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The seemingly stochastic transient dynamics of neocortical circuits observed in vivo have been
hypothesized to represent a signature of ongoing stochastic inference. In vitro neurons, on the other
hand, exhibit a highly deterministic response to various types of stimulation. We show that an
ensemble of deterministic leaky integrate-and-fire neurons embedded in a spiking noisy environment
can attain the correct firing statistics in order to sample from a well-defined target distribution.
We provide an analytical derivation of the activation function on the single cell level; for recurrent
networks, we examine convergence towards stationarity in computer simulations and demonstrate
sample-based Bayesian inference in a mixed graphical model. This establishes a rigorous link between
deterministic neuron models and functional stochastic dynamics on the network level.

PACS numbers: xxx-xxx

Introduction

In responding to environmental sensory stimuli, brains
have to deal with what is typically limited, noisy and
ambiguous data. Based on such imperfect information,
animals need to predict and react to changes in their
environment. The recent hypothesis that the brain han-
dles these challenges by performing Bayesian, rather than
logical inference [1–3], has been strengthened by electro-
physiological data which identified neural correlates of
the involved computations [4, 5] and theoretical work on
spiking network implementations [6–8].

In probabilistic inference, the potential values of a
quantity are described by a random variable (RV) zk
and all knowledge about dependencies between ran-
dom variables is stored in a joint probability distri-
bution p(z1, . . . , zK). The Bayesian belief about a
set of unobserved RVs {z1, . . . , zM} given an observed
set of RVs is represented by the posterior distribution
p(z1, . . . , zM | zM+1, . . . , zK). In particular, the posterior
contains information not only on the most likely conclu-
sion and potential alternatives, but also on the level of
uncertainty of the outcome.

Theoretical work [2] has argued in favor of sample-
based representations of probability distributions in the
brain. In this representation, instead of providing the
entire distribution at any point in time, only samples
z(t) ∼ p(z1, . . . , zK) are used as a proxy. When model-
ing large systems, this offers three important advantages.
First, approximate solutions can be provided at any time,
with increasingly reliable results as the calculation pro-
gresses (“anytime computing”). Secondly, in a sample-
based representation marginalization comes at no cost, as
p(zk) can be determined by simply neglecting the values
of all other RVs. Thirdly, some sampling algorithms such
as Gibbs sampling support a high degree of paralleliza-
tion. In particular, the resulting algorithmic structure is
reminiscent of neural networks [9].

FIG. 1. (A) Interpretation of spike patterns as samples of a
binary random vector z. The variable zk is active for dura-
tion τon (grey bar) after a spike of neuron k. (B) In stochastic
neuron models, internal state variables modulate the instan-
taneous firing probability (red). In contrast, deterministic
integrate-and-fire neurons elicit a spike when the membrane
potential crosses a threshold voltage (blue). The probability
of firing as a function of the respective internal variable is
represented by the grayscale in the background.

Recently, a theory has been suggested which combines
these advantages by implementing Markov chain Monte
Carlo sampling in networks of abstract model neurons
[7]. In this framework, spike patterns are interpreted as
samples of binary RVs as follows (see Fig. 1A):

z
(t)
k = 1⇔ Neuron k fired in (t− τon, t] . (1)

The duration τon of the active state following a spike is
a free parameter; in cortex, τon ≈ 10 ms is a good esti-
mate for the timescale on which a spiking neuron affects
the membrane potential of downstream cells. The neu-
ron model underlying [7] is inherently stochastic (Fig. 1B
top), with an instantaneous firing rate defined by

rk(t) = lim
∆t→0

p(spike in [t, t+ ∆t))

∆t

=

{
1
τ exp(vk) if zk = 0
0 if zk = 1 ,

(2)

where vk represents an abstract membrane potential.
In contrast to this approach, in vitro experiments have

demonstrated the largely deterministic nature of single
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neurons [10]. Similarly, microscopic models of neural cir-
cuits typically rely on deterministic dynamics of their
constituents. An often-used mechanistic model is the
leaky integrate-and-fire (LIF) neuron

Cm
duk
dt

= gl(El − uk) + I , (3)

with capacitance Cm, membrane potential uk, leak po-
tential El, leak conductance gl and input current I.
The spiking condition is deterministic as well: when uk
crosses a threshold ϑ from below, a spike is emitted and
uk is reset to % for a refractory period τref (see Fig. 1B
bottom). For conductance-based synapses, the synaptic
input current to a neuron is typically modelled as

dIsyn
k

dt
= −

Isyn
k

τsyn
+
∑
syn i

∑
spk s

wki (Erev
i − uk) δ(t− ts) , (4)

with the synaptic time constant τsyn, the synaptic weight
wki and the reversal potential of the ith synapse Erev

i .
The aim of this letter is to demonstrate how a network

of deterministic neurons in a biologically plausible spik-
ing noisy environment can quantitatively reproduce the
stochastic dynamics required for sampling from a well-
defined distribution p(z1, . . . , zK) and perform inference
given observations. We start by calculating the dynam-
ics of a single LIF neuron in a spiking noisy environ-
ment and derive its activation function by describing the
spike response as a first passage time (FPT) problem.
This establishes an equivalence to the abstract, inher-
ently stochastic units (2). On the network level, we show
how biologically realistic conductance-based synapses (4)
approximate the interaction for sampling from a well-
defined target distribution. We complement our study
with a demonstration of probabilistic inference by im-
plementing the posterior of a small graphical model for
handwritten digit recognition in a recurrent network of
LIF neurons.

Deterministic neurons in a noisy environment

The total input current Ik to a neuron can be for-
mally partitioned into recurrent synaptic input, diffuse
synaptic noise and additional external currents: Ik =
Irec
k + Inoise

k + Iext
k . While the synaptic currents Irec

k and
Inoise
k obey eqn. (4), the current Iext

k captures additional
current stimuli. We start by considering a single neuron
that receives diffuse synaptic noise Inoise

k in the form of
random spikes from its surrounding. The capacity of re-
current networks to produce such noise has been shown
in [11]. Throughout the following analysis of individual
neurons we omit the index k and set Irec = 0.

When a conductance-based LIF neuron receives
strong synaptic stimulation, it enters a so-called high-
conductance state (HCS, [12]), characterized by acceler-
ated membrane dynamics. It is therefore convenient to

rewrite (3) as

τeff
du

dt
= ueff − u , (5)

where the membrane time constant τm = Cm/gl

is replaced by a smaller effective time constant
τeff = Cm/gtot, with the total conductance gtot subsum-
ing both leakage and synaptic conductances. In a HCS,
τeff governs the decay towards an effective leak poten-
tial ueff = (glEl +

∑
i g

noise
i Erev

i + Iext)/gtot, where gnoise
i

represents the total conductance at the ith synapse. In
a high input rate regime,

√
Var(gtot)/ 〈 gtot 〉 → 0 and

the equation governing the membrane potential can be
written as

τeff
du

dt
=
Iext + glEl

〈 gtot 〉
+

∑
i g

noise
i Erev

i

〈 gtot 〉
− u , (6)

with 〈 · 〉 denoting the mean. In a first approximation,
τeff can be considered very small in the HCS, resulting in
u ≈ ueff , with the effective potential ueff simply being a
linear transformation of the synaptic noise input.

Using methods similar to [13], it can be shown that,
if stimulated by a large number of uncorrelated spike
sources, the synaptic current Inoise – and therefore, also
ueff – can be described as an Ornstein-Uhlenbeck (OU)
process:

du(t) = θ · (µ− u(t)) + Σ · dW (t) , (7)

with parameters

θ = τsyn (8)

µ =
Iext + glEl +

∑
i νiw

noise
i Erev

i τsyn

〈 gtot 〉
(9)

Σ 2 =
∑
i

νi
[
wnoise
i (Erev

i − µ)
]2
τsyn / 〈 gtot 〉 . (10)

where νi represents the input rate at the ith noise synapse
and wi its weight.

The activation function as an FPT problem

The inherently stochastic neuron model (2) leads to a
logistic activation function for constant potential v:

p(z = 1) = σ(v) := [1 + exp(−v)]
−1

. (11)

In the following, we derive the activation function of the
deterministic LIF neuron in a spiking noisy environment.
Similarly to the abstract model [7], we define the refrac-
tory state of a neuron as z = 1.

An example of membrane potential dynamics with re-
set is shown in Fig. 2A. Two modes of firing can be ob-
served: the “bursting” mode, where the effective mem-
brane potential after the refractory period is still above
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threshold, and the freely evolving mode, where the neu-
ron does not spike again immediately after the refractory
period. Denoting the relative occurrence of burst lengths
n by Pn and the average duration of the freely evolving
mode that follows an n-spike-burst by Tn, we can identify
the following relation:

p(z = 1) =

∑
n Pn · n · τon∑

n Pn · (n · τon + Tn)
. (12)

Given the parameters of the associated OU process, we
can derive a recursive expression for Pn and Tn, thereby
ultimately allowing the calculation of p(z = 1):

Pn = p(un < ϑ, un−1 ≥ ϑ, . . . , u1 ≥ ϑ|u0 = ϑ) (13)

=

(
1−

n−1∑
i=1

Pi

)∫ ∞
ϑ

dun−1p(un−1|un−1 ≥ ϑ)[∫ ϑ

−∞
dunp(un|un−1)

]
,

Tn =

∫ ∞
ϑ

dun−1p(un−1|un−1 ≥ ϑ) (14)[∫ ϑ

−∞
dunp(un|un < ϑ, un−1) 〈T (ϑ, un) 〉

]
.

Fig. 2B displays an intuitive picture of the integrals in
(13) and (14). The transfer function p(un|un−1) is the
Green’s function of the OU process for t = τref :

p(un|un−1) = C e
− θ

Σ2

[
(un−(un−1−µ) exp(−θτref )−µ)

2

1−exp(−2θτref )

]
, (15)

with the normalization C =
√
θ/πΣ 2(1− e−2θτref ).

T (ub, ua) denotes the time the membrane needs to reach
ub starting from ua. This FPT problem has been ex-
tensively discussed in literature and its moments can be
given in closed form [14].

To improve the prediction of the activation function,
we further take into account small, but finite τeff , in
which case the membrane potential no longer directly fol-
lows the input current, but is a low-pass-filtered version
thereof. By using an expansion in

√
τeff/τsyn, a first-

order correction to the FPT can be calculated [15]:

〈T (ϑ, u) 〉 = τsyn

√
π

ϑeff−µ
σ∫

u−µ
σ

dx exp(x2)[erf(x) + 1] , (16)

with the effective threshold ϑeff ≈ ϑ−ζ
(

1
2

)√
τeff

2τsyn
, where

ζ denotes the Riemann Zeta function. A comparison of
the predicted p(z = 1) with results from a numerical
simulation is shown in Fig. 2C. Here, the average effective
potential ū = 〈ueff 〉 was established through an external
current Iext. For the translation from the LIF domain to

FIG. 2. (A) Membrane potential u(t) (blue) and resulting
spike activity (black) of a LIF neuron in a spiking noisy en-
vironment. (B) Overlay of u (blue) and ueff (red). Due to
the small τeff in the HCS, the two curves are nearly identical
when the neuron is not refractory. At the end of each refrac-
tory state (corresponding to z = 1, grey), the predicted prob-
ability distribution for ueff is plotted in pink. The normalized
subthreshold area (dark pink) is used for the propagation in
(13). (C) Theoretical prediction (red) vs. simulation results
(blue); errors are smaller than the symbol size. A logistic
function σ(ū) (green) has been fitted to the prediction.

the abstract stochastic model (2) we identify

v =
ū− ū0

α
, (17)

where ū0 denotes the value of ū for which
p(z = 1) = σ(0) = 1

2 and α represents a scaling fac-
tor between the two domains. We conclude that a single
LIF neuron in a spiking noisy environment can closely
reproduce the activation function (11).

Sampling via recurrent networks of LIF neurons
with conductance-based synapses

We next connect the neurons to a recurrent network.
In addition to noise stimuli, a LIF neuron receives synap-
tic currents Irec

k from other neurons in the ensemble.
Synaptic interaction introduces correlations among the
spike response of different neurons, i.e. the random vari-
ables z1, . . . , zK are not independent. For certain con-
nectivity structures, it is possible to specify a target dis-
tribution [7, 16] for the network states z(t) that occur
under the network dynamics .

In the following, we use the emulation of Boltzmann
machines as an example case. The joint distribution
reads:

pB(z) =
1

Z
exp

(
1

2
zTWz + zTb

)
, (18)
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where W is a symmetric zero-diagonal weight ma-
trix, b is a bias vector, zTWz and zTb denote bi-
linear forms over W and 1 respectively, and Z =∑

z′ exp
(

1
2z

′TWz′ + z′Tb
)

is the partition function

that ensures correct normalization. This probabilistic
model underlies state-of-the-art machine learning algo-
rithms for image [17] and speech recognition [18]. For
the abstract neuron model (2), it had been proven [7]
that a membrane potential of the form

vk = bk +

K∑
j=1

Wkj zj (19)

leads to the desired target distribution (18) of network
states z(t) for t → ∞. This finding uses the fact
that individual neurons can sample from the condition-
als p(zk = 1 | z\k) = σ(vk), with z\k = {zj | j 6= k}, in a
Gibbs sampling inspired updating scheme.

As shown above, LIF neurons in a spiking noisy envi-
ronment closely approximate this logistic activation func-
tion if the synaptic currents Irec shift the mean mem-
brane potential ūk according to the linear interaction
(19). Using the linear transformation (17) between vk
and ūk, and estimating the impact of a pre-synaptic spike
on the post-synaptic neuron through conductance-based
synapses of weight wkj , we arrive at the following pa-
rameter translation between the abstract and the LIF
domain:

bk =(ūbk − ū0
k)/α (20)

Wkj =
1

αCm

wkj

(
Erev
kj − µ

)
1− τsyn

τeff[
τsyn

(
e−1 − 1

)
− τeff

(
e
− τsynτeff − 1

)]
, (21)

where ūbk is the mean free potential ūk in Fig. 2C that
establishes p(zk = 1 | z\k = 0) = σ(bk), and Erev

kj denotes
the reversal potential for synapse wkj . The idea behind
(21) is to match the integrals of individual postsynaptic
potentials (PSPs) on vk and ūk. We furthermore employ
short-term synaptic depression to approximate the the-
oretically optimal rectangular PSP shape also in case of
consecutive spikes (bursts).

The sampling process with networks of LIF neurons
was examined in computer simulations. Fig. 3A shows
the spike pattern of a recurrent network of K = 5 LIF
neurons that sample from a randomly generated Boltz-
mann machine. The parameters bk and Wkj were drawn
from the interval [−0.6, 0.6]. The thus defined target
distribution pB(z) is approximated by the distribution
pN (z) of network states when the spike pattern is inter-
preted as samples z(t) by convolution with a τon = 10 ms
box kernel. Fig. 3B shows the average network distri-
bution pN(z) (blue bars) after T = 10 s simulation time
alongside the target values pB(z) (red lines) calculated

FIG. 3. (A) Spike pattern of a recurrent network of LIF
neurons during sampling from a randomly generated Boltz-
mann machine. (B) Sampled distribution pN(z) of network
states (blue bars) and analytically calculated target distribu-
tion pB(z) (in red). (C) Kullback-Leibler divergence between
the sampled distribution pN and the target distribution pB as
a function of integration time T for 10 trials (thin lines). The
red dotted line shows convergence for a network of intrinsi-
cally stochastic (theoretically optimal) neurons that is guar-
anteed to converge to pB for T → ∞. (D) Kullback-Leibler
divergence DKL (pN || pB) when sampling for T = 103 s from
100 different randomly generated target distributions.

from (18). Sampled probabilities pN(z) depict the mean
over 10 independent simulation runs, errorbars reflect
stochastic variations between individual runs. The cho-
sen integration time T = 10 s displays a conservative es-
timate of the maximum duration a neuronal ensemble
experiences stable stimulus conditions in a behaving or-
ganism and can thus be expected to sample from a sta-
tionary distribution. We find that the recurrent network
of LIF neurons accurately encodes the target distribution
over several orders of magnitude, within the precision im-
posed by the sample-based representation.

Fig. 3C shows how the network distribution becomes
increasingly more reliable as more samples are consid-
ered. After few samples, the network has generated a
coarse approximation of pB(z) that could serve as an “ed-
ucated guess” in online computation tasks. For simula-
tion times T well beyond biologically relevant timescales,
systematic errors in pN (z) become apparent: The KL di-
vergence saturates on a non-zero value, while the (the-
oretically ideal) abstract model [7] further converges to-
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wards the target distribution (red dotted line). Fig. 3D
shows that the sampling quality holds for a variety of
similarly generated target distributions.

Demonstration of probabilistic inference

We conclude our investigation of sampling in recurrent
networks of LIF neurons with an example of Bayesian
inference based on incomplete observations. A fully con-
nected Boltzmann machine of K = 144 neurons, aligned
on a 12x12 grid, was trained as an associative network
[19] to store three prototypic patterns, namely hand-
written digits 0, 3 and 4. In the network, each cell is
assigned to one pixel of the image. Statistical correla-
tions between the pixels as well as their mean intensities
were encoded in the weights Wkj and biases bk of the
corresponding joint distribution p(z). This distribution
reflects “prior knowledge” imprinted in the network.

The probabilistic model is augmented by adding real-
valued input channels for each pixel. Like the network
variables zk, input channels are associated with random
variables yk ∈ R, 1 ≤ k ≤ K. The resulting graphical
model is sketched in Fig. 4A and entails the following
structure for a full probabilistic model:

p(y, z) = p(z) ·
K∏
k=1

p(yk | zk) . (22)

The full model p(y, z) connects the network variables
zk of the prior to inputs yk by means of the likelihood
p(yk | zk). We have chosen a Gaussian likelihood with
unit variance (see Fig. 4B):

p(yk | zk) = N (yk; µ = zk −
1

2
, σ2 = 1) . (23)

The task for the network is to implement the posterior
distribution that follows from Bayes’ rule: p(z |y) ∝
p(z) · p(y | z). The posterior combines two sources of
information: The likelihood p(yk | zk) tends to align the
network state with the observation, i.e. zk = 1 for yk > 0,
while the prior p(z) reconciles the observations with
knowledge on consistent activation patterns z. In this
way, the posterior p(z |y) evaluates all possible outcomes
z |y simultaneously by assigning a belief to each of them,
and thus captures the model’s (un-)certainty about dif-
ferent solutions. A short derivation shows that the poste-
rior p(z |y) is a Boltzmann machine for any input y, thus
being compatible with the sampling dynamics of spiking
networks. More specifically, we obtain the following ab-
stract membrane potential:

vk = bk + yk +
∑
j

Wkj zj . (24)

In the LIF domain, the sum bk + yk is equivalent to an
effective bias (20) and corresponds to an external cur-
rent Iext

k = Ibk + Iyk that shifts ūk appropriately. Thus,

a network neuron receives synaptic input from recurrent
connections and noise sources, as well as an external cur-
rent, i.e., Ik = Irec

k + Inoise
k + Ibk + Iyk .

In case of Iyk = 0 ∀k, the network samples from
the prior distribution p(z) = p(z |y = 0). A two-
dimensional projection of network states z(t) ∼ p(z)
is shown in Fig. 4C. The sampled distribution exhibits
three distinct peaks that correspond to the three hand-
written digits stored in the recurrent weight matrix. A
closer look at the network trajectory reveals how the
system stays in one mode for some duration, traverses
the state space and then samples from a different mode
of the distribution. These dynamics also reflect in the
marginals of the network variables under a 20 ms box

filter, z̄k(t) = 1
20 ms

∫ t
t−20 ms

z
(t′)
k dt′, shown in the color

maps.
A typical scenario of stochastic inference on incomplete

observations is shown in Fig. 4D. Four input channels,
located at the center of the grid, were picked to inject
positive currents Iyk > 0 to the network while all other
inputs remained uninformative. Positive currents Iyk en-
code positive values of the respective input pixels yk and
were chosen such that the observation appeared incom-
patible with the digit 0, and remained ambiguous with re-
spect to digits 3 and 4. Accordingly, in the posterior dis-
tribution p(z |y) the 0-mode is significantly suppressed
while uncertainty about the provided cue is expressed by
two distinct modes in the 3 and 4 directions.

Discussion

We have shown how recurrent networks of determin-
istic neurons in a spiking noisy environment can per-
form probabilistic inference through sampling from a
well-defined posterior distribution. Our approach builds
on theoretical work by Buesing et al. [7] and extends
Bayesian spiking network implementations to determin-
istic neuron models widely used in computational neu-
roscience. For the analytical derivation and the com-
puter simulations we have employed leaky integrate-and-
fire neurons with conductance-based synapses. However,
the analysis can be readily transferred to other neuron
models [20]. The essential diffusion approximation relies
on high-frequency spiking inputs that could be provided
by the surrounding network and lead to strong synaptic
conductances and fast membrane dynamics. Thereby,
our derivation identifies a potential functional role of bi-
ologically observed high-conductance states within a nor-
mative framework of brain computation.

For mathematical tractability, simplifying modeling
assumptions had to be made. The neuron model only
uses an absolute refractory time τref , which matches
the activation time constant τon, and neglects any ad-
ditional gradual recovery effects after a spike. On the
network level, we have assumed statistically indepen-
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FIG. 4. (A) Graphical model used for the probabilistic inference task. The network implements a Markov random field over
latent variables z. Observables yk are conditionally independent given the network state. (B) A mixture-of-Gaussians likelihood

model provides input to the sampling neurons. (C) Two dimensional projection of sampled states z(t) when sampling from
the prior p(z). The network preferentially spends time in modes close to the stored hand-written digits 0, 3, 4. Solid line:
network trajectory over 200 ms. Color maps: Marginals z̄k(t) averaged over 20 ms. The time arrow covers the duration of
the red trajectory and consecutive snapshots are 20 ms apart. (D) As in (C) when sampling from the posterior p(z |y) with
incomplete observations y. The provided input y is incompatible with digit 0 and ambiguous with respect to digits 3 and 4.

dent noise sources and instantaneous axonal transmis-
sion. Furthermore, post-synaptic potentials mediated
through conductance-based synapses differ from the the-
oretically optimal rectangular shape and can lead to de-
viations from the target distribution outside of the high
noise regime [21]. However, computer simulations indi-
cate that in most scenarios the above approximations are
not critical.

Beyond neuroscience, the ability to perform proba-
bilistic inference with deterministic neurons displays a
promising computing paradigm for neuromorphic hard-
ware systems. Originally designed as neuroscientific
modeling tools, these systems typically implement a
physical model of integrate-and-fire neurons [22, 23],
which renders the application of the proposed networks
straightforward. In particular, the distributed nature
of the sampling algorithm allows to exploit the inher-
ent parallelism of neuromorphic architectures, fostering
an application of neuromorphic hardware to online data
evaluation and robotics.
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