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Abstract--We consider a randomly connected neural network with linear threshoM elements which update in discrete 
time steps. The two main features o f  the network are: (1) equally distributed and purely excitatory connections and 
(2) synaptic depression after repetitive firing. We focus on the time evolution of  the expected network activity. The 

four types of  qualitative behavior are investigated: singular excitation, convergence to a constant activity, oscillation, 
and chaos. Their occurrence is discussed as a function of  the average number of  connections and the synaptic 
depression time. Our model relies on experiments with a slice culture o f  disinhibited embryonic rat spinal cord. The 
dynamics o f  these networks essentially depends on the following characteristics." the low non-structured connectivity, 
the high synaptic depression time and the large EPSP with respect to the threshoM value. Copyright ©1996 Elsevier 
Science Ltd 

Keywords--Random neural network, Threshold element, Synaptic depression, Average activity, Dynamics, 
Oscillation, Disinhibited connections, Embryonic spinal cord. 

1. INTRODUCTION 

Artificial neural networks designed as models to 
understand the functioning of biological networks 
are usually based on experimental data from adult 
or at least postnatal animals. Such networks 
consist of highly structured excitatory and inhibi- 
tory synaptic connections, a high degree of conver- 
gence and divergence with corresponding low 
weights of single unit connections and thus of 
neurons with a manifold repertoire of integrative 
properties and a wide range of frequencies of 
output patterns. The analysis of such networks is 
usually task-oriented. That is, its artificial model 
is designed to perform the same task as the 
biological network is believed to do, The disadvan- 
tage of such an approach is that a certain 
biological task may be performed by a variety of 
differently structured networks and therefore a 

Acknowledgement: This work was supported by the Swiss 
National Science Foundation (NFP/SPP grant No. 5002-03793). 

Requests for reprints should be sent to Walter Senn, Institut ffir 
Informatik und angewandte Mathematik, Universitiit Bern, 
Neubrfickstrasse 10, CH-3012 Bern, Switzerland. 

simple analogy can not be conclusive concerning the 
actual biological mechanism. In other words it is 
questionable whether the structure of a network 
is strictly determined by its function. More prob- 
ably, an additional dimension has to be considered 
in order to understand a networks structure and 
this is its devevelopmental history. During develop- 
ment the properties of neurons and neuronal net- 
works undergo dramatic changes: embryonic 
networks often lack functional inhibitory contacts 
(Oppenheim, 1975). The degree of convergence 
and divergence is low with corresponding high 
weights of single unit connections (Streit et al., 
1991) and consequently the integrative properties of 
the neurons are of low importance. In addition, 
the range of output frequencies of neurons is 
strongly limited by the poor frequency response of 
impulse conduction and synaptic transmission. In 
consequence, synaptic efficacy rapidly decreases at 
frequencies above 1 Hz (Streit et al., 1992). 

In order to learn something about the possibilities 
of activity-dependent self-organization of embryonic 
networks during periods of spontaneous activity, the 
dynamics of randomly connected networks with high 
individual weights, a low degree of connectivity and 
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strong synaptic depression were analyzed for their 
capability of  providing a stable oscillatory output. 
Such networks with a stable oscillatory output  based 
on endogenous properties were described in a rat 
spinal cord culture system (Streit, 1993), and are 
believed to be involved in the formation of  spinal 
pattern generators for locomotion (Grillner, 1985; 
O 'Donovan et al., 1992). It is shown that stable 
oscillations of  activity can arise in such networks 
simply as a result of  the endogenous properties 
mentioned above regardless of  the particular network 
structure. Furthermore the patterns of  activity can 
be altered by changing single parameters like the 
average synaptic weight or the mean rate of 
connectivity. 

The dynamics of  a homogeneous random network 
similar to ours was first investigated theoretically by 
Amari (1971). In contrast to his work we consider in 
addition the synaptic depression after firing. In 
typical time-discrete random networks the synaptic 
depression is modeled by an absolute refractory 
period lying between once and twice the interneural 
delay, see for example, Anninos et al. (1970) and 
Fournou et al. (1993). However, this is a very strong 
restriction. In our approach an arbitrary synaptic 
depression time is allowed and we have a continuous 
regeneration of  the synaptic efficacy. Oscillations of  
an excitatory network with interneural delays and 
phenomenologically described neurons were investi- 
gated by J.-F. Vibert and recently appeared in this 
journal (Vibert et al., 1994). Although we do not 
consider such delays, the various patterns of  network 
activity as oscillations, chaos or constant activity can 
be explained. With appropriate modifications to the 
neuron model we are able to give some rigorous 
mathematical statements on the long-term behavior 
of  network activity. We pick up Vibert's question of  
whether rhythmic patterns rely on pacemaker cells or 
whether they are an emerging property of  the 
network (Vibert et al., 1994, p. 589). In the case of 
the embryonic networks, our results suggest that 
oscillations indeed originate from the typical range of 
parameter values measured in the slice cultures of 
embryonic rat spinal cord. In particular, pacemaker 
cells seem not to be necessary. 

The paper is organized as follows: Section 2 states 
the mathematical model together with the biological 
assumptions. Two versions of  the synaptic depression 
are modeled. In the first case, synaptic depression is 
excluded making it possible to classify the networks 
according to the long-term development of  the 
average activity (Section 3). In Section 4, we include 
the synaptic depression and discuss the activity as a 
function of  the average number of  connections and 
the synaptic depression time. Finally, in Section 5, 
some physiological conclusions are drawn from the 
preceding mathematical analysis. 

2. T H E  M O D E L  OF A H O M O G E N E O U S  
RANDOM NETWORK 

2.1. Assumptions about the Network 

We consider a purely excitatory random network 
with neurons being linear threshold elements. The 
(excitatory) connections between the neurons are 
subject to synaptic depression. Time is considered to 
be discrete. A neuron receives possibly depressed 
excitatory post-synaptic potentials (ESPSs) at time t 
if it has input-connections from cells which are active 
at the same time t. The neuron will itself be active at 
time t + 1 if the sum of  incoming EPSPs at time t 
exceeds a fixed threshold value 0 > 0. Due to the 
short decay time of  the soma potential, for any 
neuron the potential is reset to 0 (corresponding to 
about - 6 0  mV in an absolute scale) at the beginning 
of  the next time step t + 2. This reset is reasonable if 
we assume that the time between two succeeding time 
steps t and t + 1 in our discrete model corresponds to 
14 ms in nature. This time of  14 ms is the mean value 
of  the measured conduction delays between two cells 
in the slice culture of  embryonic rat spinal cord (Streit 
et al., 1991). 

The two main characteristics of  the network are: 

. The Poisson Distribution of  the Connections. Let 
the network consist of  N neurons and let us 
suppose that the connections of  a single neuron to 
the N cells are uniformly distributed in space. The 
number of  such connections is assumed to be 
Poisson distributed with mean /z. Thus, the 
probability for a neuron to have m output- 
connections is 

]Am 
pm =-~.. e -~'. 

. 

Conversely, due to the uniform distribution, the 
number of  connections a neuron receives from 
other cells is given by the same distribution pro. 
The Synaptic Depression after Firing. Let the 
undepressed post-synaptic potential induced by a 
single action potential of  a pre-synaptic cell be 
denoted by K > 0. Thus, K corresponds to the 
maximal increase of  the post-synaptic membrane 
potential if one of  the ~ / z  connections to a cell is 
activated. (The undepressed post-synaptic poten- 
tial K itself may be composed of  multiple unitary 
EPSPs, which, however, we do not consider. If a 
neuron had fired exactly once already, say at time 
interval At before the present time t, the EPSP it 
might produce at the present time t is depressed by 
a factor (1 - e-A'/~). The constant 7- > 0 is called 
the synaptic depression time. Thus, the effective 
EPSP the neuron may produce at time t with one 
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single output-connection is K.  (1 - e-at/r) .  I f  the 
neuron fired in addition A t ' #  A t  time-intervals 
before the present time t, this EPSP is depressed 
once more to the value K . ( l - - e - a t / r )  
( 1 - - e - a t ' ~  O. T h e  factor by which the original 
EPSP of  height K is depressed will be called the 
synaptic efficacy of the neuron. A neuron will 
reach its lowest synaptic efficacy if it fires every 
time step 1, 2, 3 , . . . , .  In this case, its syanptic 
efficacy at time t is ( 1 -  e - l / r ) - . . .  • ( 1 -  e- t / r ) .  
Although this expression decreases monotonically 
with increasing t, the synaptic efficacy is shown to 
be always larger than a fixed positive constant 
(Lemma 1). 

2 .2 .  D e d u c t i o n  o f  the  M a c r o s c o p i c  State Equations 

The macroscopic state of  the network at time t is 
characterized by two variables: the average activity a t 
and the average synaptic efficacy st. T h e  average 
activity is defined by 

1 # ,  
-- at, a t - - ~  i=1 

i is 1 or 0 if the ith neuron at time t is active or where at 
not, respectively. The average synaptic efficacy is 
given by 

-- St, 
S t - - N  i=1 

where 

s~--(1- i • (1 aioe -'/r) at_le-I /r)  • (1 ,,t ,,-2/~ 
- -  ~ t _ 2  ~ / • . . • 

is by definition the synaptic efficacy of  the / th  neuron. 
Let us calculate the expectation values of  at+ I and 

st+l if the average activities up to time t are given. 
First, we show that the expectation value of  st+l 
takes the form 

St+ I) 

= (1 - ate-'~') • (1 - at_,e-2/ ' : ) . . . .  • (1 - aoe-(t+t)#). (1) 

By the law of  large numbers, at may be identified by 
the probability that an arbitrary neuron gets excited 
at time t. The expectation value (s~+l) for any cell i 
therefore is equal to the right-hand side of  (1). Since 
this value is independent of  i, the expectation value 
(st+l) of the average synaptic efficacy is the same as 
the expectation value (s~+ i) for a single neuron. This 
proves (1). 

The expectation value (at+l) is obtained analo- 
gously by calculating first (a~+ 1)- By assumption, the 

probability for neuron i of having m input- 
connections is given by the Poisson density Pm wi th  
mean #. Since the connections are uniformly 
distributed on each subset of  neurons, the number 
of  connections from the subset of  active neurons to 
neuron i is again Poisson distributed, now with mean 
at l.z. Thus, the probability of  having m input- 
connections from active cells is 

(at#)" e _Oa,. 
m! 

Let the threshold 0 be normalized to 0 = 1. Since the 
average EPSP the neuron i receives is/(st, it needs at 
least 

r h  "-- [~---~] + 

EPSPs to get excited. By [x] + we denote the smallest 
integer >_-x. Thus, the probability of  neuron i 
becoming excited is given by the sum of all 

(at//,) m e -a' 
m! 

with m >/ rh. Again, this does not depend on i and we 
get the expectation value of  the average at as 

( a t + l )  ' £ (a t# )"  e_a, ~ 
---- ( a t + l )  = m[ 

m=--~ 

r h - I  

= 1 - - e  -a't~ E (at#)m 
m! m----O 

(2) 

If  we want to predict the macroscopic state at and st a 
certain number of  time steps in advance we are forced 
to approximate them by their expectation values (at) 
and (st), respectively. The macroscopic state equa- 
tions we obtain with this approximation from (1) and 
(2) are 

at+l = 1 - e  -am E (atlz)-----~m 1 + ,.--0 m! ' rh = (3) 

St+l = 1L[ (1 -- at-t, e-t '+l#).  
t '------0 

Applying the Chebyshev inequality we can estimate 
the error of  this approximation: since at and st are 
weighted sums of  the identically distributed random 
variables a~ and s~ (1 ~< i ~< N), respectively, each 
lying between 0 and 1, the standard deviation of at 
and st may be uniformly estimated by const 1/x/N. In 
other words, the error from (2) to (3) is of order 

o ,  
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independently of  t. Iterating (2) and (3) separately At  
times, this error is growing with ~ .  The reason is 
the same as for symmetric random walks, here with 
step-length 1/x/-N: if the error 1 /v~ :  has sign + or - 
with equal probability, the expected error after At 
iterations is of  order v/-~/v/-N (this agaitl is 
essentially due to the Chebyshev inequality). There- 
fore, a prediction of  at for At  time steps in advance is 
reasonable only if the number N of  neurons in the 
network exceeds itself the order of  At. 

To end, let us state the soothing fact that the 
average synaptic efficacy st will never converge to 0. 

LEMMA 1. F o r a n y t  E N a n d a n y a t _ t ,  E [0, 1], t '  ~ t, 
the synaptic efficacy is bounded f rom  below by the 
inequality 

st+l = ILl (1 -a ,_t ,e  -Ct '+ t ) /T)  >i e -r~2/6" 
t I----0 

Proof. Replacing at - t ,  by 1 yields 

- log st + 1 
t ' = 0  

- I ?  log(1 - e -I'/T) d t '  

= r ~ _  log(x+l )  dx 
I X ( ' '  ) =~ l + ~ + ~ + . . .  

~< log (1 - e -(''+l)h') ~< 

71" 2 
T - - .  [ ]  

6 

2.3 Modification of  the model 

In order to make the state equations more accessible 
to analysis, we need some modifications. 

First, we replace the integer 

~t ~ [ ~ t ]  + 

by the quantity 1/Kst which is differentiable in K and 
st. Since we are dealing with mean values, this 
replacement is reasonable. To adapt  the formula of 
at+l for real values of  rh we rewrite it as a Gamma 
distribution function 

l/f -- l f j  
(a,#) m 1 Jo~'a' 1 - e -a'" E m! -- r(rh ) x'~-Ie-Xd, x, tit C. N. 

m=O 

The equality is derived by integrating partially 
( r h -  1) times. While the left-hand side makes sense 
only for rh E N, the right-hand side now may be 
evaluated for any ~Tt E R +. 

Second, we give a variant of  the synaptic efficacy. 

Instead of  the synaptic efficacy we interpret st as a 
(average) synaptic reliability: we assume that a 
synapse transmits the whole undamped potential K 
with probability st while it fails to work with the 
counter probability 1 - s t .  Consequently, the prob- 
ability that an EPSP of height K is coming in by a 
single input-connection is given by atst. With this 
interpretation of  st as synaptic reliability, the activity 
at time t + 1 will be calculated by 

~0gar i 1 s x I / K - I  e-~dx. at+l : ~ 

The interpretations of  st as synaptic efficacy and 
synaptic reliability tend to be equivalent, if the 
average number # of  input-connections of  a neuron 
is large: in both cases, the average activity of  the 
neurons is the same since the expectation value 
for the summed EPSPs one neuron receives at time 
t + 1 is the same: it is I.t(Kst)at in the case of  
synaptic efficacy and izK(stat) in the case of 
synaptic reliability. While the expectation of the 
summed EPSPs one neuron receives is the same, 
its standard deviation differs in the two interpreta- 
tions. I f  # is large, however, the deviation con- 
verges to 0 in both cases. Indeed, for large /z the 
summed EPSP is Gaussian distributed around its 
expectation value according to the central limit 
theorem. Its standard deviation is K s t ~ / l t a t ( 1 -  at) 
in the case of  synaptic efficacy and 
K~/ll.ats t (1 -- atst)  in the case of  synaptic reliability. 
Since from a biological point of  view it is reason- 
able to require that # K  is bounded (say of  order 
10-0), both these deviations tend to 0 with 
growing #. These arguments show that, for a large 
number # of  connections, the average activity at 
of  the neurons indeed does not  change essentially 
if, instead of  the synaptic efficacy, we consider 
the synaptic reliability. 

Third, we reduce the dynamics of  model (3) to a 
two-dimensional Markov process. For  this we have 
to suppress the explicit influence of the past activities 
a t - l ,  a t -2 ,  . . .  in the formula for st+l. Since the 
influence of  at, on st+t decays with growing t ime- 
distance t -  t '  the second-order approximation of  
st+l is given by 

st+, ~ (1 - a t e - ' / ~ ) ( 1 - a t _ , e - 2 / ¢ ) .  (4) 

In order to obtain a mapping (at, st) --, (a t+l ,  St+l) 
we calculate the activity at-1 from the first-order 
approximation st ,.~ 1 - a t -  1 e - l / r  of st. Going into 
formula (4) we get the final model of  a homogeneous 
random network with 
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1 [/uit St 
at+l = X I/K-I e-Xdx 

, o  

S t + l  = ( 1  - -  ate -'/~) ( 1  - -  (1  - st)e-'~'). 

(5) 

In contrast to (3), st is now interpreted as the average 
synaptic reliability and it explicitly depends only on 
the macroscopic state at time t -  1. It is model (5) 
which will be investigated in the next two sections. 

3. DYNAMICS W I T H O U T  SYNAPTIC 
RELIABILITY 

To get a feeling for the dynamics of  the average 
activity we first exclude the synaptic plasticity in (5) 
by setting st - 1. This reduces the model to the one- 
dimensional system 

1 J0*' xl/X-1 e-Xdx at+ l = ~---~g) (6) 

We discuss the fixed points of  this one-dimensional 
dynamical system. Since the right-hand side of  (6) has 
the form of  a gamma-distribution function 

l Y 
Fr(y)  -----7"-~ Io xl/r-t  e-Xdx' 

the activity at+l increases monotonically with at. 

Since FK has only one turning-point, there exist at 
most three fixed points at+l = at. One o f  them is the 
zero-activity at : 0. The other possible fixed points of  
at are given by the roots of 

Qx(a.____~) = #, a E (o, 1), (7) 
a 

where QK (a) denotes the quantile of  the distribution 
function Fx of  order a. Recall that by definition the 
quantile QK is the inverse function of  F t .  Given K, 
there exist non-trivial fixed points only if the average 
number # of  connections exceeds 

Qx(a) 
px -- min 

a~(0, 1) a 

Since the left-hand side of  (7) is a convex function of  
a tending to infinity for a --* 0 and a --* 1, there are 
exactly two solutions at < ah of  (7) in case # > #K 
and exactly one solution at = ah in case # = #r .  The 
solutions at and ah of  (7) correspond to the possible 
intersection points of  the curve a ~ F r  (ira) with the 
diagonal at = a t+l  in Figure lb. Notice that (6) may 
be written as at+l  = F K ( I m t ) .  

The dynamical behavior of  (6) at the fixed points 
O, al and ah is obtained by considering the slope of  the 
function a -~ Fg (#a): a fixed point is attracting if the 
slope therein has modulus less than 1 and repelling if 
the modulus is larger than 1. Using the fact that 
F r ( # a )  < 1 for a = 1, these slopes may be derived 
directly. In any case the slope at 0 is ~< 1. When 
# = # r ,  the slope at the single non-trivial fixed point 
at = ah is 1 since a ~ F K ( # a )  meets the diagonal 
tangentially there. When # > #K, the slope at at is > 1 
while at ah it is < 1 (cf. Figure 1). 

Now we assume that there is a solitary sponta- 
neous activity asp of  the network at time t = 0. The 
discussion on the slope of  ~b at the possible fixed 
points leads to the following theorem. 

THEOREM 2. W i t h  the no ta t ions  f r o m  above the 

d y n a m i c a l  behavior o f  (6 )  is classif ied according to 

# < # r  : extinctionforanyasp E [0, 1] 

# = # x  : extinctionfora~v E [0, al), 

convergence to at for  asp E [al , 1] 

p > # x  : extinctionforasp E [0, at), 

convergence to ahfor asp E (at, 1]. 

An analogous classification is given in Amari (1971, 
theorem 6) for the case that the activity an +1 at time 
step n + 1 is the cumulated Gaussian distribution of 
the activity an at time n. 

To illustrate the theorem, let us choose the 
undamped EPSP to be K =  0.1. Recall that the 
threshold 0 is normalized to 1. The dynamics has 
a single non-trivial fixed point if  and only if the 
average # of  the Poisson distributed connections 
is # g =  15.58. Setting # = 30, there are two non- 
trivial fixed points al = 0.26 and ah = 0.99. Figure 
1 shows the function at --* at+l  = Fg( lu2 t )  together 
with trajectories starting at a0 = 0.26 and 0.261. 
Notice that in the case # < #g  the curve does 
not  intersect the line at+l = at and any trajectory 
will converge to 0. 

4. DYNAMICS W I T H  SYNAPTIC RELIABILITY 

In the following, we analyze the complete state 
equations (5) and involve the synaptic reliability st. 

In Section 4.1 we look for the fixed points of  activity 
and synaptic reliability and discuss the local behavior 
of  the dynamics near these fixed points. In Section 4.2 
we consider examples of  the possible global behavior 
while in Section 4.3 we ask for conditions implying 
such a global behavior. Finally, Section 4.4 gives an 
overall view of  the behavior by considering the whole 
parameter space of  (#, r )  of  possible connection 
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FIGURE 1. Dynamics for st =-- 1. For K = 0.1 and /x = 30 there exist three fixed points: the repelling fixed point at = 0.2604 and the 
attracting fixed points 0 and an = 0.99. The domains of attraction ere [0, al)  and (al, 1], respectively. (a) The same trajectories in the 
(t, at) diagram. All calculations were carried out using MATHEMATICA. (b) The staircase shows two trajectories starting with activities 

a0 = 0.26 and a0 = 0.261. 

numbers, #, and depression times, r .  First, we have 
an empirical look at (5). 

We may  consider the function 

J~al St 
at ~ a,+~ = F K ( # s t a , )  - -  1 x l / K _ l e _ X d  x 

in (5) (depicted in Figure 1 for st  =-- 1) as a function 

indexed by s t .  I f  the fluctuations of  st  are not too 
large, one expects that  there are still the same two 
types of  dynamical  behavior as in the one-dimen- 
sional case: extinction and convergence to a non- 
vanishing constant  activity. Indeed, this is true if the 
depression time ~-> 0 is small (cf. Section 4.4, B). 
Looking at the second equality of  (5), the fluctuation 
of  st  is restricted to the interval (1 - e - i / r )  2 ~< St ~< 1, 
which is minute when -r is small. 
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However, if 7- is large, st may fluctuate in a large 
interval and two new types of  dynamical behavior for 
at arise: oscillation and chaos. If, for example, 
K = 0.8, p = 16 and 7- = 15, a spontaneous activity 
asp of  0.05 at time t = 0 is enough to provoke a stable 
oscillation (cf. Figure 2). Although the activity seems 
to die out after some steps, the network will be 
excited again due to the synaptic reliability which is 
growing in silent times. 

The behavior o f  at is similar to the activity 
measured in slice cultures of  embryonic rat spinal 
cord after blocking inhibitory transmission (Streit, 
1993). The values o f  the parameters 7-, K, and 
were chosen to fit the range of  values obtained in 
these experiments. To  determine the synaptic 
depression time 7- we measured the depression at 
200 ms after a stimulation of  5 Hz. From a 
depression of  55°/, we calculated the depression 
time to be 250 ms according to the formula 
1 -  e-2°°/25° ~ 0.55 (Streit et al., 1992). Since the 
synaptic delay (and thus the real time between a 
single time step t ~ t + 1 of  our discrete model) is 
14 ms, we have to choose 7--~ 17 to get the same 
depression of  0.55 (~  1--e-14/17). The choice of  

(a) a(t), 
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/ 
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0 . 6  • : "  " I ' -  . :  " • ° . "  • 
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~ . f l t '~ . ' ,  ~. • . . .  %. "S . . .  . . . :  m ' < "  " - ~ o  . . ~  , o .  . . . .  • 

• o # • 

0.2 0.4 0.6 0.8 1 

FIGURE 2. (a) Evolution of the actlvlty at (solid) and the aynapflc 
reliability st (dashed) according to the stale equations (5) with a 
spontaneous activity asp : 0.05 at t ime t = 0. The constants are 
K = 0.0, p = 16 and ~" = 15. If the t ime step in (5) is 14 ms, the 
activity oscil lates with ~ 4 H z .  This corresponds to the 
oscil lations measured in the slice cultures which typically were  
about 5 Hz. (b) The points (at, se) for t = 0 . . . . .  1000 starting with 
(a0, So) = (0.05,1).  The curves Cx, ~ (dashed) and C ,  (solid) are 
the null-clines of at and st, respectively. Their  intersections 
correspond to the fixed points of (5). 

0.8 as a mean value for the undepressed (individual) 
EPSP, K, relies on the fact that by exciting a single 
pre-synaptic cell the post-synaptic cell released an 
action potential in 33% of  the cases while it was 
mute in the other cases. In absolute units the 
undepressed EPSP K is estimated to be ,~ 13mV 
while the resting membrane potential and the 
threshold is measured to - 5 6  mV and - 3 9  mV, 
respectively (Streit et al., 1991). Finally, the mean 
number of  (input-)connections # onto a cell is 
estimated to lie between 3 and 20. 

4.1.  Local  Analys is  at the Fixed Point  

To get a geometrical view of  the dynamics, we 
consider the fixed points of  (5) as the intersection 
points o f  two curves in the (a, s)-plane, the so-called 
null-clines. Let us look at (5) as a map of  the phase 
plane (a, s)E [0, 1] 2 onto itself with the average 
activity at on the abscissa and the synaptic reliability 
st on the ordinate. The null-clines of  at and st are 
defined by the curves in the phase plane where the 
values of  at and st, respectively, do not change in time 
(Figure 2b). Abbreviating the null-cline of  at and st 
by CK,, and C~, respectively, we have 

CK. t" - -  { (a t ,  s t )  I a t  = a ,+ 1 = F x  ( p a t s t ) }  

C T - -  {(a , ,  s , ) I~ ,  = ~,+l  

= (1 - ate~. ) (1  - -  (1 - s t ) e~)} ,  e~ - - e  - ' k  

(8) 

where Cx, j, and C, depend only on K, /z and 7-, 
respectively (see Figure 2). A point on CK, ~, is moved 
by the dynamics (5) vertically while a point on Cr is 
moved horizontally. Notice that the curves may be 
calculated explicitly as a function of  at. As a result 
one gets 

{(o ,/ 
and 

{( } C,- = a, ] - e -~ ( -1 - - -~ ) ]  ,a 6 [0, 1] . 

The two fixed points at and ah of  the one- 
dimensional system with st = 1 may be recovered in 
the (at, st) diagram as the intersection points of  C x , ,  
and C0--{(a, 1)la E [0, 1]}. Now, the two non-trivial 
fixed points of  the two-dimensional system are given 
by the intersection points of  C/< ~, and C,. For  typical 
values of  K, p and 7- the first intersection point is 
repelling and close to (a = 0, s = 1). We concentrate 
on the second intersection point which we denote by 
Pax = (aoo, soo) (provided the two curves intersect). 
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FIGURE 3. The four types of qualitative behavior: extinction (A), convergence to a constant activity (B), oscillation (C) and chaos (D) as 
described in the text. The arrows (scaled by a factor I)  illustrate the dynamics of the equations (5). Starting at (e0, so) = (0.05, 1) we 
iterated the state equations (A) 100, (B) 700, (C) 1000, (D) 10,000 times. For the parameter values of K, /~, and ~" see Section 4.2. 

( A )  A s tabi l i ty  criterion. In order to analyze the 
local behavior of  (5) at the fixed point Ptix we first 
calculate its linearization. Abbreviating 

1 
f , ~ ( y )  - 

_ _ _  y l/K-t e-y 

and 

Er --e  -I /r  

one obtains from (5) 

0(a,+ 1, s,+|) 
cg(a,, s,) 

_ ( ~ , f~ (~a ,~ , ) ,  ~a,f~C~a,~,)~ 
\ - e r  (1--(1 - s t ) e~) ,  er (1 -a ,  er ) /"  

(9) 

According to the theorem of  Hartman-Grobman 
[see, for example, Guckenheimer and Holmes (1990)] 
the system (5) is locally stable or unstable at Pax if the 
eigenvalues A and A of  the linearization (9) at Pax 
have modulus < 1 or > 1, respectively. Now,  the 
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calculation of [ A 12 may be reduced to the calculation 
of the determinant as follows: consider the vector 
field near the fixed point Pfix in Figure 3. By 
definition, the vectors lie horizontally at the curve 
C¢. Since 

~St + 1 
- - <  O, 

#at 

a) 20 

17.5 

15 

12.5 

i0 

7. 

2.5 5 7.5 10 12.5 15 17.5 20 

g 

2o 
(b) 

17.5 

15 

12.5 

10 

7.5 

5 

2.5 

2.5 5 7.5 i0 12.5 15 17.5 20 

FIGURE 4. (a) A contour plot of the numerically exact cycle 
length of (5). This cycle length is identified with the average time 
between two neighboring relative maxima of ecUvity at within the 
time Interval t = 1 ,  . . .  , 100. The starting (el, s l)  was chosen 
near (~0.001)Pnx. (b) The cycle length L0.e(/L,A) of the 
linearization (9) at Pr~,. For the definition of LK(I~, A) see 
Section 4.1 (B). A comparison between the " rea l "  cycle length 
and the calculated one gave, in general, an underestimate of the 
former by less than 20% within the domain 5 < p, ¢ ~< 20. The 
deviation was larger at the eight singular black regions within 
this domain. Again, the time step of our discrete model 
corresponds to a biological time of 14 ms. 
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FIGURE 5. (e) A strictly periodic repetition of activity at with only 
seven activity levels (K = 0.8, ~- = 8, and /L = 19). The pare- 
meter value for p is found with the help of Figure 6a. The dashed 
line represents the synaptic reliabil ity st. (b) The regions of 
extinction (1), local stability (3 and 4), local instability (2) and of 
global stability (4). Region (1) shows the parameter values (p, ¢) 
satisfying condition (10) for extinction, regions (2) and (3) 
distinguish between I,t.I > 1 and IAI < 1 (Iomma 3) and region 
(4) shows the parameter values satisfying the conditions of 
Theorem 5. Recall that the unit of ¢ corresponds to 14 ms. Cf. 
text Section 4.4. 

the arrows turn fight and they necessarily change 
their sign at the intersection point Pax of the two null- 
clines CK,, and C~. Since 

O'~s t+  I = 2 

OatOst - e  ~ < O, 

the speed of rotation is bounded away from 0 and 
thus survives the linearization at the fixed point. 
Therefore, the linearization (9) at Pax is composed 
either of a genuine rotation or of a sheafing. In the 
first case, the eigenvalues A and )~ are complex-valued 
and conjugated while in the second case there is a 
single non-vanishing eigenvalue A of multiplicity 2. In 
both cases, the squared modulus of the eigenvalue(s) 
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is given by the determinant of (9) at Pax and we 
obtain: 

LEMMA 3. The system (5) is locally stable (unstable) 
at the fixed point Pnx = (aoo, soo) if 

IAI 2 = det O(at+x,O(a,, st)St+s) e~ 

= ~ j ~ ( ~ o : o o ) ( ~ o o  + aoo(1 - e , ) )  < 1 (>  1). 

(B) Estimate of Cycle Length. Next we are 
interested in the cycle length of a possible oscillation 
of at. At first-order approximation of the activity 
cycle length is given by the rotation part of the 
linearization (9) at Pnx. Let us write the eigenvalue A 
in the form A =  IAI e 2 ~  and suppose 0 < ~o~< 1. 
Then the cycle length of the linearization at Pax is 
given by 

1 
z,,c(~, r) - ' - .  

Numerical investigations show that this is not only 
locally a good estimate of the activity cycle length, 
but even globally. Figure 4a represents the average 
cycle length of (5) averaged between t = 1, . . . ,  100 
and starting near Pfix. The fight side represents the 
cycle length L0.8 (#, ~-) of the linearization at Pax. A 
dark region, right, corresponds to a small value, while 
a light region corresponds to a larger value. In the 
example of  Figure 5a, one calculates L0.8(19, 8) = 
6.5 compared with the numerically exact cycle length 
of 7.0. Comparison of L0.8(#, ~') with the averaged 
cycle length showed that the approximation error in 
general is less than 20% if # and ~- are larger than 5 
(we tested up to #, "r ~< 20). Looking at Figure 4 one 
asserts that L0.8 (#, T) is growing if ~-/# is growing. 
This supports the intuition that the real cycle length 
of activity should be large when ~- is large or # is 
small. 

What can be proved in any case by a simple phase- 
plane consideration is: 

LEMMA 4. For any K, #, "r > 0 with existing fixed 
point Pax the cycle length of activity is >14. In 
particular, the cycle length LK (#, T) of the lineariza- 
tion at Pax /s/> 4. 

The lemma follows from the fact that by the curves 
Cr, u and C~ there is a subdivision of the space 
(at, st) C [0, 1] 2 into four domains with intersection 
point Pnx- Any cycle (at, st), (at+l, st+l), ... runs in 
a clockwise direction around Pnx without skipping 
any of the four domains. [This may be shown by 
considering the images of Cx,, and Cr under the 
mapping (5) and using some monotonicity properties 
of (5).] 

(C) Hopf Bifurcation. Although the lemma gives 
an estimate of the cycle length which is far away from 
the local estimate Lr (# ,  r), it yields a necessary 
condition for Hopf bifurcation. The Hopfbifurcation 
describes the phenomenon that, for example, by 
varying the parameter #, an attracting fixed point Pnx 
changes into a repelling one together with an 
attracting limit cycle around it. Lemma 4 guarantees 
that when [ A [ = 1, it follows A k # 1 for k = 1, 2, and 
3. A further condition that Hopf  bifurcation takes 
place at some values K, #, and r with 
[A(K, #, r) l = 1 is that the eigenvalue A transverses, 
with non-vanishing speed, the unit-circle, i.e., 

Ot~l ~: o 

at [A[ = 1. For an exact formulation of the 
bifurcation phenomenon for diffeomorphism see 
Marsden and McCracken (1976, theorem 6.2). An 
example of Hopf bifurcation is given by (B)-(C) in 
the following subsection. 

4.2. Examples of  the four Types of  Qualitative 
Behavior 

We discuss four numerical examples showing the 
possible behavior of model (5) by varying the 

(a) 

0 . 8  

0.6 

0.4 

i0 12 14 16 18 20 22 

(b) 

135 137.5 140 142.5 145 147.5 150 

FIGURE 6. Two regions of the bifurcation diagram. Starting with 
(a0, so) = (0.05, 1) we plotted at, t = 800 . . . .  , 1000, against /*. 
The parameters K = 0.8 and ~" = 8 are kept fixed. Note the 
different scales on the vertical axes for at. F o r / z  = 19 a strictly 
periodic oscillation occu rs  (cf. F i gu re  5). The convergence of the 
activity for high values of /z  is predicted by Theorem 6. 
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undepressed EPSP, K, the average number of 
connections, #, and the synaptic depression time, 7. 
We refer to Figs 3 and 5 where the arrows represent 
the differences (at+l, s t + l ) -  (at, st) defined at the 
various points (at, st) and scaled with a factor ~. 

(A)  Extinction. The undamped EPSP is chosen to 
be K = 0.8, the synaptic depression time is 7- = 8 and 
the mean of  the Poisson distributed connections is 
# = 4. According to lemma 3 the fix-point Pax is 
calculated to be repelling ([A[ = 1.01). Starting at 
(a0, so )=  (0.14, 0.46) leads to extinction after 50 
time steps although the starting point is near Pr=. In 
particular, no attracting limit cycle seems to occur 
when the fixed point Pax changes from an attracting 
(# = 5) into a repelling one (# = 4). 

(B)  Constant Activity. The same parameter values 
as in (A) but with # = 9. The fixed point Pax is now 
attracting (IAI = 0.99) and a solitary spontaneous 
activity asp = 0.05 at t = 0 t(_with so = 1) is enough to 
maintain a limit activity at --~ atix = 0.37. 

(C)  Oscillation. The same parameter values as in 
(A) and (B), but with # = 20 and modulus ] A[ = 1.03 
of  the eigenvalue at Pax. At  # = 11.3 Hopf  bifurca- 
tion occurs: the stable fixed point Pr~, changes into an 
unstable fixed point and an attracting limit cycle 
arises. The limit cycle is growing with # until # ~ 25 
where the activity at oscillates between 0.18 and 0.96 
(cf. Figure 6). Increasing # further, the attracting 
limit cycle shrinks slowly until it collapses at # ~ 143 
to the fixed point Pax. The existence of  a limit cycle 
leads to another kind of  stability result for the fixed 
pont Pax: if the trajectory starts at some point (a0, so) 
lying within the limit cycle, it remains there for all 
times t >i 0. This statement follows from a simple 
topological argument relying on the continuity of the 
mapping (at, st) --* (at+l, st+l). 

(D)  Chaos. Chaotic behavior (cf. Figure 3) seems 
to occur only if the undamped EPSP, K, is small. In 
our example we chose K = 0.1, r = 5, # = 268.66 and 
as starting values again (a0, so )=  (0.05, 1). The 
dynamics are chaotic in the sense that they are not 
predictable whether the cycle in the (at, st) diagram 
makes an upper or lower turn. The necessary 
reduction of  the undamped EPSP K has an 
experimental analogy: random patterns of  activity 
are found in the spinal cord cultures in the presence 
of inhibitory synaptic transmission. This situation 
corresponds to a network with low synaptic weights 
(K ~< 0.1) in the model (cf. Figure 3, D). 

4.3. Conditions Guaranteeing the Amplification, 
Survival or Extinction of a Spontaneous Activity 

In the following, we present three criteria for different 
long-term behavior of  the network activity. We ask 
for the critical amount  of  a solitary spontaneous 

activity asp at time t = 0 which is needed to lead (A) 
to non-vanishing activity at least in the next time step 
(B) to non-vanishing activity for any of  the following 
time steps and (C) to extinction. 

Let us fix the parameter values K, #, r and suppose 
that 

> #x  = rain Qx (a) 
a¢(0, I) a 

Recall that at < ar 
fixed points of the 
# > #K. 

denote the two non-vanishing 
activity at in case st----1 and 

(A)  Condition for  Amplification. First we give 
a condition that the network gets excited at least 
once after a spontaneous activity, i.e., that al > 
a0 = asp. Since at time t = 0 the synaptic reliability 
is 1, the activity al may be calculated according 
to (6). As the analysis of  the one-dimensional 
system shows (cf. Theorem 2), the equality al > asp 
is true if and only if al < asp < ah. But this last 
condition is equivalent to 

Q'~(asp) < 

asp 

due to the convexity of  the left-hand side of  (7). In 
other words, the activity at is growing temporarily 
after spontaneous activity asp if and only if 

Q,~ (asp) - - < # .  
asp 

(B)  Condition for  Survival In order to guarantee 
the survival of  the activity, say at > at for all t > 0, 
we have to impose an additional condition on the 
synaptic depression time r. Considering the dynamics 
shown in the (at, st) diagram together with the vector 
field of  (5), it is easy to see that at > al for any t > 0 if 
the curve C~ lies above 

min{sl(a, s) ~ Cx,~} #x 

Recall that (al, 1) is the first intersection point of  
CK, , with st = 1. Since the curve C¢ is monotonically 
decreasing in a, its minimal s-value is reached at a = 1 
and it is given by 

(1 -e~) 2 
min{sl (a, s) ~ C~} - 1 - - e ~ i : e T )  

This global result is summarized by: 

THEOREM 5. Let the dynamic (5) start with a solitary 



586 W. Senn et al. 

spontaneous activity asp > 0 and a synaptic reliability 
so = 1. I f  the positive parameters K, # and 7- satisfy 

/~K (1 -- e r )  2 
(a)  Qx(a .p )<#  a n d  ( b ) - - # - <  1 - e ~ ( 1 - e ~ )  asp 

then for  any t >1 0 the activity at is larger than at > 0 
and thus will never die out. 

Instead of  condition (a) the condition asp > at(> O) 
may be required as well. Notice the condition (b) will 
be satisfied if # is large and/or  7- is small. 

To  illustrate the theorem we come back to the 
example in Section 3 with K = 0.1 and /z = 30. 
Theorem 2 states that in the case of  constant 
synaptic reliability st =-1 a solitary spontaneous 
activity of  asp > at = 0.26 will lead to a limit activity 
of  limt-.oo at : ah = 0.99. Theorem 5 now states that 
in the case of  variable synaptic reliability the same 
spontaneous activity guarantees an activity at > 0.26 
for any t >/0 provided the synaptic depression time 7- 
is less than 1.0. 

(C)  Condition for Extinction. Finally, we mention 
that any spontaneous activity eventually leads to 
extinction if the curve C~ lies below from CK, l, and 
thus no fixed point Pax may exist. Algebraically this 
condition is given by 

( 1 - - e ~ ) ( 1  - acT) 
Qx(a) > f o r a l l a  E (0, 1). (10) 

/za 1 - e ~ ( 1  - ae~) ' 

In contrast  to Theorem 5 this condition for extinction 
is satisfied if # is small and/or  7- is large. The 
extinction follows from the fact that the curve C~ is 
attracting for any starting point (a0, so)E [0, 1] 2 
while the vertical line a t -  0 is attracting for any 
starting point lying below from Cr, ~,. If, for example, 
K = 0.8 and 7- = 8 the inequality is satisfied for any 
# less than the critical value 

Qx(a) l - e ~ ( 1 - a e ~ )  
#o = minas(0, i) a (1 - e~)( l  - ae~) 2.83 

(cf. Figure 5b). 

4.4. The Quali tat ive Behavior as a Function o f / z  and ~" 

We are interested in the long-term behavior of  the 
network activity at in dependence of  the average 
number of  connections, #, and of  the synaptic 
depression time, 7-. To get an overview, we 
determined the local behavior at Pax for a matrix of  
(#, 7-) values. Fixing the undamped EPSP to K = 0.8, 
we calculated the modulus I~1 of  the eigenvalue A 
according to lemma 3. Figure 5b shows four different 
regions: 

- -Black  with I AI > 1 and a repelling fixed point Pax. 
Here, either oscillation or extinction takes place. 

- -Whi te  or light-gray with I,Xl < 1 and an attracting 
fixed point Pax- The activity typically either 
converges to a non-zero limit activity aax or, 
depending on the initial values, dies out. 

- -Dark-gray  without any fixed point and thus 
extinction in any case according to Section 4.3 (C). 

- -Light-gray where the global stability conditions of 
Theorem 5 are satisfied with a starting activity of 
asp = 0 .05 .  

(A)  Dependence on the Average Number # of  
Connections. Let us focus to the horizontal line r -- 8. 
The numerical examples (A)-(C) of  Section 4.2 
illustrate the dynamical behavior when # is increased 
from # = 4 to 9 and 20. The local behavior at Pax 
changes from instability to stability and returns to 
instability again (cf. Figure 3). This is rather striking 
since one expects that once Pax is stable, an increment 
of  # would increase the limit activity anx only rather 
than destabilize Pr, x. Indeed, this is the case if # is 
large. From lemma 3 one deduces the following: 

THEOREM 6. Given K, "1- > O, there exists Izl > O, such 
that for any # > #1 the f ixed point Pax = (aoo, s~) of  
(5) exists and is stable. Moreover, the limit activity aoo 
converges to I for  Iz ~ oo. 

Proof. We have to show that IA[ 2 = #e~fx(#aoos~) 
(soo + aoo(1 - e~)) < 1 for /z  large enough. Consider- 
ing the representation of  C~ and CK, u as a function of 
at we conclude that for the coordinates a~o and s~ of 
the intersection point Pax one has aoo ~ 1 and 

( l  - ~ ) 2  
> 0  soo ~ 1 - - e r ( 1  --ET) 

for # ~ c~. (Here we need that, due to the formula 
a = FK(#as), for any a E (0, 1), the unique point 
(a, sl,(a)) C CK,~, converges to (a, 0) for /z  ~ co and 
that C~ does not depend on/z.) In particular, aoo and 
soo are bounded from below. Due to the properties of 
fK, the function # ~ f K ( # a o o ,  soo) therefore is 
decreasing exponentially for large # and the desired 
inequality 1~12< 1 for # large enough is estab- 
lished. [ ]  

In our example with K = 0.8 and 7- = 8 the value 
•1 where Pfix changes definitely from a repelling to an 
attracting fixed point is found to be #l ~ 143. For  
this value of  # the limit activity aoo is about  0.94 (cf. 
Figure 6). Recall that on the other hand, any activity 
will lead to extinction if # < g0 = 2.83. 

In order to get an impression of  what happens 
when # is increased we take two regions of the 
(/z, a ) -b i furca t ion  diagram (Figure 6). For  each 
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value of # a diagram shows the activities at for 
t = 700...  1000 after starting at (a0, so) = (0.05, 1). 
Notice that a continuous interval of at values does 
not imply chaos: the activity at typically is oscillating 
with a constant frequency. However, if there is only a 
finite number of activity levels at, the oscillation is 
strictly periodic (cf. Figure 5a). 

(B)  Dependence on the Synaptic Depression Time 
r. Focusing on a vertical line # -- const, the converse 
statements hold: If r is large enough to satisfy (10), 
any activity dies out, independently of the sponta- 
neous activity asp at the starting time. In turn, if r is 
small enough (and /z > #K) the fixed point 
Pfix = (aoo, sot) exists and is stable. For 7-+ 0 the 
limit activity aoo tends to the stable limit activity ah of 
the one-dimensional system with st - 1. 

5. CONCLUSIONS 

The main finding of our investigation is the fact that, 
within a broad range of biologically motivated 
parameters, oscillations in an "embryo typic" net- 
work occur. In contrast to the frequently made 
assumption on oscillation generating networks, we 
are starting out from 

- - a  single random network with equally distributed 
connections and 

--purely excitatory synaptic connections between the 
neurons. 

In particular, to provoke rhythmic activity, no 
subpopulation of inhibitory cells is required [as is 
considered in Amari (1971)] if the cells have only 
depression-like properties. Moreover, no structured 
connectivity is needed to produce stable oscillations 
as is often assumed in pattern generators (see, for 
example, Getting (1988)]. 

Our model may give a partial answer to the 
fundamental question raised in Vibert et al. (1994, 
p. 589) as to whether biological rhythms are driven 
by pacemaker cells or not. The close agreement with 
the experiment supports the conjecture that in the 
slice culture of embryonic rat spinal cord, rhythmic 
activity is an emerging property of the network and 
that pacemakers are not required. 

The finding that stable oscillations naturally arise 
in unstructured networks with "'embryonic proper- 
ties" may be ontogenetically relevant. Rhythmic 
patterns of such spinal cord networks in the 
embryogenetic stage play an important role in the 
formation of specific architectures of pattern gen- 
erators or other cell assemblies. 
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NOMENCLATURE 

discrete time (in units of 14 ms) 
average number of connections 
average undepressed post-synaptic 

potential (in units of 13 mV) 
synaptic depression time (in units of 

14 ms) 
average activity 
average synaptic efficacy (or reliability) 
activity of ith neuron 
synaptic efficacy of ith neuron 
critical number of depressed EPSPs 
critical number of connections for non- 

trivial fixed points 
fixed points for st -- 1 
initial spontaneous activity of network 
null-dine of at 
null-cline of st 
intersection point of Cx, ~, 
coordinates of Pax 
Er "-- e-1/r 
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cycle length of linearization (9) at Pax 
density function of gamma-distribution 
gamma-distribution function 

Qx(.) 
(.> 

W. Senn et ai. 

quantile of Fnc(.), ( Q x  = FTc l) 
expectation value 


