. Note that for φ ≡ 1 this is the classical isoperimetric
problem of finding the body with least surface and fixed volume.

We split the problem of finding the equilibrium form into the two parts:

A Determine from a geometrical point of view the typical properties of the surface
tension φ(γ) as a function of the (outward) unit normal γ.

B Given φ(γ), determine the equilibrium form W of the crystal, i.e. find the
solution of the corresponding isoperimetric problem (2).

While part B is well known and recently completed by a new elegant proof [5],
our main contribution concerns part A.

2. Part A: Determination of the surface tension φ(γ)

2.1. Geometrical definition of φ(γ) and differentiability properties

We think of a crystal lattice as an infinite set of identical molecules sitting at
the sites Z3 ⊂ R3. A crystal face is determined by a cleavage face separating the
molecules of the crystal lattice and passing through the locus of minimal interaction
energy between these molecules. In a geometrical image, the energy to separate
the crystal lattice is assumed to be proportional to the microscopic area of the
crystal face passing closely to the molecules. The obstacle-effect of the crystal
molecules may be modeled by a Z3-periodic metric g̃ on R3 which is large about
points of Z3 and this enforces a minimal surface to turn around these sites. The
average energy needed to separate the crystal lattice Z3 along some infinite surface
is identified with the average (g̃-)area of that surface. Since the separation energy
has to be minimized, such a cleavage face should be a minimal surface with respect
to the Z3-periodically perturbed ‘obstacle-metric’. The surface tension φ(γ) is
obtained as the average area of a (smooth) minimal surface Fγ ⊂ R3, the cleavage
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face, which lies in a strip between two affine planes orthogonal (in the Euclidean
sense) to γ. Notice that this last condition may be seen as a boundary condition
with boundary at infinity. The term ‘minimal’ states that an arbitrary smooth
variation of the surface Fγ supported on a compact domain is area-increasing or
at least indifferent. The term ‘average’ refers to normalization with the area of
an Euclidean disc (cf. Fig. 1). Denoting by Ag̃ again the g̃-area and abbreviating
B3
r = {x ∈ R3 : ‖x‖Eucl ≤ r}, our geometrical definition of the surface tension

φ(γ) is

φ(γ) .= lim
r→∞

Ag̃(Fγ ∩B3
r )

r2π
, γ ∈ S2 . (3)

For small Z3-periodic perturbations of the Euclidean metric this is equivalent to
the stable norm ‖v‖st given in (1), where v ∈ H2(T 3,R) ' R3 is the real homology
class with coefficients γ(v) = γ.

The existence of minimal surfacesFγ for γ ∈ S2 is proved in [3]. One shows that
for large Z3-periodic perturbations of the metric g̃ there are regions in R3 where
no minimal surface Fγ passes for any γ ∈ S2 [2]. These regions represent the sites
of the crystal molecules with high interaction energy such that no cleavage face
will pass there. The question of how much the metric is allowed to be perturbed
until such regions arise where no Fγ passe is related to stability problems and is
quite delicate [11].

In order to describe qualitatively the solution of the isoperimetric problem∫
∂B

φ(γ) one needs to know about the differentiability properties of the surface
tension φ(γ). First, let us extend the function φ(γ) homogeneously from S2 to R3

by defining φ(λγ) .= λφ(γ) for all λ > 0 and all γ ∈ S2. Moreover, we define for
γ ∈ R3 the subspace

Vγ
.= spanR {k ∈ Z3 : kγ = 0} ,

in R3 which is orthogonal to γ. Notice that dimVγ = 2 if and only if γ is a
rational direction, i.e. R+γ ∩Q3 6= ∅. Conversely, dimVγ = 0 if and only if the
components of γ are rationally independent. One has dim Vγ = 1 if there is, up
to dilatation, exactly one integer vector ( 6= 0) in the orthogonal complement of
γ. We will see that the body B solving the isoperimetric problem has a face of
dimension dimVγ orthogonal to γ. This is essentially due to the fact that φ is
not differentiable at γ in the directions lying in Vγ while it is differentiable in any
direction orthogonal we define to Vγ .

Let V ⊥γ denote the orthogonal complement of Vγ in R3 (with respect to the
Euclidean metric) and let the term (Dβ +D−β)φ(γ) denote the difference of right-
and left-sided derivative of φ at γ in the direction β. (Recall that, ifDβφ defines the
directional derivative in the direction β, the left-sided derivative in the direction
β is given by −D−βφ.)

Theorem 1. Let β, γ ∈ R3 \ {0} and suppose that there is a region in R3 where
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Figure 1.
The definition of the surface tension or average area φ(γ) according to (3). Above: The metric
in R3 is enlarged Z3-periodically around the dots which are interpreted as crystal molecules.
With respect to this metric, Fγ ⊂ R3 represents a minimal surface which lies between two affine
planes orthonormal to γ = 1√

17
(1, 0, 4). Below: The part of Fγ cut out by the 3-dimensional

ball B3
r of radius r. The ratio of its area (measured with respect to the deformed metric) and

the area of a disc of radius r (measured with respect to the Euclidean metric) yields in the limit
r →∞ the surface tension φ(γ).
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no minimal surface Fγ (with respect to a smooth periodic metric) passes. Then

(Dβ +D−β)φ(γ)
{

= 0 if β ∈ V ⊥γ
> 0 else .

A rigorous proof of the corresponding theorem in the nonparametric case is
found in [15, theorem 2].

Let us interpret the theorem in terms of boundary singularities of the unit
unit ball Bφ

.= {x ∈ R3 : φ(x) ≤ 1}. Suppose that the metric on R3 is Z3-
perturbed such that the condition in the theorem holds for any γ ∈ S2. Let
∂Bφ

.= {x ∈ R3 : φ(x) = 1} be the boundary of the unit ball and let us put
R+ .= {x ∈ R : x > 0}. Then, the theorem states that the unit ball Bφ of φ is
differentiable at the boundary point ∂Bφ ∩ R+γ = γ

φ(γ) if and only if γ is not
rationally dependent, i.e. iff dim Vγ = 0.

To quantify the singularities we say that a boundary point is 0-, 1- or 2-singular
iff the tangent cone to Bφ at ∂Bφ ∩R+γ contains exactly 0, 1 or 2 linear inde-
pendent straight lines. Thus, a boundary point on Bφ is 0-, 1- or 2-singular iff its
tangent cone is a genuine cone, a ‘wedge-like’ cone or a plane, respectively. The
theorem states that the boundary point ∂Bφ∩R+γ is (2−s)-singular (s=0, 1, 2) if
and only if there are exactly s linear independent integer directions orthogonal to
γ, i.e. iff dimVγ = s. According to [1], this is an example of a convex body with
most possible singularities in the sense of measure: To get all s-singular points
(s = 0, 1, 2) of the boundary ∂Bφ one has to take the union of countable infinitely
many compact sets of finite s-dimensional Hausdorff measure.

To give the mathematical bases of Sohnke’s reciprocity law (cf. Section 3 ) we
estimate (Dei +D−ei)φ(γ) from above, where ei, i = 1, 2, 3, are the standard unit
vectors in R3:

Theorem 2. There is a constant const> 0 depending on the periodically per-
turbed metric such that for any ‘shortest’ vector γ = (p1, p2, p3) ∈ Z3 (i.e. with
gcd(p1, p2, p3) = 1) and any λ > 0 one has

0 ≤ (Dei +D−ei)φ(λγ) ≤ const · 1
|pi| , 1 ≤ i ≤ 3 , pi 6= 0 .

In the nonparametric case, the theorem corresponds to [15, theorem 3].

Remark. The components pi are interpreted as the Miller indices of the corre-
sponding crystal face orthonormal to γ.
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(0,1)

(1,0)

Figure 2.
Left: The Ehrenfest model of a 2-dimensional crystal. The fat line is a shortest path in diagonal
direction and represents a crystal ‘face’ with the same direction in the large. The distance along
the path divided by the distance in bee-line is equal to the surface tension φ of this crystal ‘face’.
Right: The unit ball Bφ of the Ehrenfest model (thick) represents the bee-line distances which
may be reached by a paths of length 1. The Wulff crystal B∗φ (dotted) is the dual of Bφ.

2.2. Comparison with the work of Ehrenfest and Herring

Let us compare these results with the model proposed by Ehrenfest [6]. He sug-
gested a simple example of a 2-dimensional crystal with square-shaped molecules
filling the plane (Fig. 2). In his example, the specific ‘surface’ free energy φ(γ)
with γ ∈ S1 is the average length of a minimizing path with global direction or-
thonormal to γ and passing along the boundary of the molecules. Extending φ
homogeneously to R2, the unit ball Bφ is calculated to be (cf. Fig. 2).

Bφ = {(x1, x2) ∈ R2 : |x1|+ |x2| ≤ 1} . (4)

In contrast to the situation in theorem 1 and 2, the metric g̃ which would
model the impenetrability of the square-shaped obstacle would be discontinuous.
However, the model explains in a simple way how e.g. at the point (0, 1) the
non-differentiability of the specific ‘surface’ energy φ arises: For any direction
γ ∈ S1, γ 6= ±ei, a crystal ‘face’ orthonormal to γ consists of an infinity of
horizontal and vertical segments of length 1. If the direction of the crystal face
approximates a unit direction ei, the possibility of short-cutting decreases linearly
with the proportion of horizontal and vertical segments. This linear digression is
responsible that the point e1 represents a corner of Bφ. Indeed, by homogeneity
of φ(γ), the right- and left-sided derivatives of φ at e1 in the direction e2 are given
by

De2φ(e1) = lim
h↓0

1
h

(φ(e1 + he2)− φ(e1)) = lim
s→∞

(φ(se1 + e2)− φ(se1)) = 1

−D−e2φ(e1) = lim
h↓0

1
h

(φ(e1)− φ(e1 − he2)) = lim
s→∞

(φ(se1)− φ(se1 − e2)) = −1

and thus do not coincide! Note that φ(se1) = s and φ(se1 ± e2) = s + 1 and
that for Ehrenfest’s example one in general has φ(αe1 + βe2) = |α| + |β| for
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any α, β ∈ Z. In turn, at any point γ ∈ S2 not equal to ±e1 or ±e2 the one-
sided derivatives orthogonal to γ coincide. Setting γ = (cosα, sinα) one calculates
φ(γ) = | cosα|+| sinα| which indeed is non-differentiable exactly for α = 0, π, ±π2 .
The boundary of the unit ball Bφ is obtained as

∂Bφ = { γ

φ(γ)
: γ ∈ S1 } = { (cosα, sinα)

| cosα|+ | sinα| : 0 ≤ α < 2π }

which agrees with (4).

After the initial work of Ehrenfest in 1915 it was Yamada [18] and then Her-
ring [8] and Landau [9] who took up again the problem of equilibrium forms about
1950. Their results, deduced from the interaction energy between molecular steps,
phenomenologically may directly be obtained as geometrical properties of the un-
derlying periodic metric on R3. Refining Ehrenfest’s model, the interaction ener-
gies seem to have the same effect to the surface tension as the assumption that
the molecules do not need anymore to be impenetrable. This impenetrability,
mathematically formulated as an out-smoothing of the periodic metric g̃ on R3,
leads to an intriguing picture of differentiability properties or, dually, to a surface
structure as drawn e.g. in Fig. 3. We were very surprised to discover qualitatively
our theorems 1 and 2 in the cited works. We give the wording of such a striking
passage from [8, p. 21] (the notation of the surface tension is adapted):

We conclude therefore that at the absolute zero (of temperature) the φ(γ)-plot of
a crystal will have a point cusp of finite angle at every rational orientation. Of
course, the discontinuity in the derivatives of φ(γ) with respect to the angle will be
extremely minute for all except a few of the low-index orientations, but in principle
it is still present. A similar argument leads to the conclusion that knife-edge cusps
will occur for all orientations with a rational ratio of any two Miller indices. This
is an interesting example of a function occuring in physics with discontinuous
derivatives at an everywhere dense set of points.

The Miller indices of a rational plane orthogonal to some γ ∈ Q3 \ {0} are
defined by the components p1, p2 and p3 of the shortest vector in R+γ ∩Z3. For
large absolute values of Miller indices p1, p2, p3 the discontinuity in the derivatives
of φ at γ = λ · (p1, p2, p3) indeed is minute: According to theorem 2 it holds
(Dei +D−ei)φ(γ) ≤ const · 1

|pi| for any λ > 0 and any i with pi 6= 0. According
to theorem 1, indeed a knife-edge cusp may occur if the degree dimVγ of rational
dependency of γ is only 1.

We emphasize that the underlying crystal model describes an idealized crystal
at 0◦ Kelvin without any surrounding medium. If the temperature is raised, the
‘extreme minute’ cusps will disappear by thermal fluctuations and only cusps of
the low-index orientations will survive.
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3. Part B: Determination of the equilibrium form B∗φ

Once the surface tension φ(γ) is known, the minimizing body W of the isoperi-
metric problem may easily be described: Up to dilatation, the body with minimal
surface energy

∫
∂W φ(γ) and prescribed volume vol3W =const is given by the

dual unit ball or Wulff crystal

W = B∗φ = { y ∈ R3 : y · x ≤ 1 ∀x ∈ Bφ } .

Motivated from the thermodynamical point of view, B∗φ is called the equilib-
rium form of the crystal. The isoperimetric result has a long history. In 1901,
G. Wulff gave an explicit construction of the surface-energy-minimizing body as
the intersection of half-spaces according to

B∗φ =
⋂

γ∈ S2

{ y ∈ R3 : y · γ ≤ φ(γ) } .

A new general proof that the Wulff crystal B∗φ is surface-energy-minimizing re-
cently was found by J.E. Brothers and F. Morgan [5].

For the Ehrenfest model the Wulff crystal B∗φ corresponding to the unit ball
(4) is given by the intersection of the 4 half-spaces {y ∈ R2 : y · (±ei) ≤ 1}, where
e1 and e2 denote the standard unit vectors (cf. Fig. 2, right). Thus,

B∗φ = {(y1, y2) ∈ R2 : |yi| ≤ 1 , i = 1, 2} .

In the 3-dimensional case, the differentiability properties of the (convex) unit
ball Bφ ⊂ R3 translate to the dual properties of B∗φ as follows:

• A singular point (i.e. a ‘non-differentiability point’) of ∂Bφ with a genuine
tangent cone corresponds to a genuine affine face of B∗φ.
• A singular point of ∂Bφ with a ‘wedge-like’ tangent cone corresponds to a piece

of an affine line in ∂B∗φ.
• A regular point (i.e. a ‘differentiability point’) of ∂Bφ corresponds to an ex-

treme point (i.e. a 0-dimensional face) of ∂B∗φ.

If the condition in theorem 1 holds for a Z3-periodic metric, the theorem
predicts a quite strange surface structure of B∗φ: For every rational direction
γ ∈ { x

‖x‖Eucl : x ∈ Q3} the Wulff crystal B∗φ has a 2-dimensional face orthonormal
to γ. In general, if the rational dependency of γ ∈ S2 (= dimVγ) is s = 0, 1, 2,
there is a s-dimensional face of the Wulff crystal B∗φ orthogonal to γ. Moreover,
the affine faces are distributed in such a way that the Wulff crystal B∗φ even is
smooth! The smoothness of B∗φ is just the dual property of the strict convexity of
Bφ (for a smooth periodic metric g̃) which may be showed in an analogous way as
in [13]. In a different setting F. Vallet [17] calculated the boundary structure of a
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Figure 3.
A possible surface structure of the Wulff crystal B∗φ after unrolling to the plane. The system
of the convex regions defines a self-similar structure on R2. The convex regions correspond to
affine faces of B∗φ with an integer normal direction γ, R+γ∩Z3 6= ∅. In general, a s-dimensional
face (s = 0, 1, 2) of the dual body B∗φ corresponds to (2 − s)-singular of point Bφ . According
to theorem 1, the dimension s of a face of B∗φ with normal γ is equal to the number dimVγ of
linear independent integer directions orthogonal to γ. I would like to thank F. Vallet for the
permission to enclose his plot from [17].

convex function having the same typical properties as the boundary structure of
B∗φ, see Fig. 3. Between any two pretendedly neighboring faces there is again a
face since between two rational normal directions there is again a rational direc-
tion. Iterating this argument, the collection of affine faces of B∗φ is shown to define
some self-similar structure.

Finally, we point out that theorem 2 may be seen as an exact formulation of
the well-known reciprocity law due to L. Sohnke from 1888. In the original
paper the corresponding passage runs as follows [16, p.221]:

Hiernach scheint es also in der That nothwendig, dass die verschiedenen möglichen
Krystallflächen an der wirklichen Begrenzung des Krystalls im Allgemeinen in dem
Maasse geringeren Theil nehmen, als ihre Flächendichtigkeiten geringere sind.

If the Miller indices of a crystal face are (p1, p2, p3) = γ ∈ Z3, the ‘Flächen-
dichtigkeit’, i.e. the density of lattice points within the plane 〈γ〉⊥ orthogonal to
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γ, is given by 1√
(p1)2+(p2)2+(p3)2

and thus is reciprocal to the (absolute values

of the) Miller indices. According to Sohnke, the size of the crystal face should
be estimated by an similar reciprocal factor. Indeed, Sohnke’s reciprocity law is
confirmed by theorem 2: Let e′i denote the projection of ei to 〈γ〉⊥. According to
the theorem, the right- and left-sided tangent to ∂Bφ at the point ∂Bφ ∩R+γ in
the direction e′i differ at most by an angle of order 1

|pi| . For the dual unit ball B∗φ
this means that the face orthogonal to γ is bounded in the direction e′1 by 1

|pi| ,
i = 1, 2, 3.

4. The extended Ehrenfest model

We consider a 3-dimensional generalization of the Ehrenfest model now, again
with a discontinuous metric g̃. Instead of a 2-dimensional square, the coordination
polyhedron of the crystal molecule is assumed to be the octahedron (cf. Fig. 4)

O .= conv
{

(±1
2
, 0, 0), (0,±1

2
, 0), (0, 0,±1

2
)
}
,

where ‘conv’ denotes the convex hull. Thus, the crystal lattice is given by the
integer translates of O. The interaction forces between two octahedron-shaped
crystal molecules are supposed to vanish compared with the forces within a single
octahedron (molecule). Thus, a cleavage face giving rise to a face of the crystal
will avoid the octahedron-shaped regions. In the mathematical model the impen-
etrability of the coordination polyhedra for a cleavage face again is simulated by
setting the metric inside the polyhedra infinitely large. Outside, the Euclidean
metric is retained.

The surface tension φ(γ) of a macroscopic crystal face orthogonal to γ ∈ S2 still
is defined by (3) where Fγ is a cleavage face which has finite distance to the affine
plan 〈γ〉⊥. Due to the infinitely large metric inside the coordination polyhedra,
Fγ remains outside and A(Fγ ∩B3

r ) is the same as its Euclidean area.
We first look for the vertices of the unit ball Bφ. Since we only enlarged the

metric, the average area of a cleavage face (≡minimal surface) is greater or equal
than 1: φ(γ) ≥ 1 for all γ ∈ S2. Using periodicity arguments one shows that
φ(γ) = 1 if and only if the corresponding cleavage faceFγ is an affine plane avoiding
the coordination octahedra. These γ will give rise to the vertices ofBφ. Taking into
account the orientation of these planes one gets 26 possible orthonormal vectors
γ ∈ S2 : Either γ is one of the 6 directions from the midpoint to the vertices of
the octahedron O or one of the 12 directions orthogonal to its edges or one of the
8 directions orthogonal to its faces (see Fig. 4).

For all remaining γ ∈ S2 the cleavage face Fγ is only piecewise affine. There is
a finite list of affine pieces such that any Fγ may be clustered together by integer
translates of them. The pieces are obtained by intersecting the 26 planes (with
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Figure 4.
The coordination polyhedra for the extended Ehrenfest model. Within a polyhedron the in-
teraction energy is supposed to be infinite. In a mathematical formulation, the polyhedra are
the regions where the metric is infinitely large while the cleavage faces avoiding the polyhedra
correspond to the minimal surfaces with respect to this degenerated metric.

orientation) with their Z3-translates. For an arbitrary cleavage face Fγ the affine
pieces constituting Fγ exhibit at most 3 of the 26 different normal unit vectors.
The maximally 3 normal directions correspond to the 3 vertices of Bφ nearest to γ.
If a cleavage face Fγ exhibits exactly 3 normal directions, say γ1, γ2 and γ3 ∈ S2,
the boundary point γ/φ(γ) of Bφ lies within the convex hull of γ1, γ2 and γ3:
Setting γ = µ1γ1 + µ2γ2 + µ3γ3 the components µi > 0 give the relative amount
(in the sense of average area) of the pieces of Fγ with normal vector γi. The sum
µ1 +µ2 +µ3 therefore has to be equal to φ(γ). This shows that γ/φ(γ) lies in the
affine face of Bφ spanned by the γi.

Precising these arguments one proves that the unit ball Bφ consists of the
convex hull of the 26 centrally symmetric points on S2 determined above. Thus
(cf. Fig. 5, left),

Bφ = conv
{

(±1, 0, 0), (0,±1, 0), (0, 0,±1),
1√
2

(±1,±1, 0),
1√
2

(±1, 0,±1),

1√
2

(0,±1,±1),
1√
3

(±1,±1,±1)
}
.

According to the general solution of the resulting isoperimetric problem, the
crystal shape is the dual B∗h of this unit ball Bφ (see ch. (3)). By Wulff’s con-
struction, B∗φ is the intersection of the 26 half-spaces {y ∈ R3 : yγi ≤ 1}, where
γ1, . . . , γ26 ∈ S2 are the vertices of Bφ (Fig. 5). Recall that the γi are the normal
unit directions for which there is an affine plane through the octahedron-shaped
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Figure 5.
Left: The unit ball Bφ for the extended Ehrenfest model. A point γ at the boundary of Bφ is a
vertice if and only if γ is normal to an affine plane which passes through the packing of octahedra
(fig. 3) without cutting an octahedron in two.
Right: The Wulff crystal B∗φ of the extended Ehrenfest model is obtained by sliding all vertices
and edges of an octahedron normally down to its in-ball. The habit of the crystal is a combination
of the 3 crystal forms ‘cube’, ‘octahedron’ and ‘rhomb-dodecahedron’ and is therefore of highest
symmetry class m3m.

packing (Fig. 4). Thus, up to dilatation, B∗φ is obtained by cutting of the vertices
of the octahedron O tangentially down to its in-ball. B∗φ is calculated to be the
convex hull of 48 points (cf. Fig. 5, right):

B∗φ = conv{(±α,±β,±1), (±β,±α,±1), (±α,±1,±β),
(±β,±1,±α), (±1,±α,±β), (±1,±β,±α)} ,

where α =
√

3−
√

2 ≈ 0.318 and β =
√

2− 1 ≈ 0.414.

We again ask what happens if the cleavage face is allowed to cut of the vertices
and edges of the coordination polyhedra. In the mathematical terminology this
corresponds to smoothing out the (degenerated) periodic metric g̃ defined by the
octahedra-shaped obstacles. At a first glance one could expect that the unit ball
Bφ will get smooth as well. However, according to theorem 1, just the opposite
happens! For a smooth Z3-periodic metric on R3 the unit ball Bφ typically has a
dense set of singular points! Correspondingly, the Wulff crystal B∗φ would exhibit
faces for a dense set of orthonormal directions on S2 which, however, would get
tiny with increasing Miller indices and B∗φ itself would get smooth (cf. Sect. 3).
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