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Abstract. Spike frequency adaptation is an important cellular mecha-
nism by which neocortical neurons accommodate their responses to tran-
sient, as well as sustained, stimulations. This can be quantified by the
slope reduction in the f-I curves due to adaptation. When the neuron is
driven by a noisy, in vivo-like current, adaptation might also affect the
sensitivity to the fluctuations of the input. We investigate how adapta-
tion, due to calcium-dependent potassium current, affects the dynamics
of the depolarization, as well as the stationary f-I curves of a white noise
driven, integrate-and-fire model neuron. In addition to decreasing the
slope of the f-I curves, adaptation of this type preserves the sensitivity
of the neuron to the fluctuations of the input.

1 Introduction

Many in vivo phenomena, like spontaneous activity, or the selective, delay ac-
tivity observed in many cortical areas of behaving animals, are characterized by
sustained spike activity throughout long intervals. During these intervals, the
statistics of the input current is likely to be stationary or quasi-stationary, al-
though originated by very irregular synaptic activity. When the activity of a
neural network can be characterized in terms of mean output spike frequencies
of subpopulations of neurons, the f-I response function (RF) has proved an in-
valuable tool to describe the network’s stationary activity (see e.g. [1, 2]). At
the same time, spike frequency adaptation (see e.g. [3, 6]) is an important cel-
lular mechanism by which neocortical neurons accommodate their responses to
transient, as well as sustained, stimulations. Adaptation should then be consid-
ered in the above framework, especially after that it proved to be essential for
two models of integrate-and-fire (IF) neurons to fit the in vitro response of rat
pyramidal neurons [5]. In addition to reducing the stationary spike frequency,
adaptation could also affect the neuron’s sensitivity to the fluctuations of the
input. In this work we analyze this problem for the linear IF (LIF) model neu-
ron with adaptation [5], driven by white noise, emulating the intense, irregular
synaptic activity driving a cortical neuron in vivo.



2 The model

The sub-threshold behavior of the LIF neuron is fully described by the depolar-
ization V , which obeys

CdV = −λdt + Iξdt + Iαdt (1)

Here C is the capacitance of the membrane, λ a constant leak term, Iξ the
synaptic input and Iα a calcium dependent potassium current, responsible for
spike frequency adaptation. Iα is proportional to intra-cellular calcium concen-
tration [Ca], Iα = ḡ[Ca]. Upon emission of an action potential, an amount ACa

of calcium immediately enters the cell and decays exponentially to zero with a
slow time constant τCa [5]:

d[Ca]

dt
= − [Ca]

τCa

+ ACa

∑

k

δ(t − tk) (2)

where the sum goes over all spikes emitted by the neuron up to time t.
The synaptic current Iξ is the result of the Poisson activation of (many)

independent excitatory and inhibitory inputs, with average m, variance s2 and
time correlation length τ ′, corresponding to the decay time constant of a single
post-synaptic potential. If τ ′ is very short, the correlation length of the current
becomes negligible, and the current can be replaced by white noise [7, 5]:

Iξdt → mdt + s
√

2τ ′ξt

√
dt (3)

where ξt is a Gauss distributed variable with E[ξt] = 0 and E[ξtξ
′

t] = δ(t − t′).
Hereafter we set τ ′ = 1 ms.

Equation (1) must be completed by boundary conditions: a spike is emitted
when V is driven above a threshold θ, after which is reset to a value 0 < Vr < θ
and clamped there for a refractory time τr. V is confined in the range [0, θ] by
a reflecting barrier at 0 (see [4]). Without adaptation (Iα ≡ 0), the f-I curve of
(1) is known and reads [4] (see also Fig. 1)

f = Φ(m, s) =

[

τr +
τ ′s2

(m − λ)2

(

e−
Cθ(m−λ)

τ′s2 − e−
CVr(m−λ)

τ′s2

)

+
C(θ − Vr)

m − λ

]−1

(4)
The f-I curve gives the mean output spike frequency f as a function of m, s in
stationary conditions. When adaptation is present, its effect can be taken into
account in the RF using the fact that its dynamics is much slower compared to
the other dynamic variables [3]. In particular, if τCa � 1/f , the fluctuations of
[Ca] can be neglected, ḡ[Ca] ∼ ḡACaτCaf ≡ αf . As a consequence, an additional
negative current 〈Iα〉 = −αf , proportional to the neuron’s own frequency f ,
affects the mean current m which, in equation (4), has to be replaced by [3, 5]

m → m − αf ≡ m(f) (5)
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Fig. 1. f-I curves of the adapted LIF neuron, theory vs simulations. Mean output fre-

quency plotted as a function of the mean current m at constant s (stepwise increasing

from 0 to 600 pA). Lines: self-consistent solutions of equation (4-5) (fth). Dots: simula-

tions (fsim). Adaptation parameters: τca = 500 ms, ḡACa = 8 pA (so that α = 4 pA s).

Neuron parameters: τr = 5 ms, C = 300 pF, θ = 20 mV, Vr = 10 mV, λ = 0. The

right inset shows an enlargement around the rheobase m̃ = 0. Left inset: sample of

depolarization and Iα for the point (m,s) = (100, 200) pA.

The new spike frequency is found by iterating the equation f = Φ(m(f), s)
until a fixed point is reached. 1 We have simulated the LIF neuron with calcium
dynamics, equations (1-2-3), for different values of m, s and τCa. Fig. 1 shows
the agreement between theory (self-consistent solutions of equation (4-5)) and
simulations. The good agreement for high s justifies the assumption that Iα

affects only the mean current felt by the neuron or, equivalently, that fluctuations
of Iα are negligible. In addition, calcium dynamics slower than ∼ 100 ms leads
to an error below 3% for four sample points of the (m, s)-plane (Fig. 2).

3 Effect of adaptation on the f-I curves

We next show that, contrary to the effect of the other parameters, adaptation
allows the neuron to reduce its spike frequency, retaining most of its sensitivity

1 The condition for any fixed point f∗ to be stable is ∂Φ(m(f), s)/∂f |f∗ =
−α∂Φ/∂m|f∗ < 1, which holds since Φ is an increasing function of m.



to fluctuations. Given a change in C, there is always a RF-equivalent change in
the couple {θ, Vr}, because the RF (4) is invariant under the scaling C → Ch,
{θ, Vr} → {θ, Vr}/h, h > 0 constant. As a consequence, from now on we consider
only changes in C, keeping θ and Vr fixed and such that their difference is finite.
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Fig. 2. Adapted LIF neuron, dependence of (fsim − fth)/fsim (Fig. 1) on τCa, theory

vs simulations. As τCa is varied, ACa is rescaled so that the total amount of adaptation

(α = 4 pA s) is kept constant. Parameters of the current: m = 100 pA (full symbols)

and m = 300 pA (empty symbols); s = 0 (circles) and s = 300 pA (triangles). All other

parameters as in Fig. 1. Mean spike frequencies assessed across 50 s, after discarding a

transient of 10τca. For s > 0 deviations from a monotonic behavior have to be expected,

but the error is always below 3%. For τCa < 80 ms (vertical dotted line) the error is

positive, meaning that fsim > fth: the neuron only slightly adapts because calcium

decay is too fast.

We focus on two observables, the slope ρ of the RF at the rheobase 2 (m̃ =
m− λ = 0) for s = 0 (which quantifies the amount of frequency reduction), and
the distance d between two RFs at different s, or equivalently the dependence of
the RF on s at m̃ = 0, taken as a measure of the sensitivity to the fluctuations
of the input current. 3 In the following it will be useful to use the notation

2 The rheobase current Ith is the threshold current, i.e. f = 0 if m < Ith when s = 0.
For the LIF neuron Ith = λ.

3 Since we are interested in the behavior at m̃ ≈ 0, the refractory period does not
have an effect, and we set τr = 0. The following formulae are also valid for τr > 0
provided that the frequencies at the rheobase are not too large, say f < 30 Hz.



θn ≡ θn − V n
r . For s = 0 the RF is linear in m̃, f = ραm̃ with

ρα =
1

Cθ1 + α
=

ρ0

(1 + ρ0α)

where ρ0 ≡ 1/Cθ1 is the slope with no adaptation (α = 0). Whereas both C
and α have a ‘first order’ effect on the slope, their effect on the distance d is
very different. By expanding the f-I curve (4) around the rheobase, introducing
adaptation and solving for f at m̃ = 0, one gets the distance as a function of C
and α:

dα =
σ2

θ2

1

1 + ρ∞α
≡ d0

1 + ρ∞α

where σ2 ≡ 2τ ′s2/C2, ρ∞ ≡ 2θ3/3θ2

2
C.

−200 −150 −100 −50 0 50 100 150 200
0

5

10

15

20

25

30

m
ea

n 
sp

ik
e 

fr
eq

ue
nc

y 
f [

H
z]

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

∆ C / C

d
α
(∆)/d

0

d
C
(∆)/d

0

−200 −150 −100 −50 0 50 100 150 200
0

5

10

15

20

25

30

m
ea

n 
sp

ik
e 

fr
eq

ue
nc

y 
f [

H
z]

mean current m [pA]

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

∆ C / C

d
α
(∆)/d

0

d
C
(∆)/d

0

−200 −150 −100 −50 0 50 100 150 200
0

5

10

15

20

25

30

m
ea

n 
sp

ik
e 

fr
eq

ue
nc

y 
f [

H
z]

mean current m [pA]

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

∆ C / C

d
α
(∆)/d

0

d
C
(∆)/d

0

d 
/ d

0

a 

b 

a 

b 

Fig. 3. Adaptation only slightly affects the sensitivity to fluctuations. Full lines: RFs

without adaptation, C = 300 pF, θ1 = θ = 20 mV, τr = 0, s = 0 and 400 pA. Vertical

line: distance at the rheobase d0. Dashed lines: same as full lines but with adaptation

α = 3 pA s. The distance is reduced to only 80% of d0 (see inset, a). Dot-dashed

lines: C = 450 pF, no adaptation, a slope-equivalent change to the previous case (a).

The distance is approximately halved (inset, b). The inset shows dα(∆)/d0 (full line)

and dC(∆)/d0 (dot-dashed line) as a function of slope-equivalent changes expressed in

∆C/C for the parameters of the main figure. Inset’s vertical line: ∆C/C = 0.5. Note

that dC(∆) ≤ dα(∆) approximately by a factor (1 + ρ0αη)−1 = (1 + ∆C/C)−1 (see

text)



This exposes the difference between the ‘quadratic’ (1/C2) behavior in C (or θ
because of the scaling properties of the RF), and the ‘first order’ behavior in
α: the price to be payed, to reduce the slope without adaptation, is a decreased
sensitivity to fluctuations, as implied by a reduced distance between the curves.
This is apparent by comparing the change in d caused by slope equivalent changes
in α (α → α(1 + η)) and C (∆C/C = ρ0αη) respectively (see inset of Fig. 3):

dα(∆) =
d0

1 + ρ∞α + ρ∞αη
, dC(∆) =

d0

(1 + ρ0αη)(1 + ρ∞α + ρ0αη)

4 Conclusions

We have analyzed a simple model of spike frequency adaptation, due to a slow

calcium dependent potassium current Iα, for the IF neuron with a linear de-
cay. Iα enters the RF only as a negative, feedback current which depends on
the neuron’s own spike frequency. We showed that there is an excellent agree-
ment between the theoretical frequencies, as predicted through the RF, and the
ones obtained by simulations of the neuron dynamics, up to large values of the
amplitude of the input fluctuations, and for slow enough calcium dynamics. In
addition, we have shown that adaptation reduces the slope of the RF retaining
most of neuron’s sensitivity to the fluctuations of the input current. We have
also found that the same results hold for the classical IF neuron with leakage
proportional to V (not shown here). These two model neurons with adaptation
have been recently proved able to fit the spike frequencies of rat neocortical
pyramidal neurons in vitro injected with Gauss distributed current resembling
the white noise (3) [5].
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