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Abstract

The neuronal processing of visual stimuli in primary visual cortex (V1) can be modified by perceptual training. Training in
bisection discrimination, for instance, changes the contextual interactions in V1 elicited by parallel lines. Before training, two
parallel lines inhibit their individual V1-responses. After bisection training, inhibition turns into non-symmetric excitation
while performing the bisection task. Yet, the receptive field of the V1 neurons evaluated by a single line does not change
during task performance. We present a model of recurrent processing in V1 where the neuronal gain can be modulated by a
global attentional signal. Perceptual learning mainly consists in strengthening this attentional signal, leading to a more
effective gain modulation. The model reproduces both the psychophysical results on bisection learning and the modified
contextual interactions observed in V1 during task performance. It makes several predictions, for instance that imagery
training should improve the performance, or that a slight stimulus wiggling can strongly affect the representation in V1
while performing the task. We conclude that strengthening a top-down induced gain increase can explain perceptual
learning, and that this top-down signal can modify lateral interactions within V1, without significantly changing the classical
receptive field of V1 neurons.
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Introduction

Neurons in the primary visual cortex (V1) are driven by

different sources. While early work emphasize the feedforward

sensory input stream [1], later investigations highlight the strong

recurrent connectivity within V1 [2] or the top-down modulation

by higher cortical areas [3]. Recurrent and top-down connections

are thought to mediate contextual interactions within V1 which

shape the neuronal responses by additional stimuli in the non-

classical receptive field. These contextual interactions are

themselves modulated by perceptual tasks subjects perform [4–6].

It remains unclear, however, how the different input streams

interact to generate the observed V1 activities, and how this

supports perception and perceptual learning. Here we suggest a

minimal connectivity model of V1 which integrates the bottom-up

and top-down information stream in a recurrent network to

support either surface segmentation [7,8] or interval discrimination

during a bisection task [6,9–12].

In the bisection task subjects are shown three small parallel lines

and have to decide whether the middle line lies somewhat closer to

the leftmost or to the rightmost line (Figure 1A). It has been

suggested that the observed performance improvement in this

perceptual task, due to repeated practicing, originates from a

modulation of the sensory representation through long-term

modifications of recurrent connections within V1 [13]. But it is

difficult to reconcile this V1-intrinsic explanation of perceptual

learning with the task-dependency of the modulation measured in

the monkey V1 [6,10]. In fact, the same two parallel lines as part

of a bisection stimulus produced a completely different response

behavior of V1 neurons depending on whether this stimulus was

presented while the monkey was performing a fixation or a

bisection task [10]. Moreover, these differences only occurred after

an extended period of perceptual training. If the training-induced

response modulations for bisection stimuli were explained purely

V1-intrinsically, they would have been observed also for bisection

stimuli alone, without performing the task. Hence, the experi-

mental data is more readily explained if the modulations of the

contextual interactions in V1 originate from a task-dependent top-

down signal to V1 which is adapted during perceptual learning.

Because the neuronal response curves evaluated at different line

positions do not simply scale in a multiplicative way as a function

of the task, a task-specific top-down mechanism was postulated

which transiently modulates the strength of lateral connections and

the excitatory/inhibitory balance within V1 [6,10,14]. Yet, how

such a task-specific gating of lateral connections can be achieved

remains elusive.

Here we show that – despite the complexity of the observed

task-dependent modulation of the response curves – a simple top-

down induced gain increase of V1 pyramidal neurons embedded

in a recurrent circuitry can explain the various electrophysiological

recordings including the psychophysics of bisection learning. Our

model makes use of the same type of global gain increase in V1

neurons observed during attention [15]. As we show, combining

the attentional signal with synaptic plasticity on the top-down

connections to V1 leads to perceptual learning via a training

induced strengthening of the gain increase. Even if the top-down

signal acts globally (or at least semi-global within an area of the

same hemisphere) on the pyramidal neurons, the intrinsic V1
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wiring shapes this signal so that it leads to a strong and nonlinear

response modulations for parallel lines in flanking positions, while

only marginally affecting the response to a single line [10]. The

top-down induced gain modulation puts the recurrent V1 network

into different dynamical regimes. At low gain of the excitatory

neurons, global inhibition uniformly suppresses responses to

neighboring iso-orientation lines. At high gain, a winner-takes-all

behavior develops so that global inhibition only suppresses weakly

active neurons while competitively enhancing strongly active

neurons. As a result we find that low gain supports surface

segmentation through off-boundary suppression [7], while high

gain supports interval discrimination through strengthened

competition. Hence, training a (semi-)global attentional signal

which modulates the gain of the excitatory neurons can shape the

V1 circuitry to subserve different tasks.

Results

Model network. Our V1 model includes two layers of

neurons, with the second being recurrently connected through

excitation and global inhibition. Both layers project to a

downstream readout unit which performs binary decisions based

on the weighted input signals (Figure 1, B and C). To show how

this model might be embedded into the architecture of V1 we

tentatively assign the model neurons to cortical layers and neuron

Figure 1. Bisection task and model network. (A) A bisection stimulus consists of three vertical lines, with the middle line slightly displaced from
the center. The subject has to indicate whether this middle line is displaced toward the left or the right line. (B) Possible embedding of the model into
a V1 circuitry. (Only a subset of the otherwise mirror-symmetric connectivity pattern in the V1-box is rendered, and to show the continuation, the
initial segments of some connection lines are also drawn). Each of the bisection lines is activating (via non-modeled L4 neurons) a single L5 pyramidal
neuron while projecting through a Gaussian fan out to the L2/3 pyramidal neurons. Both pyramidal layers project to a binary decision unit in a higher
cortical area. The gain of the L2/3 pyramidal neurons is modulated by top-down input from a task population. L2/3 neurons are recurrently
connected both through direct excitation and via a global inhibitory neuron. (C) The decision unit sums up and thresholds the weighted firing rates
of the noisy pyramidal neurons. Learning consist in modifying these readout weights, as well as in a modification of the top-down input strength.
doi:10.1371/journal.pcbi.1000617.g001

Author Summary

Neuronal models of perceptual learning often focus on the
feedforward information stream extending from the
primary sensory area up to the prefrontal cortex. In these
models, the stimulus representation in the sensory area
remains unchanged during learning while higher cortical
areas adapt the read out of the relevant stimulus
information. An alternative view of perceptual learning is
that the sensory representation at the very early cortical
stage is modified by an adaptable top-down signal
emerging from a higher cortical area. In this view, the
sensory representation during perceptual training is
sharpened by an internal signal which can be turned on
or off depending on the task. We show how this top-down
view explains improvements in interval discrimination by
modifying contextual interactions in the primary visual
cortex (V1). Without such top-down signal the V1
interactions support surface segmentation as it is typically
used in visual scene analysis. During an interval discrim-
ination task, however, a top-down signal which globally
increases the gain of V1 neurons sharpens the V1 circuitry
for this specific task. Although the top-down signal acts
through a simple gain increase, the signal can change the
tuning curves of V1 neurons embedded in a recurrent
circuitry in a rather complex way.

Gain Modulation in V1 and Perceptual Learning
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types, although such an assignment is not unique. In our choice,

the visual input stream from the thalamus is transferred (via layer

4) to the pyramidal neurons in layer L2/3 and L5. The task-

dependent neuronal modulation observed in the same hemisphere

where bisection training occurred [10] is implemented by a top-

down induced gain increase in L2/3 pyramidal neurons while

performing the bisection task. Learning consists in modifying the

readout weights from the noisy pyramidal neurons from both

layers to the decision unit, and in increasing the strength of the

global top-down signal (see Materials and Methods).

V1 nonlinearities and symmetry breaking. The task of

our model network during successful bisection discrimination is to

deliver a supra-threshold input current from the pyramidal

neurons to the decision unit (Idecw0) if, say, the middle line of

the bisection stimulus is shifted towards the left. Analogously, it

should deliver a subthreshold current (Idecv0) as soon as the

middle is slightly shifted towards the right of the interval center

(Figure 2, a and d). For simplicity we assume that the decision

threshold is 0 and that the readout weights can be positive or

negative. If the stimulus representation in V1 is to support the

decision process, the V1 activity should nonlinearly change when

the middle line moves across the bisection center. A suitable

activity switch is achieved by a positive feedback among the L2/3

pyramidal neurons and their competition via global inhibition.

The recurrence provokes a symmetry breaking in the L2/3 activity

and further lateralizes any slight deviation of the activity to either

side from the bisection center (Figure 2, b and c). This arises

because a locally dominating cluster of L2/3 activity suppresses

weaker input via inhibitory feedback. Thus, if the middle line is

closer to the leftmost line, for instance, this suppresses the L2/3

representation of the right line but enhances the representation of

the two proximal (middle and left) lines. A top-down induced gain

increase of the L2/3 pyramidal neurons further enhances the

positive feedback and the competition, thereby improving the

signal-to-noise ratio (Figure 2, c and d; for a thorough analysis of

the L2/3 dynamics see Materials and Methods).

If the bisection center is always located in the same place, these

nonlinear interactions within the L2/3 layer enable a downstream

readout unit to robustly discriminate between left and right

interval bisections, independently of the bisection width (for

instance by assigning positive readout weights to the left, and

negative readout weights to the right pyramidal neurons, see

Figure 2. The top-down induced gain increase of the L2/3 neurons provokes symmetry breaking in the recurrent network and the
resulting competition improves the signal-to-noise ratio underlying the bisection decisions. (A) and (B): Network activities for two mirror
symmetric bisection stimuli after learning. (i) Each line in the bisection stimulus activates a neuron in L5 at the corresponding position (dashed line
indicates the stimulus center). (ii) The feedforward input to the L2/3 pyramidal neurons is locally spread. (iii) Local recurrent excitation and global
inhibition competitively suppresses L2/3 pyramidal neurons receiving weak input, leading to a lateralization of the activity to the side of the middle
line (A: left; B: right). An additional top-down gain increase enhances this lateralization (black versus grey lines). Deviations from mirror symmetry in
the responses are due to a stochastic modulation of the lateral connectivity in L2/3. (iv) The input to the decision unit, Idec, is a weighted sum of the
noisy L2/3 and L5 activities without (grey) and with (black) top-down input, upon which the decision ‘left’ or ‘right’ is made by thresholding at 0. The
weak gain increase (by a factor of 1:7) dramatically increases the signal (by a factor of 9:0 and 5:7, respectively). The plots show averaged activities
over 20 runs with the same stimulus configurations.
doi:10.1371/journal.pcbi.1000617.g002

Gain Modulation in V1 and Perceptual Learning
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Figure 3C). However, because we require that the task be solved

for different positions of the bisection stimulus, the absolute

position of the L2/3 activity must be re-expressed as a relative

position with respect to the flanking lines of the bisection stimulus.

This is achieved by comparing, and in fact by subtracting, the

activity in L5 from the one in L2/3 (as expressed by the readout

weights to the decision unit, Figure 3C and D).

Bisection learning and signal-to-noise ratio. The initial

performance increase in the bisection task is achieved by

modifying the readout weights from the L5 and L2/3 pyramidal

neurons to the decision unit (Figure 3). The weights are adapted

according to the perceptron rule, an error correcting learning rule

which can be interpreted as an anti-Hebbian modification of the

synaptic strengths in the case of an error (see Materials and

Methods). The early saturation of the learning curve is caused by

the limited signal-to-noise ratio imposed by the network. Without

stochasticity in the pyramidal cell output, the errors would vanish.

Because the noise is additively incorporated in the pyramidal cell

firing rates, however, some errors remain as in the experimental

data.

Learning of the readout weights cannot further improve the

signal-to-noise ratio. In fact, rescaling the readout weights would

equally rescale the signal and the noise. However, if the gain of the

L2/3 pyramidal neurons is increased by top-down input, the signal

is amplified prior to the addition of noise, and this does improve

the signal-to-noise ratio. As a consequence, the performance also

improves and the learning curve decays to a lower error value

(Figure 3A). The gain increase by a factor of 1:7 - which is

comparable in size with the dendritic gain modulation observed

for pyramidal neurons in vitro [16] -reduces the asymptotic error

level by roughly one half. The gain may also adaptively increase

throughout the learning process by modifying the top-down

connection strength. While learning the readout connections

improves the performance in an initial phase starting at chance

level, learning the top-down connections contributes to the main

improvements later on (Figure 3A). We therefore hypothesize that

the learning effect in monkeys (Figure 3B) similarly originates

mainly in enhancing the task-induced gain increase in V1

pyramidal neurons.

Network readout: a theoretical consideration. To further

understand how the network masters the bisection task for varying

bisection positions we first formalize the problem in simple

algebra. Let us assume that the left, middle and right line of the

bisection stimulus are at positions l, m and r, respectively. The

condition that the middle line is more to the left (i.e. that the right

interval is larger) is then expressed by m{lvr{m, or

0vlzr{2m.

To turn this algebra into a network calculation we set the

readout weight of the L5 pyramidal neuron at position i to wL5
i ~i.

If the activities hi of the L5 pyramidal neurons at position i~l, m
and r are 1 and those of the others 0, the decision unit will receive

the input current
P

i wL5
i hi~lzmzr from L5. We now set the

readout weight of the L2/3 pyramidal neurons to w
L2=3
i ~{3i and

assume that the recurrent excitation with the global competition in

Figure 3. Performance and evolution of the readout weights during bisection training. (A) Fraction of erroneous network decisions
against training week, with a ‘week’ consisting of the presentation of 100 bisection stimuli of fixed outer-line-distance (‘width’) but with randomized
positions. Upon each stimulus presentation, the readout weights from the L5 and the L2/3 pyramidal neurons to the decision unit were changed
according to an error correcting learning rule. A top-down induced gain increase in the L2/3 pyramidal neurons reduces the error level (grey: gain
factor 1; black: gain factor 1:7). Hence, a substantial improvement in performance is achieved if learning simultaneously increases the top-down input
strength, leading to a learning curve which interpolates between the two curves (dashed line). The fast initial learning progress arises from adapting
the readout connections to the decision unit. (B) Learning curve for a monkey performing the bisection task (adapted from [10]). (C) Synaptic weights
from L2/3 pyramidal neurons to the decision unit before (circles) and after learning with (black) and without gain increase (grey). The dotted line
indicates the universal weight distribution inferred in the theoretical argument. (D) Same as in C, but for synaptic weights from L5 pyramidal neurons
to the decision unit. Error bars represent standard error of the mean (using n~100 learning runs).
doi:10.1371/journal.pcbi.1000617.g003

Gain Modulation in V1 and Perceptual Learning
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L2/3 implements a pure winner-takes-all dynamics. Because the

pyramidal cell at the position of the middle line m receives the

strongest input via the two neighboring line stimuli left and right,

the activity at this middle position will dominate (say with value 1)

while the activity at the flanking positions will be fully suppressed.

This leads to a current of {3m from L2/3, and together with the

L5 input the decision unit receives the total input current

Idec~(lzmzr){3m~lzr{2m. But since according to the

above algebra the middle line is more to the left if and only if

lzr{2mw0, thresholding Idec at 0 yields to the correct decision

in the bisection task for all lvmvr, and hence for all bisection

positions and bisection widths (for a more general consideration

see Materials and Methods).

The above reasoning is confirmed by the simulations in which

the readout weights adapt during the learning procedure such that

after learning they roughly follow the theoretically calculated

linear ramps (see Figure 3, C and D). Note that any vertical shift of

the L5 readout weights by some constant offset, wL5
i ~i{c, can be

compensated by an appropriate offset in the readout weights from

L2/3, and that an additional common factor in front of the

weights can be absorbed in the corresponding presynaptic

neuronal activities.

Task-dependent modulation of V1 interactions. While

the theoretical calculation assumes a winner-takes-all mechanism,

a smoothed version with a winner-takes-most provides enough

nonlinearity to allow for correct bisection decisions independently

of the stimulus position and width. In the model, the winner-takes-

most behavior emerges from the local-excitation global-inhibition

network in L2/3 by a global gain increase in the L2/3 pyramidal

neurons. To visualize this transition we monitor the activity of a

L2/3 pyramidal neuron driven by a line in its receptive field while

changing the position of a second flanking line. At low neuronal

gain - mimicking the performance in the fixation task, or the

performance in the untrained hemisphere for the bisection task -

we observe the classical lateral inhibition of the response by the

flanking line (Figure 4B, upper row), in accordance with

experimental findings [10]. If the gain factor is increased (from 1
to 1:2) - mimicking the effect of training and subsequently

performing the bisection task at some nearby position - the lateral

inhibition turns into excitation at some of the positions (Figure 4B,

lower row), as has also been observed in the experiment.

The switch from inhibition to the randomized excitation pattern

occurs because the high gain strengthens the positive feedback

among L2/3 pyramidal neurons while the recurrent inhibition

cannot counterbalance the strengthened excitation (since the gain

of the inhibitory transfer function at high inputs is lower, see

Materials and Methods). Because of the stochastic modulation of

the otherwise symmetric recurrent connectivity between each pair

of L2/3 pyramidal neurons, there is a 50% chance that one of two

pyramidal neurons, each driven by its own line stimulus, wins over

the other. Hence, when stimulating with two lines and recording

from a model pyramidal neuron with one of the lines in its

receptive field center, the activity may either be enhanced or

suppressed while presenting a second flanking line (Figure 4B,

lower row). The statistical evaluation of the modulation indices for

the L2/3 model pyramidal neurons when changing from the

fixation to the bisection task roughly matches the experimentally

extracted modulation indices (see Figure 4C and [10]).

Figure 4. Learning-induced gain modulation in L2/3 pyramidal neurons qualitatively changes the local interactions. (A) In the
experiment [10], monkeys were performing either a fixation task (top) or a bisection task (bottom) while the activity of a supra-granular V1 neuron
was recorded in response to a two line stimulus in a side-by-side configuration. One of the two lines is centered in the receptive field (sketched by the
square) of the recorded neuron. (B) Activity of the corresponding model L2/3 pyramidal neuron mimicking the recorded supra-granular neuron for
different positions of the flanking line, with individual curves normalized by the activity with flanking line at 0. Top: During pure fixation or before
training (modeled by a non-modulated circuitry, gain 1), the response of the central neuron is suppressed by the flanking line via global inhibition.
Bottom: When performing the bisection task at a nearby location in the trained hemisphere (modeled by a top-down induced gain increase of the L2/
3 pyramidal neurons from 1 to 1:2) the lateral suppression turns into strong excitation at random positions due to the enhanced competition within
the stochastically modulated network. (C) Modulation indices for the ‘bisection task’ (gain 1:2) versus ‘fixation task’ (gain 1). The modulation index is
defined as the normalized difference between the maximal and minimal response of the recorded L2/3 pyramidal neuron, each evaluated for the
different positions of the flanking line (as represented in B, see Materials and Methods). Evaluation for neurons in n~67 stochastic network
configurations shows that the modulation index under the bisection condition is significantly larger than under the fixation condition (pv0:0004 for
paired t-test with t~3:72), as it is also observed in the experiment ([10] with pv0:0002, t~3:95, n~67).
doi:10.1371/journal.pcbi.1000617.g004

Gain Modulation in V1 and Perceptual Learning
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Largely task-independent receptive field properties.

Despite the strong task-induced response modulation for the

two-line stimuli after training (up to a factor of 3, compare

Figure 4B top and bottom), only a very minor modulation of the

receptive field of the L2/3 pyramidal neurons is observed in the

model. The receptive field was determined by the average

response to a single line stimulus presented at the different

positions, once with gain 1 (mimicking the performance of the

fixation task or the performance of the bisection task before

training), and once with a gain of 1:2 of the L2/3 pyramidal

neurons (mimicking the performance of the bisection task after

bisection training in the same hemisphere, see Figure 5A). On

average, the gain increase leads to only a slight reduction of just

4% in receptive field size. This is in line with experimental findings

on task-induced changes in the receptive field for single-line stimuli

which failed to be statistically significant [10]. This also happens in

our model if we estimate receptive field sizes based on the same

number of measurement as in the experiment (Figure 5).

The strong modulation effect for the two- and three-line stimuli

arises because these multiple line stimuli nonlinearly recruit

additional parts of the recurrent L2/3 pyramidal cell circuitry. In

contrast, the one-line stimulus used to sample the receptive field is

too weak to recruit the recurrent network.

Learning transfers to other bisection widths. Our model

is also compatible with the recent psychophysical finding [12]

showing that some performance increase is still possible under

stimulus roving, i.e. random permutation of two bisection widths

during training (Figure 6A), although the learning is impaired both

in the data and the model. The model moreover predicts that the

learning progress transfers to an untrained bisection width,

provided that the untrained width is in between the two widths

of the trained bisection stimuli.

Interestingly, the performance on the untrained interpolated

width is slightly better than the performance on the trained

neighboring widths (Figure 6A). This can be explained by the fact

that training with two bisection widths forces the readout weights

to move closer to the universal linear ramp calculated above

(Section ‘‘Network readout: a theoretical consideration’’, data not

shown) and makes the bisection discrimination more robust for the

interpolated width. Training with a single bisection width, in turn,

leads to an improved performance for this specific width, but the

transfer of learning to a non-trained width is impaired (Figure 6B).

Nevertheless, the simulations confirm the experimental observa-

tion that some learning transfer is possible when increasing or

decreasing the stimulus width by roughly 30% [11].

Discussion

We have shown that a considerable part of the improvement in

bisection learning can be explained by the adaption of an

attention-like, global top-down signal to V1. This explanation

shifts the view of perceptual learning from being stimulus driven to

being attention driven. Since our model network is initialized with

random readout connections without assuming any prior knowl-

edge about the task, the top-down mediated performance increase

is preceded by an initial phase of also adapting the readout

connections from V1 to a decision unit. The key assumption of our

model is that ‘perceptual attention’ increases the gain of sensory

neurons, in our interpretation of recurrently connected L2/3

pyramidal neurons in V1. This gain increase strengthens the

competition within the V1 circuitry and nonlinearly shapes the

stimulus representation to improve the readout by the decision

unit. The model explains the experimental observation that during

the bisection task the interaction between V1 neurons representing

Figure 5. Largely task-independent receptive field of L2/3 neurons. (A) Averaged normalized responses of one typical L2/3 model pyramidal
neuron to a single line placed at different positions for the un-modulated network (‘fixation task’, gain 1, dashed line) and with a top-down induced
gain increase of the L2/3 pyramidal neurons (‘bisection task’, gain 1:2, solid line). Grey lines show Gaussian fits (with s~7:2arcmin and 7:7arcmin for
the fixation and the bisection task, respectively). Error bars arise from the stochasticity in the top-down induced gain modulation (n~10 line
presentations at each position with fixed network configuration). (B) Histogram of the differences in the receptive field (RF) size of n~45 model
pyramidal neurons under bisection versus fixation conditions. For comparison with the experiment where the same number of neurons were
recorded from different positions and animals, we extracted the model neurons from 45 different network configurations and determined the
receptive field as in A. The difference in the receptive field size was not significant (p&0:5 in the t-test with t~{0:68), in agreement with the
experimental findings ([10], with p~0:13, t~{1:52, n~45). However, increasing the number of sample neurons may turn a non-significant into a
significant result, and for the model this is in fact the case, with RF size during the bisection task becoming significantly (in terms of the t-test) smaller
by 4% than without performing this task.
doi:10.1371/journal.pcbi.1000617.g005

Gain Modulation in V1 and Perceptual Learning

PLoS Computational Biology | www.ploscompbiol.org 6 December 2009 | Volume 5 | Issue 12 | e1000617



two parallel lines changes from mutual inhibition to a randomized

excitation-inhibition pattern, without significantly changing the

classical receptive field properties of the involved neurons [10].

Other models and explanations. Our approach of

explaining perceptual learning by adapting a top-down signal

has to be contrasted to the dominant view of perceptual learning

as an adaptation of the readout connections only, or of a long-term

modification of the sensory representation within V1 ([13], for a

review see [17]). Apart from an early model for Vernier

discrimination [18] and a recent model for brightness

discrimination [19], surprisingly little computational studies on

top-down effects in perceptual learning exist, despite abundant

experimental evidence [5,6,9,10,14]. This may be related to the

fact that, as in the present case, the phenomenology of the task-

dependent modulation of the contextual interactions is quite rich,

and at a first glance, would require elaborate top-down gating of

recurrent connections in V1 going beyond attention, as suggested

in [6,10,14]. However, as our model shows, a simple (semi-) global

attentional signal which modulates the gain of pyramidal neurons

[15,16] may produce non-multiplicative modulations of the

response functions within a recurrent V1 circuitry when sampled

by two parallel lines, or no significant modulation when sampled

by one line only (see Figures 4B and 5, respectively). Hence, a

multiplicative gain modulation underlying perceptual learning can

be masked by the distorting recurrent processing, or be overlooked

by its small effect on the classical receptive field.

Generality of the network architecture. The proposed

implementation could itself be part of a wider V1 circuitry including

neurons selective to different orientations [20,21] or motion

directions [22,23], or part of a circuitry explaining contrast

modulation [24,25] or extra-classical receptive fields [26]. While

adaptable top-down connections have been identified to project

from higher visual areas to the supragranular layers of V1 [27,28],

they have also been shown to modulate the gain of pyramidal

neurons in the sensory cortex [15,16,29]. The global inhibition

among L2/3 pyramidal neurons assumed in our model could be

mediated by a population of electrically coupled inhibitory neurons

in the supragranular layers [30]. We have shown that these

ingredients are sufficient to explain various task-dependent and

learning-induced modifications of contextual interactions in V1.

The mechanism of a top-down induced gain modulation may

represent a universal building block for cortical computation

which extends beyond the specific example of bisection discrim-

ination. Another example of perceptual learning which can make

use of the same top-down interaction is the brightness discrimi-

nation task [5]. Here, a top-down induced gain increase – together

with a top-down drive of inhibition – was shown to suppress the

distorting interaction in V1 induced by collinear flankers, and this

in turn explains the improvement in brightness discrimination

[19]. An adaptive gain modulation which enables global

competition has more generally been recognized as a versatile

computational element in higher cortical information processing

such as in spatial coordinate transforms [31], analog-digital

switches [32], or in determining the granularity of category

representations [33]. Along the visual pathway, a hierarchy of

maximum-like operations was shown to be a universal non-

linearity which enables position invariant object recognition [34].

Such maximum operations could be implemented in a task-

dependent manner through our top-down modulated micro-

circuitry which determines the position of the maximum by the

recurrent L2/3 network and reads out the value of this maximum

from the unperturbed L5 activity.

Experimental predictions. Our model is also consistent

with recent psychophysical observations on bisection learning. In

contrast to the alternative model that perceptual learning is based

on modifying intrinsic V1 connections [13], it confirms

improvements in bisection learning under stimulus roving [12],

and a weak learning transfer from a trained to a non-trained

stimulus width [11]. It moreover makes several testable predictions

both on the behavioral and the neuronal level:

(1) It further predicts a full learning transfer from two

simultaneously trained, narrow and wide bisection widths to

an untrained width lying in between the two (Figure 6A).

(2) Since the feedforward and recurrent projection widths within

V1 set an intrinsic scale for which symmetry breaking in the

stimulus representation is strongest, bisection learning is

predicted to deteriorate if the width of the bisection stimuli

extends beyond this scale, say beyond 100 (cf. [11] for such a

tendency). On the other hand, the performance of the

Figure 6. Training under stimulus roving and transfer to untrained stimulus widths. (A) Fraction of incorrect network decisions for the
combined training with two stimulus widths (5 and 9) which were randomly interleaved (‘roving’). In agreement with recent findings [12] – but unlike
previous predictions [11,13] – learning under stimulus roving is impaired, although still possible (the final fraction of incorrect responses, being 0:43
for stimulus roving, is reduced for individual training of the bisection width 5 and 9 to 0:36 and 0:38, respectively). Note that the post-training test
shows a better performance for the interpolated width 7 which was itself not trained. (B) Learning curve for bisection stimuli of width 7 (line), with
pre- and post-learning tests for the untrained stimulus widths 5 and 9. A learning transfer of roughly 50% from the trained to the two untrained
widths is predicted by the model. Error bars represent the standard error of the mean evaluated for n~100 runs.
doi:10.1371/journal.pcbi.1000617.g006
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bisection learning is predicted to be recovered if the bisection

lines get themselves proportionally wider with the stimulus

width (see Materials and Methods for more details).

(3) The emphasis on the attention induced perceptual improve-

ments predicts that perceptual learning could actually be

achieved by a task-specific attentional training alone which

would enhance the top-down induced gain increase in V1.

Recent psychophysical results in fact suggest that pure mental

imagery without presenting the full bisection stimuli can lead

to improvements when subsequently testing bisection discrim-

ination with real stimuli [35].

(4) On a neuronal level, the model finally predicts that the V1-

representation of a bisection stimulus during task performance

switches when the right bisection interval becomes wider than

the left (compare Figure 2B with 2A). This switch can be

experimentally tested by recording from a V1 neuron with a

receptive field in between the left and the middle line of the

bisection stimulus. Assume that the right subinterval is initially

smaller than the left one (but that the rightmost line

nevertheless lies outside of the neuron’s receptive field). While

recording from the neuron, the rightmost line can be moved

even further to the right, so that eventually the right

subinterval becomes larger than the left one. At this point a

nonlinear increase in the activity recorded from the neuron

will be observed according to our model. Note that the

predicted activity increase would represent a paradoxical

extra-classical receptive field effect since the neuronal

response becomes stronger when a line outside the classical

receptive field is moved even further away. Such an

experiment would provide strong evidence that perceptual

training leads to a task-induced gain increase which produces

competitive neuronal interactions within V1.

Materials and Methods

Model description
Network architecture. We consider linear arrays of N (in

our simulations N~23) pyramidal neurons in L5 and L2/3 and

an additional neuron in L2/3 representing the inhibitory

population (see Figure 1). The ith afferent projects to the ith L5

neuron, generating a 1{to{1 copy of the input hi (i~1, . . . ,N)

in L5. The afferents further project with a Gaussian fan out to L2/

3, with synaptic connection strengths

cij~
c0

s
ffiffiffiffiffiffi
2p
p e

{(i{j)2

2s2 , ð1Þ

from the jth afferent to the ith L2/3 pyramidal neuron (c0~32,

s~1:1). Since the comparison with the experimental data only

involves normalized neuronal activities, we use arbitrary units in

specifying weights and activities. Assuming that the visual stimuli

for two adjacent V1 afferents are separated by an angle of 10’ in

the visual field, the width s of the feedforward projections

corresponds to a visual angle of 12’~0:20.
The strength dik of the recurrent excitatory connection from the

kth to the ith L2/3 pyramidal neuron (i=k) is

dik~td0e{
ji{kj

l zjiksz, ð2Þ

with tzsz~ max (0, z), d0~7, recurrent projection width l~4,

and jik being a Gaussian random variable sampled from a

distribution with mean 0 and standard deviation of snoise~1:5 and

cut-off at +2snoise. The strength of the self-recurrent weights is

dii~11. Note that the decay constant l of the recurrent

connections corresponds to a visual angle of l:10’~2=30.
Dynamics of L2/3 pyramidal neurons. The firing rate fi

of a L2/3 pyramidal neuron receiving a total input current Ii

obeys the differential equation

t
dfi

dt
~{fiz(gzj)y(Ii) ð3Þ

with a time constant t~20ms. y(Ii) is the steady state transfer

function defined as

y(Ii)~
tIisz if Iiƒ3

3 if Iiw3 :

�
ð4Þ

The factor g in (3) represents the neuronal gain which is

modulated by a (not modeled) top-down signal. During the

fixation task we set g~1, during the bisection processing at a

nearby location g~1:2 (Figure 4 B, lower row, and Figure 5), and

during the direct involvement in bisection processing g~1:7
(Figure 2, 3, 6). To mimick the variability in the top-down input

strength, Gaussian noise j was added to the gain factor. For each

stimulus presentation j was drawn anew from a Gaussian

distribution with mean 0, standard deviation 0:2, and cut-off at

+0:5.

The total input current to the L2/3 pyramidal neurons is

composed of the current from the feed-forward afferents mediating

the stimulus, and the recurrent excitatory and inhibitory

connections within L2/3, respectively,

Ii~
1

N

XN

j~1

cijhjz
1

N

XN

k~1

dikfk{finh, ð5Þ

with connection strengths cij and dik given in Eqs 1 and 2. An

example of inputs and outputs of the L2/3 pyramidal neurons is

shown in Figure 2.

Dynamics of the inhibitory L2/3 neuron. The firing rate

of the inhibitory neuron appearing in Eq. 5 follows the differential

equation

tinh
dfinh

dt
~{finhzw(Iinh), ð6Þ

with a time constant tinh~5ms and a piece-wise linear steady-state

transfer function

w(I)~
a0tI{h0sz if Iƒh1

a0(h1{h0)za1(I{h1) if Iwh1 :

�
ð7Þ

The thresholds of the transfer function are set to h0~0:5 and

h1~1:4, and the gain parameters are set to a0~16 and a1~3:5.

The total input current to the inhibitory neuron in Eq. 6 consists of

the recurrent input from the L2/3 pyramidal neurons,

Iinh~
1

N

XN

i~1

fi:

Stimulation protocols and numerical methods. In the

bisection task, three afferents to V1 were stimulated corresponding
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to the left, middle and right line of the bisection stimulus

(generating in L5 the activities hl~hm~hr~1 while the others L5

activities remained 0). The width of the bisection stimuli, jl{rj,
was 7 (Figure 3), and 9 and 5 units (Figure 6), respectively. The

delimiting lines (constrained to define a certain stimulus width) and

the middle line were randomly and uniformly varied.

For Figure 3, bisection stimuli of width 7 were presented, with

middle line at one of the central 4 positions within the bisection

stimulus, and delimiting lines varying from absolute position 5 to

19 within the 23{unit input layer. For Figure 6 we used stimuli

with outer delimiting lines varying between positions 3 and 21 of

the 23{unit input layer, while the relative position of the middle

line within the bisection stimulus varied across the central 4

stimulus positions. The statistics are based on 100 learning runs

across 50 ‘weeks’. Before and after a learning run, performance

tests on the non-trained stimulus width(s) were performed

consisting of 100 stimulus presentations each. For Figure 4, B

and C, only two, and for Figure 5 only one afferent into V1 was

stimulated, i.e. clamped at activity 1 during the whole trial.

In all simulations a stimulus presentation (‘trial’) lasted for 1s,

and in this time the recurrent network was relaxed to a steady

state. Numerical integration was performed with the Runge-

Kutta-Fehlberg-(4,5)-method of the Gnu Scientific Library which

includes an automatic step-size control. Initial activities of all

neurons were set to zero.

Decision making. The readout unit in a higher cortical area

receives inputs from the V1 pyramidal neurons in L5 and L2/3. In

the bisection task, the readout unit makes a binary decision about

the position of the middle line depending on the weighted sum of

the pyramidal neuron activities which are perturbed by additive

Gaussian noise. The total postsynaptic current of the decision unit

is given by

Idec~
XN

i~1

wL5
i (hizfi)zw

L2=3
i (fizri)

� �
, ð8Þ

where wL5
i and w

L2=3
i represent the input strengths from the ith L5

and ith L2/3 pyramidal neuron to the decision unit, respectively

(see Figure 1). The hi’s represents the activity in L5 which is a copy

of the stimulus, the fi’s are given by Eq. 3, and fi, ri are

independent Gaussian random variable with mean 0 and standard

deviation 0:3 and cut-off at +0:6. The binary decision ydec~1 is

taken if Idecw0, and ydec~0 if Idecƒ0. This decision is interpreted

as the middle line being displaced to the left and right, respectively

(cf. Figure 1C). An example of calculating Idec based on the

pyramidal neuron activities and the different top-down inputs is

shown in Figure 2.

Note that our model assumes different noise sources. The noise

in the recurrent weights (Eq. 2) and in the gain factor g (Eq. 3) are

both required to endow the activity distribution and the

modulation index with a realistic degree of jitter as observed in

the data (cf. Figure 4B and C, respectively). The additive noise in

the L2/3 readout neurons makes the top-down induced gain

increase a necessary ingredient in improving the signal-to-noise

ratio by selectively enhancing fi but not ri. The fact that this noise

is multiplied by the readout weights in Eq. 8, on the other hand,

prevents an improvement of the signal-to-noise ratio by only up-

scaling the readout weights.

Perceptual learning. Perceptual learning during the

bisection task was implemented by an error-correcting plasticity

rule for the synaptic weights wL5
i and w

L2=3
i projecting from the

pyramidal neurons to the decision unit. If the network decision was

correct, no synaptic changes occurred. However, if the network

decision was incorrect, the synaptic weights were updated in a

anti-Hebbian way according to

DwL5
i ~{q(ydec{hM )(hizfi)

Dw
L2=3
i ~{q(ydec{hM )(fizri), ð9Þ

with a learning rate q~0:04 and a modification threshold

hM~0:5. To avoid introducing an additional inhibitory neuron,

we allow the weights to take on positive or negative values. An

example of the synaptic strengths wL5
i and w

L2=3
i before and after

learning is shown in Figure 3, C and D.

Modulation index. To quantify the modulation of the single

neuron response by a flanking line during the different perceptual

tasks we extracted the modulation index as in [10]. In the model, a

fixed reference line activates the central input neuron at position

c~12, and a simultaneously presented flanking line activates one

of the remaining input neurons k (with k~1, . . . ,N; k=c,

N~23). After network relaxation the response fc of the central

L2/3 pyramidal neuron is extracted (with index fixed to c~12),

and the maximal and minimal response of fc for the N{1 flanking

line positions k, maxk fc and mink fc, is determined (k as above).

The modulation index rmod is then calculated by

rmod~
max

k
fc{ min

k
fc

max
k

fcz min
k

fc

: ð10Þ

This modulation index is calculated once with a gain factor g~1,

mimicking the simultaneously performed fixation task, and once

with g~1:2, mimicking the nearby performance of the bisection

task (Figure 4C). Figure 4B shows an example of the activities fc

for different positions k of the flanking line in the case of the

fixation task (top) and the bisection task (bottom). The jitter in the

simulations arises from the stochasticity in the connections among

the L2/3 pyramidal neurons, dik (see Eq. 2).

Mathematical analysis
A one-layer perceptron is not enough. We first note that

no neuronal readout from a single 1-dimensional spatial layer

exists which assigns any triplet of positions (l,m,r) to one of two

classes, depending on whether l{2mzr§0 or l{2mzrv0.

Note, however, that according to these inequalities, the problem is

linearly separable when considering as an input space the 3-

dimensional space of position triplets – instead of the 1-

dimensional array of binary neurons. The non-existence of the

1-dimensional neuronal readout follows from a more general

theorem, originally proved by Minsky & Papert, according to

which no perceptron can translation invariantly detect local

features [36, Theorem 10.4.1].

To reproduce the argument in the current setting we consider a

perceptron defined by the weight function w(x) which classifies the

stimuli S(x) by
P

x w(x)S(x)§0 or v0, depending on whether S
belongs to class Sz or S{, respectively. To keep with the intuition

of discrete weights, the position variable x here is considered to be

an integer. Translation invariant classification of stimulus S [ Sz

implies that
P

x w(x)S(x{k)§0 for all integers k, or equivalent-

ly,
P

x wk(x)S(x)§0 for all k, where wk(x)~w(xzk). By

linearity, convex combinations of two solution functions are again

solutions, and in particular also ~wwk~(wzwk)=2 for any k.

Iteratively averaging w with the translates of the averages yields a

progressive smoothing of the original weight function which
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converges to ~ww(x)~const. But a perceptron with constant weights

can only distinguish stimuli based on their summed strength,P
x S(x). In particular, it cannot tell whether the widths of the

stimuli in a class are bounded, or whether the stimuli extend across

arbitrary long segments. Hence, if we require translation invariant

classification, the stimuli in a class cannot be characterized by a

local feature (as, e.g., it would be the case for bisection stimuli).

Condition on the nonlinear network interactions. As

shown by the theoretical consideration in the Results, introducing

a second layer in which the activities from the outer lines are fully

suppressed while the activity from the middle line is unaffected,

solves the problem. Possible weight functions defining the readout

from the first (L5) and second (L2/3) layer are wL5(x)~x and

wL2=3(x)~{3x (see Results). Denoting the activity distribution

across L2/3 by A(x), the input from this layer to the perceptron

becomes
Ð
wL2=3(x)A(x)dx~{3M1, with M1 defining the first

order moment of A, i.e. M1~
Ð
xA(x)dx (to simplify the analysis

below, x is a 1-dimensional continuous variable). Note that for a

normalized activity integral, M1 corresponds to the center of

gravity of A.

In the case that A is a delta function at x~m, we have M1~m.

Assuming that in L5 the corresponding activity distribution

consists of delta functions at positions l, m, and r, the total input

to the perceptron becomes lzmzr{3M1~l{2mzr. If the

bisection stimulus corresponds to the class l{2mzrv0, i.e.

m being on the right of the stimulus center, any activity

distribution A(x) in L2/3 for which M1wm also correctly

classifies that stimulus with even a larger margin, i.e.

lzmzr{3M1vl{2mzrv0. Similarly, for bisection stimulus

l{2mzrw0, any activity distribution with M1vm satisfies

lzmzr{3M1wl{2mzrw0. Note that these inequalities

remain true if both the activities in L2/3 and L5 are scaled by

the same factor.

A way to study how well the network can solve the bisection task

therefore consists in showing that, with m moving to the right, the

first order moment grows faster than m, i.e. LM1=Lmw1 (and vice

versa for m moving left). We show that this is in fact the case, both

through simulations and analytical considerations, provided that

the recurrent projection width, l (see Eq. 2), roughly matches half

the bisection width.

Neuronal field dynamics in V1. Since we are interested in

the steady-state activity, we assume that the global recurrent

inhibition is fast compared to the temporal dynamics of the activity

A(x,t) of the excitatory L2/3 neurons. This activity distribution is

then governed by a Wilson-Cowan type equation (cf. also [37]),

t
L
Lt

A(x,t)~{A(x,t)zgy (D � A)(x,t){w Iinh(t)ð ÞzI(x)½ � ð11Þ

Iinh(t)~

ð?
{?

A(x,t)dx ,

with y and w given by Eqs 4 and 7, respectively, and g being the

neuronal gain factor. The convolution refers to the space variable,

(D � A)(x,t)~
Ð?
{? D(x’)A(x{x’,t)dx’, and the kernel of the

recurrent weights is given by D(x)~d0e{jxj=l, with the same d0

and l as given after Eq. 2. The input to the L2/3 layer is formed

by the sum of the Gaussian projections from the 3 bisection lines,

I(x)~c0=(s
ffiffiffiffiffiffi
2p
p

) e{(x{l)2=(2s2)ze{(x{m)2=(2s2)ze{(x{r)2=(2s2)
� �

,

with the same c0 and s as in Eq. 1.

We simulated the neuronal field dynamics (11) with all the

parameter values as for the discrete simulations (but without

noise), using the slightly asymmetric bisection stimulus shown in

Figure 2B with m slightly to the right of the stimulus center (here

assumed to be at 0, see Figure 7B). According to the simulations,

the asymmetry of A(x) with respect to the bisection center was

largest if l roughly matches half the bisection width b~(r{l)=2,

while for smaller and larger projection width the distribution

becomes more symmetric (Figure 7). This is also confirmed by

evaluating the first order moment M1 for the different l’s (see

Figure 7 – for comparison we slightly adapted the gain of the

inhibitory function to ensure the same overall activity integral).

Hence, bisection learning with readout from L5 and L2/3 must be

best achievable if l&b. Note, however, that the symmetry

breaking property of the recurrent processing is still present (as

revealed by the comparison of L2/3 activity with the input in

Figure 7), even if l overall changes by a factor of more than 20
(while keeping the width of the bisection stimulus fixed).

Sensitivity analysis for the symmetry breaking. To

analytically study the sensitivity of the symmetry breaking as a

function of the recurrent projection width we consider the steady

state solution A(x) of (11) for transfer functions w and y linearized

around the region of interest. Introducing the linear operator L
which acts on functions of x, (LA)(x)~g (D � A)(x){a

Ð
A(x)dx,

we obtain for the steady state of (11):

1{Lð ÞA(x)~I(x) :

Figure 7. Steady state activity A(x) of the continuously distributed L2/3 neurons (Eq. 11, solid lines). Feedforward input I(x) (dashed
lines) and bisection stimulus with lines positions at x~{3:5, 0:5 and 3:5, are the same as in Figure 2B. The width of the recurrent projections (l)
varies for the three sub panels: (A) l~0:7, (B) l~4 and (C) l~16. Symmetry breaking is strongest if l is roughly half the bisection width (B,
corresponding to the parameter choice in the discrete simulations). For smaller and larger l (A and C), the activity to the left bisection line is not fully
suppressed and the distribution is less asymmetric (as expressed by a smaller first order moment M1 , taking on values 1:6, 2:0 and 1:7 from left to
right).
doi:10.1371/journal.pcbi.1000617.g007
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Here, a is the slope of the threshold linear inhibitory transfer

function and 1 represents the identity function. We invert this

equation using the Neumann series – a function operator version

of the summation formula for geometric series – and approximate

A(x) with the zero’th and first order term,

A(x)~ 1{Lð Þ{1
I(x)~

X?
n~0

LnI(x)

&I(x)z(LI)(x) : ð12Þ

Next we consider the steady state solution Am(x) of the full

nonlinear equation (11), with index m referring to the position of

the middle bisection line. Motivated from the above consideration

we introduce the symmetry breaking index s as the derivative of the

first order moment M1 with respect to m, when m is at the

bisection center (assumed to be at 0). Hence, in recalling its

dependency on the recurrent projection width l, we define

s(l)~
L

Lm

����
m~0

ð?
{?

xAm(x)dx :

To simplify the calculation we assume delta-like inputs to the

L2/3 network generated by the bisection stimuli,

Im(x)~d(x{l)zd(x{m)zd(x{r). Since the nonlinear inhibi-

tion always suppresses the activity slightly outside of the bisection

stimulus (cf. Figure 7), we restrict the above integral to the range of

the bisection stimulus, from l~{bb to r~bb. The parameter b
incorporates the effect of the nonlinear suppression, with maximal

suppression for b~1 in the case of strong recurrence, and weaker

suppression, say b~2, in the case of weaker recurrence. Taking

account of the nonlinearities in this way, we plug Im(x) into the

linear approximation (12) and obtain for the symmetry breaking

index

s(l)&
L

Lm

����
m~0

ðbb

{bb

x d(x{m)zg(w0 e{jx{mj=l{a)
� �

dx ð13Þ

~1z2gw0 l 1{e{
bb
l 1z

bb

l

� �� �
: ð14Þ

Note that in (13) the terms containing l and r cancel due to the

symmetry with respect to the origin, l~{r, and the integration in

the presence of the factor x. Similarly, the gain of the inhibition, a,

drops out in (14) by symmetry. The first ‘1’ in (14) is obtained from

the derivative of the integral across the delta term and describes

the motion of the line at position m to the right with unit speed.

The rest of (14) describes how the movement of the center of

gravity with m moving to the right is modulated by the lateral

interactions.

Numerical evaluation of the function (14) confirms that

symmetry breaking is strongest for l&bb (Figure 8). Further,

given a fixed ratio l=b, the symmetry breaking index increases

with the gain g and the recurrent connection strength w0 (see Eq.

14). But s also increases since the suppression parameter b
decreases towards 1 when the competition increases, for instance

through an increase of g, w0, or the gain of the global inhibition, a.

For the more general case where the delta-like input is replaced by

a smoothed version with projection width s, we obtain a similar

dependency of s on s.

A psychophysical prediction. The recurrent projection

width l sets an intrinsic scale for the representation of the

bisection stimuli. When fixing l while increasing the half bisection

width b, the symmetry breaking index s decreases according to Eq.

14. As a consequence, the L2/3 activity is less sensitive to changes

of the middle bar position at the stimulus center, and the

performance in the bisection task is predicted to decrease.

However, when increasing the width of the bisection lines, d , so

that the effective projection width, lzd, is again in the order of

the half stimulus width b, the performance is predicted to be

recovered.
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