
Calc. Var. 3, 343-384 (1995) 
�9 Springer-Verlag 1995 

Differentiability properties 
of the minimal average action 

W.M. Senn 

Mathemathisches Institut der Universit~it Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland; 
e-mail: wsenn@iam.unibe.ch 

Received May 2, 1994 / Accepted September 15, 1994 

Abstract .  Given a Z n+l-periodic variational principle on R n+l we look for solu- 
tions u : R" ---+ R minimizing the variational integral with respect to compactly 
supported variations. To every vector c~ E R" we consider a subset ~/g~ of  so- 
lutions which have an average slope c~ when averaging over R n. The minimal 
average action A(c 0 is defined by the average value of the variational integral 
given by a solution with average slope c~. Our main result is: A is differentiable at 
c~ if and only if the set ~/~a is totally ordered (in the natural sense). In case that 
J / / ~  is not totally ordered, A is differentiable at c~ in some direction/3 E R ~ \ {0} 
if and only if fl is orthogonal to the subspace defined by the rational dependency 
of c~. Assuming that the i th component of  c~ is rational with denominator s i c N 
in lowest terms, we show: The difference of  right- and left-sided derivative in 
the i th standard unit direction is bounded by const,  s-!r. 

Mathematics Subject Classification (1991): 58C20; 46G05; 26B25 

1 Introduction 

1.1 Setting of problem and related topics 

The analytical and geometrical setting. The object of  study may be viewed within 
two different settings - an analytical and a geometrical one. The specific topics 
are respectively: 

A) the minimal average action of a variational problem on the 
(n + l)-dimensional torus, 

B) the h-stable norm on the vector space H~(T n+l , R) of  real 
homology classes of  a Riemannian torus (T n+l , 9). 
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A) Within the setting A) the presented work investigates the differentiability 
properties of  the minimal average action as a function of  the rotation vector. We 
consider the variational problem lifted to the universal covering R n+l of T n§ 
The lifted variational integrand F = F(x ,  u ,p )  E C3(R n+l x R n) is zn+l-periodic 
in the first (n + 1) variables. We consider the minimal  average action A(c~) 
belonging to some rotation vector c~ E R ~ which may be defined by 

A(cx) = in f  l i m i n f  1 . fB F ( x , u , D u ) d x  
u E ~  r---,~ tBrt r 

where ~ -" {u  C C3(R n) : SUpxER, lU(X) -- C~X I < oo}  and where Br C_ R n 
is the ball of  radius r and center 0. 

The case n = 1 directly relates to monotone twist maps and thus to dynami- 
cal systems: in the phase space the time-1-map for extremals of the variational 
problem may be seen as an area preserving monotone twist map and vice versa 
[ 18]. In this 1-dimensional case, the differentiability of the minimal average ac- 
tion was first investigated by S. Aubry in the context of  twist maps and their 
relations to physics [3]. For the corresponding discrete 1-dimensional variational 
problem he suggested in his words by 'physicists ideas' the following statement: 

The minimal average action A(~)  is differentiable at irrational rotation numbers 
c~ E R \ Q and generically not differentiable at rational rotation numbers c~ E Q 

A rigorous proof of Aubry 's  statement was given by J. Mather [14]. The 
statement translates to the setting B) where for n = 1 the minimal solutions are 
interpreted as minimal geodesics on the torus T 2. In a more geometrical way V. 
Bangert proved the same result for a slightly generalized situation [7]. 

In case n >_ 2, the variational problem on T ~+~ was first studied by J. Moser 
[17]. If  n >_ 2, roughly speaking, the one-dimensional phenomenon occurs in 
every single direction. If  e.g. n = 2 and c~ E Q2, the minimal average action A 
is generically non-differentiable at c~ in the direction el and e2 as well. 

If c~ = (c0, c~ 2) E Q x R \ Q the minimal average action is differentiable at c~ 
in the direction e2 because of the irrationality of  the component c~ 2. The question 
of  differentiability in the direction el, however, is more delicate than suggested 
by the 1-dimensional case. By the stability results of  KAM-theory, the minimal 
average action is generically non-differentiable in the direction el with c~ l E Q 
only if the second component c~ 2 E R \ Q is well approximated by rationales 
[17]. Thus, the 1-dimensional situation does not fully apply. 

In case c~ E (R \ Q)2 one has to distinguish whether c~ is rationally dependent 
or not. If there exists a relation k 1 (3gl +k2ce2 E Z with k = (k I k 2) C Z 2 \ {0}, the 

minimal average action A at c~ may be non-differentiable in the direction k while 
it is always differentiable in the directions orthogonal to k. If  c~ E ( R \ Q )  2 (more 
precisely (-c~, 1)) is rationally independent, i.e. if c~k r Z for all k E Z 2 \ {0}, 
the minimal average action is differentiable at c~ in any direction. 

We generalize this result to higher dimensions and give a necessary and 
sufficient condition for the differentiability at an arbitrary rotation vector c~ E R ~ 
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in an arbitrary direction/3 E R n \ {0}. A discussion of  the main result is given 

in Sect. 3. 

B) The notion of stable norm in setting B) goes back to a general construction 
by H. Federer. In a slight difference the h-s table  n o r m  which is related to 
homotopically instead of homologically area minimizing surfaces. If  ~, E [T 2, T 3] 
is a homotopy class of smooth mappings f : T 2 ~ T 3 we define ]]'~[Ih - 
inf{A(f) : f E "~) where A0 e) is the area o f f  with respect to the Riemannian 
metric on T 3. Via isomorphism [T2, T 3] ..o H2(T3,Z) one may continue II.[[h 
homogeneously to a norm on H2(T 3, R). By the Poincar6 duality we identify 
H2(T 3, R) "~ R 3. For details see [22]. 

Within the geometrical setting the results give an answer to a question of the 
type: 

Which convex bodies in R 3 may be realized by the unit ball of the h-stable norm 
on H2(T 3, R) ? 

Recently this question was posed by Yu. Burago for the stable norm on 
H i ( M ,  R), where M is a compact Riemannian manifold [10]. One is primarily 
interested in the differentiability of  such a convex body. Up to now, by the result 
of  Mather and Bangert, only the case H1(T2, R) is known. Translated to the 
geometrical setting our result gives the following answer for the case H2(T 3 , R) : 

Let Bh denote the unit ball o f  the h-stable norm, OBh its boundary. For "7 E 
R 3 \ {0} let 0 < r < 2 be the degree o f  rational dependency of'y, i.e. the minimal 
number of  linearly independent vectors k E Z3\{0}  with k~/ = O. Then the tangent 
cone to OBh at the point OBh f) R+"{, 3' E H2(T 3, R) \ {0}, contains at most 2 - r 
linearly independent straight lines. I f  the set ~/~.y o f  non-selfintersecting minimal 
surfaces on T 3 representing 7 is not totally ordered the tangent cone contains 
exactly 2 - r linearly independent straight lines. 

According to [6], for large perturbations of  the metric on T 3, the set ,J/~.y 
has gaps for all "y E H2(T 3, R) \ {0}. Together with the results in [8] this implies 
that .///~.y is not totally ordered if the degree of rational dependency r of  7 is 
> 0. Thus, the answer to the question above is quite striking: In the sense of 
measure the differentiability properties of OBh may be as bad as it is possible 
for a convex body. 

The physical interpretations. Besides its own mathematical interest, the study of 
the minimal average action is motivated from solid state physics. Corresponding 
to the analytical and geometrical setting, the results contribute to the problem of 

A ' )  phase locking in the multidimensional Frenkel-Kontorova model, 

B ' )  equilibrium form for idealized crystals. 

A ') The multidimensional Frenkel-Kontorova model may be viewed as a discrete 
version of the considered variational problem on the torus (see e.g. [9, 22]). In a 
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physical language, the Frenkel-Kontorova model describes ground states of a grid 
of particles in a periodic potential with nearest neighbor interactions. Although 
the model is discrete, the methods of the variational problem directly carry over. 

F. Vallet [23] calculated explicitly for a 2-dimensional example of a Frenkel- 
Kontorova-model the minimal average action A(a) and its derivative with respect 
to the rotation vector a.  The non-differentiability of the minimal average action 
is shown to cause a so-called phase-locking of the physical system. The phase 
is identified with the rotation vector a E R n and depends on a system parameter 
/z E R n. Given # E R n one looks for the unique a(#)  such that A(c~) - #& 
is minimal for & = or(#). The phase-function a(#)  defined this way is locally 
constant if and only if A is nondifferentiable at 5(#) in every direction. The 
(convex) region in the parameter space {# E R n } at which the phase c~(#) is 
locked onto Ceo is identified by the subdifferential of A at C~o. By our results, 
the function c~(#) typically defines a (n-dimensional) devil's staircase while the 
family of subdifferentials typically defines a fractal structure on {# E R n }. For 
details see [22]. 

B') The differentiability results of the h-stable norm has its consequences for 
the so called equilibrium form of crystals. In 1878 Gibbs proposed to consider 
a crystal as a body which minimizes its surface energy under the constraint of 
constant volume. The specific surface energy of a crystal face is assumed to 
depend only on the orientation of the face. Given the specific surface energy ~b, 
the resulting isoperimetric problem is solved by the dual unit ball with respect 
to ~b and thus may be constructed explicitly. 

However, the problem is to determine the specific surface energy qS. Landau 
and Herring 1951 investigated an idealized crystal by considering the translatio- 
nally invariant lattice structure only and therefrom deduced the typical properties 
of ~b. Their model gives a first coherent motivation of Sohnke's famous recipro- 
city law according to which the size of a crystal face is indirectly proportional 
to its Miller indices [12]. 

Regarding the Z3-periodic crystal lattice as a periodic perturbation of the 
metric in R 3, the specific surface energy q~ may be interpreted as the h- stable 
norm II-llh on H2(T3,R) with respect to the projected metric on T 3. Indeed, 
the corresponding results on the h-stable norm confirm in an astonishing way 
Landau's and Herring's heuristical statements on the properties of the specific 
surface energy and establish Sohnkes's reciprocity law (compare Theorem 3). 

The differentiability properties of the specific surface energy q5 with respect 
to the surface orientation determines the face-shape of the crystal. Each non- 
differentiability point of ~b causes a face in the dual unit ball of ~ and thus 
a face of the crystal. The size of the crystal face is proportional to the size of 
discontinuity in the derivative of ~b. Thus, the crystal typically has a face normal to 
each rational direction and the size of the faces decrease if their normal directions 
becomes 'more irrational', i.e. if their Miller indices increase (see [22]). 
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Fig. 1. max(Oct+h, Oo~--h) and min(O(~+h , Oe,_h) are not minimal because of the cusp upwards and 
downwards, respectively. Thus, the variational integral over Oe,+h and Oc,-h is larger than the varia- 
tional integral over the short-cats given by the dotted lines. This shows (2-~-;~+ dd_)A(a) > 0 

1.2 A heuristic argument for the non-differentiability 

We restrict to the case n = 1. There is an apparent difference between a rational 
and a irrational: If  a E R \ Q ,  the set ~/P~ is totally ordered. On the contrary, if 
a c Q, there are minimal solutions O~+h and O~-h in ~r which intersect, i.e. 
~/~,~ is not totally ordered. The total ordering implies the differentiability of  A at 
c~ while the intersection property at rational a implies the non-differentiability. 

We give a rough idea of  why in general A is not differentiable at a E Q as 
soon as a situation occurs of the type depicted in Fig. 1 for a = 0 (i.e. as soon 
as ~ / ~  does no more define a foliation). 

For fixed a the minimal average action may be normalized by A(a) = 0. If  
h > 0 is infinitesimally small one obtains for the difference of left- and right- 
sided derivative 

( d d )A(a)=l (A(a+h)+A(a_h)  ) 
d-d+ d -  

Since A is convex, the one-sided derivatives exist and the difference above is 
1 _> 0. Setting 2T = g, we get by definition of  A 

L ? d E +  d ~ - -  A ( ~  F(t'Oa+h'Oc~+h)dl+ F(t 'O~ 
T T 

We used that 0,~+h = lim~_.0 0~+~. The following reasoning shows that the right- 
hand side above is > 0. 

First replace the functions O,~+h and Oa_ h by max(O,~+h,O~-h) and 
min(0,~+h, 0~-h) respectively. Of  course, this does not change the sum of  the total 
action from - T  to T. Now, the action of max(Oa+h, Oa_h) and min(Oa+h, O~-h) 
may be reduced in the common edge by 'rounding' it (see Fig. 1). 

Thus, max(0~+h, O~-h) and min(Oc~+h,O,x-h) are surely not the 'cheapest 
ways'  to connect their points at infinity. By minimality, the cheapest ways with 
the same asymptoticities are realized by 0~ + 1 and 0~. But the total action of 

1 is equal to 0 by the normalization A(a) 0 0~ + 1 and 0c~ from - T  to T, T = gg, = 
and the periodicity of  0~. Therefore, the total action of  max(0a+h, Oc,-h) and 
min(0,~+h, 0~-h) including an unrounded edge has to be > 0. Reordering again 
the integrals we have shown 
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i I F(t,Oa+h,Oa+h)dt + F(t, Oa_h,O~_h)dt > O. 
T T 

This establishes the non-differentiability of A at a C Q with respect to a generic 
integrand F.  

If  a E R \ Q the absence of an intersecting point in ~ / ~  implies 

( d  d ) A ( a ) =  0 
d--a+ da -  

with respect to any integrand F.  

Acknowledgment. This work is part of my master thesis under the direction of Prof. V. Bangert. I 

would like to thank him for his personal engagement, for many discussions and for critical comments. 

2 The  var ia t ional  p rob lem 

2.1 The minimal average action 

We consider a variational problem on R n+l/Z n+l of the form 

/s~ F(x,u,Du) dx, D=(~--~ 0 ) 
C Rn 1 ' ' "  " '  OX n ' 

where F is defined on T "+t x R n and u : R n ~ R. The conditions on the 
integrand F are 

(F1) F = F(x, u,p) ~ C2'r n+l x Rn),  

in particular F has period 1 in x t , . . .  ,x  n, u . 

(F2) There exists 6 E (0, 1] such that 
n 

i.e. F satisfies the Legendre condition. 

(F3) There is co > 0 such that 

[Fp.[ + ]Fpxl <_ co(1 + IIPlI) 

IFu.I + IF I + IF I _< c0(1 + Ilpl12). 

1,2 n A function u E Wlo c ( R )  is called a min imal  solution if for all compactly 
supported ~b E Wcld2mp(R n) 

lup (F(x,u +O,D(u +4))-  F(x,u,Du))dx > O. 
p~ 

The regularity theory asserts that minimal solutions again have the same smoo- 
thness as F,  i.e. in our case u C C2:(Rn) .  
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The typical example is of the form 

1 
F = - ~ t l p l l 2 + V ( x , u ) ,  V C C2'e(zn+l), 

where V ( x ,  u)  is interpreted as a Z"+l-periodic potential on R ~+1. For the Di- 
richlet in tegrand F = �89 2, the minimal solutions are exactly the harmonic 
functions. 

On C~ ") we define the Zn+l-action T as follows: If  k-= (k,k "+1) E Z "+1 
with k = ( k l , . . . , k  ~) E Z ~ and if u E C~ ~) set 

T2u(x) - u(x  - k)  + k n+l . 

u is said to be non-selfintersecting (on T "+I) if the T-orbit of u is totally ordered, 
i.e. if for all k- E Z n+l either T~u > u or T2u = u or T-s < u. 

One shows that to every non-selfintersecting u E C~ ") there is a so called 
rotat ion vector  a E R n such that 

sup lu(x) - ~xl  < ~ .  (1) 

The set of  all non-selfintersecting minimal solutions corresponding to a fixed 
rotation vector a is denoted by ~///d~. According to [15, thm 5.6] d/d~ 5/0 for all 
ct E R ". We say that ~ , / ~  defines a foliation of R n+l if to every .g = (x, x "+l) E 
R ~+1 with x E R n there is exactly one u E . _ / ~  with u(x )  = x "+l. For the 
Dirichlet-integrand ~ / ~  foliates R "+1 by affine hyperplanes of slope a.  

If  a minimal solution u satisfies (1) with some c~ E R ", we define the minimal 
average action of  u or c~, respectively, as 

A(c~) -" rlirn ~ -~  F ( x ,  u, D u ) d x  
r 

where Br Q_ R n is a ball of  radius r and tBr [ its volume. In [20, Satz 3.4] it is 
shown that this limit indeed exists and does not depend on the minimal solution 
u satisfying (1). Moreover, A(a) is shown to be a strictly convex function on R" 
[20, Kor. 4.2]. 

For the statement of the differentiability properties of A(c0 one directly may 
skip to Sect. 3.1. 

2.2 The set o f  non-selfintersecting minimal  solutions 

Our proof of the differentiability properties of  A(a) relies on the uniform 
smoothness of  the corresponding minimal solutions. For ~ > 0 put ~///g~ - 
Uic~l<~..///~c~. According to the fundamental work of  Moser [15, thm 3.1, 4.3] 
we have 
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L e m m a  1 For every ~ >_ 0 there is a constant cl > 0 depending only on ~ and 

co such that f o r  all u E ~/~g~ 

]lDullc~ <_ ca 

I f  moreover  u, v E ~ / ~  and u < v in a ball B, then 

!B [ IOv(x)  - Ou(x ) l l  <_ el  IV(X) --  U(X)[ f o r  all x E 2 " 

From the lemma one deduces that for ~ > 0 the sets {u E ~ / ~  �9 lu(0)t _< 
const} c ~ / ~  is compact with respect to the Cl- topology on compact sets [15, 
Cor. 3.3]. 

In the following we describe the structure of  the set JP~c` as it is established 
by Bangert in [5]. To any c~ E R" we associate the unit normal vector a l  -" 

(--c`,l) S n II(-c`,/)ll E of  the hyperplane x n+l = c~x. We define the lattice 

TC` -- Z n+l ('7 ( a l )  "1- = {k- E Z n+l : k-a l  = 0 } ,  

Let /~c` be the projection of Tc` to Z n neglecting the last component. Thus 
Fc` = {k E Z" : c~k E Z) .  By J~(a-1) C_ j~gc` we denote the set of maximally 
periodic u E ~/~c`, i.e. 

, /~( -d l )  - {u E ,~d~c` " T~u = u Vk E tic,} �9 

This set is closed and totally ordered. The graphs of its elements therefore define 
either a foliation of  R ~+1 or a lamination, i.e. a foliation probably with gaps. In 
the case of a foliation one has ~/g(K1) = ~r 

We say that ~ = (-c~, 1) is rat ionally dependent  i f f / 'c `  5/{0}, i.e. iff there 
exists k E Z "+1 \ {0} such that ~ k  = 0. This is equivalent to /'c` 4 {0}. If  
is rationally dependent, we will see that the occurrence of  gaps in (the union of  
graphs of) ~/Pg(KI) is responsible for the non-differentiability of  A(c~). 

Now suppose (-c~, 1) is rationally dependent and suppose J ~ ( ~ l )  gives rise 
to a lamination with gaps. Set 

Vc  ̀---" spanRFc` = spanR{k E Z n " o~k E Z} C R n 

and choose any direction/3 E VC`NS n- I  . According to [5, (7.1)] there are minimal 
solutions u E ~/~c` the graphs of  which lie within the gaps of  ~/~(al)  and which 
have the following asymptotic behavior: 

In the direction/3, u is asymptotic to some u § E ~/~(K1) while in the opposite 
direction - / 3 ,  u is asymptotic to some u -  E ~r One has u -  < u < u § and 
u - ,  u § are neighboring, i.e. there is no other minimal solution in ~/d(K1) lying 
between u -  and u § To formulate the asymptotic behavior of  u more precisely 
we have to consider translates of  graph u in the directions -kj = ( k j ,  kj ~+1) E Z ~+1 

with l i m j ~  kj/3 = -4-oo. In order to express this last condition in terms of  k-j 
instead of kj we replace/3 E Vc  ̀;3 S " -  1 by the unique vector/3 E V c  ̀"= spanRTc` 
with the property that 
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k--~ = k/3 for all k- = (k, k n+l) E For - 

For consistency with the terminology in [5, (4.4)] we set 

a-2 - ~ - -  sn  
l i 3 1 1 E V ~ n  . 

Note that ~ • g~. We introduce the sublattices 

"Foz,/3 -- F ~  ~ (a2)  "k = {k- E Z n+l " k a  1 = k-a2 m 0} 

and/~a,~ - 7r(T,~,~) = _P~ N (/3)• 7r being the projection of Z n+x to Z n forgetting 
the last component. With these definitions the set described above of all u E ~//g~ 
asymptotic in the directions 4-/3 to neighboring u -  < u + E J ~ ( g l )  may be 
written as 

, ~ ( a l ,  a2) - {b/ E ,~o~ : T-s = u Vk E Fc,,~ and 

T-fu > u Vk E F ~  with k a 2  > O} . 

If  d / ~ ( a l )  does not define a foliation then for each fl E V~ N S n- I  one has 
~/r K2) -7 ( 0. The asymptotic behavior of  u E J ~ ( ~ l ,  ~2) in the directions 
-bfl translates to 

lim T-~u = u4- if kj E T~  with l im  k j a 2  = - b o o .  
j----~oo J j---+oo 

= u is understood with respect to the C 1-topology on com- The limit lim T2j u 4- 
pact sets. Because of their asymptotic behavior, we say that a minimal solutions 
u E JPd(~l ,a2)  is heteroclinic in the direction /3 with respect to the Z n+l- 

action T and periodic (modZ)  in the directions determined by /'~,~. The fact 
that ~/r U ~/~(~-1,K2) is totally ordered [5, (7.4)] will be essential for our 
investigation of  the derivative of  A(a). 

Finally we mention that for c~ E R n \ Qn one has the special class of  all re- 
current minimal solutions j ~ c  lying within the set rig(K1). A minimal solution 
u E ~ / ~  is said to be recurrent  if 

u = inf{T~-u" k-K1 > O} or u = sup{T~-u" ka l  < 0 } .  

According to [4, (5.2)] the set ~/r C_ ~/~(ai)  may be characterized as 
the unique minimal set of the Zn+l-action T on ~r The set {u(0) : u E 
j g ~ c }  C R is either homeomorphic to R or to a periodic Cantor set depending 
on whether J g ~ c  gives rise to a foliation or not. In the case of  a foliation one has 
~ / ~ c  ~_ ~ / ~ ( a l )  because of  the total order of  ,~/~g(al). According to Bangert 's  
classification of  the minimal solution without selfintersection, in this case even 

�9 rec j ~ c  = j o i n .  If  on the other hand ~///~c~ exhibits gaps one may have strict 
inclusions. If  c~ E Qn we have J~ (K1)  = j g ~ c  and this will also be denoted by 
~/~.oP er" 
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3 Differentiability results for the minimal average action 

In this chapter we state and discuss the main results. Since the minimal average 
action is convex, the (one-sided) directional derivative DeA(o 0 in any direction 
/3 E S "-1 exists and (D e + D_e)A(o 0 >_ 0 for all c~ E R n. Again we abbreviate 
S ~-1 = {x E R n " Ilxll = 1}. If equality holds at some c~ E R" for n linearly 
independent directions/3 E S n- l ,  then it actually holds for every/3 E S "-1,  i.e. 
A is differentiable at c~. By convexity, A is differentiable almost everywhere. 
Moreover, restricted to the set D _ R" where A is differentiable, AID is even 
continuously differentiable [19, thm 25.5]. 

Although the convexity property determines the differentiability of  a function 
to some extent, its s-singular points, 0 < s < n, may be distributed in a very 
complicated manner. The theorems in the first section describe what is possible 
for the minimal average action A. The second section gives an explicit formula 
for the directional derivatives of A. 

3.1 Qualitative behavior: differentiability in a particular direction 

Theorem 1 I f  ~//ga gives rise to a foliation of R n+l then the minimal average 
action A is differentiable at the point o~. 

Conversely, it is not so that A is non-differentiable at a as soon as ~ 
gives rise to gaps. A further necessary condition is that ~ = ( - a ,  1) is rational 
dependent, i.e. that Va -7 ({0 ) .  In order to decide whether or not the left- and 
right-sided derivatives of  A in some direction /3 E S n-1 coincide one has to 
check whether/3 has a nontrivial component in V~ = spanR{k E Z ~ : ak E Z}. 

By Vff we denote the orthogonal complement of  V~ in R ~. 

Theorem 2 Let a E R ~, fl E R n \ {0} and suppose ~ d ~  does not give rise to a 
foliation. Then 

= o  if e E 
(De + D-e)A(~ > 0 else . 

If in particular ~ is rationally independent, all partial derivatives exist and A 
is differentiable at c~ (irrespective of  whether J g ~  defines a foliation or not). 

If  n = 1 the minimal average action A is differentiable at any c~ E R \ Q 
while at c~ E Q it is differentiable if and only if ~ c ~  defines a foliation. The 
analogous result was found by J. Mather [14] and V. Bangert [7, (5.3)] for a 
1-dimensional discrete variational problem. While our proof for the rational case 
c~ E Qn, n = 1, is based on the same idea as Mather 's work, our deduction of  
the irrational case c~ E R \ Q is simpler. In particular, we do not need to estimate 
the convergence of the difference quotient at c~ E Q quantitatively. The case 
ct E R n \ Q n  is obtained by a limit process. Mather's argument is replaced by the 
fact that the corresponding minimal laminations converge. In the case n = 1 it is 
enough to consider the subset ~ / ~ c  _C j / g ~  instead of  ~ g ~  itself. The reason 



Differentiability properties of the minimal average action 353 

\ t 

Fig. 2. A situation not arising in the 1-dimensional case. One has (D o + D_;~)A(a) > 0 since ,~P"gc, 
itself does not give rise to a foliation although a genuine subset of ,/tgc, foliates R 3 even periodically 
in the direction/3 (fat lines) 

is that for n = 1 the set j ~ c  (= ~J~(al) for n = 1) defines a foliation of R 2 
if and only if ~ / ~  does. For n > 2 this seems no longer to be guaranteed. As 
the following two situation illustrates, the question whether left- and right sided 
derivative coincide is more subtle for n > 2: 

Suppose that for c~ C R n with dinar V~ >_ 2 some subset of  ~ is foliating 
R n+l . Assume that the foliation is periodic in a rational direction/3 E Vs. Guided 
by the 1-dimensional case one could expect that this ensures (D~+D_~)A(oO = O. 
However, the leaves of  the foliation may be heteroclinic in a further direction 
/3 C V~ orthogonal to/3 (i.e. lie in ~/~(al ,  ~2))- This situation occurs e.g. for the 
integrand F = 1 IP [2 _ cos(27rDDu ) at c~ = (0, 0) E R 2 with/3 = (1,0),/3 = (0, 1). 
In this case .~t/~ has to contain necessarily solutions which are heteroclinic in 
the direction - /3  (i.e. lie in </~(K1, -~2))  and thus intersect some leaves of  the 
foliation. Theorem 2 implies (D~ + D-~)A(oO > O. 

The example shows that the existence of a periodic minimal foliation to a in 
some direction/3 E V~ \ {0) does not imply (D~ + D_~)A(a) = 0. The crucial 
notion to decide whether A is differentiable at c~ E R ~ or not is the one of  'total 
ordering' of  ~/Pg~: 

Corol lary  1 The minimal average action A is differentiable at ~ c R ~ if and 
only if ~/~c~ is totally ordered. In case that ~ c ~  is not totally ordered, A is 
differentiable at a in the direction/3 c Qn \ {0} if and only if  o~/3 C R \ Q. 

There is a further difference to the 1-dimensional case. If  n = 1 the minimal 
average action for generic integrands F is not differentiable at rational a E Q 
while it is differentiable at irrational a E R \ Q for any integrand F.  If  n _> 2 the 
action A(a) is still generically not differentiable at a E Q n ,  while it is always 
differentiable only at rationally independent a E R ~ \ Qn. If  c~ c R" \ Q" is 
rationally dependent the statement is more complicated. (For convenience, we 
say that a is rationally independent if ~ is.) If  e.g. a C R ~ \ Q" is 'not too near' 
to Q", a smooth foliation of R n§ by ~//[~ will survive as foliation under small 
perturbations of  the integrand F [17], although it may lose its smoothness. Thus, 
at such a the set .//g,~ has not generically gaps and according to our theorem, 



354 W.M. Senn 

the minimal average action cannot be generically nondifferentiable. This can 
even happen if all but one component of  ct are rational. Conversely, there exist 
c~ E R" \ Qn such that a foliation to c~ desintegrates under arbitrarily small 
perturbations. Therefore, A(c~) cannot be generically differentiable at such c~. 

In any case, for sufficiently large perturbations of  the variational integrand F 
one expects that J g ~  has gaps for every c~ in a given compact set K C_ R n. If F 
is the Dirichlet integrand such a result is proven in [6]. Assuming this situation, 
Theorem 2 says that the differentiability behavior of  A is in some sense as bad 
as it can be for a convex function. 

For an arbitrary convex function f : K C_ R n ---, R a point x in its domain 
K is said to be s-singular if there exist not more than s linearly independent 
directions in which left- and right-sided derivatives at x coincide. Note that x E K 
is n-singular if and only i f f  is differentiable at x. The general theorem asserts 
that their are not too many s-singular points [1, (3.1)] : 

(2.0) The set o f  s-singular points o f  a convex function f : K --~ R ,  

K C R n compact, is the union o f  countably many compact sets o f  finite 

s-dimensional Hausdorff  measure (s = 0 , . . . ,  n ). 

By the degree of  rational dependency of ~ and c~, respectively, we denote the 
dimension of V~ = spanR(k E Z" : c~k E Z}. According to Theorem 2 a point 
c~ E R 2 with rational dependency of degree r is a (n - r)-singular point if ~ / ~  
has gaps. If ~ / ~  has gaps for any c~ in a compact set K _C R ~, the points c~ E K 
are (n - dim V~)-singular points of AIK. The differentiability of AIK cannot be 
worse: for each s = 0 , . . . ,  n one has to take a union of  infinitely many compact 
sets of finite s-dimensional Hausdorff measure to get all s-singular points of A Ix- 

On this background, the continuity properties which may be established for 
D~A(c~) with respect to c~ are not at all evident. We give a condition on the 
approximating sequence c~ I --* c~ insuring the convergence of  the corresponding 
derivatives D~A(c~ ~) to D~A(a).  (See Theorem 4, Sect. 5.3.) 

In view of Theorem 2 one wishes to have an upper bound for (D~+D_~)A(c~) 

in terms of c~ and/3. Although one would expect stronger estimates, the following 
theorem is a first step in this direction. 

Theorem 3 Let c~ E R n and suppose the rational components o f  c~ with respect 

to the standard basis {el ,  �9 en } have the form cJ ri �9 . , = ~r with r i E Z and s i E N 

relatively prime. Let K C_ R n be compact. There is a constant depending on F 
and K only such that f o r  all c~ E K N Qn and all 1 < i < n with c~ i E Q one has 

1 
0 _< (Dei + D_ei)A(c~) _< const --= . 

S t 

The analogous statement is true for derivatives in any rational direction/3 E 
V~ with ][/3[[ = 1. Note that the theorem does not allow to deduce the existence 
of the i-th partial derivative of  A(c~) with c~ i E R \ Q by a limit process since 
the corresponding continuity property is not guaranteed. According to Theorem 
2 one has to require in addition ei E V a  A" . 
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3.2 Quantitative behavior: an explicit formula 

We give a formula for the derivative D~A(a) in the direction/3 which holds for 
/3 lying in Vs as well as for/3 lying in V~.  

n-1 _." 7 s n - I  Qn Let SQ { I~']T E : 7 E \ {0}} be the set of  all rational directions 
n--1 in R n. Given a E R n choose/3 E (Vs t2 V~)  (3 SQ . I f /3  E Vs we associate to 

- -  ( - s , O  In /3 the unique vector K2 E Vs  N S n as defined in Sect. 2. Recall K1 - II(-s,l)ll' 

order to not have to distinguish between/3 E Vs and/3 E V~ we abbreviate 

( , - ~ ( a l  ) U ,//~(a-1, a-2) , if/3 E Vs 
~/~s,/3 -- ~/~(al)  , if/3 E V ~ .  

Thus, ~/~s,~ consists of  all u E ,//~s which are maximally periodic and, in case 
c~/3 E Q, moreover of  all u E J ~ s  which are heteroclinic in the direction /3. 
If  n = 1 and c~ E Q other notations for , /~s ,~  used in literature are i n s +  or 

r e c  ~//~s U ~ / ~ .  If  n = 1 and a E R \ Q one has ~/r = -~#~s �9 
The formulation of the main theorem requires a few additional definitions. 

Fix an arbitrary minimal solution us E J ~ ( a a ) .  For g? C_ R n let 

~163 - U {  graph u]o  : u E ~ /~s ,~ ,  us - 1 < u < us} _C R ~+l 

be the corresponding part of the generalized foliation associated to ~//~,~,~. We 
define the function 

~Ps,/~ : , ~ , ~ ( R " )  ~ R" , gt ,a(g) = Du(x),  

where ~ = (x,x n+1) and u is the unique solution in JCgs,~ with u(x) = x n+l. For 
functions u < v E JCds,~ we denote the open set lying between their graphs by 
(u, v), i.e. 

(U,V)'- {(x,x n+l) E R n+l "u(x) < x  n+l < v(x),  x E Rn} . 

By . ~ , ~  we denote the set of  gaps of  the generalized foliation ~'s,~(Rn). More 
precisely, 

�9 .~ ,~  - { G C R "+l " G is a connected component of  ( u s -  1, u s ) \ . ~ , ~ ( R " )  } . 

For each gap G E -.~,3 there are unique u~ < u~ E ~/~s,~ such that G = 
(u~,u~). If  G C R "+1 is a set of the form G = (u~, u~) and g? C_ R ~, we define 

Du~) - F(x, u~, Du~)) dx o 

Without loss of generality we assume the standard situation where Vs = 
spanR{k E Z n : ka  E Z} is either trivial or spanned by the standard unit vectors 
e l , . . . , e ~  with 1 _< r = dimV~ _< n. In other words, the first r components 
of  c~ = (c~l,. . .  ,c~r,ar+l,... ,C~ n) are assumed to be rational and the last n - r 
components are are assumed to be irrational as well as rationally independent. 
The general situation is obtained by a linear transformation. 
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Put E0 -" [0, 1] n and R + -" {A E R " A > 0}. Set E + "- Eo + R+ei and let O~ei 
E~~ be the face of E0 orthogonal to ei and containing 0 E R n. 

Main  Theorem Suppose ~ E R ~ with Vs = R r x {0} n --r f o r  some 0 < r < n. 

The (one-sided) directional derivative o f  A at ~ in any standard unit direction 

ei E R n, 1 < i < n, has the form 

L i 
De, A(o 0 = Fp,(~,k~s,e,)dx 1 ..".dx n+l + ~ BG(E~e,) (2) 

where the order o f  summation o v e r  ~ , e i  corresponds to decreasing absolute 

values o f  Bc  (E~,el)" 

The disadvantage that for n _> 2 and c~ E R ~ \ Q~ one has to precise the 
order of  summation is overcome with some expense in formula (8) below. An 
alternative way of  integration in formula (2) is given by the remark in Sect. 4.1. 
First, we discuss special cases of  (2). 

If  n = 1 and c~ E Q, one shows that generically there exists up to translations 
exactly one periodic minimal solution in ~ g s .  If  n = 1 and c~ E R \ Q, a 
corresponding statement exists for generic monotone twist maps. According to 
[13], for generic monotone twist maps and generic irrational rotation number 
c~ E R \ Q, the Aubry-Mather set is hyperbolic. Fathi showed that in this case 
it has Hausdorff dimension 0, [11, thm 2.1]. By the correspondence between 
monotone twist maps and Z2-periodic variational problems [18] his statement 

rec translates to the set ~ , e l ( 0 ) =  {u(0) : u E ~/~s ,us  - 1 < u < us} .  
Thus, for n = 1 and arbitrary c~ E R formula (2) generically reduces to 

d 
BG(R§ (3) dc~§ = 

G E ~ , e  l 

where a denotes the right-sided derivative with respect to c~. 
For the 1-dimensional discrete variational problem a formula analogous to 

(2) is established. In [14] it corresponds to the expression for K § In case c~ E Q 
our formula (3) corresponds to (8.4a) in [2], where the derivative of the average 
action is calculated for the standard twist map in the anti-integrable case. Aubry 
not only shows that in his anti-integrable case the derivative jumps at all rational 
rotation numbers c~ but even that the variation of  A vanishes on the set of  all 
irrational c~. However, if we do not assume to be near the anti-integrable case 
and we only know that d S s  exhibits gaps, similar questions remain unsettled 
even for n = 1. 

While in (2) the first term cancels if U G has full measure, the second 
term cancels if J//gs defines a foliation. In this case .JP~s,~ is equal to J ' g s  for 
any/3  = ei, 1 < i < n. Moreover, the function Os --" Os,~ is independent of /3  
and may be considered as a function on E0 - [0, 1] n§ with k~s(~-) = Du(x)  for 
u E J / ~ a  with u(x)  = x n+l . From the main theorem we deduce 
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Corol la ry  2 I f  ~ /~s  gives rise to a foliation, the partial derivatives o f  A at c~ 
exist and 

0 f 
A ( c 0 =  L Fp'(2, kvs)dy 

Oogi d Eo 
1 < i < n . (4 )  

Since the existence of all partial derivatives of a convex function at some 
point implies its differentiability at this point, Theorem 1 follows immediately, 
see [19, 25.2]. 

Proof  of  Corollary 2 If  c~ C R n and f2 C R n set 

. ~ ( f 2 ) -  U {  graph uln  " u E J/~(-di) ,  us - 1 < u < us } .  

We show that irrespective whether ~//gs defines a foliation or not one has 

/~.~ Fpi( 'x '~s)dx 1 i dxn+ 1 = / ~  Vp i ( '~ '~s)dy  ' 
(Eo~ i ) (Co) 

(5)  

i.e. that the domain of integration .7~(Eo) = {~ = (x, u(x)) : x C Eo, u E 
~//~(al), us  - 1 < u < us} may be restricted to those Y with x i = 0. (However,  
(5) is not true in general if on both sides ~ is replaced by ~ , e ,  .) 

Let U+~(x, O) be the function from [15] conjugating the lamination ~ /~ (a l )  to 
the affine foliation {c~x + c : c E R} of R n+l. Thus, for any c E R the function 
x ~ U+~(x, ax  + c) defines a minimal solution in JP~(gl)  and up to a countable 
number all solutions in J ~ ( a l )  have such a representation. Moreover,  + U s (x, 0) is 
monotone and upper semi-continuous in 0 and satisfies the periodicity properties 

+ O) + = Us(x ,  0 + 1) + Us(x,  0),  + Us(x  +ei,  = UTx(x,O)+ 1 

with 1 < i  < n ,  see [15, t h m 6 . 3 ] . I f / ) = ( / ) l , . . . , D n ) w i t h b v -  ~ ~  +c~uOoo 
and x n+~ U+~(x, O) one has Os(Y) /) + = = U 2 ( x , O ) . S e t t i n g U  - U  2 a n d U o ( x , O ) -  
lim~-lo ~(U(x ,  0 + ~ - ) -  U(x ,  0)), the desired equality (5) translates to 

E2, e, fpi(X, U , D U ) U o d x  1 .~..dxndO = Fpi(X, U , D U ) U o d x d O  , (6) 

w h e r e  -'E;,ei - -Eo 0 ( e i )  . This last equality itself is obtained by substituting the 
Euler equation F, (x ,  U , D U )  = ~ b~Fp~(X, U , D U )  in 

0 = f~o xi  F(x ,  U , D U ) d x d O  = xi(Fu " Uo + Z F p ~  . [)~,Uo)dxdO 
0 V=I 

and integrating the term xiUo ~ b ~ F p ~  partially n times with respect to b , .  
Using the periodicities of  U and F all summands up to the one with i = v cancel 
and left- and right-hand side of  (6) remain with opposite sign. This establishes 
formula (5) and by the main theorem the corollary is proved. [] 
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Moser presented in [15, 16] a regularized variational problem for minimal 
foliations of T "+I. The corresponding regularized minimal foliations tend uni- 
formly on compact sets to our generalized minimal foliation with a parameter 

--* 0 [21]. Since the corresponding functions ~P~ describing the regularized 
foliation is differentiable for e > 0, the partial derivatives of  the minimal ave- 
rage action A~(c~) with respect to the regularized variational problem may be 
computed explicitly by 

~0c~iAS(c~ ) = f g  Fp~(ff, O~)df f ,  1 < i < n , 
o 

see [16, (8.10)]. According to the corollary, the same formula remains true in 
the degenerate case e = 0,  although ~Pc~ = l i m ~ 0  kv~ need not be differentiable 
anymore. In [21] it was shown that for e ~ 0 the minimal average action A~(c~) of 
the regularized problem tends pointwise to A(c0. If  ~ / ~  gives rise to a foliation, 
according to the corollary, the derivative DA~(oO likewise converges to DA(cQ. 
Using Theorem 2 and the convexity of  A one even shows more : 

DAe(c~) tends pointwise to DA(cQ at o~ E R n with e ~ 0 if and only if ~/r is 
totally ordered. 

Finally we replace the sum in formula (2) by a sum which surely is absolutely 
convergent. The idea is to integrate not over the domain E § cut out of some O~el 
natural periodicity domain E~,~ of the solutions in ~ , ; ~  but to integrate over 
such a periodicity domain itself. 

Let ~,~o - { e l , . . . ,  en } denote the standard basis of  R n. We still assume the 
standard situation where V,~ = R r • R n-r with r = dimR V,~. By Ec~ C_ R" we 
denote the fundamental domain of R n /F~  spanned by the standard basis ._~o on 
V~, i.e. 

E~ = span[o ,1]{s le l , . . . , s re r )  • spanR{er+ l , . . . , en )  i f r  > 1 (7) 

a n d E ~ = R "  i f r = 0 .  N o t i c e t h a t f o r f l E ~ o ~ V ~ t h e s e t E  + i s a g e n u i n e  oL,/3 

supset of  E~ while for/3 c .~o  n V~ the set is 'half '  of  E,~. For c~ -- 0 one has 
in particular Eo = [0, 1] n. 

If fl c ~ o  is an arbitrary standard unit vector we consider the sublattice 
F~,~ = F~ n (fl)• with the corresponding fundamental domain E~,~ -" E~ + R/3 
of the quotient space R n/F~,;~. Within E~,~ the following subsets are specified: 

E~,~ - E~ n (/~)• and E ~  =" E2, ~ + R+fl .  

In particular E~,~ - + = - E~,_~. In case c~ = 0 and/3 E ~ ' o  we have E0~ [0, 1] ~ N 

(fl)• and IE~~ = 1. Moreover F0,~ = {k C Z n " k/3 = 0).  On the set of  gaps 
F~,;~ we define the equivalence relation 

G1 r2fl G2 :r  3 k E/ '0 ,~ x Z such that G1 = G2 - -  k - ,  
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where G1, G2 ~ --q~,/3. Let .5~,~/Fo,~ be a system of representatives of v~e. 
Now, for every G ~ .~,~/Fo,~ one has Ba(E+,~) = y'~.BH(E~,~), where the 

sum has to be taken over all H ~ .~ ,~  with H v,L' G .  Formula (2) therefore 
rewrites with/3 = ei in the form 

D~A(a) = /3Fp ("X, ~1o~,1~) dx  1 ~ . dx  n+l 
,B(E~) 

+ ~ + Bo(Ec,,~) , (8) 
i 

where the sum may be shown to converge absolutely. 

4 Proof of the qualitative behavior 

We deduce Theorem 2 and 3 from the main theorem. In order to compare left- and 
right-sided derivative D~A(a) and D-/3A(eO, respectively, we expand the domain 
of integration E+,+~ to the common periodicity domain E~,~ = E+~ U E +,_~ of 
solutions in ~ / ~ , ~  and ~ / ~ , _ ~ .  The comparison of fE~,, F(x,u,Du)dx with 

u C ~ / ~ , •  together with a standard reasoning counting the order of growth of 
the variational integrals on E~,~ will prove the first part of Theorem 2. The strict 
inequality in the second part of Theorem 2 is based on the maximum principle 
for partial elliptic differential equations in addition. The proof of Theorem 3 uses 
a further estimate of the size of the gaps defined by ~//g(~l). 

Choose c~ E R n. Without loss of generality we assume that the standard 
basis ~,~o of R ~ is c~-admissible for the chosen a. Reordering the basis this is 
equivalent to the standard situation where V~ = R r x {0} ~-r with r = dim Vs. 
We discuss briefly the question of existence of Bo(E+,/3) as well as of the sum 
in (9). 

First, the integrand in BG(E+,~) may be estimated uniformly by 

IF(x, u~,Du~) - F(x, u~,Du~)[ < 

_< const- ]ua(x) - ua(x) [ .  (max IFu(~-,p)[ + max IlFp(z,p)lt § 1). 

To deduce this inequality apply the fundamental theorem of calculus and the esti- 
mate of Lemma 1 (compare formula (15), sect. 4.2). The existence of Bc(E+~,5) 

+ Tn+l now follows from VOln+l{~ E G : x C E=,;~} < VOln+l = 1. 
Second, we give a rough idea why ~ae.~,~,MVo, ~ Bc(E+~,~) is absolutely 

convergent and thus independent of the order of summation. Since each gap G E 
�9 .~,~/1-'o,~ projects injectively into R"/Fo,~ the union of all {~- E G :x  C E~,~} 
with G E .5~,~/Fo,~ has finite n-dimensional volume. This would no longer be 
true in general if E~ were replaced by E § However, in order to prove the 

finiteness of ~Ge~,~/ro.~ [BG(E+,/~)[ it is by minimality of UG i enough to argue 
with the boundary o f E ~  + ~ (mod Z ") instead of E~+,~ E ~ itself. For, the standard 
reasoning using the minimality as well as the asymptoticity and periodicity of 
u G and u~ on E ~ (see the proof of Theorem 2 in the next section) leads to an a,/3 
estimate of the form IBo(E+ ~)1 _< const. VOln+l{Y C G :x  C E~ 
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4.1 Proof of the (non-)differentiability in a particular direction 

The differentiability criterion of Theorem 2 and 3 will be deduced from the 
explicit formula stated in the main theorem. We say that some orthonormal basis 

~-1 = { x_z_ Sn-1 . Q~ R n , ~  C SQ Ilxll E X E \ {0}} of  is admissible for a E R n 

(short: a-admissible) if ~ C_ V~ L5 V~.  Recall that V~ = spansF,~ = spans{k E 
Z" : ak  E Z} C_ R ". We assume the standard situation where the standard basis 
C~o is admissible for a E R ". i.e. ,~o  c_ V~ U V~.  If /3 E ~ o  is a standard unit 
vector we abbreviate 

B(a,/3) - : _  /3FP(-Z'kr~a,~)dx + E Bc(E+,~ ) " (9) 
a..% .p(s~) Ge~,~/ro,~ 

corresponding to the right-hand side of (8). By the main theorem D~A(a) = 
B(a, /3). 

For a convex function on R n, the set of  directions/3 E R n in which left- and 
right-hand sided derivative at some point a E R n coincide, is a linear subspace. 
In order to deduce Theorem 2 from the main theorem it is therefore enough to 
show 

B ( a , / 3 ) + B ( a , - / 3 ) = O  i f / 3 E ~ o N V ~  and > 0  i f / 3 @ ~ o A V a .  

Note that by the assumption on a one has spanR(,~o fq V~)  = V~.  

Proof of Theorem 2for  fl E ~5'o A V~. Since in this case ~/ t~,~ = ~ / ~ _ ~  = 
~-/r and Ec~,~ = E~ one obtains 

B(~,/3)+B(~,-/3)= ~ (BG(EL~)+Bc(E~:))= ~ BG(E~), 
GE.~/ Fo,~ GE ~ /  Fo,~ 

where ~ - ~ , ~  = -~a,-~ is the set of gaps of , /~(al)  lying between us - 1 
and us ,  us some fixed solution in J ~ ( a l ) .  

We show that for each G E ~ one has Ba(E~) = 0: 

Suppose Ba (E,~) = fen (Fx, u~, Du~) - F(x,  u~, Du~)) dx _> 2s for some s > 0. 

For Q - [ - 1 ,  1] n and % large enough the restriction to the compact domain 
E~ N ToQ still satisfies Ba(E~ A ToQ) >_ e. By the periodicity of  G in the 
directions e l , . . . ,  er one concludes BoO-Q) >_ (e~)r  for ~- >_ To large enough. 
This says that the variational integral of  u~ over 7"Q is of  order r r less than the 
variational integral of  u~- over the same domain TQ. 

Now, a contradiction to the minimality of u a may be deduced. For this pur- 
pose we construct compact variations of u~ supported by 0- + 1)Q and agreeing 
with u~ on ~-Q. The additional portion of  these variations joining u~ with u + G 
on the set (T + 1)Q \ TQ may be estimated from above by a factor const .  T r-1 
as follows: 

Since the set {(x,x n+1) E G " x E E~} projects injectively into T n+l its 
volume is _< 1. The functions u~ and u +a therefore have to converge in the 
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directions e~+, , . . . ,  en to each other in a way insuring fbd(~-Q) [u3 - u~ldx < 

const. ~.r-1 for infinitely many ~- E N.  By bd(TQ) we denote the boundary of 
TQ. Recall that G = (u~, u~) is periodic in the directions e l , . . . ,  er. 

While the win for the variational integral of u~ is of order ~-r if it would 
agree with u~ on TQ, the loss of joining R~IrQ to a compact variation of u~ is 
only of order ~-r-1. Obviously, this is a contradiction to the minimality of u~ 
for ~- large enough and proves Bc(Es)  < O. 

The technique of counting orders presented here will be cited as the s tandard 
reasoning. For details see [4], in particular (6.9)-(6.13). Interchanging the r61es 
of u~ and u~ yields Ba(Es) = O. 

Under the assumption ~ o  = {e~, . . . ,  en} being a-admissible, we therefore 
have shown 

B(a,  f l )+B(a , - / 3 )  = 0  for all/3 E ~ o  f3 V~ . [] (10) 

If  in case/3 E ~ o  N V~ we add B(a,/3) and B(a,  -/3), the integral term in 
(9) will no longer cancel. However, we may transform B(a,/3) such that it again 
has this property. This allows us to establish the positivity of B(a , /3 )+B(a , - /3 ) .  

To/3 E ~ o  n Vs we associate g2 E S n n Vs  according to sect. 2.2. A subset 
_C ~/~(aa, a2) is called a filtration (of , / ~ ( a l ,  a2)) if it is invariant under the 

zn+l-action T on . ~ ( ~ 1 ,  g:)  and if to every gap G E ~ there exists u E 
with graph u ___ G. By ~ we denote the set of gaps of 

U { g r a p h u :  u E J ~ ( a l ) U ~ } C _ R  "+1 

lying within (us - 1,u,~) = {(x,x  n+l) E R ~+~ : u~(x) - 1 < x ~+1 < us(x) ,x  E 
R" }. A filtration ~ C_ , / ~ ( a l ,  a-2) is called discrete if ~ / F o , ~  is discrete with 
respect to the cl-topology. Let k~s be the restriction of k~s,~ to ~ ( R " ) ,  i.e. 
k~s(ff) = Du(x), where u E J ~ ( a l )  with u(x) = x ~+l. 

Lemma 2 Choose a E R n such that the standard basis ,~o is a-admissible, i.e. 
,~o C_ Vs U V~ . Choose/3 E ,~o n Vs. If  the filtrations ~ C_ ~/~(-61, +-d2) are 
discrete one has 

B (a, • = + [ _  ~Fp (~, ~s) d~ + Z BH (E~I 3). a~ 
(E~o) H E ~ •  / t'o,~ 

The proof is postponed to sect. 4.2. 
The summation term in the lemma may be simplified by interpreting the 

partial sum 

Z B H ( E ~ ) ,  G E -~/-F'o,~. (11) 
n e ~ •  / ro, ~ 

HCG 

By discreteness of ~ this partial sum is an infinite sum of telescope and there- 
fore reduces to one integral. 
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For any G = (u~,  u~) E ..~,~/Fo,~ fix uo,+ E ~ with graph UG,+ C_ G. 
Let s E N be the smallest natural number such that s/3 E F~. Equivalently, s is 

r where r E Z and s E N are relatively prime. If  c~/3 = 0 characterized by ~fl  = 7 
we have s = 1. 

Note that u~ E ~///d(~l) is periodic mod 1 with respect to translations 
~-s/3, ~- E Z ,  and that U~-ez Ts/3 + E,~ = E~,~. Since ue,+ and UG,- are asym- 
ptotic in the direction /3 and - /3  respectively for any G E ~ ,  the expression 
(11) simplifies to 

B~G(E~,~)- lira f (F(X,UG,~:,DUG,+) F(x, u + + ~-er~ JE~,~+[-~-,~]s~ - o, Due)) dx .  

The limit exists since it corresponds to a special ordering of summation in (11) 
and since this last sum is absolutely convergent. From the lemma we conclude 

Corol lary  3 Let ~ o  be c~-admissible for c~ E R n. For any/3 E ~ o  fq V~ one has 

B(oq 4-/3) = 4 - I _  /3Fp(-R,~[ta)d~ + ~ Bg(Ea,~) , 
a ~  (E~) G e ~ / ro,~ 

B(c~,/3) + B(c~, - /3)  = Z B~(E~,~) + Bg(E~,~).  

Remark Since by the main theorem D~A(~) = B(c~,/3) in case that the standard 
basis ~ o  is c~-admissible, formula (2) takes the new form 

Deia(oO = f~  Fp~(X, U,bU)Uod-~dO+ ~ B~(Ec~,ei) 
o G C ~ / F O , e  i 

We used (5) and the notations there. In case that J / / ~  does not have gaps and 
thus "~//'0,e~ = 0, the formula above is the same as the formula for O0~v~iMC(c~) 
in [16, ch. 8]. [] 

Proof of  Theorem 2 for/3 E ~ o  N Vc~. By the main theorem it is enough to 
show that 

B~(Ea,~) + B~ (Ec~,~) > 0 (12) 

holds for each G E ~ .  If  G E - ~  define G+ - (max(uG,_, UG,+), U~) and 
G -  - (u G , min(uo , - ,  Ue,+)). Using the fact that for any ~- E Z 

(x , UG , Due ) dx = F (x, u~ , DuS ) dx 
o f ~ + [ ' r - - l , 7 - ] s f l  r ~ + [ T - - I , ' r ] s / 3  

(= ]Ec~]" a(c0),  we obtain 

B3 (E~,~) + B G (E~,~) = Be+(E~,~) - B e -  (E~,~). 



Differentiability properties of the minimal average action 363 

By the standard technique explained in the preceding part using the mi- 
nimality of u~ and u~ one proves • >_ O. However, since UG_ 
and uc§ intersect, the maximum principle states that neither max(u~_, u~+) nor 
min(u~_, ua+) can be minimal on Ec~,~, see e.g. [4, (6.1)]. One therefore actually 
has 4-Bc+(E~,~) > 0, from which (12) follows. [] 

Next we prove Theorem 3. By the main theorem (D;j +D_~)A(a) = B(ct,/3)+ 
B(c~,-/3) for any/3 E ~ o  and according to Corollary 3 one has to estimate the 
summands B~(E~,~) + Ba (E~,;~). 

If t E R and G E ~ we denote by w~ the n-dimensional volume of 
{ 2 . E G : x E E ~ , ~ , x / 3 = t } .  

Lemma  3 Let K C R ~ be Compact. Suppose ~2o is o~-admissible for c~ E K and 
/3 E ~3o N Va. There is a constant depending on F and K only such that for all 
G E . ~ a n d a l l t  E R  

0 < B~(E~,~)+B~(E~,;~) < const (wb) 2 . 

Proof of  Theorem 3 The assumption a i = af t  E Q with/3 = ei E ~flo in 
Theorem 3 is equivalent to/3 E ~ o  N V,~. According to Corollary 3 and Lemma 
3 

+D_~)A(a) _< const - ~ ~cr .tc,2j (D~ 
i 

~ / r o , ~  
(13) 

holds with any tc E R.  

Let ctfl = ~ E Q be as below of Lemma 2. Remember that G is periodic 
mod 1 under translations with s/3 E _P~ C Z n. 

tc < w ~  for a l l 0 < t  < s  To every G E ~ let 0 < ta < s be such that wa _ 
and thus by periodicity for all t E R. One estimates 

w~ a _< ~ co; _%< 1, (14) 

where the second inequality holds because U a ~ / r o , ~ { 2 .  E G : x E E~ 

projects injectively by R n+l -+ Rn+1/Z "+1 into the face E-o,a of Eo = [0, 1] n+l . 
s t Since the set {2 E G : x E E~} projects injectively into Eo one has fo w6 dt <_ 1 

ta < t Replacing one factor for any G E -.~. The special choice of ta implies w G _ 7" 
coat~ in (13) by sl and applying (14) we get 

1 
(D~ + D_~)A(a) < const - , 

S 

proving Theorem 3. [] 



364 W.M. Senn 

4.2 Appendix: a chapter of virtuous calculus 

Proof of Lemma 2 We restrict to the case +ft. Note that the lemma is trivial if 
~/~(g~, g2)/F0,~ itself is discrete with respect to the C ~-topology. To prove the 
general case one has to show that 

Ba(E2,~) , 

where ~'~,~ \ ~ ( Y ) )  - ~-~,~(Y?) \ 3;r~(Y2) for f2 C R". 
The technique is to refine the fixed discrete filtration 5~+ successively until 

it will fill up the set -/~(~1,~2). Of course, if ' ~  _D 5~+ and ~ is a discrete 
filtration, the left-hand side above will not change. It is therefore enough to 
show that for such successive refinements of ~+ the right-hand side will be 
approximated by the right-hand side. The integral term in the formula may be 
interpreted as an infinitesimal version of y~Bc(E+,~) when the volume of the 
gaps G tends to 0. 

For any discrete filtration ~ C_ ~/tg(al, g2) we decompose ._~ into comple- 

mentary sets ~ = ~ #  tJ ,~# with ~ -" .~ ,~  C~ ~ #  and . ~  --" ~ \ ~ .  
A sequence of discrete filtrations ~ C_ Jr g~) is said to converge to 
~/~(aa,g2), ~ --' ~/~(gx,g2), if V{G ~ ~ }  ---, (.J{G E ~ , 3 }  with respect 
to the Hausdorff metric on subsets of R "+l. In a complementary formulation, 
using the regularity of the minimal solutions, ~ --~ .J~(g~, ~2) iff 

( G u 6 ) ( x )  - vol~(.~,~ \ , ~ ( x ) )  , 0  

uniformly in E~+,n. 
E + We rewrite the expression BG(~,~)  applying simple calculus. First 

+ Du; )+  F ~ ( x , ~ , D u ~ ) d r  F(x, u~, Du~) = F(x, UG, 
au;(x) 

n 

+ ~ _z_v(u _ uG)fpe(X,u~,Du~)+O(llDu~+ _ Du~ ll2 ) 
( Y X '  - -  

i = 1  

(15) 

with an error term bounded by 

IO(llOu~ -Ou~ll2)l ~ ~ -ln(n + 1) 2 IIOu~ - Buell 2 ~ const, lu~ - u~] 2 . 

& > 0 is the constant in (F2). According to Lemma 1, using the periodicity and 
the total ordering of J ~ ( a l ,  az), the constant may be chosen independently of 
x c E+c~,~ and G E -~ , .  One obtains 
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+ Fu(x, ~, Du~) d~dx+ (16) Ba(E,~,3) = :,~ a,~(x) 

+ fE ~ O-~(uG- u~)F#(x, UG, OuS)dx+ fE O(lua--U~ 12)dx " 

Summing up the right-hand side over all G E -~ / -Po ,3  one has to cope 
with the difficulty that this sum need no longer to converge absolutely. We fix 
some discrete filtration ~+ C_ J ~ ( g l ,  g2). Since for each H E -~+ the (n + 1)- 
dimensional volume of {~- E H : x E E+,3} is finite, we may first restrict the 
sum to all G C_ H and then add over all H C_ ~ /Fo ,3 .  

Let us consider a sequence of discrete filtrations ~ converging to JC~(gl,  a2). 

Fix H E -~+.  In order to determine the limit l i m ~  ~ + BG(E,~,3) we treat each 
of the three terms in (16) separately. 
A) By elementary calculus one shows that in the limit ~;~ ~ J ~ ( g l ,  g2) we 
have 

fE ["S(x) lim ~ F. (x, ~, Du~) d(dx = 

GCH 

= - [ Fu(~, ~,~)dY . 
J tt n~  ~\~(E* ~) 

To realize the limit process one uses the uniform estimates of  Lemma  1 and 
the smoothness (F l) of  F .  
B) In the limit ~ ~ J ~ ( a ~ , a 2 ) ,  after summation, the second term of (16) 
leads to 

n 

= 

aE~lro, ~ ~, "= 
GCH 

n~,f~\ .~(E~,~) J U n.~,~ \.~(E+,~) 

To check this equality one first has to integrate by part in all directions ei E ,~o 
and to use that in the directions • the gap H E "~ ,3  either is periodic or 
converges to zero. Then apply the Euler equation 

o--~Fpi(x,UG ,DUG) = Fu(X,UG ,DU ~) 
i=1 

and take the limit ~ ~ J~(~- l ,  ~2). 
C) Since for any G E - ~  the function lug - u~l converges uniformly on 
Ea+,3 to 0 when ~ ~ J ~ ( a l ,  a2) and since the restriction of  H to Ea+,3 • R has 
finite volume, one gets 
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~-" l +12)dx = 0  lim O(lu ~ - u6 . 

OC_H 

Adding the parts A) - C) it remains the term f/3Fp(g, k~,~)dY only. Sum- 
ming over all H ~ ~Oc~/Fo,~ one obtains 

/ ,  

lim E + = [__ BG(E~,~) /3Fp(Z, k~a,~) dZ  , 
d~ Ge.~/ ro,~ a ~,:~,~\~(E~p 

(17) 

where the union (o~,~ \ ~(EO,p)/_Po,~ of all integration domains is replaced 
by ~ , ~  \ ~ (Eg ,~) .  

It remains to show that for the complementary set f f ~  we have 

lim E BG(E+,~ ) =  E BG(E+~,~ )" 
o~.~/r0,~ ~.%.Mc0,~ 

E + The limit exists since ~ae~/ro ,o  BG(a,r is independent of the discrete filtra- 

tion ~ and since the complementary limit (17) exists. Since . ~  = -~,~fq . . ~  C_ 
�9 ~ , ~  and ~ ~ ~/~(gl, ~2) the limit on the left-hand side defines a particular e 
order of summation of the sum at the right-hand side. [] 

Proof of Lemma 3 Choose G = (u - ,  u +) E . ~  and assume t = 0. We define 
functions v + and v -  which coincide with u -  on E2~  and which connect u -  
with u + in the direction/3 respectively -/3. 

L e t b e E  +a~ ,~ -{x6Ec~ ,~ : 0< x / 3< l }_  _ , E  -lr _ 
and set 

E+I v+(x)-  u - ( x )  •  + - u - ) (x )  i f x  6 c~,:~ ' 

Let us abbreviate 

B~l - [ (F(x,v~,Dv + ) -  F(x,u+,Du+))dx 4 

J~ EL~ 
We show with the standard reasoning using the minimality of Ua ~ that 

Bh 1 + B s  1 >_ eh(E~,~) + Bs(E~,~) .  

In the following, the left-hand side will be estimated from above by const-(w~) 2, 
proving the lemma. Using elementary calculus one may substitute 

F(x, v+,Vv +) = F(x,u+,Du +) + f~• + 
--+au (x) 

n 

+ E 0-~ (v+ - u+)Fp,(x, v• + O@Dv • - Du+]]2) . (18) 
i=1 

According to Lemma I, the error term is bounded by 
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I O ( l l D v  • - Du+II2)I < ~5 -~n(n + 1 ) l l O v l  - On§ 2 < c o n s t ,  lu § - u - t  2 . 
- 2 

Moreover, since F E C 2'~, one has for ~ E [u- (x) ,  u+(x)] the estimates 

IF~(x,~,Du+)- Fu(x,u+,Du+) I < c o n s t i u §  

[Fp,(x,v+,Du+)-Fp~(X,u+,Du+)l <_ const l u §  . 

Inserting the last three estimates in (18), applying the mean value theorem 
and the fact u-(x)  <_ v• <_ u+(x), we obtain 

Bgl = fE• ( (v• - u+)Fu(x'u+'Du+) + 
ot,t3 

i=1 

Again, we integrate the summation term n times by part and substitute the 
Euler equation ~inl  0 Fp, (x, u +, Du +) = F, (x, u § Du+). Because of the periodic 
respectively asymptotic behavior of  u -  and u + in the directions ei C ,~o all 
boundary evaluation cancel up to one. It remains 

n~l  : i f~ (u + - u-)~Fp(x,u+,Ou+)dx + ~ 1 0 ( l u + - u - 1 2 ) d x "  (19)  
~,~ o,,~ 

Using the second estimate of Lemma 1 we obtain 

fE (U+ -- Ig-)2(x)dx ~- Bff + B ~  1 _< const s 

fE _ { & o  ~2 < const (u + - u - ) ( x ) d x ) 2 <  const ~ cJ �9 [] 

5 Proof  of  the formula for the directional derivatives  

We first prove the main theorem for all rational c~ (sect. 5.1). The general case 
is deduced by a limit process. We give a short overview of  the proof. 

If  ce E Qn the problem of determining the derivative D~A(oO essentially 
reduces to the one-dimensional case. This is due to the fact that by periodicity 
it is enough to consider the variational integral on a compact set times R/3. 
Evaluating explicitly the difference quotient with the help of calculus and taking 
the limit we show by some detour 

n-I D~A(c~) = B(en l3) , with o~ E Q" , ~ E (v,~ to V~ ) n SQ 
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and B(ch/3) in the sense of (9). This is the statement of  the main theorem for 
rational c~. 

To prove the main theorem in the general case we have to establish this 
equality for arbitrary c~ E R n and arbitrary/3 E (V~ U V ) )  n S~ -1. The difficulty 
is that the directional derivative is not continuous in general. Let us fix some 
ct ~ R n \ Q" and/3 E (V,~ U V~)  N S~ -1. The idea to overcome the difficulty is 
to look for a particular sequence c~ I ~ c~ with cd E Q" such that 

lim D~A(o~') = D~A(c~) as well as lira B(c~',/3) = B(ch/3).  (20) 
OLt ----+ ~ ~l~t - ~  

To ensure the continuity of  the limit D~(c~t), a t ~ ch it is by convexity of  A 
enough to require 

OJ - -  Ol 
lim - -  - / 3  (c~' E Q " ) ,  (21) 

I1 ' - a l l  

see Lemma 8. The continuity of  the limit B(c~ ~,/3), c~' ---, c~, is more delicate. It 
is based on the continuity properties of the corresponding generalized foliations, 
i.e. whether J g ~ , , ~  tends to ~/~,/~ or not. To ensure this convergence one 
has to impose restrictions on the rational dependency of  c~ I �9 The approximating 
foliations e.g. have to exhibit at least the same periodicity as the foliation one 
wishes to approximate, i.e. 2'~ C F~,. If/3 E V,~ this condition will be weakened 
since it is no longer compatible with (21). This will be done in sect. 5.2. 

It is easy to find a sequence c~ t -+ c~ such that the corresponding foliations 
converge and such that (21) and thus the first equality in (20) is satisfied. Fixing 
such a sequence we in a first step show 

lim B (c~',/3) _< B (c h /3 ) ,  ~ , ~  

see Lemma 9. By our technique, however, the reversed inequality may not be 
ensured in a direct way. Now we use the first equality in (20) and the fact that 
we already proved D~A(c~ ~) = B(c~ t,/3) for c~ t E Q". From the inequality above 
we deduce 

n -  I R n . D~A(c~) < B(ch/3),  for /3 E (Vc~ U V~)  N S o , c~ E (22) 

In a second step, if with the same c~ and /3 a sequence c~" --* c~ satisfies 
F ~  C F~,, with c~" E Q" (but in general violates (21)) we show 

lim B(o~",/3) + B(o~",-/3) >_ B(~,/3) + B(o~, - / 3 ) ,  ~,,__.~ 

see Lemma 10. Since D~A(o~") = B(e~",/3) for rational c~" and since by convexity 
of A the derivative D~A(~) is upper semi-continuous in c~ we deduce 

D~A(c~) + D_~A(oz) >_ B(eq /3) + B(ch -/3) . 

Both steps together show that actually equality holds in (22). This establishes 
the main theorem in the general case. 
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5.1 The formula for  the rational case 

Given c~ E Qn, we determine the (one-sided) derivative D~A(oO in the direction 
r i 

/3 E ~ o  = { e l , . . .  ,en}. Let c~ E Qn have components c~ i = ~7 with r i c Z and 
s i c N relatively prime. Assume/3  = el. For  ~r E Z set 

E ~ - spanto,11 {os le l ,  s 2 e 2 , . . . ,  snen } .  

Note that E~ - E ~  s,;~, E~ = Es  and U ~ c z  E~ = Es,/3 �9 For ~r E N choose solutions 

v cr E . ~ r  S "-- S 1 and fix Us C .~/~per. If  $2 C R n and w C Wtloc2(R ") we 
s+7.~d ' 

abbreviate 

I (w, Y2) - Jo  F(x ,  w , D w ) d x  
i 1  

o 

Since every solution v ~ is maximally periodic, E ~ is a periodicity domain for 

v ~. In order to get the minimal average action it is enough to average the corre- 
sponding variational integral over one periodicity domain[20, 3.5]: 

1 
A(cO = ,-~-~,I(us,E ) and A(c~+ ,--~-~,l(v , E  ) with o- c N.  

SO" I ~ 1  

Since [E~I = ~s lE~  one gets 

D~A(~) = lim ~s(A(c~ + /3 ) - A(cO) = 
tr ----~ c~ tY S 

1 a c~ 
= lirn ]--E-~l(I(v ,E  ) -  I ( u s , E ~  (23) 

We have to show that the last l imit converges to B(c~,/3) as defined in (9). 

It would be favorable to know explicitly how the graphs of  v ~ lie within the 
generalized foliation ~/~s,~.  Since we do not know enough of  the minimal solu- 

tions v ~ we replace them by a conveniently defined function w ~ with the same 
periodicity as v ~. However, since w ~ needs no longer to be minimal, the price 

we pay is that we only obtain D~A(oO < B(c~,/3). The reverse direction will be 
guaranteed by a further consideration (Lemma 5). 

We define the functions w ~ interpolating between certain level functions 

up = Up~ E , ~ / ~ s , ~ ,  0 _< p_< ~r, with u0 = u s -  1 <_ ul _< . . .  _< u,, = us.  
Let ~;~ C_ J ~ ( ~ l ,  ~2) be a filtration such that up to Z"+l-translations to each 

gap G c ~ there is exactly one uc E ~ with graph uc C G. Recall that by 
definition of a foliation ~ is invariant under the Z "+l-action T. For p C Z set 

E p'I - {x E Es,~" sp <_ x/3 <_ s (p+ 1)} = cl(E p+1 \ E P ) .  

For  every q C N we define level functions Up E ~ / ~ ( a l )  U ~ with maximal  

• recursively by up - us  - 1 and vertical distance q 

- max{u E ~ / ~ / ~ ( a l )  U ~ : u ~ u s ,  (u  - up ) l eo , ,  ~ 1 }  U p + l  
q 
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if up E Jr In the case Up E ~/~(al, a-2) we set 

-" max{u E ~ / ~ ( a l )  : u ~ ua, (iA - up)lEo,, ~ l }  Up+l L 

By a compactness argument in the vertical direction one shows that to every 

q E N there is a ~r = ~r(q) such that u~ = us.  Moreover,  c~(q) tends to infinity if 

and only if  q does. Finally, we construct the functions w ~ on E ~' by connecting 

the levels up in the direct ion/3 in an ascending order:  

w ~ l e o , , ( x ) - u p ( x ) + ( ~ - - - p ) ( U p + l - - U p ) ( x ) ,  0 < p < ~ r - - 1 .  

Note that E ~ = U{E p'l : 0 < p <_ or-  1}. 

L e m m a  4 If a E Qn and /3 = el c ~ o  one has 

lim ( I (w ~, E ~) - I(u~, E~))  = IE ~ IB(a , /3 ) .  
O" ---~ ( X )  

Since v ~ and w ~ have the same periodicity and since v ~ is minimal,  we 

have I (v~,E ~) <_ I(wr Replacing /3 by any standard unit vector +ei, 
1 < i < n, we get with (23) 

D~A(a) <_ B(a,/3) , a E On, • E ,JYo . 

The proof of the main theorem in the rational case will be completed by 

L e m m a  5 If a E Qn , /3 E .-~o, then (D~ + D_~)A(a) > B(a,/3) + B(a, - /3) .  

Indeed, with the inequality above D~A(o) = B(a,/3) holds for a E Q ~ , / 3  E 

~ o .  [] 

Proof of Lemma 4 We show that l (w ~, E ~) - I ( u ~ ,  E ~) converges to B(a , /3) ,  

where we interpret B(a,/3) according to Corollary 3. The technique is once more 

to substitute 

fw~(x) 
F (x ,w~ ,Dw~)= F(x,up,Dup)+ ] F,(x,~,Dup)d~+ 

Juo(x) 
n 0 

+ ~ -~x~(~ ~ - up)Fp,(x ,wLD~ ~) + O(lup+, - up l2 ) .  (24) 
i=1 

Recall that for the last term we used the estimate of  Lemma 1. For  each of  the 

four summands we evaluate the limit ~r --+ cxz separately. 

A) We consider the contribution of the first term only of (24) to I (w~,E ~ - 
I(u~,Er Since l ( u , E  1) (= [El lA(a))  does not depend on the choice of  the 

maximally periodic u E J / g ( a l )  one gets 
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a-1 
E ( I ( u p ,  E p'I) - I ( u a ,  E p'l) = 
p=O 

= E E ( I ( u p ' E P ' I ) - I ( u ~ ' E P ' I ) "  

GE.~ o<_o<_~-1 
graph u o C G 

Recall the notation G = ( u ~ , u ~ )  where u~ E ~ /g(~ l ) .  If for indices p < p' 
the graphs of up and Up, are contained in the same gap G, by construction 
Up = Up, = up,+ for some up,+ E ~ C_ o//g(~l, a2)- Therefore, for fixed G E . ~ ,  
the inner sum tends with ~r --. oo to 

o---,oolim I ( u o , + , E  -'~ U E  '~) - I ( u ~ , E  -'~ U E  '~) = B~+ (E,~,;~). 

Summing as above over all G E ~ a  one obtains 

o'-1 

2iInor E ( I  ( u p , E  p'I ) - I (uc~,Ep'I)) 
p=0 GE~ 

= IE~ ~ B ~ ( E ~ , ~ ) .  
6E r 

The last equality follows from the invafiance of  ~/~a,~ under F0,~-translations. 

B) Let the component c~fl = r of  c~ be relatively prime and set 7 - - ( s S ,  r). 
For 0 < p < o- we define the translations 

a 
Wp = Wp - Tp7 w ~  and Vp - Tp7 Up. 

If moreover Ap - T 7 up+l - T 7 Up for x E E1 one gets 

x.~ A p  (x)  = w ~ ( x )  - up(x)  = wp(x )  - Vp(X) . 
S 

The contribution of the middle term in (24) to I ( w ~ , E  ~) - l ( u , ~ , E  ~  takes the 
form 

a--I w~(x) 

= p,l JUp(X) 

= F u ( x , v p + ~ , D v p ) d ~  dx . 
i \ p _ _ 0  d 0  

As Ap(X)  shrinks to 0 with cr ~ ~ ,  one shows with elementary analysis that 

lim Fu(x,Vp + ~ , D v p ) d ~  = x___~ Fu(2,~c~)dxn+l . 
o--.-~c~ S (x ) 
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The crucial point is Moser 's  estimation [[Dup+a - Dupl t <_ const lu~_l - upl of 
Lemma 1 as well as the C2:- regular i ty  of  F .  The convergence is even uniformly 

for all x E E 1 . Thus, in the limit cr ~ oc the second term in of  (24) contributes 

/ ~  X f3 F" (~ ' g%' ) dY " 
(E l) S 

C) The contribution of the third term in (24) to l(w~',E ~ -I(u,~,E") is 

= Z  sOx' 1 
p=0 

@(x) ) 
+ Fp,(X,Wp,Dwp) dx.  

S 

Integrating the inner sum n times by part and using the periodicity on E 1 , all up 
to one boundary evaluation cancel. Note that Wp(X) = Vp(X)+ ~- Ap (x) on E 1 
and that vp as well as Ap  have E 1 as periodicity domain. This way, the whole 

expression transforms to 

o'--1 

p--O 

n 

1 S i=1 

Since F E C 2 :  we may insert with help of  Lemma 1 

0 
Ox i(9 Fp,(x, wp,Dwp)dx = -~xiFp,(x, vp,Dvp)dx + 0 ( 1 A p  (x)[ s) 

Using the Euler equation ~ ~ Fpi (x, vp, Dvp) = Fu (x, vo, D vp) the second term 
above tends for cr ~ oo and fixed x E E1 to 

o'--1 

lira E x_~fl A p (x )(Fu(x, vp, Dvp) + 0(1A t, (x)l~)) dx = f ,~ X /3F,(-s qJc~) . 
o---+00 S p=0 (x) s 

Because of ~p~=o 1 Ap  < 1 and Ap > 0 the error term O ( .  ) indeed contributes 
o'--1 

nothing in the limit. Therefore, the whole expression Y'~p=0 ( - )  above tends to 

L Fp,(Y,~a)d-~- L X/3Fu(Y, gto~)d~. 
(E o) (E I ) S 

with ~r ---, ee .  Note that ~.~(E ~ + s/3) - ~ ( E  ~ 

moden+l .  Since . _ ~ ( E ~  en§ actually is 1-periodic in all the standard di- 
rections e l , .  �9 �9 en this expression may be rewritten by 
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Recall that E0~ = [0, 1] ~ n (fl)z with fl = el and E ~ = E ~ 

D) As arguing above, the estimates of Ao(x) imply that the last term in (24) 
contributes nothing in the limit: 

o"--1 o'--1 

lira E f e  ](Up+l--Up)(X)t2dx = lim ~ ~E ] /kp (x)[2dx = 0 .  
O"--'>OO p=O p,1 cr--~O0 Dp=~'-~ 1 

Adding 

lim l(w~,E ~) - I(ua,E ~) = 
0"--'->00 

/ 

= ]E~ ~J~[f(E~,~) flFe(~'~)d-s + 

the contributions of  all four parts A) - D) one gets 

Z B~(E~,~)) [] 

Proof of Lemma 5 According to Corollary 3 we have to show 

(DB + D_fl)a(a) > E B~ (Ea,B) + B~ (Ea,o) . 

For arbitrary three continuous functions ui : R n --~ R (i = 1,2,3)  let 
md(ul, u2, u3) : R" ~ R be the middle funct ion defined by the following requi- 
rement: I fx  E R" and i,j, k is a permutation of 1, 2, 3 with ui(x) <_ uj(x) <_ uk(x) 
then md(ul, u2, u3)(x) - uj(x). 

Let us define the set 

[Ul ,  U2, /'/3] -- U { E  p'I : p E Z ,  3 x  E E p'I with ul(x) < uz(x) < us(x)} �9 

Fix any enumeration of ~ .  For a C N choose the first a gaps in . ~ .  
Reenumerate them by Gi = [u/-, u+], 0 < i < a - 1, in a way that u + < u 7 ~=> 

i < j for all 0 _< i ,j  _< r - 1. Without loss of  generality we assume u o = us - 1. 
Set G- = us and choose v • ~ ,//gP~ 4"  

We consider the variational integral of v +~ and v -~  restricted essentially to 
the part of v • lying within the i-th gap G/. For each 0 < i < (7 - 1 we define 

Aft (i) - I ( md(u/-, v • u+), [u/-, v • u +] ) - vol,  [uT, v • u+] - A ( a ) .  

Note that vol, [uT, v • , u +] is an integer multiple of vol, (E 1 ). Loosely speaking, 
A+(i) is the additional amount of the variational integral needed to join the 
bottom u/- of  the gap Gi with its top u + along v+% This amount is bounded 
from below by B~I(E~,~). The sum may be estimated by 

A+(i) + A~(i) > B~,(Ec~,~) + B~(Ea,~). (25) 
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To check this inequality more detailed, one has to apply the standard reasoning 
as it is described in the proof of  Theorem 2, part one. 

For the part of v § and v -~,  respectively, lying between two successive gaps 

Gi and Gi+l we define similarly 

+ :kcr - 
AT(i ,  i + 1) - I (md(u  +, v +e, u~+l), [u i , v  , ui+ll ) - vol,[u +, v + ' ,  u/~l]- A(a ) .  

Using the periodicity and minimality of  u/- and u + , one shows with analogous 
standard arguments as above 

A+(i, i + 1) + A~-(i, i + 1) >_ 0 .  (26) 

The next equality is just a reordering of  the various summands: 

or--1 

Z ( A f f ( i )  + AN(i , i + 1)) = 
i=0 

= I (v  +~, [us - 1, v +~, us]) - voln [us - 1, v + ' ,  us] �9 A(a) = 

= I ( v + a E  +'~) _ l ( u s , E  • . 

Note that those parts of the variational integral which were counting twice, one 
at times cancel with a term vol,(EP, a) - A(a).  

Finally, we add the two versions -4- of the last equality. Inserting (25) and 
(26) we get 

I(v+~ E ~) - I ( u s , E  ~ +l(v-C~,E - ~  _ I ( u s , E  -~)  >_ 
or--1 

>_ ZB~,(Es,~) +B~(Es,~). 
i--O 

In the limit cr ---+ cc we obtain with (23) the desired inequality 

[E~ + D_~A(a)) >_ ~ B~(Es,;~) + B~(Es,/~) = 
G E , ~  

= [E~ ~ B~(Es,~)+B~(Es,~). [] 

5.2 Limits of  generalized foliations 

In order to establish continuity properties of B(a,/3)  in a ,  one first has to prove 
this properties for the corresponding sets ~/~s,~- We show that for any c~ E R n 

n-I  there is an approximating sequence a '  ~ a such and /3 C (Vs U V~)  D SQ 

that lims,--+s ~/r = .-/~s,~ and such that moreover limc~,__.~ s ' - a  - / 3  is Its'-all 
satisfied. Recall that the latter condition will be used to ensure the convergence 
of  the corresponding derivatives D~A(a t) to D~A(a). 

We expand the definition of ,-~/gs,~ in Sect. 3.2 by setting ~/~s,~ - J ~ ( ~ 1 )  in 
n-1 with fl ~ Vs. By lims,--.s J~s ' , ;~  the case/3 = 0 as well as in the case/3 r SQ 

we denote the set 
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1,2 n lim ~//~s',3 - {u ~ W~o c ( R )  �9 V c / ~ u s ,  6 ~4Ns,,3 such that lim us, = u } ,  
O~t .-~ O~ S t  --.+ ~3~ 

where the limit lira us, is understood with respect to the C 1-topology on compact 
sets. 

n - - 1  L e m m a 6  Let c~ 6 11 ~ be arbitrary and/3  E (Vs U V ~  ) O So or /3  = O. I f  

o/ --* c~ with c~ ~ ~ Qn is any sequence satisfying -Ps c_ P s '  for  all o~ then 

lim ~ s ' , 3  = J /~s ,3  
S t  --~0~ 

Proof  First we show lims,--,s ~//[s ' ,3 C ~r Assume that/3 r Vs. Since 
Vs, = R n for a '  r Qn, the set ~///~,~',3 is well defined. Recall that T s , 3  = {k = 
( k , k  n+l) r -Fs " k 3  = 0}. From T s  C T s ,  one concludes T s , 3  C Ts , ,3  and 
since moreover T~,3 = T s  NTs , ,3  it holds F s  \ F s , 3  C -ffs' \ -Fs , ,3 .  If /3 r V~  
or/3 = 0, by definition Fs ,3  = F s  and both inclusions again are true. Therefore, 
in any case u E J ~ s ' , 3  satisfies 

T-s = u V k  E Fs ,3  and T-s > u Vk r _Fs \ T s , 3  with ka2 >_ 0 .  (27) 

Recall the definition of ~2 in sect. 2.2. 
Moreover, every u 6 l i m s , ~ s  J / g s ' , 3  again satisfies this property. Since by 

definitions ~/~s,3 consists of all u E ~ /~s  with property (27), one concludes 
that l i m s , ~ s  J//gs' ,3 C_ JPgs,3. 

To establish the converse inclusion, we have to approximate a given v E 
�9 ~ s , 3  by solutions us, C ~/~s, ,3.  Assume c~' 5L c~. Due to the intermediate value 
theorem and the Z~+l-periodicity of ~//~s',3, there exist xs, r [0, 1] n and us, r 
J//~s' ,3 with us , (xs , )  = v(xs,) .  By Moser ' s  compactness theorem [15, Cor. 3.3], 
there is subsequence c6 ---+ c~ such that lims,--,s us, exists and corresponds to 
some u 6 J ~ s .  The first part of the proof states that even u E ~//~s,3. Moreover, 
u and v coincide at every accumulation point ofx,~, r [0, 1] ~ . Since the set ~///~s,3 
is totally ordered [5, (6.22)], we conclude u = v. The Cl-convergence is due to 
the regularity properties stated in Lemma 1. [] 

- -  - -  n - - 1  We want to weaken the c o n d i t i o n / ' s  C_ Pa ,  in Lemma 6. If /3 E V~  N S O 

one finds a sequence c~ t --+ c~ satisfying (21) as well a s / ~ s  C_ P s , .  The second 
--r -- ( -s ' , l )  - - •  - - •  condition is equivalent to a 1 II(-s',l)ll 6 V s , where Vc~ is the orthogonal 

complement of  V-s = spanaffs  within R n+l. Note that by assumption on/3  we 
- - •  

have a2 6 V,~ too. Property (21) states that the sequence ~tl ~ ~1 has to 
--/ -- n-- 1 satisfy lim al-al : ~2. If  now/3 6 Vs f3 SQ , i.e. ~2 E V s  N S$, a sequence t1~'] -~, II 

- - •  - - 2  - - !  - - !  
al  --+ a l  6 V~ with (21) and a 1 E Vc~ (and thus T ~  C P~ , )  may no longer be 
found. For this case, Lemma 6 is modified in the following way: 

n - - 1  O /  L e m m a  7 Suppose ~ 6 R n and/3 6 Vs  ~ SO_ . Let c~' ---+ o~, 6 Qn, satisfy 

-ff s,3 c- -ff s' and K ~ ' a 2 > 0 .  (28) 

Then l im~ ,~s  J//~s',3 = J ~ s , 3  �9 
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Remark I f /3  = ei the condition a'l "~-2 > 0 is equivalent to (a~) i. > ai.  [] 

-~ may be varied within the or- According to condition (28), the vector a 1 
thogonal complement of  /~,/~ and such that it lies within the half space 
{ x  E R n+l " x---a2 > 0 } .  Note that ~2 is orthogonal to T~,;~ too. Thus, if 
/3 E V~ n S~ -1 one finds a sequence cd ~ ~ with property (21) as well as (28). 
The lemma states l i m a , ~  ~///~,,~ = ~ / ~ , ~  for this sequence again. 

To prove the lemma we rewrite the condition (28) in the somewhat compli- 
cated manner 

T~,;~ C T~,  and k-a~l > 0 if k E F ~  \ T~,3 with k a 2  > 0 . 

One concludes that for cd having this property any u E ~///~',3 has to satisfy 
the key-property (27) of the preceding proof. The proof  is therefore valid for 
Lemma 7 as well. 

5.3 Continuity properties o f  D3A ( . ) 

We establish the main theorem for the remaining case c~ E R n \ Qn. As a general 
fact for convex functions we need 

n--1 L e m m a  8 Suppose f : R n ---+ R is convex, ct E R n and /3  E S O . For any 

sequence ee ~ ~ c~ with ce t 5r and l imc, , -~  c~'-c~ 11-7-2S_~11 - / 3  one has 

lim O 3 f  (c~') = D~f  (c 0 . 
Ot  t ---~ OL 

Apart from the convexity, the proof of  Lemma 8 uses the local Lipschitz- 
continuity o f f  [19, thm 10.4] and the upper semi-continuity of D ~ f ( .  ), see [19, 
cor 24.5.1 and thm 24.6]. 

We show in a indirect way that B( . , / 3 )  is continuous with respect to a 
particular sequence c~ ~ --+ c~ as well. 

L e m m a  9 Let ~ o  be ce-admissibte, 0r E R n and/3 E ~ o .  Let  the approximating 

sequence ct' ---+ c~, c~ t E Qn, satisfy -ffc~ C -Fc~, in the case /3 E ~ o  M V ~  

respectively (28) in the case/3 E ~1o M Vc~. Then one has 

lim B (cd,/3) < B (c~,/3). 

The proof is postponed to the end of the section. 
Now we use that one already knows D~A(~  ~) = B(cd,/3) for c~ t E Qn and 

/3 E C~o. Let c~' --+ c~ be a sequence with ~ E Q~ and lim,~,__,~ ~ ' - ~  II,~'-~II - / 3 .  
Suppose it moreover satisfies F,~ C_/~ ,  or (28), respectively. The existence of 
such a sequence is discussed in the preceding section. Combining the last two 
lemmas we get 

O3A(o 0 <_ B(o~,/3) if ,_~o C_ V~ t5 V ~ ,  /3 E ,-~o . (29) 

Equality will be established by 
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L e m m a  10 Let ~ o  be a-admissible, a C R ~ and/3 E ~ o  ~ V~. I f  a '  --~ a, 
a t E R ~, is an approximating sequence with F~  C_ F~,  then 

lira B(a ' , /3)  + B ( a '  - / 3 )  > B(a,/3) + B(a ,  - / 3 ) .  
Ott  -.--+ Ot 

m 

(If instead of ff~ C Ca, we only assume (28), the statement of the lemma is no 
longer true in general.) 

Notice that for /3  E ~ o  A Vff ,  the inequality of Lemma 10 trivially holds 
for any sequence a t ~ c~ with a c Q" : by (10) one has B ( a , / 3 ) + B ( c h - / 3 )  = 0 
while by convexity B(a ' ,  /3) + B(cg, - /3) = (D;~ + D_~)A(a ' )  >_ O. 

Before proving the lemmas we deduce the main theorem and some further 
result. We again use that for a ~ E Q" we already showed B(a  r, -4-/3) = D+~A(a ~) 
with a ~ E Qn.  From Lemma 10 and the notice above it follows that 

(D~ + D_~)A(a)  >_ B(a ,  /3) + B(a ,  - / 3 ) ,  

with any/3  E ~,~o. Here we made use of the upper semi-continuity of  D~A(.  ) 
In view of (29), this proves the main theorem: 

I f a E R  ~ w i t h ~ o C _  V~UV~ x t h e n D ~ A ( a ) = B ( a , / 3 )  V / 3 C ~ o .  [] (30) 

Finally, we summarize the limit behavior of  B( .  ,/3) and formulate it as 
continuity property of  D~A(.  ). Actually, we have established the limit behavior 
of  B( . , /3 )  for a different class of  sequences c~ ~ ~ a than occuring in Lemma 
8. This circumstance may be converted into a stronger continuity property for 
D~A(.  ). 

Theorem 4 Let a c R n and cJ ~ c~, cg c R n, be an approximating sequence 
with -ff c~ C_ -ff c~, for  all at. Then for  all/3 E V~ U V ~  

lim D~A( c e ' )  = D ~ A ( a )  . (31) 
OLt ----~ O~ 

In the case/3 c V ~  , (31) is true f o r  any sequence a ~ --+ a, a '  E R ~. 

The theorem generalizes the fact that AID is continuously differentiable at a 
rationally independent point a E R n, D denoting the set of points where A is 
differentiable. 

Proof  Suppose f : R n ~ R is convex and (D~ + D_~) f (a )  = 0. From the 
lower semi-continuity of  D~f( . )  one concludes l i m ~ , ~  D ~ f ( a  ~) = D ~ f ( a )  for 
any sequence a r --+ a,  a ~ E R n. The second part of the theorem therefore follows 
from Theorem 1 and 2. The first part is proven with the same idea: 

We may assume that ~3~o is a-admissible. Let a ~ ~ a satisfy F~  C_ F~,.  
Using (30), Lemma 10 states 

a'lim~c(D3 + D_3)A(cg) _> B(a, /3)  + B(a ,  - /3)  . 

But the upper semi-continuity and again (30) yield 
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lim D• < D• = B(o~, +/3). 

Combining this two inequalities, the proof will be completed. 

W.M. Senn 

[] 

Proof of Lemma 9 We use the same technique as in the proof of  Lemma 3 and 
4. The idea is to replace B(c~', fl) by a quantity B~(c~ t, fl) for which we know 
the limit behavior with respect to c~ / ~ c~. We first show, roughly speaking, 
that Be(cs is greater than B(o/,/3) and second, that Be(o/,/3) converges to 
B(o~,/3) as c~ I ~ ~. This proves the lemma. Some preliminary definitions are 
needed. 

Suppose, exactly the first r components of  ~ are rational, thus E,~ having the 
form (7). I f /3  E ~ o  n V~, say/3 = er, then 

E+,~ = spanE0,1]{s l e a , . . . ,  s r-1 er-1 } • spanR. {er } • span R {er+l, �9 �9 en } .  

I f /3  E ~ o N V ~ ,  say / 3=  er+l E + has the same form with r replaced by 
r + 1. We restrict ourselves to the case/3 = er E .~o N V~, the other case being 
similar. For 7- E N we define the subset 

Q~--spanto,1]{slel , . . .  ,sr-ler-l} • span[op-l{er} • span[_r,~-l{er+l,... ,en}. 

of E+~.  Set Q~ --" Q~ N (/3)• Fix an arbitrary e > 0 and choose 7- = 7-(e) E N 
such that 

Z v o l , { f f E G ' x  E E ~ , ~ \ Q ~  o r x  E b d ( Q ~ - ) \ Q ~  (32) 

~E.%,MF0,~ 

This is possible since ~-]~vol,{ff E G : x  E E~,~} and Y'~ vol,+l{ff E G "x  E 
E+,~) is less than 1 when summing up over all G E ~ , ~ / F o , ~ .  

Next, we approximate the gaps in a fixed system of representatives .~,~/Fo,~ 
by those of .~,,~/Fo,~. Note that, according to the preceding section 
l i m ~ , ~  J ~ , , ~  = ~ / ~ , ~ .  To every c~ / of  the sequence and every G E ~ , ~ / / ' o , ~  

choose G t . - i  G E ~ ' , ~ / / ' o , ~  such that for an appropriate kG E F0,~ • Z the translate 

G '  k '  - G best approximates the gap G (with respect to the Hausdorff metric) 
when restricted to the compact set G n (Q~- • R) C R "+1 . In particular, one has 

l i m ~ , ~ ( G ~  - k~) = G. It may be that the same G ~ is needed to approximate 
different G1 ~ G2 in .~,~/Fo,~. For a given G I E .5r let . ~ ,  be the set 
of  all G E -~,~/-Fo,~ with G I -- G 16. Define 

V6,-" U kl +Q~-C + G E,~,/~, 
GE~G, 

where ~-I rkl rk / ~n+l o G = ~ 6,~ G~ ) is as above. If  ~G' = 0 put VG, = 0. Put V~, -" 
VG, n (/3) • Since the gaps in -~G' are pairwise not equivalent with respect to 

ro,,fl, the union defining VG, is disjoint for cd sufficiently close to c~ and fixed 7-. 
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Now, we are ready to define the quantity Be(a ',/3) approximating B(a,/3). 
For any G '  C ~ , , ~  we define the function v6, on E~+,,~ by 

Va,(X)-- { UG'(X)+ --UG')(X) ifx/3if X/3 <_> 11'. 

By assumption on a ' we have E~+,,/~ C E + Recall G ~ = _ ~,~. (UG,,U~,). For $2 C_ R" 
we abbreviate 

B~,(F2) - s VG,,DVG,) + , - F ( x ,  u a ,  , D u ~ , ) )  dx . 

The expression Be(a  ',/3) is defined by 

Be(a',/3)- f_  /3Fp(2-,~a,,~)d2- + Z 1 + BG'(Ea',f~ \ VG') + 

+ ~ BG,(VG,). 
G' ~,~,,~/ Vo,z 

A) First we estimate Be(a ~,/3) from below with help of B(a/,/3). For two 
sets Gl, G2 E R n we denote the symmetric difference by G1AG2. Since the 
convergence l i m a , ~  . / ~ , , ~  = J/g~,~ is C 1 one has with arbitrary fixed r 

Z voln ({2- C G :  x E bd(Q~-) }/k 

)) / ~ { ~ E G ~ -  a : x C b d ( Q r )  < 

for a '  close enough to a.  From (32) we in particular conclude 

Z v~176  " c '  ) <- 2r (33) 
a' c,%,.M ro,~ 

Using the minimality of u~, one by the standard reasoning shows 
E + BaG'~ :E+~,,~:~ -- > Ba,(~,/j) .  (Compare also the explanation to formula (35) below.) 

Taking into account the estimate (33), one gets with some little modification of 
the arguments 

Z 1 + + Ba,(Ew, ~ \ VG,) >_ Z Ba,(E~, ~ \ Va,) - 2 e - c o n s t .  

The constant only depends on F and some compact set containing a in its interior. 
This shows that for a '  close to a 

B ~ ( a  ' , /3) > B ( a ' , / 3 )  - 2 c -  c o n s t .  

B) Second, we establish the convergence of B~(a ',/3) to B(a,/3) with respect 
to the limit a ' ---+ a. More precisely, we show 
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t lim B~(a',/3) - B(a,/3)[ _< 5 e .  const 

where the constant depends again only on F and some compact set containing 
a. Since ~ > 0 is arbitrary, this together with part A) proves the lemma. 

1. We claim that the last term of Be(a  ',/3) may be estimated by 

Z Ba,(V6,) - ~_, Bo(E+a,~) _< 2~ .  const,  (34) 

if a '  is sufficiently close to a.  By definition we have 

Z Bc,(VG,) = ~ Ba~_s 

Since ~,~(Q~-)  is compact and the convergence ~ / ~ , , ~  ~ ~r is C I (sect. 
5.2), the right hand side converges to ~ae~,~/ro .~  B~ (Q~.). Therefore, estimate 
(34) follows from 

Z Bo(Q,-) - ~ BG(E+a,;O < c.  const. (35) 
G 6 .~ ,~  / Fo,~ G 6 C~o,,~11"o,;~ 

The proof of (35) uses the standard reasoning (see sect. 4.1) which will be 
briefly outlined again. Let BR C R n be the ball of radius R > 0 and center at the 

E + origin. On ( a,~ \ Q,-) A BR we construct with help of u~ compact variations of 

u~ and vice versa. Since both, u~- and u~ are minimal, we get from (32) 

IBG(E+,~ \ O-)l -< e -cons t  

by taking the limit R --+ oo. The arguments rely on the periodicity of u~ and 
u~ in the directions e l , . . . , e r - 1  as well as their asymptoticity in the remai- 
ning directions er,. �9 � 9  en. In order to apply the minimality, we use the fact that 
~voln{~- E G : x c E+~,~Nbd(BR)}, when summing up over all G E .~,~/Fo,~, 
tends to 0 for a sequence R --+ oo. (Compare the proof of Theorem 2, part one.) 
Formula (35) is just the complementary formulation of the estimate above. 

2. Considering the definition of B~(a ',/3) and B(a,/3) it remains to show that 

~,,, o~,,,~ \ v a , )  - 

~ , ,~ (E~)  6,c.%~,,M r,0, ~ 

- f /3Fp(Y, k~,~) dY _< 3 e-  const.  (36) 
J ~  
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1 + As in the proof of  formula (19), we integrate Ba,(E~,,~ \ Va,) n-times by 
part after substituting (18). Ignoring the gap Va, in the domain of  integration we 
get 

Bi rE+ ' L (u~,--UG,)13Fp(x,u~,,pG,)dx 

where po,(x) E R n are middle values satisfying II(p , -Dub)(x)ll < const-  
(u~, - u ~ , ) ( x ) .  Hereby, all up to the remaining term cancel due to the periodicity 
on E~,,~ of  the functions involved. Taking into account the gap Va,, we have to 
correct this equality to 

f 
1 + / ( u ; ,  - UG,)~Fp(x, u § BG,(E~,,~ \ V6,) - J~o v o a, ,pc,)dx <_ 

E,~ \  G' 

_< const �9 vol~{Y E G' :x  E bd(VG,) \ V~, } . 

V'B1 rE+ The term 4., 6'~ ~',~ \ Vc,) in (36) may therefore be replaced by 

u~,)13Fp(x, ,pa,)dx (37) 
Z o \v ~ 

(ub U~t I 

G'EW~, ~/ro,~ ~ ,~ c 

with an error term bounded by 2 e �9 const according to (33). We decompose this 
sum in a sum of integrals each of it with integration domain restricted to E ~ .  

Consider the set 

.~o,~ - {G '  E -~ , ,~  : G '  = G '  k- for some G E .YC~,~/Fo,~ and k- E Z n+l } �9 o d , ~  G -  

~o~c OL ! and put ,~1,,~ _ . . ~ , ~  \ ~',~" Although for -~ a each gap in .~1,~ will 

collaps, their union may furnish in the limit a subset of  ~ , ~ ( E o , ~ )  C_ R n+l 
of positive measure. We have to take into account its influence to the limit 
l i m ~ , ~  B~(a ', 13). 

For a t close to a we have 

U { Z E G ' : x E V ~ , }  -- U { x E G ' : x E E ~ , ~  }m~ 

by definition of VG,. Taking on both sides the complement within the set 
Uc'E.~, ~ {Y E G' : x E E~,~} modZ "+a one obtains 

U { x c C ' : x ~ E 2 , ~ \ v s , }  =-- 
G'E~=, B/Fo,~ 

=-=- U {~ E G' : x E E~,~} modZ "+' . 

By A A B  we denote the symmetric difference of the sets A and B. If  G E - ~ , ~  
choose G~(G) E .~, ,~ such that the n-dimensional volume of {Y E Gt(G) : 
x E Eg,~} ~ {~ E G : x  E Eg,~} is minimal. Defining 
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~2,,~ - {~' e ~, ,~ : ~ ' 4  G'(~) 

one has according to (32) for cJ close to c~ 

vol, U {x ~ G' : x ~ E;~ A U 
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for all G ~ ..~,~} 

From the last identity modZ "+1 above it follows 

( U {~ ~c'x~e~ voln V~, }modZ ~ n+, A 
\ 

A ~'~,:U {~c a' :x c e~.} m~ -<~- 

Thus, for cJ close to ch the sum (37) is up to an error term of order e.  const 
equal to 

Z fEg(u~,, - u~,)l~Fp(x,u;,,pa,)dx. 

V'B~ :E + \ Therefore, via formula (37), the term z_~ a,~ ~,,~ \ V~,) in (36) may be replaced 
by this last sum. Because of the additional error term 2e.const of  (37), the total 
error does not exceed 3e-const. 

Finally, the expression 

f s r  /3Fp(~, ffte,,,~ )df f  + 
, ,~(E~,~) 

has to converge for cJ ~ c~ to 

Z ~n u+ + ( G' -- UG')flFp (X, UG, , PG') dx 

fs~o ~Fp (~-, ~ ,~ )dz .  MEo%) 

by elementary analysis using the regularity of UG i, and F. This proves (36) and 
with it part B). [] 

Proof of  Lemma 10 According to Lemma 6, for the sequence c~' ~ c~ in consi- 
deration we have l i m ~ , ~  J ~ ' , o  = J ~ , 0 .  For every G c . ~  and to every cJ 
of  the sequence choose G ~ = G'(G, c~ ~) C . ~ ,  such that h m c e ~ "  Gt = G. Set 

~O - { Gr(G,oJ) : G C ~ ) C .~, . 

Now replace in Corollary 3 the rotation vector c~ by c~ r. Using inequality (12) 
and the fact that ~ o  C_ ~ ,  we get 
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B(cg,/3) + B(cr', -/3) > Z B~,(E~,,~) + B6L(Ece,~) . 
G~EG~,/Fo,~ 

By standard arguments  one shows that the r ight-hand side gives  

l im Z + = " BG'(E'~',:~) + BG'(Er Z + BG(E~,;~ ) + B G (E~,~) 
Ott  ----+ O~ 

G'EG~,/I'O,~ GE~/I'o,~ 

The arguments  are similar  to the one in the p roof  o f  L e m m a  9, part B) 1. Consider  

first the convergence  o f  ~r to J f g ~ , ~  on a compac t  set o f  the form Q~- with 

r > 0 large enough  in the sense o f  (32). 

Note  that a gap G ~ E G~,/-r'o,~ again may  approximate  wi th  its translates 

or thogonal  t o /3  more  than one G E .~/Fo,~. Since  .~2/Fo,~ precisely consists 

o f  those gaps in ,~,/Fo,~ which approximate  some gap G E -.~/Fo,~, equali ty 

will  hold in the l imits  cd ~ c~ and 7- ~ oo. We omit  the details. 

Not ice  that i f  . ~ o  is not  c~'-admissible, the per iodici ty  domain  E~,,~ may  be 

defined due to the requirements  on c~ ' in exact ly the same manner .  

Final ly,  the right hand side of  the last equal i ty  above  is equal  to B(c~,/3) + 

B(c~ , - /3 )  according to Corol lary  3. [] 
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