
Neuromorphic Hardware In The Loop:

Training a Deep Spiking Network on the

BrainScaleS Wafer-Scale System

Sebastian Schmitt† Johann Klähn† Guillaume Bellec§ Andreas Grübl† Maurice Güttler†

Andreas Hartel† Stephan Hartmann‡ Dan Husmann† Kai Husmann† Sebastian Jeltsch†

Vitali Karasenko† Mitja Kleider† Christoph Koke† Alexander Kononov† Christian Mauch†

Eric Müller† Paul Müller† Johannes Partzsch‡ Mihai A. Petrovici†‖ Stefan Schiefer‡

Stefan Scholze‡ Vasilis Thanasoulis‡ Bernhard Vogginger‡ Robert Legenstein§

Wolfgang Maass§ Christian Mayr‡ René Schüffny‡ Johannes Schemmel† Karlheinz Meier†

{sschmitt,kljohann,agruebl,gguettle,ahartel,husmann,khusmann,sjeltsch,vkarasen,mkleider,

koke,akononov,cmauch,mueller,pmueller,mpedro,schemmel,meierk}@kip.uni-heidelberg.de

{stephan.hartmann,johannes.partzsch,stefan.schiefer,stefan.scholze,

vasileios.thanasoulis,bernhard.vogginger,christian.mayr,rene.schueffny}@tu-dresden.de

{guillaume,robert.legenstein,maass}@igi.tugraz.at

†Heidelberg University, Kirchhoff-Institute for Physics, Im Neuenheimer Feld 227, D-69120 Heidelberg
‡Technische Universität Dresden, Chair for Highly-Parallel VLSI-Systems and Neuromorphic Circuits, D-01062 Dresden

§Graz University of Technology, Institute for Theoretical Computer Science, A-8010 Graz
‖University of Bern, Department of Physiology, Bühlplatz 5, CH-3012 Bern

Abstract—Emulating spiking neural networks on analog neu-
romorphic hardware offers several advantages over simulating
them on conventional computers, particularly in terms of speed
and energy consumption. However, this usually comes at the
cost of reduced control over the dynamics of the emulated
networks. In this paper, we demonstrate how iterative training
of a hardware-emulated network can compensate for anomalies
induced by the analog substrate. We first convert a deep
neural network trained in software to a spiking network on the
BrainScaleS wafer-scale neuromorphic system, thereby enabling
an acceleration factor of 10 000 compared to the biological
time domain. This mapping is followed by the in-the-loop
training, where in each training step, the network activity is first
recorded in hardware and then used to compute the parameter
updates in software via backpropagation. An essential finding
is that the parameter updates do not have to be precise, but
only need to approximately follow the correct gradient, which
simplifies the computation of updates. Using this approach,
after only several tens of iterations, the spiking network shows
an accuracy close to the ideal software-emulated prototype.
The presented techniques show that deep spiking networks
emulated on analog neuromorphic devices can attain good
computational performance despite the inherent variations of
the analog substrate.

I. INTRODUCTION

Recently, artificial neural networks (ANNs) have emerged

as the dominant machine learning paradigm for many pattern

recognition problems [1]. Although ANNs are to some extent

inspired by the architecture of biological neuronal networks,

they differ significantly from their biological counterpart in

many respects. First, while the computation in biological

neurons is performed through analog voltages in continuous

time, ANNs are typically implemented on digital hardware

Fig. 1. The BrainScaleS system as it is currently installed consisting of five
cabinets, each containing four neuromorphic wafer-scale systems. Upstream
connectivity to the control cluster is provided by the prominent red cables,
each communicating at Gigabit speed. This enables fast system configuration
and high-throughput spike in- and output. An additional rack hosts the support
infrastructure comprising power supplies, servers, the control cluster, and
network equipment.

and thus operate in discretized time. Second, while the

communication between neurons in an ANN is based on

high-precision arithmetic and computed in discrete time

steps, communication in biological neuronal networks is

largely based on stereotypically shaped all-or-none voltage

978-1-5090-6182-2/17/$31.00 ©2017 IEEE 2227

events in continuous time. These events are called action

potentials or spikes. In recent years, several large-scale analog

neuromorphic computing platforms have been developed [2]

that better match these features of biological neural networks.

Due to their low power consumption and speedup compared to

simulations run on conventional architectures, these systems

are promising precursors for computing devices that can rival

the computational capabilities and energy efficiency of the

human brain.

While spiking neural networks are in principle able to

emulate any ANN [3], it has been unclear whether neu-

romorphic hardware can be efficiently used to implement

contemporary deep ANNs. One obstacle has been the lack of

adequate training procedures. ANNs are typically trained by

backpropagation, a learning algorithm that propagates high-

precision errors through the layers of the network. Recently the

successful training of neural networks was demonstrated on

the TrueNorth chip, a fully digital spike-based neuromorphic

design [4]. More specifically, performance on machine-

learning benchmarks is not impaired by their hardware

quantization constraints if, at each training step, the errors are

computed with quantized parameters and binarized activations,

before backpropagating with full precision. This advance

however left the question open whether a similar strategy could

be used for analog neuromorphic systems. Since TrueNorth is

fully digital, an exact software model is available. Therefore,

each parameter, neuron activations, and the corresponding

gradients are available or can be appropriately approximated

at any point in time during training. In contrast, the neural

circuits on analog hardware are not as precisely controllable,

making an exact mapping between the hardware and software

domains challenging.

In this work, we demonstrate the successful training of an

analog neuromorphic system configured to implement a deep

neural architecture. The system we used is the BrainScaleS

wafer-scale system, a mixed-signal neuromorphic architecture

that features analog neuromorphic circuits with digital, event-

based communication. We implemented a training procedure

similar to [4], but used only a coarse software model to

approximate its behavior. We show that, nevertheless, the

backpropagation algorithm is capable to adapt the synaptic

parameters of the neuromorphic network quite effectively

when running the training with the hardware in the loop.

Similar approaches have already been used, in the context of

various network architectures, for smaller analog neuromor-

phic platforms, such as the HAGEN [5], [6] and Spikey [7]

chips.

For the parameter updates, we used the recorded activity

of the neuromorphic system, but computed the corresponding

gradients using the parameters of the ANN. This adaptation

was possible in spite of the fact that the algorithm had

no explicit knowledge about exact parameter values of the

neurons and synapses in the BrainScaleS system.

The remainder of the article is structured as follows.

In Section II, we describe the BrainScaleS neuromorphic

platform and discuss the extent of parameter variability in this

system. Starting from a simple approximate software model,

F

GE

I

C
A

B

G

D

H

H

H

(a) (b)

Fig. 2. (a) 3D-schematic of a BrainScaleS wafer module (dimensions: 50 cm
× 50 cm × 15 cm) hosting the wafer (A) and 48 FPGAs (B). The positioning
mask (C) is used to align elastomeric connectors that link the wafer to the
large main PCB (D). Support PCBs provide power supply (E & F) for the
on-wafer circuits as well as access (G) to analog dynamic variables such
as neuron membrane voltages. The connectors for inter-wafer (USB slots)
and off-wafer/host connectivity (Gigabit-Ethernet slots) are distributed over
all four edges (H) of the main PCB. Mechanical stability is provided by an
aluminum frame (I). (b) Photograph of a fully assembled wafer module.

Section III-A, we then describe the mapping of the neural

network to the hardware, Section III-B. Subsequently, we

describe the in-the-loop training in detail and demonstrate the

application of this procedure to a handwritten digit recognition

task, Section III-C and Section IV.

II. THE BRAINSCALES WAFER-SCALE SYSTEM

The BrainScaleS system follows the principle of so-called

“physical modeling”, wherein the dynamics of VLSI circuits

are designed to emulate the dynamics of their biological

archetypes instead of numerically computing them as in the

conventional simulation approach of von Neumann archi-

tectures. Neurons and synapses are implemented by analog

circuits that operate in continuous time, governed by time

constants which arise from the properties of the transistors

and capacitors on the microelectronic substrate. In contrast to

real-time neuromorphic devices, see [8], the analog circuits

on our system are designed to operate in a regime where

characteristic time constants (e.g., τ syn, τm) are much smaller

than typical corresponding biological values. This defines our

intrinsic hardware acceleration factor of 10 000 with respect

to biological real-time. The system is based on the ideas

described in [9] but in the meantime it has advanced from

a lab prototype to a larger installation comprising 20 wafer

modules, see fig. 1.

A. The Wafer Module

At the heart of the BrainScaleS wafer module, see fig. 2, is

a silicon wafer with 384 HICANN (High Input Count Analog

Neural Network) chips produced in 180 nm CMOS technology.

It comprises 48 reticles, each containing 8 HICANNs, that

are connected in a post-processing step. Each chip hosts 512

neurons emulating Adaptive exponential integrate-and-fire

(AdEx) dynamics [10], [11] being able to reproduce most of

the firing regimes discussed in [12]. When forming logical

neurons by combining up to 64 neuron circuits, a maximum

2228

TABLE I
HARDWARE UTILIZATION AND POWER RATINGS FOR DIFFERENT NEURAL

NETWORK ARCHITECTURES.

Model L2/3 Model[16] AI Network[16] MaxHW

HICANNs 352 384 384

Neurons 14 375 22 445 196 608

Synapses 3 470 000 4 030 000 43 253 760

Average Rate (Bio) 4.8 Hz 13.6 Hz 40 Hz

Speedup (Bio → HW) 12 000 10 000 10 000

Total Rate (HW) 200 GHz 550 GHz 17.3 THz

Energy/Synaptic Event 10 nJ 3.6 nJ 0.1 nJ

input from 14 080 conductance-based synapses is reached

where each circuit contributes with 220 synapses.

While the synapse and neuron dynamics are emulated by

the analog circuits in continuous time, action potentials are

transported as digital data packets [13]. The action potentials,

or spikes, are injected asynchronously into circuit-switched

routing structures on the chip and can be statically routed

to target synapses and transported off-chip as time-stamped

digital events via a packet-based network [14], [15].

48 Xilinx Kintex-7 FPGAs, one per reticle, provide an I/O

interface for configuration and spike data. The connection

between FPGAs and the control cluster network is established

using standard Gigabit and 10-Gigabit-Ethernet.

Auxiliary PCBs provide the BrainScaleS wafer-scale system

with power, control and analog readout.

The specified maximum design power of a single module

is 2 kW. This operating point (MaxHW) assumes an average

spike rate of 40 Hz applied to all hardware synapses. As

there are currently no power management techniques in

use, all numbers reported in table I are based on the

maximum design power. Table I also provides data regarding

hardware utilization for previously published neural network

architectures [16].

B. Running Neuronal Network Experiments

The BrainScaleS software stack transforms a user-defined

abstract neural network description, i.e., network topology,

model parameters and input stimuli, to a corresponding

hardware-constrained experiment configuration.

Descriptions of spiking neural networks are often formu-

lated using dedicated languages. Most are based on either

declarative syntax, e.g., NineML [17] or NeuroML [18], or

use procedural syntax, e.g., the Python-based API called

PyNN [19]. The current BrainScaleS system uses PyNN to

describe neural network experiments based on experiences

with previous implementations [20]. This design choice

enables the use of the versatile software packages developed in

the PyNN ecosystem, such as the Connection Set Algebra [21],

Elephant [22] or Neo [23].

Starting from the user-defined experiment description in

PyNN, the transformation process maps model neurons to

hardware circuits, routes connections between neurons to

create synapses, and translates the model parameters to

hardware settings. This translation of neuron and synapse

200 300 400 500 600 700 800 900

DAC

0

5

10

15

20

25

sy
n

a
p

ti
c

ti
m

e
co

n
st

a
n

t
[m

s]

10
0

10
1

synaptic time constant [ms]

0

10

20

30

40

50

60

70

80

90

#

Fig. 3. Example for the calibration of the synaptic time constant. Left:
measured synaptic time constants (y-axis) for different neurons as a function
of the digital parameter (DAC, x-axis) controlling the responsible analog
parameter. Right: measured synaptic time constant with (blue) and without
(white) calibration for all neurons of a HICANN (right).

500 1000 1500 2000 2500

time [ms]

−50

−40

−30

−20

−10

0

m
e
m

b
ra

n
e

p
o
te

n
ti

a
l

[m
V

]

BrainScaleS

Simulation

Fig. 4. Comparison of a recorded membrane trace to a neuron simulated with
NEST. The neuron receives an excitatory Poisson stimulus of 20 Hz followed
by inhibitory and then simultaneous excitatory and inhibitory Poisson stimuli
of the same frequency. All calibrations are applied and the hardware response
is converted to the emulated biological domains.

model parameters requires calibration data, see Section II-C,

as well as rules for the conversion between the biological and

the hardware time and voltage domains.

The result of the whole transformation process is a

hardware-compatible, abstract experiment description which

can be converted into low-level configuration data. After

acquiring hardware access using a fair resource scheduling

and queuing system based on SLURM [24], the hardware is

configured and the experiment is ready to run on the system.

Although the BrainScaleS software stack provides a user-

friendly modeling interface and hides hardware specifics, all

low-level settings are available to the expert user. In particular

the experiments presented here make use of this feature,

enabling fast iterative modification of synaptic weights and

input stimuli.

C. Calibration

For each neuron, the calibration provides translation rules

from target parameters, such as the membrane time constant,

to a set of corresponding hardware control parameters.

2229

Thereby it accounts for circuit-to-circuit variations caused by

the transistor mismatch inherent to the wafer manufacturing

process. The data are stored in the hardware domains and

two scaling rules are used for the conversion to the biological

time and voltage domains. All time constants are scaled with

the acceleration factor of 10 000, e.g., 1 μs hardware time

corresponds to 10 ms of emulated biological time. Voltages

are scaled according to

Vhardware = Vbio × α+ s, (1)

where α is a unit-free scaling factor and s is an offset. From

here on, all units are given in the biological domain if not

stated otherwise.

Fig. 3 exemplifies the calibration technique for the particular

case of the synaptic time constant. For every neuron, the

analog parameter controlling the synaptic time constant is

varied and the resulting synaptic time constant is determined

from a recorded post-synaptic potential. A fit to this data

then provides the mapping from the desired synaptic time

constant to the value of the control parameter. Calibration

reduces the neuron-to-neuron variation significantly, but not

perfectly. The remaining variability is mostly caused by the

trial-to-trial variation of the analog parameter storage.

Fig. 4 shows two membrane time courses comparing a

calibrated silicon neuron to a numerical simulation with

NEST [25]. In both cases, the same model parameters and

input spike trains were used. Despite the overall match, it can

be seen that the calibration is not perfect, e.g. for the neuron

used in fig. 4, the inhibitory stimulus is weaker compared to

the expectation from simulation. Due to the analog nature of

the system, variations will always occur to a certain extent,

rendering in-the-loop training essential for networks that are

sensitive to parameter noise, as we discuss in the following.

III. TRAINING A DEEP SPIKING NETWORK

In the following, we describe our network model and

training setup. Since we are using an abstract network of

rectified linear units (ReLUs) and an equivalent spiking

network of leaky integrate-and-fire (LIF) neurons in parallel,

we will first describe the networks structure in abstract terms.

Our network is modeled as a feed-forward directed graph

as shown in fig. 5. The input layer, consisting of 100 units,

is used to represent the input patterns that the network later

learns to classify. Each of these classes is represented by one

label unit. Between the input and label layers are two 15-unit

hidden layers that learn particular features in the input space.

The weights of the directed edges are learned during several

phases of training, as described farther below.

Our network was trained on a modified subset of the MNIST

dataset of handwritten digits [26]. First, we decreased the

resolution from 28× 28 pixels to 10× 10 pixels by bicubic

interpolation. To account for the lower dissimilarity of the

reduced resolution images, we restricted the dataset to the

five digit classes “0”, “1”, “4”, “6” and “7”. This results in a

training set of 30 690 and a test set of 5083 images.

The spiking neural network is then trained in three phases:

A. The software model of the network with rectified linear

units (ReLUs) is trained with classical backpropagation.

1

2

3

N−2

N−1

N

...

...in putla yer h idde nla yer hi ddenla yer la bella yer100 15 15 5Fig .5 .Topo logy ofthe fe ed-forw a rd neura lnetw orkw it hone inp ut layer ,t wo hiddenla y ers a ndone l abel la ye r.The dim e ns ion of the inpu t la yeri se qual to the number of p ixel soft he inputi ma ge .The num be rof la belunitsi se qual tothe number o fim age cl ass es the ne tworkis tr ained to re c ogniz e.Fig .6.Exa m pl es oft he inputdat au se dduri ngtra in in g .Or ig inalMNISTi ma ge ofa “ 0” (uppe rle ft) vs. re duce d-re solu tion im a ge (l owe rle ft) .Middl ea nd rightc ol umn:r educ ed- re solu tion ima ge sfrom the other four cla ss es (“ 1” ,“ 4” ,“6” ,“ 7”).B .T he re sult ing w ei ghts a re c onver te d tos yna pt ic we ightsin a n appr opr ia tely para m et rize d LIF ne tw ork on t heB rai nSca le S hardware .C .T he syna p tic w e ight sa re fur ther tr ained in a hardw are -s oftw a re tr ain ing loop.A . Softwar eM ode lT het rai ning o ft he s oftw a re m ode li sperform e d sim il arl yt o[27]usi ngthe TensorFlow [28] s of twa re wit ht he pr ope rti esdet ailed in t he fo l low ing.1) Input: T he gra ys c ale val ue of the input ima ge pixel si st ra nsfor me d to a num ber be tw e en0 a nd 1a nd se t as thea ct ivationof theunits in the input la ye r.2) Unit s: T heout put x

k

of Re LU u nit k i sg iven byx

k

=R(∑

l

W

kl

x

l

) , R(a) =max(0, a), (2) 223 0

TABLE II
NEURON PARAMETERS AND TYPICAL POST-CALIBRATION VARIATIONS.

Parameter Value Relative Variation

Inhibitory Reversal Potential −80 mV 5 %

Reset Potential −64 mV 2 %

Resting Potential −40 mV 10 %

Spike Threshold −37.5 mV 0.5 %

Excitatory Reversal Potential 0 mV 0.5 %

Inh./Exc. Synaptic Time Constant 5 ms 10 %

Membrane Time Constant 20 ms 10 %

where Wkl is the weight of the connection from unit l to unit

k, R : R→ R is the activation function of a ReLU, and the

sum runs over all indices l of units from the previous layer.

3) Weights: The initial weights for layer n containing Nn

units are drawn from a normal distribution with a mean of

zero and standard deviation

σn =
1√
Nn−1

, (3)

where weight magnitudes > 2σn are dropped and re-picked.

4) Training: The network is trained by mini-batch gradient-

descent with momentum [29] minimizing the cost function

C(W) = 1
5

∑
s∈S

(ỹs − ŷs)
2
+

∑
kl

1
2
λW 2

kl, (4)

where W is the matrix containing all network weights, ŷs

the one-hot vector for the true digit, ỹ = y

N2nd hidden
the scaled

activity of the label layer and S the samples in the current

batch of 100 samples.

The first term in (4) is the euclidean distance between the

predicted labels ỹ and the true labels ŷ, rewarding correct and

penalizing wrong activity. The second term of (4) regularizes

the weights with λ = 0.001, leading to the suppression of

large weights to prevent overfitting.

Per training step, the weights are updated according to

ΔWkl ← η∇Wkl
C(W) + γΔWkl, (5)

Wkl ←Wkl −ΔWkl, (6)

where ΔWkl is the change in weight, η = 0.05 is learning

rate, and γ = 0.9 the momentum parameter. In foresight of

the hardware implementation, Wkl is clipped to [−1, 1].

B. Neuromorphic Implementation

1) Input: The input image is converted to Poisson spike

trains following [30]:

νp =
cp∑
p cp

· νtot, (7)

where νp is the firing rate of the input corresponding to the

pth pixel, cp the grayscale value of the pth pixel and νtot
is the targeted total firing rate the input layer receives. In

our case, we set νtot = 2500Hz. Each pattern is presented

for 0.9 s followed by 0.1 s of silence to allow the activity to

decay.

2) Hardware Configuration: The network is mapped to

the BrainScaleS hardware using the software stack detailed

in Section II-B. Neurons of all layers, including the input layer,

are randomly placed on 8 HICANNs. For input and on-wafer

routing, 6 additional chips are used. These 14 HICANNs are

connected to 5 different FPGAs. For each artificial neuron,

four hardware neuron circuits are connected to form one

logical neuron to increase the number of possible inputs.

Except for the stimulus to the input layer, each pair of neurons

in consecutive layers is connected with both an inhibitory

and an excitatory synapse. This allows the weights to change

sign during learning without having to change the configured

topology. Therefore, the hardware-emulated network has a

total of 3700 synapses.

3) Neuron parameters: Despite the different input and

output domain, the activation functions of ReLUs and LIF

neurons share features, i.e., both have a threshold below which

the output is zero and a positive gradient for suprathreshold

input. Not all neuron features are required to mimic the ReLU

behavior, therefore we disable the adaptation and exponential

features of the AdEx model. The parameters and the neuron-to-

neuron variation after calibration, see Section II-C, are listed

in table II. To allow a balanced representation of positive and

negative weights, the reversal potentials have been chosen as

symmetric around the resting potential. The refractory period

is set as small as possible to be close to a linear relation of

the input to the output activity. Equation (1) is used to convert

to hardware units with α = 20 and s = 1800mV, e.g., the

target value of the resting potential on hardware equals 1 V.

4) Weights: The trained weights Wkl of the artificial

network are converted to the 4 bit hardware weights W ′

kl

by

W ′

kl = round(|Wkl| × 15). (8)

Positive (negative) weights are assigned to excitatory (in-

hibitory) synapses and the corresponding inhibitory (excita-

tory) synapse is turned off.

C. Hardware In The Loop

Section III-B laid out the necessary steps to convert the

artificial network to a network of neurons in analog hardware.

After conversion it was found that the classification accuracy

was significantly reduced compared to the initially trained

ANN. To compensate for the reduced classification accuracy,

training was continued with the hardware in the loop, see fig. 7.

In-the-loop training consists of a series of training steps, each

of which is performed as follows. First, the neuron activity

is recorded for a batch of training samples. These firing rates

are then equated to the ReLU unit response, where we used

the following heuristic for the label layer: ỹ = y

30Hz
. The

resulting vector is used to compute the cost function C(W)
defined in (4). The weight updates are then computed using (5)

using the ReLU activation function (2) as an approximation of

the difficult-to-determine activation functions of the hardware-

emulated neurons. For the experiments described here, we

used the parameters η = 0.05, γ = 0 and a batch size of

1200 samples.

2231

backward pass

backpropagation

weight updates

4 bit weight discretization

BrainScaleS

spikes

ReLU activity

MNIST prediction

forward pass

Fig. 7. Illustration of our in-the-loop training procedure. In an antecedent
step (not shown), a software-trained ReLU network, see fig. 5, is mapped to
an equivalent LIF network on the BrainScaleS hardware. Each iteration of
in-the-loop training consists of two passes. In the forward pass, the output
firing rates of the LIF network are measured in hardware. In the backward
pass, these rates are used to update the synaptic weights of the LIF network
by computing the corresponding weight updates in the ReLU network and
mapping them back to the hardware.

IV. RESULTS

An example for the activity on the neuromorphic hardware

during classification after in-the-loop training for one choice

of hardware neurons and initial software parameters can be

found in fig. 10. The figure shows the spike times of all

neurons in the network for five presented samples of every

digit. An image is considered to have been classified correctly

if the neuron associated with the input digit shows the highest

activity of all label neurons. After training, all images are

correctly classified, except for the first example of digit “6”

which was mistaken for a “4”. Comparing the weights before

and after in-the-loop training, see fig. 8, shows that only slight

adjustments are needed to compensate for hardware effects.

The evolution of the accuracy per training batch for both the

software model and the in-the-loop training of the hardware is

shown in fig. 9 for 130 different sets of hardware neurons and

initial weights of the software model. The total classification

accuracy is computed as the sum of correctly classified

patterns divided by the total number of patterns in the test

set. After 15 000 training steps, the accuracy of the software

model is 97 % with a negligible uncertainty arising from the

choice of initial weights. Directly after converting the artificial

network to the network of spiking neurons, the accuracy is

reduced to 72+12
−10 %. It increases to 95+1

−2 % at the end of the

in-the-loop training, being close to the performance of the

software model with the uncertainty given by the interquartile

range (IQR).

V. DISCUSSION

For problems involving spatial pattern recognition, deep

neural networks have become state of the art. Almost by

definition, they should lend themselves to implementation in

neuromorphic substrates. However, two non-trivial problems

exist. First, the input-output relationship of the abstract

units used in typical deep networks needs to be mapped to

spiking neuron dynamics. Second, in case of analog hardware,

distortions in these dynamics need to be take into account.

The latter is especially problematic because the performance

of the network usually relies on precise parameter training.

Here, we have addressed these problems in the context of

the BrainScaleS wafer-scale system, an accelerated analog

neuromorphic platform that emulates biologically inspired

neuron models. For mapping activities from the abstract

domain to spikes, we have used a rate-coding scheme. The

translation of the network topology, including connectivity

structure and parameters, was described in Section III-B.

Following this mapping of a pretrained network to the

hardware substrate, the resulting distortions in dynamics and

parameters have been compensated by in-the-loop training,

as described in Section III-C.

This two-stage approach was evaluated for a small network

trained on handwritten digits. In this exemplary scenario, it

was possible to almost completely restore the performance

of the software-simulated abstract model in hardware. An

implicit, but essential component of our methodology is the

fact that the backpropagation of errors needs not be precise:

computing the cost function gradients using a ReLU activation

function is sufficient for adapting the weights in the spiking

network. This circumvents the difficulty of otherwise having

to determine an exact derivative of the cost function with

respect to the LIF activation function, which would be further

exacerbated by the diversity of neuronal activation functions

on the analog substrate.

Here, the mapping-induced distortions in network dynamics

and configuration parameters have been compensated by

additional training. A complementary approach would be

to modify the network in a way that makes it more robust

to hardware-induced distortions, as discussed, e.g., in [16].

While rate-based approaches such as ours are inherently robust

against jitter in the timing of spikes, robust architectures

become particularly important in single-spike coding schemes,

as discussed in [31].

The proof-of-principle experiments presented here were

part of the commissioning phase of the BrainScaleS system

and lay the groundwork for more extensive studies. The

most interesting question to be addressed next is whether

the results achieved here also hold for larger networks that

can deal with more complex datasets. Once fully functional,

our system will be able to accomodate such large networks

without any scaling-induced reduction in processing time due

to its inherently parallel nature.

In the long run, the potentially most rewarding challenge

will be to fully port the training to the hardware as well.

To this end, an integrated plasticity processor [32] has been

designed that will allow the emulation of different learning

rules at runtime [33]. Learning can then also profit from the

acceleration that, for now, only benefits the operation of the

fully trained network. The use of analog spiking hardware

might then not only allow accelerated data processing with

2232

-15 0 15

after in-the-loop

-15

0

15
b
e
fo

re
in

-t
h

e
-l

o
o
p

-15 0 15

after in-the-loop

-15 0 15

after in-the-loop

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 8. Correlation of hardware weights before and after in-the-loop training for the projections to the first (left) and second hidden layer (center) and
the label layer (right). Weights that are zero before and after training are omitted. The relative frequency is encoded by both grayscale and area of the
corresponding square.

0 10
1

10
2

10
3

10
4

training step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a
cc

u
ra

cy
o
n

tr
a
in

in
g

b
a
tc

h

software model

median, IQR

0 5 10 15 20 25 30 35

in-the-loop iteration

BrainScaleS

median, IQR

Fig. 9. Classification accuracy per batch as a function of the training step for the software model (left) and the in-the-loop iteration for the hardware
implementation (right) for 130 runs. The uncertainty, given by the interquartile range (IQR), expresses the variations when repeating the software model
with different initial weights and the in-the-loop training using different initial weights for the ReLU training and different sets of hardware neurons.

pre-specified networks, but also facilitate fast training of

biologically inspired architectures that can, in certain contexts,

even outperform classical machine learning algorithms [34].

ACKNOWLEDGMENT

This work has received funding from the European Union

Sixth Framework Programme ([FP6/2002-2006]) under grant

agreement no 15879 (FACETS), the European Union Seventh

Framework Programme ([FP7/2007-2013]) under grant agree-

ment no 604102 (HBP), 269921 (BrainScaleS) and 243914

(Brain-i-Nets) and the Horizon 2020 Framework Programme

([H2020/2014-2020]) under grant agreement no 720270 (HBP)

as well as the Manfred Stärk Foundation.

The authors wish to thank Simon Friedmann, Matthias

Hock, Ioannis Kokkinos, Tobias Nonnenmacher, Lukas Pilz,

Moritz Schilling, Dominik Schmidt, Sven Schrader, Simon

Ziegler, and Holger Zoglauer for their contributions to the

development and commissioning of the system, Würth Elek-

tronik GmbH & Co. KG in Schopfheim for the development

and manufacturing of the special wafer-carrier PCB used in the

BrainScaleS wafer-scale system, and Fraunhofer-Institut für

Zuverlässigkeit und Mikrointegration (IZM), Berlin, Germany

for developing the post-processing technique which is required

for wafer-wide communication and external connectivity to

the wafer.

The first two authors contributed equally to this work.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, May 2015.

[2] S. Furber, “Large-scale neuromorphic computing systems,” J Neural

Eng, vol. 13, no. 5, p. 051001, 2016.
[3] W. Maass, “Fast sigmoidal networks via spiking neurons,” Neural

Comput, vol. 9, no. 2, pp. 279–304, 1997.
[4] S. K. Esser, P. A. Merolla, J. V. Arthur et al., “Convolutional networks

for fast, energy-efficient neuromorphic computing,” Proc. Natl. Acad.

Sci. U.S.A., 2016.
[5] S. G. Hohmann, J. Fieres, K. Meier et al., “Training fast mixed-signal

neural networks for data classification,” in Proc Int Jt Conf Neural

Netw, vol. 4. IEEE Press, Jul. 2004, pp. 2647–2652.
[6] J. Fieres, J. Schemmel, and K. Meier, “A convolutional neural

network tolerant of synaptic faults for low-power analog hardware,”
in Proceedings of 2nd IAPR International Workshop on Artificial

Neural Networks in Pattern Recognition, ser. Springer Lecture Notes in
Artificial Intelligence, vol. 4087. Ulm, Germany: Springer International
Publishing, Aug. 2006, pp. 122–132.

[7] T. Pfeil, A. Grübl, S. Jeltsch et al., “Six networks on a universal
neuromorphic computing substrate,” Frontiers in Neuroscience, vol. 7,
p. 11, 2013.

2233

0

5

10

15

20

ti
m

e
[s

]

0 10 20 30 40 50 60 70 80 90 100 105 110 115 120 125 130 131 132 133 134
input layer hidden layer hidden layer label layer

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

Fig. 10. Spike raster plot of the neural activity of all layers on the neuromorphic hardware after in-the-loop training. Each horizontal dash denotes the time
at which a certain neuron spiked. Five examples per digit are presented where in the plot same digits are denoted by the same background color. Correctly
classified images are marked with a green circle.

[8] S.-C. Liu, Event-based neuromorphic systems. John Wiley & Sons,
2015.

[9] J. Schemmel, D. Brüderle, A. Grübl et al., “A wafer-scale neuromorphic
hardware system for large-scale neural modeling,” in IEEE Int Symp

Circuits Syst Proc, May 2010, pp. 1947–1950.
[10] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire

model as an effective description of neuronal activity,” J. Neurophysiol.,
vol. 94, no. 5, pp. 3637–3642, 2005.

[11] S. Millner, A. Grübl, K. Meier et al., “A VLSI implementation of the
adaptive exponential integrate-and-fire neuron model,” in Adv Neur In,
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor et al., Eds., vol. 23,
2010, pp. 1642–1650.

[12] R. Naud, N. Marcille, C. Clopath et al., “Firing patterns in the
adaptive exponential integrate-and-fire model,” Biological Cybernetics,
vol. 99, no. 4, pp. 335–347, Nov 2008. [Online]. Available:
http://dx.doi.org/10.1007/s00422-008-0264-7

[13] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog
neural networks,” in Proc Int Jt Conf Neural Netw, Hong Kong, Jul.
2008.

[14] V. Thanasoulis, B. Vogginger, J. Partzsch et al., “A pulse communication
flow ready for accelerated neuromorphic experiments,” in IEEE Int

Symp Circuits Syst Proc, Jun. 2014, pp. 265–268.
[15] S. Scholze, S. Schiefer, J. Partzsch et al., “VLSI implementation of

a 2.8 GEvent/s packet-based AER interface with routing and event
sorting functionality,” Front Neurosci, vol. 5, p. 117, 2011.

[16] M. A. Petrovici, B. Vogginger, P. Müller et al., “Characterization and
compensation of network-level anomalies in mixed-signal neuromorphic
modeling platforms,” PLoS ONE, vol. 9, no. 10, p. e108590, 2014.

[17] I. Raikov, R. Cannon, R. Clewley et al., “NineML: the network
interchange for neuroscience modeling language,” BMC Neuroscience,
vol. 12, no. 1, p. P330, 2011.

[18] P. Gleeson, S. Crook, R. C. Cannon et al., “NeuroML: A language
for describing data driven models of neurons and networks with a
high degree of biological detail,” PLoS Comput Biol, vol. 6, no. 6, p.
e1000815, Jun. 2010.

[19] A. P. Davison, D. Brüderle, J. Eppler et al., “PyNN: a common interface
for neuronal network simulators,” Front Neuroinform, vol. 2, no. 11,
2008.

[20] D. Brüderle, E. Müller, A. Davison et al., “Establishing a novel
modeling tool: A python-based interface for a neuromorphic hardware
system,” Front Neuroinform, vol. 3, no. 17, 2009.

[21] M. Djurfeldt, “The connection-set algebra—a novel formalism for the
representation of connectivity structure in neuronal network models,”
Neuroinformatics, vol. 10, no. 3, pp. 287–304, 2012.

[22] M. Denker, A. Yegenoglu, D. Holstein et al., “elephant: An open-source
tool for the analysis of electrophysiological data.” in Proceedings of

the 11th Meeting of the German Neuroscience Society, Neuroforum

2015. German Neuroscience Society, Mar 2015, pp. T27–2B.
[23] S. Garcia, D. Guarino, F. Jaillet et al., “Neo: an object model for han-

dling electrophysiology data in multiple formats,” Front Neuroinform,
vol. 8:10, February 2014.

[24] M. Jette and M. Grondona, “SLURM: Simple linux utility for resource
management,” in Proceedings of ClusterWorld Conference and Expo,
San Jose, California, 2003.

[25] M.-O. Gewaltig and M. Diesmann, “NEST (NEural Simulation Tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[26] Y. LeCun and C. Cortes, “The MNIST database of handwritten digits,”
1998. [Online]. Available: http://yann.lecun.com/exdb/mnist

[27] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” Int J Comput Vis, vol.
113, no. 1, pp. 54–66, 2015.

[28] M. Abadi, A. Agarwal, P. Barham et al., “TensorFlow: Large-scale
machine learning on heterogeneous systems,” Google Research,
Whitepaper, 2015, software available from tensorflow.org. [Online].
Available: http://tensorflow.org/

[29] N. Qian, “On the momentum term in gradient descent learning
algorithms,” Neural Netw., vol. 12, no. 1, pp. 145–151, 1999.

[30] P. O’Connor, D. Neil, S.-C. Liu et al., “Real-time classification and
sensor fusion with a spiking deep belief network,” Front Neurosci,
vol. 7, p. 178, 2013.

[31] M. A. Petrovici, A. Schroeder, O. Breitwieser et al., “Robustness from
structure: fast inference on a neuromorphic device with hierarchical
LIF networks,” submitted to this conference, 2016.

[32] S. Friedmann, “The Nux processor v3.0,” Electronic Vision(s) Group,
Kirchhoff-Institute for Physics, Heidelberg University, User Guide,
2015. [Online]. Available: https://github.com/electronicvisions/nux

[33] S. Friedmann, J. Schemmel, A. Grübl et al., “Demonstrating hybrid
learning in a flexible neuromorphic hardware system,” IEEE Trans.

Biomed. Circuits Syst., vol. PP, no. 99, pp. 1–15, 2016.
[34] L. Leng, M. A. Petrovici, R. Martel et al., “Spiking neural networks

as superior generative and discriminative models,” in Cosyne Abstracts,

Salt Lake City USA, February 2016.

2234

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

