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Mitochondrial, metabolic and bioenergetic adaptations drive
plasticity of colorectal cancer cells and shape their
chemosensitivity
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The extent of mitochondrial heterogeneity and the presence of mitochondrial archetypes in cancer remain unknown. Mitochondria
play a central role in the metabolic reprogramming that occurs in cancer cells. This process adjusts the activity of metabolic
pathways to support growth, proliferation, and survival of cancer cells. Using a panel of colorectal cancer (CRC) cell lines, we
revealed extensive differences in their mitochondrial composition, suggesting functional specialisation of these organelles. We
differentiated bioenergetic and mitochondrial phenotypes, which point to different strategies used by CRC cells to maintain their
sustainability. Moreover, the efficacy of various treatments targeting metabolic pathways was dependent on the respiration and
glycolysis levels of cancer cells. Furthermore, we identified metabolites associated with both bioenergetic profiles and cell
responses to treatments. The levels of these molecules can be used to predict the therapeutic efficacy of anti-cancer drugs and
identify metabolic vulnerabilities of CRC. Our study indicates that the efficacy of CRC therapies is closely linked to mitochondrial
status and cellular bioenergetics.
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INTRODUCTION
Environmental factors such as nutrient availability, oxygen
levels, the degree of inflammation, growth factors and
cytokines, as well as the composition of the extracellular matrix,
exhibit profound effects on cancer cells [1–3]. These environ-
mental conditions apply selective pressure on tumour cells
resulting in the propagation of those cell clones that are best
adapted to the unique environment. Such clones may possess
specialised types of mitochondria that are instrumental in
providing metabolic plasticity and unique adaptations to the
existing environmental conditions [4]. Ultimately, these advan-
tageous mitochondrial adaptations support rapid cell growth
and proliferation [5–9].
Metabolic reprogramming of cancer cells is tightly linked to

mitochondria, owing to the fact that the tricarboxylic acid cycle
(TCA cycle) and adjacent pathways are heavily integrated into
cellular metabolism [10]. Moreover, mitochondria are not static
organelles, rather they can change their morphology, number,
and function depending on environmental conditions, such as
nutrient deprivation or hypoxia [11–13]. The mitochondrial
protein composition can also vary noticeably, indicating a high
potential for functional specialization [14–16]. Besides cellular

bioenergetics, mitochondria also play a role in other processes
crucial for cell maintenance, including redox balance, calcium
signalling, lipid and nucleotide synthesis, as well as epigenetic
modifications. Alterations and intensifications of these processes
are common in cancer cells [12, 17, 18]. Mitochondria-mediated
reactive oxygen species (ROS) production is a significant
contributor to genetic instability in cancer cells, facilitating the
rapid evolution of cancer cell clones. Elevated ROS levels
increase the need for ROS scavenging activity, thus presenting
a potential vulnerability in cancer cells [19]. Because of these
multifaceted roles, targeting the mitochondria and mitochon-
drial metabolism is considered a promising strategy for cancer
therapy [20–22].
Given that metabolism is inherently linked to mitochondria,

metabolic alterations could be associated with particular mito-
chondrial subtypes. Therefore, understanding the overall level of
mitochondrial structural and functional heterogeneity in various
cancer cells is essential. Currently, it remains unknown whether
mitochondrial archetypes exist in cancer.
Appropriate mitochondrial function is highly sensitive to

numerous perturbations, including variations in mitochondrial
protein ratios, mutations in mitochondrial DNA (mtDNA), issues
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with mtDNA maintenance, mitophagy, and pharmacological
effects. For example, incorrect protein ratios can disrupt the
assembly of electron transport chain (ETC) complexes, leading
to mitochondrial dysfunction [23, 24]. Similarly, mutations in
mtDNA can impair the function of the ETC proteins, affecting
the entire mitochondrial structure [24, 25]. Notably, many of
these changes are not detectable at the transcriptomic level,
occurring instead post-translationally or during mitochondrial
import and assembly, which limits the effectiveness of
transcriptomic studies in assessing mitochondrial function,
particularly in cancer contexts.
There has been a historic misconception that hypoxia almost

entirely diminishes oxidative respiration (OXPHOS) levels, leading
to a substantial underestimation of the role of mitochondria in
cancer. In fact, many cancer cells are still able to obtain a
significant portion of their energy through OXPHOS under hypoxia
[26–28]. Moreover, recent studies indicate that some cancer cells
even rely on OXPHOS for energy production [29–31].
In this study, we aimed to assess the level of mitochondrial

heterogeneity and its interaction with bioenergetics, metabolism
and drug response in cancer. We focused on colorectal cancer
(CRC), anticipating that the high molecular heterogeneity
inherent to these cells would yield a diverse range of
mitochondrial, bioenergetic and metabolic phenotypes charac-
terizing different CRC subgroups [32–35]. Following the dissec-
tion of key mitochondrial features that distinguish CRC cells, we
analysed their bioenergetic and metabolic profiles, subsequently
classifying them into glycolytic or OXPHOS-predominant sub-
groups. Based on this divergence, we hypothesized that the
effectiveness of therapies targeting metabolic pathways would
depend on the mitochondrial state and the bioenergetic
phenotype of CRC cells. We pharmacologically inhibited various
metabolic pathways and analysed the anti-cancer effects of the
utilized compounds. By exploring the link between CRC cell
bioenergetics and metabolic profiles, we identified key meta-
bolites that not only correlated with either mitochondrial
respiration or glycolysis dependency, but also with drug
responses. The presence of these metabolites in particular
cancer cells points towards possible metabolic vulnerabilities
that can be exploited therapeutically. Furthermore, the levels of
these metabolites can serve as biomarkers for predicting the
efficacy of anti-cancer treatments.

MATERIALS & METHODS
Cell culture
CRC cell lines SW480, SW1417, LS123, SW403, SW620, SW48,
COLO-320 and HCT-15 were cultured in DMEM medium
(Thermo Fisher Scientific, Waltham, Massachusetts, United
States; Cat. # 31966047) containing 100 U/ml of penicillin/
streptomycin and 10% FBS at 37 °C in an incubator supplied
with 5% of CO2. Cells were split every 3-4 days using trypsin-
EDTA solution (Thermo Fisher Scientific, Cat. # 25200072). All
experiments were conducted simultaneously across all cell
lines to ensure consistency and relevance. Regular mycoplasma
testing was performed, and only low-passage cells were used
to maintain experimental integrity. Biological replicates asses-
sing fundamental characteristics such as proliferation rate,
mitochondrial biomass, and MMP were performed within a
4–6 week period using the same cell batches. The tight
consistency of results across different replicates suggests that
these parameters are relatively stable, indicating that cells
neither lose nor accumulate mitochondria significantly over
several weeks.

Analysis of proliferation rate
CRC cells were stained with 3 μM of the CFSE-like dye CellTrace
Violet (Thermo Fisher Scientific, Cat. # C34557) in DPBS solution

containing 0.1% FBS for 10 min. Subsequently, stained cells
were washed twice with DPBS containing 10% FBS and seeded
in standard growth media. The next day the reference control
cells were trypsinised, washed, and analysed using a BD
FACSLyric™ flow cytometer (BD Biosciences, Franklin Lakes,
New Jersey, United States). The purpose of this procedure was
to measure the basal level of fluorescence quantified as the
geometric mean intensity at the initial time point of the
experiment (D1). The remaining cells were kept as controls or
treated with various compounds and then cultured for 72 h.
Subsequently, cells were trypsinised, washed, and analysed by
flow cytometry. The cellular proliferation rate was determined
by calculating the ratio of the fluorescence signal from the
initial reference control sample at D1 to the signal obtained at
the end of the experiment (D4). Proliferative output was
calculated by multiplying the cell proliferation rate by cell
volume.

Expression analysis of mtDNA and nuclear-encoded
mitochondrial genes
The files containing transcriptomic data of untreated CRC cells
were obtained from DepMap Portal https://depmap.org/portal/
download/all. For analysis, we utilised CCLE_RNAseq_20180929
datasets. The lists of mitochondrial proteins were compiled using
Mito Carta 3.0 and MitoProteome (1/18/2022) databases. Subse-
quently, expression values of 1663 nuclear genes encoding
mitochondrial proteins with confirmed mitochondrial localisation
and 37 mtDNA-encoded genes were extracted. The expression
values were mean normalized, and the median expression level
for each cell line was calculated.

Quantification of mtDNA copy number
mtDNA copy number was quantified and normalized against
nuclear DNA copy number using two sets of primers to ensure
coherence of the results. Initially, cellular DNA (both nuclear and
mitochondrial) was extracted using proteinase K treatment,
isopropanol DNA precipitation and ethanol purification. Subse-
quently, 50 ng of DNA was amplified using qPCR and two sets of
primers, either ATP8/B2M: ATP8 (mtDNA) forward 5′-AATATTAAA-
CACAAACTACCACCTACC-3′ and reverse 5′-TGGTTCTCAGGGTTTGT-
TATA-3′; B2M (gDNA) forward 5′-TGCTGTCTCCATGTTTGATGTATCT-
3′ and reverse 5′-TCTCTGCTCCCCACCTCTAAGT-3′; or tRNALeu/
LDL: tRNALeu (mtDNA) forward 5′-CACCCAAGAACAGGGTTTGT-3′
and reverse 5′-TGGCCATGGGTATGTTGTTA-3′; LDL (gDNA) forward
5′-CGAGTCGTCTTTCTCCTGATGAT-3′ and reverse 5′-TTCTGGATTC-
CAATGCTTCGA-3′. mtDNA copy number was calculated using the
2ΔCt formula, where ΔCt= gDNA Ct – mtDNA Ct.

Measurement of mitochondrial membrane potential,
quantification of cells with depolarized mitochondria and
evaluation of mitochondrial ROS levels
CRC cells were trypsinized and resuspended in complete media
containing 3 μM of JC-1 dye. Cells were incubated for 30 min at
37 °C and 5% CO2. Afterwards, cells were acquired with a BD
FACSLyric™ flow cytometer (BD Biosciences). The red/green
ratio characterising the level of MMP was calculated by dividing
the geometric mean fluorescence intensity detected by the PE
channel (red) by the geometric mean fluorescence intensity
detected by the FITC channel (green). Additionally, cells were
stratified by their ability to form J-aggregates characterising the
presence of mitochondria with a high MMP. The signal from
J-aggregates was detected in the PE (red) channel. Cells with a
low signal in this channel were identified as cells with low
MMP, which were primarily characterised by depolarized
mitochondria.
For mitochondrial ROS evaluation, CRC cells were resus-

pended in serum-free media containing 0.1% BSA and 5 μM of
MitoSox Red dye (Thermo Fisher Scientific, Cat. # M36008).
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Cells were incubated for 30 min at 37 °C and 5% CO2.
Afterwards, cells were acquired with a BD FACSLyric™ flow
cytometer (BD Biosciences).

Western blotting
Protein samples were prepared by lysing CRC cells in RIPA buffer
with a protease inhibitor cocktail (Sigma-Aldrich, St. Louis,
Missouri, United States; Cat. # P8340) and 1 mM PMSF. 30 μg of
extracted proteins were denatured with 100 mM dithiothreitol
and LDS Sample Buffer (Abcam, Cambridge, United Kingdom;
Cat. # ab119196). Samples were subjected to electrophoretic
separation followed by protein transfer onto PVDF membrane
(Merck Millipore, St. Louis, Missouri, United States; Cat. #
IPVH00010). Membranes were blocked in 5% non-fat milk in
TBST for 1 h and incubated with primary antibodies (Total
OXPHOS Human WB Antibody Cocktail, Abcam, Cat. # ab110411;
TOMM20, Abcam, Cat. # ab186735; beta-actin, GenScript, Piscat-
away, New Jersey, United States; Cat. # A00730) at 4 °C overnight.
Subsequently, the membranes were washed with TBST and
incubated with the corresponding HRP-conjugated secondary
antibody (GE Healthcare, Chicago, Illinois, United States). The
proteins were detected by the induction of chemiluminescence
using the Clarity Western ECL Substrate (Bio-Rad, Hercules,
California, United States; Cat. # 1705061) by the ChemiDoc XRS+
system (Bio-Rad).

Isolation of mitochondria and mass spectrometry
Mitochondrial samples originating from three independent
biological replicates were isolated from corresponding CRC cell
lines using Mitochondria Isolation Kit for Cultured Cells (Abcam,
Cat. # ab110170) and kept frozen at −80 °C until further
analysis. Prior to the analysis, mitochondrial samples were
treated with benzonase and SDS, then lysed via sonication and
centrifuged to extract the supernatant. Proteins were pre-
cipitated using the chloroform-methanol method, denatured in
a urea-thiourea buffer, and protein concentrations were
measured by the Bradford assay. Disulfide bonds in the
proteins were reduced and alkylated before being digested
with trypsin/Lys-C. The digested peptides were desalted, dried,
and prepared for LC-MS/MS analysis. In the LC-MS analysis,
peptides were separated on a capillary column and eluted over
60-min using 0.1% formic acid in an acetonitrile mobile phase.
The analysis was conducted on a high-resolution quadrupole-
orbitrap tandem mass-spectrometer Exploris 480 (Thermo
Fisher Scientific). The electrospray ion source was set at 2200
volts, scanning ions from m/z 200 to 1500. Precursors were
fragmented using fixed collision energy, and the resulting
peptides were detected and analysed.

Analysis of proteomics data
For the analysis of proteomics data, MaxQuant software version
2.4.2.0 was used. The analysis included carbamidomethyl as a
constant modification and both deamidation and oxidation as
variable modifications. Peptide parameters were set to lengths
of 8–25 amino acids with a maximum mass of 4600 Da. Initially,
we detected peptides corresponding to approximately 800
different mitochondrial proteins, however after the calculation
of LFQ values and EigenMS normalization only 453 proteins
passed quality control thresholds. The lists of mitochondrial
proteins were compiled using Mito Carta 3.0 and MitoProteome
(1/18/2022) databases. Differentially expressed proteins (DEPs)
were identified by Limma using 0.1 as FDR and 2 as fold-change
cut-offs. The DEPs obtained from all comparisons were then
used for enrichment analysis using IDEP 2.0 tool and various
enrichment libraries such as GO Biological Process, GO
Molecular Function, GO Cellular Component, KEGG, Reactome,
WikiPathways, Hallmark MSigDB, Disease Alliance, curated RGD,
Elsevier, and GeneSetDB. For each enrichment term in every

comparison, we extracted the fold enrichment values and
calculated their sums relative to the other cell lines. This
approach enabled us to derive fold enrichment scores for each
cell line, indicating whether the proteins within each enrichment
term were predominantly upregulated, downregulated, or
unchanged compared to the other seven cell lines. Subse-
quently, we performed a Z-transformation of the obtained
values to standardize them for further analysis. To address the
redundancy among the 2248 enrichment terms sourced from 11
different libraries, we grouped similar terms. These terms, often
named similarly, reflect the same processes, but do not contain
exactly the same sets of genes. Therefore, the results of
enrichment analysis were highly depended on the usage of a
particular enrichment library. In order to address this bias, we
created “consensus enrichment scores”, which represent the
average of Z-scores belonging to similar terms. This approach
clarifies whether an enrichment term is upregulated/down-
regulated in multiple different enrichment libraries and there-
fore excludes the database-dependent bias. As alternative to
pairwise DEPs-based enrichment analysis, we also utilized
PGSEA-based enrichments analysis on all proteins using IDEP
0.96 and the built-in PGSEA tool.

Measurement of mitochondrial biomass
CRC cells were trypsinised, washed, and resuspended in complete
media containing either 200 nM of MitoTracker™ Green FM
(Thermo Fisher Scientific, Cat. # M7514) or 100 nM of MitoTracker™
Deep Red FM (Thermo Fisher Scientific, Cat. # M22426) for 30 min
at 37 °C and then acquired with a BD FACSLyric™ flow cytometer
(BD Biosciences).

Analysis of cellular bioenergetic profiles using Seahorse XFe96
To minimize the interference of external factors, the metabolic
profiles of all cell lines were measured simultaneously. The
number of seeded cells in the XFe96 cell culture microplate
varied in the range of 1.5 × 104–1 × 105 owing to their
difference in size. The final results were normalized using the
initial seeding coefficients. In order to avoid additional
variability induced by an uneven proliferation rate of examined
cell lines, the cells were seeded on poly-L-lysine coated plates
allowing for rapid adhesion and immediate execution of the
assay. The assay was executed in XF DMEM Medium pH 7.4
media (Agilent, Santa Clara, California, United States; Cat. #
103575-100) containing 10 mM glucose (Agilent, Cat. # 103577-
100), 2 mM L-glutamine (Agilent, Cat. # 103579-100) and 1 mM
sodium pyruvate (Agilent, Cat. # 103578-100). Next, cells were
incubated at 37 °C in a non-CO2 incubator for 1 h. Oxygen
consumption rate (OCR) and extracellular acidification rate
(ECAR) were measured under basal conditions and in response
to sequentially injected compounds at a final concentration of
1.5 μM oligomycin (Sigma-Aldrich Cat. # O4876), 2 μM FCCP
(Sigma-Aldrich Cat. # C2920), and 1.5 μM rotenone (Sigma-
Aldrich Cat. # R8875)+ 1.5 μM antimycin A (Sigma-Aldrich Cat. #
A8674) and 50 mM of 2-deoxy-D-glucose (Sigma-Aldrich Cat. #
D6134). Stocks of compounds were prepared in the same
DMEM media and loaded into delivery ports of Seahorse
cartridges. The design of the assay allowed calculation of
multiple parameters related to glycolysis and mitochondrial
respiration in examined cells. The parameters related to
respiration were assessed, including non-mitochondrial respira-
tion (OCR after rotenone+antimycin A injection), basal mito-
chondrial respiration (ΔOCR between the steady state and after
rotenone+antimycin A injection), ATP-linked respiration (ΔOCR
between basal mitochondrial respiration and after oligomycin
injection), maximal mitochondrial respiration (ΔOCR between
non-mitochondrial respiration and after FCCP injection). The
parameters related to glycolysis were assessed, including non-
glycolytic acidification (ECAR after 2-DG injection), glycolysis
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(ΔECAR between the steady state and after 2-DG injection),
maximal glycolytic capacity (ΔECAR between non-glycolytic
acidification and after oligomycin injection), glycolytic reserve
(ΔECAR between the steady state and after oligomycin
injection).

Quantification of cell numbers
The quantification of cell numbers at the final stage of the
experiment was conducted using the BD FACSLyric™ flow
cytometer (BD Biosciences), capitalizing on the capability of the
flow cytometer to aspirate and count cells at a fixed speed. In
brief, the supernatant containing both floating and dead cells
was harvested. Subsequently, the obtained supernatant corre-
sponding to each particular sample was added to inactivate
trypsin and for cell resuspension thereby minimizing cell loss. The
harvested cells were neither washed nor centrifuged in order to
prevent any potential cell loss. A portion of each sample was
subjected to vortexing, followed by immediate measurement for
a duration of 45 s.
The total number of cells present in the sample was then

calculated based on the obtained count from the measured
sample fraction. Only events corresponding to cells characterized
by normal size were considered.

Assessment of apoptosis levels
Apoptosis levels in CRC cells were identified using annexin V
assay. Briefly, trypsinized cells were washed and resuspended in
50 μl Annexin V binding buffer pH 7.4 containing 10mM Hepes,
140mM NaCl and 2.5 mM CaCl2. Subsequently, cells were
incubated with 1.25 μl of APC Annexin V probe (BD Biosciences
Cat. # 550475) for 15 min at room temperature. After incubation,
the cells were mixed with an additional 100 μl of Annexin V
binding buffer and analysed using a flow cytometer BD
FACSLyric™ flow cytometer (BD Biosciences).

Consensus enrichment score
For the enrichment analysis of DEPs isolated from the mitochon-
dria of 8 CRC cell lines, we utilized 11 different enrichment libraries
(GO terms, KEGG, Reactome, WikiPathways and others) in order to
avoid bias linked to the selection of one particular library. The
resulting analysis led to the enrichment of 2248 unique
enrichment terms. Subsequently, we observed significant overlap
in terminology across different databases, often representing
functionally similar processes. For example, for terms like “valine,
leucine, and isoleucine degradation” we found 3 matches:

KEGG Valine leucine and isoleucine degradation

GeneSetDB Valine leucine and isoleucine degradation

RGD Valine leucine and isoleucine degradation pathway

Although the protein lists associated with these terms showed a
high degree of overlap, they were not identical, indicating that
relying on a single library could potentially skew results and
conclusions. To mitigate this bias and avoid cherry-picking results,
we developed a consensus enrichment score. We first converted
fold enrichment values from all libraries to Z-scores. Subsequently,
terms representing similar biological processes, like the above-
mentioned “valine, leucine, and isoleucine degradation” examples,
were grouped together. Finally, the average Z-score within each
group was calculated and designated as the “consensus enrich-
ment score.” This score reflects the enrichment strength for a
particular biological process, integrating information from multi-
ple databases.

Drug response correlation score
To better understand the relationship between mitochondrial/
bioenergetic characteristics and cell responses to drug treat-
ments, we introduced a “drug response correlation score.” This
score integrates the treatment-induced changes in cell
number, proliferation rate, and apoptosis levels, with weighted
values to reflect their significance (see Fig. S15A). Specifically,
the change in cell number is given a weight of 1.0, acknowl-
edging its primary importance, while changes in proliferation
and apoptosis are each weighted at 0.5. Thus, the score is
calculated as the sum of these weighted correlation coeffi-
cients, represented as 1.0 × PCCvsBM (treatment-induced change
in cell number vs basal metric)+ 0.5 × PPCvsBM (treatment-
induced change in proliferation rate vs basal metric)
+ 0.5 × PACvsBM (treatment-induced change in apoptosis levels
vs basal metric), where P denotes Pearson correlation
coefficients. This method provides a more precise assessment
of drug effects, ranging from −2 to 2, thereby offering a
broader range than the conventional Pearson coefficient scale
of −1 to 1.

Bioenergetic score
Considering that abundance of any metabolite can be simulta-
neously linked with both mitochondrial respiration and glycolysis
levels, we aimed to utilize this dual association to enhance the
resolution of our analysis. To achieve this, we introduced a
“bioenergetic score” that integrates a metabolite’s correlation
with glycolysis and mitochondrial respiration into a single value
(see Fig. S15C). This bioenergetic score is calculated by
subtracting the Pearson correlation coefficient for glycolysis
from the Pearson correlation coefficient for mitochondrial
respiration. A higher score indicates that a metabolite is
positively associated with OXPHOS and negatively with glyco-
lysis, whereas a lower score suggests that a metabolite is
negatively associated with OXPHOS and positively with glyco-
lysis. This scoring system allows for a broader assessment of
metabolite association with bioenergetic processes, providing a
range from −2 to 2, compared to the conventional Pearson
coefficient range of −1 to 1.

Data retrieval & statistical analysis & software
The files containing transcriptomic and metabolomic data of
untreated CRC cells were obtained from DepMap Portal https://
depmap.org/portal/download/all. Particularly for this project,
we utilised CCLE_metabolomics_20190502 and CCLE_RNA-
seq_20180929 datasets. The compilation of 338 genes encod-
ing critical mitochondrial proteins, particularly those integral to
mitochondrial function, was derived from the work “Genetics of
mitochondrial diseases: Identifying mutations to help diagnosis”
by Stenton & Sarah L, 2020. For the PCA in Fig. 1C 282/338 of
these genes were used. The PCA of transcriptomic, bioenergetic
and metabolomic data was done using SVD with imputation
method in ClustVis online tool https://biit.cs.ut.ee/clustvis/. The
PCA and the PCA loadings of the drug responses were created
using the PCA function with the selected standardize option in
GraphPad Prism 9.5.1 software. Visualisation of data was done
using GraphPad Prism 9.5.1 and FlowJo 10.9 software, with the
latter also used for the analysis of flow cytometry data.
Hierarchical and K-means clustering of metabolic data in CRC
cells was performed using the one minus Pearson correlation
metric in the Morpheus tool https://software.broadinstitute.org/
morpheus/. All measurements were conducted on distinct
samples representing biological replicates, with the exception
of Fig. 3C, D. These figures are representative, featuring
technical replicates to illustrate the results of a single
experiment.
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List of drugs and compounds

RESULTS
A subgroup of CRC cells displays drastically reduced
mitochondrial biomass
CRC exhibit remarkable heterogeneity dividing them into four
molecular subtypes (CMS1-4), which are additionally characterized
by features such as microsatellite instability or the CpG island
methylator phenotype [33, 34]. CRC cells also frequently harbour
mutations in the TP53, KRAS, BRAF, and PTEN genes. In line with
their high metastatic potential, CRC cell lines originate from
diverse tissues and various locations, including different segments
of the large intestine, lymph nodes, or metastatic sites. This
diversity is further heightened by variable oxygen levels across
different colon regions [36, 37]. Considering this variability, we
presumed that CRC cells could exhibit significant differences in
their mitochondrial function [38–40].
To test this hypothesis, we assembled a panel of eight highly

diverse CRC cell lines belonging to different CMS subtypes and
driven by different mutations, thereby excluding the bias associated
with the selection of a particular CRC subtype in our study (Fig. S1A).
Initially, we analysed a publicly available RNA-seq dataset from the
Broad DepMap Portal, which provides expression profiles of CRC
cells under steady-state conditions and conducted principal
component analysis (PCA) on all expressed genes and a subset of
genes critical for mitochondrial function extracted from Stenton
et al. (Fig. 1A, B) [41]. Initial PCA findings showed that COLO-320
cells, which are of the a neuroendocrine origin, markedly diverged
from other lines. The analysis revealed a significant variability and
the presence of numerous differentially expressed genes, with cell
lines sharing the same CMS status exhibiting clustering tendencies.
A PCA focussing on 282 mitochondrial protein-encoding transcripts
showed distinct expression patterns without apparent clustering
according to cancer subtype, suggesting variable mitochondrial
function across the cell lines.

To assess differences in the mitochondrial function between the
examined cells, we evaluated the levels of mitochondrial biomass
using two MitoTracker stainings (Figs. 1C and S1B). Both stainings
demonstrated similar results, with the highest amount of
mitochondria in LS123 and drastically reduced levels in the
COLO-320 and HCT-15 cell lines. Such a high extent of variability
prompted us to examine mtDNA transcripts levels, which
generally reflect the mitochondrial abundance. Analysis of all 37
mtDNA-encoded genes revealed diminished transcript levels in
SW620, SW48, COLO-320, and HCT-15, suggesting either a
reduced amount of mitochondria in these cells or potential
impairment of mtDNA maintenance (Fig. 1D). To assess the
mtDNA status, we measured mtDNA copy numbers, normalized to
genomic DNA (Figs. 1E and S1C). All cell lines showed high mtDNA
copy numbers, indicating functional mtDNA maintenance machin-
ery. However, the nuclear-encoded mitochondrial gene expression
was not uniformly reduced; it was lowest in LS123, despite their
high mitochondrial biomass (Fig. S1D). This discrepancy prompted
us to investigate the mitochondrial protein density using Western
blot analysis, which revealed the lowest protein density in LS123
(Fig. 1F). Considering the lack of correlation between the total
mitochondrial biomass and the protein density, we explored
additional factors that might be critical during the mitochondrial
assessment in CRC cells. We found that cell volume was another
significant variable. Using the forward scatter width and area as
proxies for cell diameter and assuming spherical cell geometry, we
calculated relative cell volumes and mitochondrial densities (Fig.
S1E–G). LS123 cells, being on average larger than other cell lines,
had higher mitochondrial content. However, upon normalisation
for the cell volume, SW403 and SW48 showed the highest
mitochondrial densities, whereas COLO-320 and HCT-15 consis-
tently displayed the lowest values. Collectively, these findings
suggest that impairment of mitochondrial assembly or turnover,

Compound: Primary target: Concentration: Source: Catalogue number:

Rotenone Complex I 0.2, 1.5 μM Sigma-Aldrich Cat. # R8875

Antimycin A Complex III 0.2, 1.5 μM Sigma-Aldrich Cat. # A8674

Oligomycin Complex V 0.1 μM Sigma-Aldrich Cat. # O4876

CCCP Mitochondrial uncoupler 50 nM Sigma-Aldrich Cat. # 21855

FCCP Mitochondrial uncoupler 2 μM Sigma-Aldrich Cat. # C2920

UK5099 Pyruvate 20 μM Sigma-Aldrich Cat. # PZ0160

Etomoxir Fatty acid oxidation 5 μM Sigma-Aldrich Cat. # E1905

BPTES Glutaminolysis 0.5 μM Sigma-Aldrich Cat. # SML0601

Dimethyl fumarate TCA cycle 10 μM Sigma-Aldrich Cat. # 242926

Mdivi-1 Fusion/fission dynamics 20 μM Enzo Life Sciences Cat. # CM1270010

Cyclosporine A (CsA) MPTP 200 nM Sigma-Aldrich Cat. # C1832

2-Deoxy-D-Glucose (2-DG) Glycolysis 200 μM Sigma-Aldrich Cat. # D6134

AZD3965 Inhibits monocarboxylate transporters 10 nM MedChemExpress Cat. # HY-12750

EIPA (Ethylisopropylamiloride) Inhibits sodium-hydrogen exchangers 1 μM MedChemExpress Cat. # HY-101840

Topiramate Inhibits carbonic anhydrases 1 μM MedChemExpress Cat. # HY-B0122

Concanamycin A Glycolysis 2 nM Santa Cruz Biotechnology Cat. # sc-202111

Irinotecan Blocks topoisomerase-1 2 μM MedChemExpress Cat. # HY- 16562

Oxaliplatin Crosslinks DNA 2 μM MedChemExpress Cat. # HY-17371

5-Fluorouracil (5-FU) Inhibitor of thymidylate synthase 5 μM Sigma-Aldrich Cat. # F6627
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Fig. 1 Multi-parameter analysis of mitochondrial biomass in CRC cell lines. A PCA of transcriptomic data extracted from the Broad DepMap
Portal and CCLE project visualising the RNA FPKM values expressed in the examined cell lines. B PCA of transcriptomic data visualising the
RNA FPKM values of genes critical for mitochondrial function. C Representative histograms and their quantification depicting mitochondrial
biomass assessed by flow cytometry analysis of CRC cells stained with 100 nM MitoTracker Deep Red FM dye. Values are means ± SEM, n= 3.
D Mean normalized FPKM values of transcripts encoded by mtDNA, with each dot representing one gene. Data extracted from the CCLE
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rather than nuclear gene expression, predominantly accounts for
reduced mitochondrial biomasses in COLO-320 and HCT-15.
Given that mitochondria play the primary role in the process of

energy production, we correlated the mitochondrial abundance
with CRC cell proliferation rates (Fig. 1G, H). COLO-320 and HCT-15
exhibited notably high proliferation rates, linking the mitochon-
drial loss to the increased proliferative capacity and suggesting
that biomass optimisation is an essential cancer adaptation in
certain CRC subgroups.

Mitochondria of CRC cells display high heterogeneity and
functional specialization
Intrigued by the substantial variability in mitochondrial biomass
observed among CRC cell lines, we hypothesized that different
CRC subgroups may favour specific mitochondrial functions or
exhibit unique mitochondrial adaptations. To explore this, we
isolated mitochondria from corresponding cell lines and
performed proteomics analysis. We obtained values correspond-
ing to the abundance of 453 mitochondrial proteins enabling
direct comparisons between examined CRC cell lines. Initial PCA
and hierarchical clustering revealed a high level of heterogeneity
among the mitochondria from different CRC cell lines (Fig. 2A, B).
While PCA suggested a slight tendency towards clustering by
CMS, hierarchical clustering identified four distinct mitochondrial
subgroups, not aligned with CMS classification: (1) COLO-320; (2)
SW48; (3) SW1417 and SW620; (4) SW403, LS123, SW480, and
HCT-15.
To identify the primary differences among investigated

mitochondria, we utilized K-means clustering on the 273 most
variable proteins (Fig. S2A). Subsequently, we visualized the
distribution of these proteins across eight clusters and conducted
a STRING-based interaction analysis and an enrichment analysis
for each cluster (Fig. S2B, C). The analysis revealed significant
networks of downregulated and upregulated proteins that
functionally distinguish the mitochondria of different CRC cell
lines, particularly evident in clusters 4 and 7. These clusters
highlighted the major downregulation of various interconnected
proteins in the SW403 and SW48 cell lines, respectively,
suggesting the presence of potential cell line-specific mitochon-
drial dysfunction.
Furthermore, in clusters 1, 5, and 7, we observed the

enrichment of terms closely associated with CRC metabolic
reprogramming, including “GUCYC2C signaling in CRC,” “WP4290
Metabolic reprogramming in CRC,” and “Metabolic Reprogram-
ming in Cancer.” These findings imply that a significant fraction of
the metabolic adaptations in CRC cells occur in or are driven by
mitochondrial changes, underlining the critical role of mitochon-
drial rearrangements in the metabolic reprogramming of CRC.
We next evaluated pairwise differences and quantified the DEPs

between all cell lines, resulting in 28 pairwise comparisons
(Fig. 2C). The DEPs were used for enrichment analysis, integrating
and Z-transforming fold enrichment values from various data-
bases to create “consensus enrichment scores” for further analysis
(see Materials & Methods). This analysis identified 2248 unique
terms, underscoring substantial structural and functional differ-
ences between the mitochondria (Fig. S3A). PCA and hierarchical
clustering based on the enrichment scores of these terms
suggested that CRC mitochondria could potentially be divided
into two groups: (1) SW480, HCT-15, SW48, and SW403, and (2)
SW1417, SW620, COLO-320, and LS123 (Fig. 2D). The primary
features derived from consensus enrichment score analysis and
PGSEA-based enrichment analysis are emphasized in the PCA and
following heatmaps (Figs. 2E and S3B, C). In brief, we observed
that mitochondrial composition varies drastically in terms of the
expression of different enzymes involved in the catabolism of
various mitochondrial fuels. This includes enzymes responsible for
fatty acid oxidation (FAO), catabolism of branched-chain amino
acids, glutaminolysis, utilization of ketone bodies, pyruvate

metabolism, and acetyl-CoA biosynthesis. These variations suggest
that some cancer cells may adapt their mitochondria based on the
availability of substrates, allowing them to utilize a broad range of
metabolic substrates to diversify their energy sources. Moreover,
we noted significant differences in the expression of TCA cycle
enzymes, ETC/OXPHOS machinery, and proteins essential for
maintaining core mitochondrial functions among the examined
mitochondria. These data suggest that the mitochondria of CRC
cells might evolve and adapt in conjunction with the cancer cells
themselves.
Finally, we compared the SW480 and SW620 cell lines, derived

from the same patient but representing primary and metastatic
sites, respectively (Fig. 2F). Surprisingly, key mitochondrial
functions like the activity of ETC complexes, OXPHOS, mtDNA
replication/transcription, and mitochondrial translation were
predominantly upregulated in the metastatic SW620 cell line.
This may be due to the higher oxygen concentrations in lymph
nodes compared to the hypoxic primary tumor environment,
allowing metastatic cells to enhance their OXPHOS machinery.
Additionally, this cell line downregulated proteins linked to
apoptosis/ferroptosis and antigen presentation, indicating unique
mitochondrial adaptations that may help these cancer cells avoid
cell death and evade immune detection in the metastatic niches.

CRC cells develop different bioenergetic strategies and
display variable mitochondrial functionality
Next, we decided to explore how variations in the mitochondrial
composition and biomass affect the mitochondrial performance
and bioenergetic profiles in CRC cells. Using JC-1 staining, we
found that SW480, SW403, and SW48 cells exhibited a significantly
higher mitochondrial membrane potential (MMP) compared to
the others (Fig. S4A), correlating with their higher mitochondrial
biomass. These cell lines also showed the lowest proportion of
cells with low MMP (Fig. 3A). Conversely, COLO-320 and HCT-15
had a high percentage of cells with low MMP (80% to 98%).
Furthermore, mitochondrial ROS production, a by-product of the
ETC activity (Fig. 3B), was higher in the cell lines with elevated
mitochondrial biomass including SW1417, SW403, and SW48.
Elevated ROS production in cancer cells can arise from two main
scenarios: either cells show high OXPHOS activity or have partially
dysfunctional and leaky ETC, leading to enhanced ROS production.
Consequently, our findings suggest that certain CRC cells may
exhibit mitochondrial dysfunction.
To evaluate how mitochondrial discrepancies affect OXPHOS in

CRC cells, we conducted a bioenergetic profiling using the
Seahorse XFe96 analyser (Figs. 3C, E, F and S4B, C). The results
indicated that COLO-320, HCT-15, SW48, and SW403 cells
displayed low levels of respiration-related parameters, particularly
the ATP-dependent respiration. While the low respiratory activity
in COLO-320 and HCT-15 was anticipated due to their significantly
reduced mitochondrial biomass, the same phenomenon was
unexpectedly observed in SW48 and SW403 cells, despite their
high mitochondrial density. These cells also displayed elevated
ROS production and significant downregulation of major mito-
chondrial proteins, suggesting that they have dysfunctional
mitochondria with diminished activity.
In contrast, the cell lines SW480, SW1417, LS123, and SW620

exhibited relatively high levels of respiration. Notably, these cells
displayed a significant discrepancy between the absolute mito-
chondrial biomass and mitochondrial density due to large
differences in their cell volumes. To assess their mitochondrial
performance, accounting for differences in mitochondrial biomass,
we normalized the values of mitochondrial respiration to the
number of mitochondria (Fig. S4F). This analysis revealed that
while SW48 and SW403 had the lowest normalised mitochondrial
performance, COLO-320 and HCT-15 showed the highest, despite
the lower absolute respiration rates. This indicates that some CRC
cells may have fewer mitochondria, but they are highly active,
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dealing with substantial cellular OXPHOS demands and promoting
high proliferation rates.
On the other hand, despite having the highest mitochondrial

biomass and cell volume, LS123 cells showed only average

normalized mitochondrial performance, indicating that evalua-
tions based solely on the mitochondrial biomass or respiration
can be misleading. Additionally, our analysis highlighted
SW1417 cells as having a balanced OXPHOS-predominant
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phenotype. These cells, with only a moderate mitochondrial
count, exhibited high absolute mitochondrial respiration and
ROS levels, alongside the robust normalized performance,
without significant disruptions in the mitochondrial protein
composition.

Complimentary to the mitochondrial respiration profiling, we
assessed glycolysis-related parameters in CRC cells (Figs. 3D, G,
H and S4D, E). Interestingly, cells characterized by decreased
absolute respiration simultaneously exhibited increased glycolytic
flux, which was especially pronounced in HCT-15 and COLO-320,
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and less evident in SW480, SW1417, and SW403 cells. These results
demonstrate that cells with reduced OXPHOS are prone to
upregulate glycolysis.
An intriguing pattern of “bioenergetic optimization” was

observed in the metastatic SW620 cell line, which, like the primary
SW480 cell line, is derived from the same patient. The metastatic
SW620 showed a slight reduction in mitochondrial biomass but
demonstrated increased normalized mitochondrial performance
compared to its primary counterpart. Proteomic analysis revealed
improved ETC/OXPHOS machinery in SW620 cells, suggesting that
despite fewer mitochondria, these mitochondria are more active.
This enhanced activity was accompanied by a twofold increase in
glycolytic flux, which led to a doubled proliferation rate compared
to SW480 cells. Collectively, these findings suggest the existence
of an adaptive strategy that enhances metastasis and colonization
of new niches.
A summary of these key differences in CRC cells is presented

through PCA (Fig. 3I) and a heatmap, which scores the examined
mitochondrial and bioenergetic characteristics, highlights the
principal differences among the cell lines (Fig. 3J).

Bioenergetic profiles and metabolite distribution are strongly
interconnected in CRC cells
To define the main bioenergetic classes characterizing CRC cells,
we summarized the results of the Seahorse analysis as OCR/ECAR
ratios illustrating metabolic dependencies and plotted corre-
sponding values to evaluate the separation between the
examined cell lines (Fig. 4A). The obtained results defined three
bioenergetic groups: a high OXPHOS, low glycolysis group (cluster
1, blue); an intermediate group with reduced respiration or
elevated glycolysis (cluster 2, black); and a predominantly
glycolytic group with minimal mitochondrial respiration (cluster
3, red). Additionally, while exploring the relationship between
bioenergetics and cell proliferation, we found strong but
contrasting correlations. Specifically, glycolysis exhibited a positive
correlation with proliferation, whereas mitochondrial respiration
showed a negative correlation, linking a lower OCR/ECAR ratio
with higher proliferation rates (Fig. 4B, C).
Next, we aimed to understand how bioenergetics correlate

with the metabolome of CRC cells. To this end, we analysed a
dataset from the DepMap Portal detailing the steady-state
abundance of 225 metabolites in CRC cells (Fig. S5A–J). We
focused on metabolites displaying at least moderate correlations
with the rates of mitochondrial respiration, glycolysis, or their
ratio (Fig. 4D). Furthermore, we confirmed the dataset’s
relevance by correlating known metabolites with specific
bioenergetic dependencies. As anticipated, lactate, which is
commonly associated with glycolytic cells, showed a strong
correlation with glycolysis. Similarly, TCA cycle metabolites, such
as succinate, citrate, fumarate, and malate, positively correlated
with the mitochondrial respiration rates, thereby validating the
relevance of this dataset.
The distribution of metabolites indicated that cells with high

rates of OXPHOS exhibited elevated levels of long, unsaturated
phosphatidylcholines and unsaturated cholesteryl esters, which
are vital for membrane fluidity and optimal mitochondrial

respiration. Furthermore, such cells displayed higher concentra-
tions of propionylcarnitine and lauroylcarnitine, both involved in
FAO. Notably, they also demonstrated an increased abundance of
carbohydrates, a majority of amino acids, TCA cycle intermediates,
and various vitamins, suggesting a preference for substrate
accumulation over rapid proliferation. Additionally, these cells
also exhibited elevated levels of cAMP, a secondary messenger
controlling numerous pathways via PKA kinase, including the
regulation of mitochondrial functions [42].
In contrast, glycolytic cells showed a distinct lipid profile,

favouring short and saturated phosphatidylcholines and cho-
lesteryl esters essential for rapid membrane synthesis in fast-
proliferating cells. These cells also had increased levels of short
and saturated sphingomyelins and lysophosphatidylcholines,
crucial for lipid metabolism and signaling. Additionally,
glycolytic cells exhibited an altered carnitine profile, marked
by higher levels of hexanoylcarnitine, valerylcarnitine, and
heptanoylcarnitine.
Interestingly, glycolytic cells showed elevated levels of

metabolites critical for signaling, metabolism, and carcinogen-
esis. Notably, alongside upregulated glycolysis, these cells
displayed increased NADP, produced via the pentose phos-
phate pathway and closely linked with glycolysis. NADP and its
reduced form, NADPH, are vital for rapidly proliferating cells,
supporting fatty acid and nucleotide synthesis, and providing
protection from oxidative stress. Surprisingly, malondialdehyde,
a marker of oxidative stress and lipid peroxidation associated
with high ROS levels, was elevated in the glycolytic but not in
the OXPHOS-dependent cells. Additionally, glycolytic cells
accumulated 2-hydroxyglutarate (2-HG), an “oncometabolite”
known for its role in cancer [43]. While mutations in IDH1 and
IDH2 enzymes, typical producers of 2-HG in certain cancers, are
rare in CRC, our findings suggest that a glycolytic phenotype
may promote the 2-HG accumulation even without these
mutations.
The overall picture that emerges from the metabolome of

examined cells suggests that cells with high levels of mitochon-
drial respiration are pointed towards a steady phenotype and
efficient energy production. Conversely, cells that favour glycolysis
prioritize rapid growth and proliferation, often compromising
energy efficiency and potentially increasing vulnerability and
stress.
We used PCA and hierarchical/K-means clustering to categor-

ize cell lines by their metabolome, which showed that glycolytic
cells and those with high OXPHOS rates tend to cluster together,
highlighting a strong link between the bioenergetic profiles and
metabolomic characteristics (Fig. 4E, F). We also examined the
concordance between the OCR/ECAR-derived clusters and PCA-
based cell stratification using the bioenergetic/mitochondrial
phenotypes and transcriptomic data, which reflects the overall
cell phenotype (Fig. 4G, H). Both analyses indicated that
grouping cells by their OCR/ECAR ratios mirrors the stratification
performed using other parameters, suggesting that this ratio is a
reliable metric for classifying CRC cells by functional phenotypes.
The primary metabolite patterns in these groups are summarized
in Fig. 4I.

Fig. 3 Functional mitochondrial characterization and bioenergetic profiling of CRC cell lines. A Representative histograms and
quantification, which demonstrate the frequencies of CRC cells with low MMP. The analysis was performed by flow cytometry using 3 μM JC-1
dye. Values are means ± SEM, n= 3–4. B Representative histograms and quantification of mitochondrial ROS levels. The analysis was
performed by flow cytometry using 5 μM MitoSOX Red dye. Values are means ± SEM, n= 4–5. C–H Bioenergetic analysis of CRC cells using a
Seahorse analyser upon subsequent injections of oligomycin, FCCP, rotenone+antimycin A, 2-DG. C, E, F Parameters related to oxygen
consumption represented by OCR values. D, G, H Parameters related to extracellular acidification represented by ECAR values.
C, D Representative graphs derived from one experiment. E–H Quantifications of mitochondrial respiration and glycolysis parameters
derived from three independent experiments. Values are means ± SEM, n= 3. I PCA of 17 parameters characterizing mitochondrial,
bioenergetic and cellular features in CRC cells. J Heatmap depicting the manually scored distribution of 17 parameters characterizing
mitochondrial, bioenergetic and cellular features of CRC cells.
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Efficacy of treatments targeting metabolism and homeostasis
is linked to bioenergetics, mitochondrial parameters and
metabolite levels
Given the significant differences in bioenergetics, metabolome,
and mitochondrial parameters among the CRC cell lines tested, we

posited that the efficacy of anti-cancer treatment might vary
based on these factors. We hypothesized that cells with high
OXPHOS levels might be more susceptible to mitochondrial
targeting, while those with high glycolysis could be particularly
vulnerable to glycolytic inhibition. To test these hypotheses, we
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used 18 compounds targeting mitochondrial and metabolic
processes, along with conventional anti-CRC chemotherapy (Fig.
S6). We then analysed changes in cell number, proliferation,
apoptosis, and MMP across the cell lines after 72 h (Figs. S7–S10).
By calculating the correlation matrices, we identified associations
between the treatment responses and baseline bioenergetic,
mitochondrial, and metabolite profiles (Fig. S11).
Intriguingly, treatments targeting ETC complexes displayed

variable efficacy based on differing bioenergetic and mitochon-
drial profiles. Specifically, rotenone and antimycin A were highly
effective against cells with high glycolysis and mitochondrial
performance (OXPHOS normalized to mitochondrial biomass) but
low mitochondrial biomass and density (Fig. 5A, B). In contrast,
oligomycin proved more effective in cells with high OCR/ECAR
ratios and low glycolysis (Fig. 5C). This observation aligns with
metabolite associations where increased lactate levels correlated
positively with the efficacy of rotenone and antimycin A but
showed a negative correlation with oligomycin (Fig.
5A–C and S12A). These results confirm the increased effectiveness
of the ETC Complex I and III inhibitors against glycolytic cells.
Additionally, malondialdehyde, an oxidative stress marker, was
more prevalent in glycolytic cells and positively associated with
the response to rotenone, suggesting a link between Complex I
inhibition and ferroptosis induction.
We next examined the main metabolic processes fuelling the

TCA cycle, specifically FAO, glutaminolysis, and pyruvate import,
targeted by etomoxir, BPTES, and UK5099, respectively. As
anticipated, the effectiveness of etomoxir correlated with mito-
chondrial respiration and OCR/ECAR ratios (Fig. 5D). Similarly,
BPTES showed positive correlations with mitochondrial respiration
and OCR/ECAR ratios, but negative associations with glycolysis
(Fig. 5E). However, the inhibition of pyruvate-specific import by
UK5099 showed no significant correlations with mitochondrial
respiration (Fig. S12B). These findings suggest that while the
efficacy of these inhibitors is somewhat connected to mitochon-
drial respiration, bioenergetic profiles may not be the primary
determinant of their effectiveness.
We also evaluated compounds targeting mitochondrial home-

ostasis. We used CCCP to induce mitochondrial depolarization,
mdivi-1 to disrupt mitochondrial fusion/fission dynamics, cyclos-
porine A (CsA) to block the mitochondrial permeability transition
pore, and dimethyl fumarate to elevate cellular fumarate levels,
which are linked with mitochondrial dysfunction. The effect of
CCCP was not strongly correlated with baseline mitochondrial
features, whereas mdivi-1 showed significant associations with
mitochondrial number and density, indicating increased sensi-
tivity in cells with fewer mitochondria (Figs. S12C and S13A).
Interestingly, the effects of CsA and dimethyl fumarate were
modest but in opposite directions: CsA was more effective in
cells with higher mitochondrial respiration/biomass and lower
glycolysis, while dimethyl fumarate was more effective in cells
with lower mitochondrial respiration and higher glycolysis
(Fig. S13B, C).

Subsequently, we evaluated the effectiveness of inhibitors
targeting glycolysis and lactate export (Figs. 5F and S13D).
Interestingly, the efficacy of these compounds correlated more
strongly with mitochondrial characteristics than with glycolytic or
bioenergetic profiles, showing greater effects on cells with lower
mitochondrial density and higher normalized mitochondrial
function. Additionally, the efficacy of 2-DG was positively
associated with UDP-glucose levels, likely due to its inhibition of
glucose-1-phosphate formation crucial for UDP-glucose synthesis.
Thus, cells with higher UDP-glucose utilization exhibited increased
sensitivity to glycolytic inhibition.
Glycolysis and mitochondrial respiration are key drivers of

intracellular acidification, which, if disrupted, can lead to excessive
H+ accumulation and cell death [44]. Treatments with EIPA and
topiramate, which disrupt cellular pH regulation, were notably
more effective in cells with high OXPHOS levels and OCR/ECAR
ratios, indicating that mitochondrial activity is a crucial determi-
nant of their efficacy (Fig. S13E, F). On the other hand,
concanamycin A, which impairs endosome and lysosome acid-
ification, showed a strong association with reduced mitochondrial
respiration and biomass, and increased glycolysis (Fig. S13G).
Finally, we explored the relationship between mitochondrial

and bioenergetic metrics and the effectiveness of conventional
chemotherapy agents in CRC, analysing responses to irinotecan,
oxaliplatin, and 5-fluorouracil (5-FU), (Fig. 5G, H and S13H). While
the effectiveness of oxaliplatin showed weak correlation with
bioenergetic characteristics, irinotecan and 5-FU demonstrated
contrasting efficacy patterns; irinotecan was more effective
against cells with low glycolytic activity, whereas 5-FU performed
better in cells with reduced OXPHOS levels. Furthermore, the
effectiveness of these DNA-targeting therapeutics strongly corre-
lated with metabolites such as uridine, hypoxanthine, adenosine,
and thiamine, involved in nucleic acid homeostasis, indicating
their suitability as potential biomarkers of therapeutic efficacy.
Our analysis indicates that neither glycolytic cells nor those with

high OXPHOS levels exhibit a consistent change in sensitivity to
pharmacological treatments (Fig. S14A–D), challenging the pre-
vailing view that glycolytic cancer cells are generally more
susceptible to chemotherapeutic agents [45, 46]. However, we
noted a greater variability in drug responses, such as changes in
cell number, proliferation, apoptosis, and MMP, particularly in
more glycolytic cell lines like SW620, SW48, COLO-320, and HCT-
15. This variability suggests that glycolytic cells may have a wider
range of potential vulnerabilities that require selective targeting.
Additionally, our findings indicate that mitochondrial depo-

larization, characterized by a drop in MMP, is not consistently
linked to apoptosis, proliferation inhibition, or cell death. For
example, in SW480 cells, changes in cell number were not
correlated with MMP changes. Similarly, in SW620, SW403, and
SW48 cells, changes in cell numbers did not align proportionally
with MMP alterations. Moreover, treatments specifically target-
ing mitochondria did not demonstrate the enhanced induction
of mitochondrial depolarization compared to conventional

Fig. 4 Interconnectivity of bioenergetic phenotypes and metabolite profiles in CRC. A Visualisation of OCR and ECAR values derived from
bioenergetic analysis and OCR/ECAR ratio representing the relation between basal mitochondrial respiration and glycolysis. Values are
means ± SEM, n= 3. Bioenergetic clusters are colour-coded by metabolic profile (blue: high OXPHOS, black: intermediate, red: high glycolysis).
B, C Pearson correlations characterising the relations between the proliferation rate of CRC cells and their bioenergetic parameters such as
glycolysis and basal mitochondrial respiration, respectively. D Correlation analysis linking levels of metabolites and bioenergetics in CRC cells.
The heatmaps depict metabolites exhibiting moderate or strong correlations (<−0.45 or > 0.45) between the abundance of metabolites and
the rates of glycolysis/mitochondrial respiration/ratio of mitochondrial respiration and glycolysis in CRC cells. E PCA of metabolomic data
characterizing the abundance of all analysed metabolites in examined cell lines. F Hierarchical and K-means clustering of selected CRC cell
lines based on the abundance of 225 metabolites. G, H PCAs illustrating a high level of interconnection between bioenergetics and
mitochondrial characteristics as well as the CRC cell transcriptome. Similar plots depicting PCAs are shown in Figs. 1A and 3I and represented
here again as a summary. The arrows illustrate the transition in the status of closely related SW480 and SW620 cell lines derived from the same
patient and collected from primary and metastatic sites, respectively. I Schematic representation of the main patterns of metabolite
accumulation either in glycolytic cells or in cells relying on mitochondrial respiration.
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chemotherapy agents. Both classes of compounds induced
similar changes in cell number, yet 5-FU, irinotecan, and
oxaliplatin affected MMP as much as or even more than
mitochondrial-specific ETC-targeting inhibitors, such as rote-
none, antimycin A, and oligomycin.

Cancer stratification by mitochondrial, bioenergetic, and
metabolic characteristics, is crucial for the high efficacy of
metabolism-targeting therapies
To quantify the relationship between the changes in cell number,
proliferation, and apoptosis, with baseline mitochondrial or
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bioenergetic metrics, we developed a drug response correlation
score. This score, described in detail in the Materials and
Methods section and shown in Fig. S15A, aggregates three
weighted Pearson correlation coefficients. A positive score
indicates an increase in drug response correlating with an
increase in a mitochondrial characteristic, and conversely, a
negative score indicates a decrease in drug response as
mitochondrial characteristics intensify. We used this score to
identify which mitochondrial parameters—respiration, biomass,
density, and performance—show the strongest associations with
each treatment (Fig. 6A).
Treatments with etomoxir, topiramate, mdivi-1, antimycin A, 2-

DG, and AZD3965 showed the strongest associations with
mitochondrial density, thereby demonstrating greater efficacy
against cells with reduced mitochondrial density. Conversely,
rotenone and EIPA exhibited higher effectiveness in cells with
elevated normalized mitochondrial performance and absolute
mitochondrial respiration, respectively. The heatmap illustrating
the distribution of these scores among evaluated mitochondrial
characteristics identifies four main association patterns (Fig. 6B).
Notably, the most distinct cluster consists of rotenone, antimycin
A, dimethyl fumarate, concanamycin A, mdivi-1, 2-DG, and
AZD3965, where an increase in treatment efficacy corresponded
with both high baseline mitochondrial performance and low
mitochondrial biomass/density.
To identify the bioenergetic sensitivities of CRC cell lines, we

analysed drug response scores in relation to baseline OXPHOS and
glycolysis levels (Fig. 6C). The analysis showed that treatments
targeting mitochondria, including inhibitors and modulators of
MPTP opening, Complex V functionality, glutaminolysis, FAO, and
MMP, were more effective in cells with high OXPHOS levels. In
contrast, cells with a glycolytic bioenergetic profile were more
susceptible to inhibitors of ETC Complexes I and III, highlighting
the critical nature of their residual activity for CRC cell survival.
To guide targeted therapies, we analysed the associations

between metabolite levels and treatment outcomes such as
changes in cell number, apoptosis, and proliferation (Fig. 6D). On
average, metabolites showed four strong correlations with drug
response parameters. Notably, lactate, 2-deoxycytidine, NMMA,
and xanthine demonstrated a higher number of positive correla-
tions, suggesting that elevated levels might enhance responsive-
ness to treatments or indicate vulnerability. Conversely, various
fatty acids and metabolites like acetylcholine, 5-HIAA, and cAMP
negatively correlated with drug response (Fig. 6E). As potent
signaling mediators, their increased levels might confer protective
properties to cells, making them potential targets for adjuvant
therapy.
To further develop this idea, we examined whether the levels

of the top 96 metabolites, most associated with drug response,
consistently correlated with cellular susceptibility to treat-
ments. We calculated the average change in cell number for
each cell line across all 18 treatments and correlated these

changes with the basal metabolite levels in each cell line (see
Fig. S15B). Additionally, we plotted cell number response values
against a bioenergetic score, which reflects each metabolite’s
affinity to OXPHOS or glycolysis, to link metabolite levels to
both drug response and baseline bioenergetic characteristics
(see Fig. S15C).
This analysis demonstrated that higher concentrations of

choline, oxalate, kynurenine, alpha-hydroxybutyrate, long-chain
polyunsaturated triacylglycerols, and lysophosphatidylcholines
correlated with reduced changes in cell numbers after treatment,
suggesting that these compounds may provide protective proper-
ties or indicate a stable and resilient cellular phenotype (Fig. 6F). In
contrast, elevated levels of erythrose-4-phosphate, putrescine,
citrate, glutathione, taurine, 2-phosphoenolpyruvate, glutamate,
butyrobetaine, UDP-galactose/glucose, NAD, acetylcarnitine, and
certain lipids, including specific sphingomyelins and phosphati-
dylcholines (e.g., C38:2, C36:2, C34:2, C32:2, C34:2), were linked to
increased drug efficacy. Correlations between the abundance of
these metabolites and the efficacy of individual treatments are
detailed in Fig. S16A.
Collectively, the conducted analysis demonstrates that both

OXPHOS-dependent and glycolytic CRC phenotypes are charac-
terized by vulnerabilities associated with the distribution of
different metabolites. We also identified sets of metabolites that
show strong correlations with specific drug response parameters
in CRC cells (Fig. S16B–D). Hypothetically, metabolites whose
levels negatively correlate with drug response parameters may
inhibit changes in proliferation, apoptosis, and MMP, whereas
those that positively correlate with drug response parameters
could enhance changes in these parameters.

DISCUSSION
The aim of this study was to explore the level of mitochondrial
and bioenergetic heterogeneity in different CRC cells and to
determine if this heterogeneity can be correlated with the
effectiveness of metabolism-targeting therapies. We observed a
major level of variability in the mitochondrial biomass, the
mitochondrial protein density, and the mitochondrial composition
between the cell lines analysed. Despite similar expression levels
of nucleus-encoded mitochondrial transcripts across the cell lines
tested, some of them showed markedly reduced mitochondrial
biomasses, suggesting the influence of potent mechanisms that
affect the number of mitochondria at post-transcriptional levels.
Furthermore, contrary to expectations, a higher abundance of

mitochondrial proteins did not always correlate with increased
mitochondria quantities. Instead, CRC cells with low mitochondrial
biomasses displayed a high concentration of mitochondrial
proteins, indicating fewer mitochondria with increased protein
density and high functional capacity. This suggests that mito-
chondria in these cancer cells may function as a “molecular
sponge,” absorbing and integrating mitochondrial proteins

Fig. 5 Correlating drug efficacy with bioenergetics, mitochondrial parameters and metabolite levels in CRC cells. A–H CRC cells were
seeded one day prior to the beginning of the experiment and then treated with selected drugs in indicated concentrations for 72 h.
Subsequently, analysis of cell number, apoptosis levels, proliferation rate and MMP was carried out (Figs. S7–S10). The obtained data was
quantified and represented as fold changes (FC) or percentages over the control condition. A–H Left side: Bubble plots illustrate the mean
changes in cell number (x-axis, %), mean changes in proliferation rate (y-axis, %), mean changes in apoptosis (colour, %) and mean changes in
MMP (size, fold change). The changes in cell number, proliferation rate, apoptosis levels, and MMP were quantified using flow cytometry along
with CellTrace Violet, annexin V, and JC-1 stainings, respectively. A–H Right side: Correlation matrices depict the relationships between various
mitochondrial and bioenergetic characteristics measured at the steady level and the drug responses induced by treatments with selected
compounds (see Fig. S11). The drug response is represented by changes in cell number, proliferation rate, and apoptosis. A–H Bottom: The
correlations between the abundance of metabolites and the drug response parameters triggered by each specific compound in the panel of
CRC cells (Details continue in Fig. S12A). Each line between a metabolite and a response parameter depicts a strong correlation (<−0.6, blue-
filled box; > 0.6, orange-filled box). Only metabolites displaying at least two simultaneous strong correlations are depicted. The drug response
is represented by the three parameters change in cell number (c.n.), apoptosis rate (a.r.) and proliferation rate (p.r). The colour of the frames
depicts whether metabolites are accumulated in cells with specific bioenergetic profiles. The legends are explained in detail in Fig. S12A.
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Fig. 6 Linking mitochondrial and metabolic traits to therapy efficacy in CRC. A, B Panels illustrating the relationships between the
mitochondrial characteristics of CRC cells and the efficacy of selected treatments in inducing a drug response (changes in cell number,
proliferation, and apoptosis) expressed as a drug response correlation score. A positive drug response correlation score indicates that the drug
response is more intense in alignment with the specific mitochondrial characteristic (similar to a positive correlation). Conversely, a negative
score suggests that the drug response decreases as mitochondrial characteristics are upregulated (similar to a negative correlation). The data
is derived from correlation matrices shown in the corresponding Figs. 5, S12, and S13. A The diagram highlights the most prominent
associations between drug responses and mitochondrial characteristics. B The heatmap displays the scores for all four examined
mitochondrial characteristics. C Graph illustrating the relationship between the OXPHOS/glycolysis levels of CRC cells and the efficacy of
selected treatments in inducing a drug response, expressed as a drug response correlation score. D, E Metabolites with the highest number of
strong correlations (<−0.55 or > 0.55) characterizing the linkage between the abundance of these metabolites and the drug response
parameters (changes in cell number, proliferation rate and apoptosis). The colours of the bars indicate whether metabolites accumulate in
cells with specific bioenergetic profiles. F Graph illustrating the relationships between the abundance of metabolites in CRC cells and the
mean sensitivity of these cells to the examined treatments. The X-axis represents the bioenergetic score, where higher values indicate greater
accumulation of the metabolite in cells with increased OXPHOS, and negative values indicate greater accumulation in cells with high
glycolysis. The Y-axis depicts correlation values showing the linkage between the abundance of metabolites and the average change in cell
number upon treatment with 18 compounds. As a result, metabolites in the upper right part of the graph are prone to accumulate in
glycolytic cells and are potentially associated with increased drug responses. Conversely, metabolites in the bottom left part of the graph tend
to accumulate in cells with high OXPHOS and might be associated with decreased sensitivity to drugs.
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efficiently without necessarily increasing in number or biomass.
This feature is supported by studies indicating substantial
variability in mitochondrial protein density [47, 48].
The proteomics analysis of 453 mitochondrial proteins uncov-

ered significant structural and functional heterogeneity among
the mitochondria studied. They displayed major differences in the
abundance of proteins involved in the ETC, TCA cycle, OXPHOS,
and the metabolism of amino acids and fatty acids, as well as
apoptosis machinery, indicating a high level of specialisation.
Additionally, we filtered out proteins that are currently not
classified as mitochondrial according to existing databases.
However, some proteins were consistently present in various
mitochondrial samples, suggesting that they could be associated
with these organelles in cancer.
Along with significant variability in the mitochondrial composi-

tion, the functional stratification of CRC cells revealed the
presence of distinct mitochondrial and bioenergetic strategies
that drive cell sustainability. However, it is clear that this sample
size is not sufficient to draw general conclusions about the role of
mitochondria and their plasticity in cancer. Our knowledge of the
mitochondrial proteome in cancer cells remains limited. This area
of research necessitates extensive mitochondria-targeting proteo-
mic studies that employ both cell lines and cells isolated directly
from primary and metastatic tumours. Such research would help
define specific mitochondrial archetypes and their functions in
cancer.
The comprehensive evaluation of mitochondria in cancer cells

has not been feasible previously without the omics technologies
owing to the vast number of genes encoding these organelles
[49–51]. Furthermore, current omics studies have been dominated
by transcriptomic approaches, which are not very effective for
mitochondrial analysis. In cancer cells, the transcriptomic RNA
levels only modestly correlate with the abundance of mitochon-
drial proteins [52, 53]. This discrepancy occurs because mitochon-
drial proteins do not exist in isolation; they exist and are functional
when integrated into larger organelle structures. Therefore, the
abundance of mitochondrial proteins is affected by different
factors, including mitochondrial turnover, dynamics between
biogenesis and mitophagy, translation of mitochondrial proteins,
import of proteins into mitochondria, as well as the assembly of
mitochondrial complexes and structures [54–56]. These factors
can lead to impaired mitochondrial assembly and various
perturbations, thus creating a significant divergence between
the abundance of RNA and proteins.
Considering the observed heterogeneity, we connected two

areas of cancer biology research currently receiving significant
attention: cancer cell metabolic adaptations and the potential use
of drugs that target metabolic pathways as cancer treatment. We
hypothesized that the efficacy of these compounds would depend
on the mitochondrial and metabolic status of the cells. To validate
this, we treated CRC cells with 18 compounds targeting various
mitochondrial, metabolic and related homeostatic processes and
examined their efficacies.
The efficacy of most treatments showed a notable yet not

uniformed correlation with cellular bioenergetics. For example,
inhibiting ETC Complexes I and III had a more pronounced effect
on CRC cells reliant on glycolysis compared to those dependent
on OXPHOS. Surprisingly, 2-DG, a glycolysis inhibitor, did not
exhibit increased cytotoxicity in cells more dependent on
glycolysis. However, the effectiveness of these compounds often
closely aligned with mitochondrial characteristics, indicating that
mitochondrial status significantly reflects the overall cellular
condition. Given that mitochondria are central to numerous
cellular processes and are also instrumental in the onset of
apoptosis, it is unsurprising that the efficacy of many treatments
strongly correlates with mitochondrial parameters.
Additionally, we identified metabolites whose levels were

strongly linked to the magnitude of the drug response. These

results suggest that certain metabolites may serve as biomarkers
for metabolic vulnerabilities in CRC. Co-targeting metabolic
pathways involved in the conversion of these metabolites may
yield synergistic effects. For example, the efficacy of irinotecan
and oxaliplatin treatments inversely correlated with adenosine
levels, indicating that inhibiting the salvage or de novo synthesis
of purine nucleotides could enhance the effectiveness of DNA-
targeting treatments.
Furthermore, the levels of some metabolites strongly correlated

with the efficacy of different treatments, suggesting that these
molecules might be essential for cell survival. We categorized
these metabolites by their accumulation profiles in cells with
either glycolytic or OXPHOS dependencies. Using this approach,
we revealed the existence of distinct metabolic vulnerabilities
linked to bioenergetic preferences. For instance, kynurenine,
primarily accumulating in glycolytic cells, was associated with a
reduced treatment response. Numerous studies confirm that
kynurenine supports CRC cell viability and promotes cancer
progression and chemoresistance [57–59].
Metabolic anti-cancer therapies which starve cancer cells of

asparagine, antifolates, and inhibitors of isocitrate dehydro-
genases, preventing the synthesis of “oncometabolites” are
already available [60]. Moreover, dozens of new metabolism-
targeting agents are currently being evaluated in clinical trials,
including those depleting arginine and inhibiting glycolysis
[61, 62]. Our study clearly demonstrates that these therapies
should be personalized, because in many cases the drug response
to these treatments is heavily linked to the mitochondrial,
bioenergetic and metabolic state of cells. Therefore, clinical trials
require initial patient stratification based on the metabolic activity
of cells.
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