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Abstract. The classical Nicholson-Bailey model for a two species host-parasitoid 
system with discrete generations assumes random distributions of both hosts and 
parasitoids, randomly searching parasitoids, and random encounters between the in- 
dividuals of the two species. Although unstable, this model induced many investiga- 
tions into more complex host-parasitoid systems. Local linearized stability analysis 
shows that equilibria of host-parasitoid systems within the framework of a gener- 
alized Nicholson-Bailey model are generally unstable. Stability is only possible if 
host fertility does not exceed e4=54.5982 and if superparasitism is unsuccessful. 
This special situation has already been discovered by Hassell et al. (1983) in their 
study of the effects of variable sex ratios on host-parasitoid dynamics. We discuss 
global behaviour of the Hassell-Waage-May model using KAM-theory and illus- 
trate its sensitivity to small perturbations, which can give rise to radically different 
patterns of the population dynamics of interacting hosts and parasitoids. 
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Insect parasitoids (mainly Hymenoptera and Diptera) are an important group of 
terrestrial and aquatic predators and comprise some 10% of all metazoan species 
described so far (Waage and Hassell 1982). Synchronized and discrete generations 
of both host and parasitoid make it easy to formulate the dynamics of such inter- 
acting predator-prey populations in terms of simple mathematical models (Hassell 
1978). Host-parasitoid models are usually described by a pair of coupled first-order 
difference equations (Hassell and May 1973; Hassell 1978; May et al. 1981; Murray 
1989; Hassell and Anderson 1989; Hassell et al. 1991) 

Ht+l = f g t g  (Ht, Pt )  

Pt+I = cH~ {1 - g (Ht ,Pt  ) } . 
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Ht and Pt are the number of hosts and parasitoids in generation t. F is the finite 
rate of  increase of  the host, and c is the average number of  parasitoids emerging 
from each parasitized host. g is a nonlinear function describing the fraction of  hosts 
escaping parasitism. Assuming randomly searching parasitoids, random distributions 
of  both hosts and parasitoids, and random encounters between the two, this general 
model reduces to the classical Nicholson-Bailey-model (Nicholson and Bailey 1935; 
I-Iassell and May 1973; Hassell 1978; May et al. 1981; Murray 1989; Hassell and 
Anderson 1989; and Hassell et al. 1991) 

Ht+l : FHt e-aPt 

Pt+l = Ht(1 - e-aPt). 

In the absence of parasitoids the host population grows exponentially with a constant 
finite rate of  increase F.e -aPt (the zero term of a Poisson distribution) is the fraction 
of the hosts escaping parasitism, whereas the fraction of  hosts parasitized exactly 
k times can be written as [(aPt)k/k!]e-aPt(k = 1,2 . . . .  ). Only unparasitized hosts 
develop to adults of the next generation, and setting c = l  exactly one parasitoid of 
the next generation emerges from each host parasitized independently of  the number 
of parasitization events, a can be interpreted as area of discovery (Nicholson and 
Bailey 1935; Hassell and May 1973), or else as per capita searching efficiency 
(Hassell et al. 1983; Hassell and Anderson 1989). 

Linearized local stability analysis shows that the equilibrium point 

( H , , P , )  = \ a ( F -  1)' 

of  this model is unstable (Hassell and May 1973; Hassell 1978; Murray 1989). The 
slightest perturbation away from equilibrium results in diverging oscillations of the 
population sizes of both host and parasitoid. In real systems this would eventu- 
ally lead to the extinction of the parasitoid or both parasitoid and host populations. 
A number of  stabilising factors such as spatial heterogeneity, non-random search, 
density dependent growth of the host, functional responses of the parasitoid, and 
mutual interference among searching parasitoids were put forward in order to sta- 
bilise coexistence in single host-single parasitoid systems (Hassell and May 1973; 
Beddington et al. 1975, 1978; Hassell 1978; May et al. 1981; Hassell and Anderson 
1989; Hassell and Pacala 1990; Hassell et al. 1991). 

Starting with the assumptions of  the Nicholson-Bailey-model we now assume that 
k parasitization events (with a single egg being laid each time) on a single host on 
average result in the emergence of  ak parasitoids of  the next generation (0 < c~k <k, 
Nicholson-Bailey: ak = 1 for k = 1, 2, 3,...). Using the auxiliary function 

oo (aPt)k 

k=l 

our generalized model is given by 

Ht+l = FHt e-apt 

Pt+l = Ht~b(Pt )e -~ t .  

Setting Ht = Ht+l and Pt = Pt+l we find its equilibrium at 
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(log: natural logarithm). Stability at equilibrium is impossible whenever 
ek+0 for one or several k > 2  because the Jacobian determinant ~(ttt+l,Pt+l)/ 
O(Ht,Pt) exceeds 1 at (H. ,P . ) .  

In the phase plane of H and P the trajectory will evolve counterclockwise around 
the equilibrium, and thus our generalisation has the same dynamic properties as the 
classical Nicholson-Bailey-model. Such host-parasitoid systems are thus generally 
unstable and prone to extinction if there are no other stabilising mechanisms, and 
the only possibly stable solution is given by ~b(P)= cqaP(0<el  <1).  We deliber- 
ately choose el = 1, i.e. we assume that all single parasitization events will lead to 
the emergence of exactly one parasitoid. This is of no importance to the dynamic 
properties of the host-parasitoid system considered, and only rescales the H-axis. 
This particular model was already suggested by Hassell, Waage and May (HWM) in 
a study of the effects of variable sex ratios on host-parasitoid dynamics (Hassell et al. 
1983). The HWM-model ((11)-(14) of Hassell et al. 1983) assumes that superpar- 
asitism will lead to the emergence of exclusively male parasitoids, whereas female 
parasitoids (whose dynamics is described with the difference equation) will emerge 
from hosts parasitized only once. The equilibrium of the HWM-model (Hassell 
et al. 1983) is now given by 

If  we measure host and parasitoid population sizes in terms of multiples of the 
equilibrium values, and transforming into a log scale (more formally x = log (all/F), 
and y = log(aP/IogF)) we arrive at an equivalent system in x- and y-coordinates 
of the following form 

Xt+l -~- Xt + logF (1 - e yt ) 

Yt+l = xt + yt + logF (1 - eYt). 

The equilibrium point (fixed point) is transformed into the origin. This coordinate 
transformation has the crucial property that our system becomes area-preserving, i.e. 

O(xt+l, yt+l ) 
- -  1 ,  

e(x,, y, ) 

Local stability analysis of this transformed system at the origin shows that the fixed 
point is elliptic for 0 < logF < 4, and otherwise still unstable. If  0 < logF < 4 
we can therefore apply KAM theory (KAM: Kolmogoroff-Arnold-Moser) (Siegel 
and Moser 1971). 

For 0 < logF < 4, logF +2 and logF =~ 3 extensive calculations (see Mathe- 
matical appendix) prove that we are close to a twist mapping. For log F = 2  
and log F=3,  which are unique values in calculating the Birkhoff normal form, 
resonance occurs and we cannot verify the conditions necessary to apply KAM the- 
ory. Numerical results, however, suggest instability. For all other possible values of 
log F the dynamics of the system is strongly dependent on its initial conditions, 
and shows periodicities of different orders, quasi periodical solutions and chaos, as 
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Fig. 1. Phase diagram of the Hassell-Waage-May-model (HWM-model) (xt, y~) with xt+a = xt + 
log F(1 -eYt),  and yt+l = xt + Yt + logF(1 -eYt),  t = 1, 2 ..... 1000, for 5 different initial values 
(xo, Yo) with log F = I .  a) (xo, y0 = (0, 0.1): close to equilibrium almost 6-periodicity; b) (xo, y0 = 
(0, 0.3): host and parasitoid populations remain on an invariant curve; c) (xo, yo)= (0, 0.6): 
(probably) higher periodicity; d) (x0,y0)= (0, 0.75): (probably) condensation in another curve; 
e) (x0, y0)=(0, 0.9): transition to instability and chaos 

described by the theorems of KAM theory (Siegel and Moser 1971, §34). Examples 
for log F--1 are shown in Fig. 1. 

As shown in Fig. 2 our transformed system is very sensitive even to small pertur- 
bations. The particular perturbation was chosen based on its mathematical simplicity, 
and its small size at the origin. The fixed point immediately becomes unstable, and 
bifurcates as predicted by the Hopf theorem (Marsden and McCracken 1976). Be- 
cause of the term of third degree the trajectories are attracted by a limit cycle around 
the origin. Different small perturbations and/or other values for log F can produce 
amazingly different trajectories in the phase plane. Thus even small changes in the 
initial conditions or small perturbations (induced either by environmental changes or 
through evolutionary processes) of the Hassell-Waage-May host-parasitoid system 
with randomly distributed host and parasitoid individuals and randomly searching 
parasitoids can give rise to radically different patterns in the population dynamics 
of both host and parasitoid. 

In nature successful superparasitism is a well known phenomenon (Van Alphen 
and Visser 1990; Van der Hoeven and Hemerik 1990; Speirs et al. 1991). Within 
the framework of our model, however, successful superparasitism destabilises host- 
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Fig.2. Phase diagram of the HWM-model (xt, Yt) with xt+l = xt + logF(1 - e  yt ) and Yt+l = xt + 
Yt + logF(1 - eYt)~+ A with a small perturbation A=0.01 Yt - 0.05(yt) 3 at the origin. Starting 
with initial values (x0, y0) = (0, 0.05) and (xo, y o ) =  (0, 1) close respectively far from equilibrium 
(xt, yt) is plotted for t=l,  2, .,.,5000. The system is attracted by a limit cycle around the origin, 
the fixed point being unstable 

parasitoid systems, and can be considered as a perturbation. Other stabilising coun- 
teracting forces are therefore absolutely necessary, and it is worthwhile to investigate 
patterns as shown in Fig. 2 under the perspective o f  the Hopf-Bifurcation (Marsden 
and McCracken 1976; Hassell and May 1989). 

Mathematical appendix 

We calculate the Birkhoff normal form of  

xt+l = xt + f ( 1  - e yt) 

Yt+l  : Xt q- Yt  + f (1 - -  e yt ) (A.1) 

in order to apply the KAM-theorem to the HWM-model,  setting f = log F,  We 
verify that the Jacobian determinant equals one 

~ 3 ( X t + l , y t + l ) _ D e t (  1 - f e  yt ) 
~3(Xt, Y t )  1 1 -- f e  y' = 1. 
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Thus (A. 1 ) describes an area-preserving map of the x-y-plane onto itself. (A. 1) can 
be written as a real power series and takes the form 

x t + , = x t _ f y t _ f ( y 2 + y 3  ) 
\2 !  ~ . +  "'" 

Y,+I = xt + (1 - f )yt - f ---(y; + y3 ) \ 2 !  ~ + . . . .  (A.2) 

The eigenvalues of the linear part of (A.2) are given by 

2 =  1 -  + ~ v / f ( 4 - f ) ,  2 =  1 -  - ~ v / f ( 4 - f ) .  (A.2.a) 

These eigenvalues reveal that the fixed point (equilibrium point) is parabolic for 
f = 0, f = 4, hyperbolic and therefore unstable for f < 0, f > 4 and elliptic for 
0 < f < 4. We are interested in the elliptic case where local analysis gives no 
information on stability, and we thus restrict calculations to 0 < f < 4. 

The reduction of (A.2) into the Birkhoff normal form is done by the following 
three consecutive coordinate transformations. Calculations are based on Siegel and 
Moser (1971, §23). We refer to the formulae in Siegel and Moser by using the 
subscript (...)SM. 

1) The linear transformation mapping the unit vectors (1, 0), (0, 1) into the 
eigenvectors (1 - 2, 1 ), (I - 2, 1 ) yields 

xt+l = 2xt + c ((xt 
yt) 2 + 

2t 

Yt+l = 2Yt -~- a ( (Xt 
+ yt) 2 
2! \ 

with 

"4- (xt+Yt)3 ) 
3! +""  

+ (xt+Yt)3 ) 
3~ +""  

(A.3) 

, t f  
c 2 - 2 (a.3a) 

and ~ the complex conjugate of c. For simplicity we used the same symbols for 
the transformed coordinates again. The linear terms of (A.3) which corresponds to 
(7)SM are already in normal form. 

2) To transform the terms up to third degree into normal form we substitute 

x = + + 

y = r /+ g'2(~, r/) + ~3({, r/) (A.4) 

with polynomials 

k 
- 

l=0 

k 

Ok( ,,O = 

I=0 



Strange limits of stability in host-parasitoid systems 569 

and coefficients a~ 

C C a2 ¢ 
a~--  2 2 ( 2 - 1 ) ' a ~ =  1 - 2 '  2 =  22(i  3 _ 1 ) ,  

c 

- : -  1 )  

c (?t2 + 2Rea2-t-a2 + 2 ) ,  
a3 -  (22 - 1)  

a~ -- 2(i4--- 1) 

In order to avoid i3=1, i4=1 in the elliptic case 0 < f < 4 we have to exclude 
two additional values f = 2 and f = 3. 

The nonlinear substitution (A.4) transforms (A.3) into normal form up to the 
third degree 

2 
¢t+l : 2~t -~- Ct'2~tet "}- 04  

et+l -~ l e t  --~ a2¢tet 2 "4- O4 (A.5)  

with 

e 2 = 2  2 T - S - ~ + 4 R e T z - ~ - 2 + 2 2 - - - - - ~ + l -  4 f  3 I + i v / f ( 4 - f )  

04 denotes terms in it, and et of order > 4. The second equality is obtained through 
elementary but longer calculations by substituting (A.2a) and (A.3a) for c and 2 
and their complex conjugates, respectively. 

To check the transformation of (A.3) into (A.5) we first substitute (A.4) in (A.3), 
and then replace ~t+l and et+l by expression (A.5). (A.3) then shows an equality 
of two power series in it and et up to order 3 with indeed the same coefficients. On 
the other hand applying (13)SM-(18)SM, we can use this comparison to determine 
the coefficients a~(k = 2, 3, 0 < l < k ) and ~2 recursively. 

3) Finally we express (A.5) entirely in terms of real variables r and s by 
substituting 

~ = r + is, e = r - is. 

Separating the real and imaginary parts we get a series, which by comparison of 
coefficients can be identified up to order 3 with 

rt+l = rtcos(70 + 71(r 2 + s2)) - stsin(70 + 71(rt 2 + s~)) + 04 

st+l = rtsin(7o + 71(r 2 + s2)) + stcos(,vo + 71(r 2 + s2)) + 04 (A.6) 

where 

cosy0 = Re)~ = 1 f 
2 

Reck2 l f - 2 /  f 
71=  Im)~ = - 2 f  3 V 4 - f "  

(A.7) 
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Remember the restrictions 0 < f < 4 , f 4 = 2 , f + 3 .  (A.6) thus corresponds to 
(46)SM, and represents the Birkhoff normal form of  (A.1). Under the hypothesis 
h :~0 and Yl :~ + e~ we can apply the KAM stability theorem to this system (Siegel 
and Moser, §32). 

Interpretation 

As outlined above our original HWM-model is transformed into (A.5) with new 
coordinates rt, st with the restrictions 0 < f < 4, f ~: 2, f :~ 3. The coordinates rt, st 
have no biological meaning. However, by backtransformation they are equivalent to 
Ht, Pt and xt, Yt, respectively. 

If  f < 0 (F  < 1) the system will go extinct because the finite rate of  increase 
of  the host is too small. Furthermore, as stated in the main text, for large finite 
rates of increase i.e. f > 4  ( F > e 4 =  54.598) the fixed point is no longer stable. 
The slightest perturbation from it leads to increasing fluctuations. We hence restrict 
to 0 < f < 4, and discuss three successive approximations. 

1) Very close to equilibrium (A.5) can be approximated by 

rt+l = rtcosT0 - stsinT0 

St+l = rtsinT0 + stcos~0 (A.8) 

considering only linear terms in rt,st. This describes a rotation by an angle 70, 
cos 70 = 1 - f / 2 ,  with the origin as centre. 

2) Neglecting 04 we find our system close to 

rt+l = rtCOS(~O ~- 71(r  2 ---[-st2)) -- stsinO, o + 71(rt 2 + .st2)) 

st+l = rtsin(70 + ~l(rt 2 q- st2)) q- stcos(~o q- ~ l ( r  2 -k- s2)) (A.9)  

which still can be interpreted in geometrical terms. A given system (rt,st) will 

remain forever on a circle with radius v/r2+l + st2+1 = v ~ t  2 + st 2, but the rotation 

angle now depends on the radius. We refer to these circles as invariant circles 
under (A.8). Obviously we find many different periodicities or quasi periodicities 
depending on the radius. 

3) At last we now include the perturbation terms 04. As stated earlier the Jaco- 
bian determinant of  (A.1) equals 1, and according to Siegel and Moser (1971) all 
transformations that bring (A.1) into the form (A.5) preserve this property. How- 
ever, this does not guarantee that the iterated states will remain within a bounded 
distance from the fixed point (origin). Applying KAM-theory it follows that if a 
system is close enough to a twist mapping (A.6) with rotation angle varying with 
the radius (i.e. h 4:0), then still infinitely many of the invariant circles of (A.8) 
survive the perturbation (according to Siegel and Moser 1971, p. 245, the rota- 
tion angles ~0 + Vl( r2 + s2) of  these circles are only badly approximable by rational 
numbers). Our system is close to a type (A.9) system except for f 4:2, f 4: 3, where 
calculating the Birkhoff normal form is impossible and we get no information. Ac- 
cording to KAM-theory there exist states close enough to the fixed point, which 
are enclosed by an invariant curve. By continuity arguments the interior of such a 
closed invariant curve will then map onto itselfi The same is true for a state within 
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an annulus enclosed between two such curves. Therefore, i f  a host-parasi te  system 
has its initial state 

a) on such an invariant curve 
b)  on such an annulus 

it will  remain there forever. Too far from the origin, when the perturbations become 
too large, the invariant curves decay and the host -paras i to id  system may  fluctuate 
in a chaotic way. 

A given initial state within an annulus as described can produce many other 
strange patterns: 

• after several generations it can return to the starting point, thus showing pe- 
riodical behaviour; 

• it can be non-periodic and not lie on an invariant circle but come arbitrarily 
close to every point o f  the annulus; 

• it can iterate the described patterns ad infinitum thus producing sets o f  annnli, 
closed curves and chaos around periodical  points of  successively higher periodicity.  
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