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Abstract
Spatial navigation and planning is assumed to involve a cognitive map for evaluating trajec-
tories towards a goal. How such a map is realized in neuronal terms, however, remains elu-
sive. Here we describe a simple and noise-robust neuronal implementation of a path finding
algorithm in complex environments. We consider a neuronal map of the environment that
supports a traveling wave spreading out from the goal location opposite to direction of the
physical movement. At each position of the map, the smallest firing phase between adjacent
neurons indicate the shortest direction towards the goal. In contrast to diffusion or single-
wave-fronts, local phase differences build up in time at arbitrary distances from the goal,
providing a minimal and robust directional information throughout the map. The time needed
to reach the steady state represents an estimate of an agent’s waiting time before it heads
off to the goal. Given typical waiting times we estimate the minimal number of neurons
involved in the cognitive map. In the context of the planning model, forward and backward
spread of neuronal activity, oscillatory waves, and phase precession get a functional inter-
pretation, allowing for speculations about the biological counterpart.

Introduction
Planning is a hallmark of higher cognitive functions. It has been particularly well studied as
navigational planning that involves hippocampal-prefrontal cortex structures, and the neuro-
nal processing involved in this case was suggested to be paradigmatic for planning in general
[1]. Medial temporal lobe has been proposed to form a cognitive map [2, 3]. Yet, how naviga-
tional planning is possible in a noisy neuronal substrate remains an open question.

From a computational perspective, navigational planning amounts to finding the shortest
route between two points. This can be formalized in terms of a path search problem in a graph
specified by nodes and connections. There is a set of optimal algorithms solving this problem
that go back to the classical breath-first search algorithm by Dijkstra [4]. In its backward ver-
sion, this algorithm determines the distances from a target node backwards to successive neigh-
bors throughout the graph until the start node is reached, and from there works stepwise
forward to the target node again [5]. A bidirectional version of breath-first graph search
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algorithm is also implemented by simultaneously triggered waves of activity at both the target
and the start node that propagates through multiple networks by diffusive coupling [6].

In some form such a 2-step backspread–forwardtrack procedure is present in all of today’s
graph search algorithms, and it is difficult to imagine solutions of the planning problem which
do not involve this core idea. Accordingly, various neuronal planning models have considered
the backpropagation of activity from the goal across a topological map of the environment
towards the start position [7–11]. However, these models suffer from an exponential decay of
activity with distance from the goal. In technical solutions, evaluating small signals just requires
high numerical range and precision. But in biological systems the large neuronal fluctuations
prevent a reliable implementation across multiple spatial scales (Fig 1a). A recent proposal con-
siders the spread of a single front of action potentials across a topographic map [12]. The direc-
tion from which the front reaches the start position first, indicates the shortest path. Yet, if
independent noise is added by each neuronal processing step, information is again lost quickly.
Here we suggest a phase-coding scheme that allows an agent to plan within a single network
across many spatial scales, without requiring a hierarchical coding [13].

Results
We first outline the basic idea in the 1-dimensional case. The various models that assume a
spread of directional information from the goal to putative starting points via diffusion of
activity [7–11] inherently set a spatial scale for the planning that is limited by the length con-
stant of the exponential activity decay. In fact, in the presence of a certain noise level and an
upper bound of the activity at the goal position, the directional information will vanish after a
few multiple of this length constant (Fig 1a).

To overcome the problem of exponential information decay (Fig 1a), we considered an
encoding of the directional information in the local phase differences of a periodic traveling
wave spreading across the map. All map neurons receive a synaptic drive that fires them peri-
odically, with the goal-representing neuron being driven stronger and thus firing initially with
a slightly higher frequency. Due to the recurrent nearest neighbor connectivity the surrounding
neurons one after the other will adapt to this faster frequency and, eventually, the map neurons
all fire with the same fast period, but with phase shifts that increase with distance from the
goal. Hence, a local comparison of the phases allows for detecting the shortest path to the goal.
The direction is determined by the neighboring neuron that fires earliest within a cycle, leading
to a movement along decreasing phases (Fig 1b, top). Even at large goal distances, the same
non-zero local phase difference between neighboring neurons is attained, although more time
is needed for converging to the steady state the further away a neuron is from the goal (for a
mathematical treatment see S1 Text).

Encoding goal, positions and obstacles
We next consider a 2-dimensional well-explored environment with possible obstacles. The
planning layer is composed of spiking neurons each coding for a position in the environment.
Excitatory synaptic connections between neurons exist if the places the neurons represent are
adjacent to each other (Fig 2a). The readout layer associates 4 cardinal motion directions to
each place in the planning layer. It reads out the local phase differences in the planning layer
and translates the readings into a sequence of actions towards the goal.

For the planning layer, we consider an array of N × N synaptically coupled, single compart-
ment Hodgkin-Huxley type neurons. The dynamics of the membrane potential Vij of the
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planning neuron encoding position (i, j) is given by

C
dVij

dt
¼ "IijL " Iijion þ !IijsynðtÞ þ IijextðtÞ ; i; j ¼ 1; 2; & & &N : ð1Þ

Here, IijL is a leak current, I
ij
ion defines the various intrinsic membrane currents responsible for

the action potential generation, Iijsyn is the synaptic current from the 4 neighboring neurons

defining whether or not the place (i, j) can be reached from that neighbor (for details see Mate-
rials and Methods).

The external current IijextðtÞ is produced by a population of NE external neurons that stochas-
tically fire with a certain Poisson rate ν and have an excitatory connection strength J. By choos-
ing these parameters, we can independently tune the mean μext and the standard deviation σext
of the external current (see also Materials and Methods). This allows us to control the level of
noise in the simulations. The goal neuron is driven by a slightly stronger external current than

the other planning neurons (mgoal
ext > mext). In the absence of a recurrent synaptic coupling (! =

0), each neuron ij fires periodically with some jitter in the firing times. When the goal neuron

has larger intrinsic oscillation frequency (mgoal
ext > mext), weak coupling (!> 0) shifts the firing

phases of its neighbors and this progressively influences the firing phases of other neurons.
This frequency difference propagates through the network and leads to a periodic traveling

Fig 1. A comparison of the classical diffusion model and our scale-free traveling wavemodel in 1 dimension. For illustration, a linear environment
with 20 discrete neurons and goal at position 1 is considered. In the diffusion model (a), activity (membrane voltage) is spread from the goal across the
environment (top panel) with exponentially decaying gradient, and hence quickly fading directional information (bottom). In the traveling wave model (b),
activation of the goal synaptically spreads through the environment such that the firing phase of adjacent neurons increases linearly with distance from the
goal (top), resulting in a fixed and positive local phase difference and hence in directional information that does not decay in space and is not restricted to a
specific scale (‘scale-free’), bottom.

doi:10.1371/journal.pone.0127269.g001
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wave [14–16]. For a neuron representing a transient obstacle, the external drive inhibits it such
that it does not fire, even when receiving the weak lateral input.

Firing phase encodes distance to the goal
When turning on the external input to the goal and the other neurons, the planning network
organizes itself into a periodic traveling wave spreading from the goal neuron through the net-
work. After a transient period, the firing phases become ordered according to their spatial dis-
tance to the goal, i.e. spatially closer neurons to the goal fire earlier than those far away (Fig
2b). This situation repeats itself after a fixed time, the common period of the population. This
periodic traveling wave is a stable phase-locked state in which all the neurons periodically fire
with a common period but with a phase difference in the firing times [17, 18].

Fig 2b shows examples of stationary phases of a periodic traveling wave spreading from the
goal neuron at position (1,1) across the planning layer with and without obstacles. The intrinsic
frequency of the goal neuron is 18 Hz and that of the other neurons 17 Hz. The development
of the local phase differences for two distal neurons, after injecting the small additional current
into the goal neuron, shows a delayed propagation of the directional information with a swift
increase and convergence to the steady state after 600 and, respectively, 1050 ms (Fig 2c). The
steady state of the traveling wave is said to be reached when the increase of the local phase dif-
ference at two successive times is less than 10% of the current value. The time from turning on
the external neurons until the steady state at the start position is referred to as planning time.
Thereafter, the spatial ordering of the firings is established between start and goal, so that firing
phases can be read out across the entire path without requiring additional planning. Remark-
ably, for readout it is necessary that a non-zero local phase difference is reached independently

Fig 2. Network architecture, traveling waves and planning time. (a) Planning and readout network. For each neuron in the planning layer, 4 actions can
be assigned. Actions neurons associated to planning neuron (i, j) areWij, Eij, Nij and Sij which receive synaptic input respectively from the left, right, north, and
south neighbor of the neuron (i, j) and evoke a motion in the same directions (just one synaptic input is shown). Action neurons corresponding to the current
place of the agent (here again (i, j)) are driven by an additional input (Iaijext). The first of the 4 action neurons that is fired by the passing traveling wave inhibits
the other 3 action neurons. (b) Synaptically propagating waves of activity from the goal neuron at (1,1) across a planning layer of 20 × 20 neurons, for four
different obstacle configurations. Colors code for firing phases at steady state relative to the goal neuron. (c) Time courses of the local phase difference for
two sample neurons at positions (10,10) and (20,20), indicated by □ and ' in the top left panel of b, with their local west-positioned neighbors. The time to
reach the maximal local phase difference represents the planning time for these two start positions towards the goal (here 600 and 1050 ms, vertical lines),
and subsequently the full path towards the goal can be read out.

doi:10.1371/journal.pone.0127269.g002
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of the distance from the goal (see Materials and Methods). This feature assures a noise-robust
readout of the directional information at any point in the map without information loss with
increasing distance from the goal.

Reading firing phases and local phase differences
Associated to each position, four action neurons representing the cardinal directions (W, E, N,
S) receive inputs from the planning layer and an additional input representing the agent cur-
rent position. In the example of Fig 2a where the agent is assumed to be at position (i, j), the
four action neurons receive the common subthreshold input I

aij
ext .

When the traveling wave spreading from the goal through the planning layer arrives at the
closest neighbor from (i, j) towards the goal (the left neuron at (i, j − 1)), the synaptic input
from the planning layer to the readout layer fires action neuronWij first (Fig 2a). The other
three action neurons (Eij, Nij and Sij) at that position are inhibited by the spiking of the first
action neuron. The agent will move towards the new position (i, j − 1) where the next action
can be read out. Note that once the periodic traveling wave reached the steady state at the ani-
mal’s position, it did so for all positions towards the goal, and no planning time is required any-
more before reading out the action. Hence, at the new place, the next action can be read out
from the next period of the wave.

Background noise is overcome by longer readout times
To check for the noise robustness of our architecture we modulated the noisiness of the exter-
nal input current. This was achieved by changing the number of external neurons NE firing
with a constant Poisson rate, and the synaptic strength J with which they drive the planning
neurons. For instance, a mean μext = 12 mV/ms and standard deviation σext = 0.7 mV/ms of Iijext
is obtained by a total afferent Poisson rate of 160000 Hz, a synaptic time constant of 2 ms, and a
synaptic strength of J = 0.375 mV/ms (cf. the voltage trace in Fig 3b, top panel, and Materials
and Methods). For such realistic noise the network still displays close to periodic traveling
waves and a shortest path can reliably be found (Fig 3a). The external current was driving the
goal neurons with a periodicity of roughly 18 Hz and the other planning neurons with 17 Hz.
For large values of σext, stochastic traveling waves are generated in which the firing times of
neurons may become disordered [19] and the readout mechanism fails to find a shortest path,
although the goal itself is still found (Fig 3b). In a real brain, the neurons may be subject to a
time-dependent common modulation that makes the firing irregular, although it remains cor-
related (Fig 3c). Furthermore, there may also be a stochastic bias in the external current that
drive the individual neurons. This may transiently revert the order of firing among neighboring
neurons, but due to the recurrent connectivity, differences in the drive can be corrected and a
short path to the goal can still be found (Fig 3d). The bias was produced by randomly varying
the input firing rates such that the input currents Iijext had a temporal mean mij

ext that itself was
varied.

To quantify the degradation with noise we introduced a measure of the planning perfor-
mance (PP) by calculating the ratio between the shortest path connecting start and goal, and
the average path lengths that have been chosen, PP ¼ shortest path length

hchosen path lengthsi . The planning perfor-

mance—here evaluated for start-goal distance of 10 steps—only slowly degrades with the noise
level (Fig 4a). The performance in the presence of noise can be improved by extending the
readout time for each action selection, i.e. the time for accumulating evidence about the direc-
tion to take. The longer this time, the more cycles can be evaluated to check which of the four
action neurons associated to the current position typically fires first. With an oscillation
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Fig 3. Results in a network of 10 × 10 planning neurons with different noise scenarios. Start position at (7,9), goal position at (7,3) and obstacle
indicated by the black bar. Top row: voltage of the four nearest neighbor neurons at the start position (identity color coded). Middle row: external input current
these neurons receive. Bottom row: 2D environment with the chosen path (blue line) from the start to the goal. Standard deviations σext of the input currents
indicated below. a, b: The mean of the input current generated by the background Poisson spiking neuron was constant and identical for all neurons (μext = 12
mV/ms), except for the goal neuron (marked with g, mgoal

ext ¼ 12:5). c: A common sinusoidal fluctuation in the Poisson firing rate of the background neurons
does not disturb the relative timing among neighboring neurons. d: A randomly chosen bias in the mean mij

ext of the individual input currents with standard
deviation 3 does not prevent the agent from finding a short path to the goal. In all simulations, the planning times were 600 ms, the readout times 250 ms, and
the coupling strength was ! = 0.15.

doi:10.1371/journal.pone.0127269.g003

Fig 4. Effect of noise on planning performance and readout time in the network used in Fig 3. (a) Planning performance, shown for 3 different readout
times of 60, 180 and 240 ms (corresponding to 1, 3 and 4 readout cycles, bottom to top), declines with increasing noise (average across 10 chosen paths,
error bars represent standard deviations of mean). (b) Readout time used at each position such that a shortest 10-step path is found, evaluated for the
different noise levels. Parameters, network- and task configuration as used in Fig 3.

doi:10.1371/journal.pone.0127269.g004
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frequency of 17 Hz and a readout time of 240 ms, for instance, one obtains 4 readout cycles
with an inter-cycle interval of roughly 60 ms, and a considerable improvement in performance
as compared to evaluating only a single cycle (Fig 4a). Given a noise level σext we determined
the shortest readout time such that the goal is always found on a shortest path in 10 random
start-goal configurations of distance 10. The required readout time increases roughly linearly
with the noise level (Fig 4b).

Planning performance increases with frequency
Amore subtle way to assure a high planning performance, beside increasing the readout time,
is to increase the oscillation frequency of the planning neurons by injecting stronger external
input currents. Fig 5a shows a comparison of the performance versus noise curve for a slow
and a fast periodic traveling wave, and for a solitary wave. The performance is best for the fast
traveling wave at a given noise level. Two reasons contribute to this effect. First, a high oscilla-
tion frequency requires stronger external input currents, and the neuron is shifted from the
noise-driven regime into the drift-dominated regime where spike timing becomes more precise
[20]. Second, the steady state with its phase-locking pattern represent an attractor of the phase
dynamics and this attractor becomes more stable with higher frequency and hence cleans up
the noise [21].

When the frequency goes to zero, the periodic wave degenerates to a single solitary wave
which propagates once through the network. For this solitary wave, both benefits of a fast peri-
odic wave disappear. First, because the spiking must be triggered by a few neighboring neurons,
the planning neurons need to be in a subthreshold but depolarized regime, where they are also
sensitive to noise. Second, the timing pattern of a single wave cannot profit from the phase
attractor property of a periodic wave. Correspondingly, the directional information in the

Fig 5. Planning performance decreases with decreasing oscillation frequency and is worst for a solitary wave. (a) Planning performance as a
function of the noise level for a 18 Hz (blue) and a 11 Hz (green) intrinsic oscillation frequency with 4 readout cycles to select a single action. For the solitary
wave, planning performance was measured after averaging the path lengths across 4 sweeps. Error bars from 10 realizations. (b, c) Color coded spike times
relative to the spike time of the goal position (1,1) for (b) the 18 Hz periodic traveling wave after reaching steady state and (c) the solitary wave, both with
noise level σext = 0.2. For the solitary wave, the spike times do not faithfully represent distance from goal, and hence the action selection mechanism may
yield a path to a non-goal position (the blue island in (c)).

doi:10.1371/journal.pone.0127269.g005
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spike timing order for a single solitary wave quickly degrades with increasing noise level (low-
est curve in Fig 5a).

To further compare the directional information in a periodic traveling wave and a solitary
wave we were considering the spike timing map relative to the goal neuron for these two cases.
As expected, the spike timings for the solitary wave does not fully reflect the distances to the
goal, as e.g. read off from the isolated blue island in panel c.

Planning time increases with distance and frequency
The characteristic feature of encoding the directional information in local phase differences is
that, in the steady state, this information does not decay throughout the whole network (Figs
1b and 2c). However, the time to reach a steady state in the local phase differences (i.e. the
planning time) increases with the distance from the goal, measured along the shortest path.
While, at positions close to the goal, local phase differences are already at steady state, further
away, neighboring neurons are still firing synchronously (Fig 6a). Fig 6b shows the time needed
for the full phase difference to spread across a 2-dimensional network without obstacles. In the
case of obstacles, the planning time increases linearly with the length of the shortest path to the
goal.

Importantly, planning time also increases with the oscillation frequency (Fig 6c). This is
because for increasing frequencies the excitatory postsynaptic potentials start to fall into the
refractory period of the previous postsynaptic spike, and they are therefore less efficient in
advancing the phase of the postsynaptic neuron [22, 23]. Ultimately, disproportionally more
cycles are needed to reach steady state. One might think of increasing the synaptic strength at
higher frequencies to speed up the convergence. Then the steady state is indeed reached earlier,
but the stronger coupling (!) of the neurons reduces the final phase differences [17]. Hence, in
the presence of noise, planning performance again decreases (data not shown). Both, the cou-
pling strength and the oscillation frequency, can be chosen to optimize the trade-off between
better planning performance (Fig 5a) and longer planning time (Fig 6c). As we have optimized
this trade-off, the relation between planning time and network size (measured along the diago-
nal, Fig 6b) yields a prediction of network size involved in behaviorally estimated planning
times.

Fig 6. Determinants of the planning time. (a) Snapshots of the local phase differences along diagonal positions from the goal. The intrinsic oscillation
frequency was 17 Hz for the non-goal positions and 18 Hz for the goal position. Noise level was σext = 0. (b) Planning time (i.e. the time to reach roughly 90%
of the final local phase difference) increases linearly with the distance from the goal. (c) Planning time also increases with the frequency of the intrinsic
oscillation.

doi:10.1371/journal.pone.0127269.g006

Scale-Free Navigational Planning by Neuronal TravelingWaves

PLOS ONE | DOI:10.1371/journal.pone.0127269 July 9, 2015 8 / 15



Planning in a complex and changing environment
To test our network with more challenging problems we considered classical path finding tasks
that have also been suggested to rate animal intelligence [24]. Whether our agent finds the
shortest path through a narrow hole in an obstacle depends on the size of the hole, and on the
level of noise present in the planning network. While for small noise the slippage can be found
without problems (Fig 7a), increasing the fluctuations in the external synaptic input to the
planning neurons precludes the finding of the shortcut (Fig 7a, 7b). We next wondered
whether the network can deal with a moving goal that changes its position while the agent is on
its way. This is in fact possible without pausing to wait until the network relaxes to the new
steady state. Once in the steady state, a continuous displacement of the goal leads to a continu-
ous adaptation of the firing phases of the individual planning neurons, and a direct path to the
moving target is found on the fly without delay (Fig 7c). Such faithful online modifications of
the optimal path would be difficult to explain if the direction field were represented by asym-
metric connections that are subject to synaptic plasticity obeying its own dynamics (e.g. by
anti-STDP, see [12]). Finally, we challenged the network by a complex maze where a slight

Fig 7. Finding shortcut and adaptive planning. (a, b) Turning up the noise level in the external input (indicated below each column) may be a way to
prevent the detection of a shortest path. Other parameters as indicated in the caption of Fig 3. (c) Adaptive planning for a moving goal. A goal at initial goal
position (17,7) is moved along the red line after planning time is over and the agent heads from the start towards this goal position. The goal moves one step
at each readout cycle. The moving target can reliably be traced (blue line). The planning time is 1 s and the readout time is 250 ms. mgoal

ext ¼ 12:5, μext = 12.

doi:10.1371/journal.pone.0127269.g007
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shift of the starting position implies an entirely different shortest path (Fig 8). Planning times,
readout times and performance were as in an open environment.

Discussion
We have shown how directional information towards a goal can spread without information
loss in a topographical network when the information is encoded in local phase differences of
periodically firing neurons. In response to an additional drive of a selected goal neuron the net-
work activity robustly self-organizes with a positive non-zero local phase difference even at
large distances from the goal neuron. At any position in the network the direction of the short-
est path to the goal is towards the neighbor with the smallest firing phase. The lower bound of
these phase differences across the network guarantees a scale-free planning such that in the
steady state, even arbitrarily far from the goal, a minimal directional information can be read
out (S1 Text).

The backward spread of directional information from a goal location [7–12, 25] or both the
backward spread from the goal and forward spread from the start [6] have earlier been sug-
gested as strategies for navigational planning. However, these previous models suffer from the
problem of a strong spatial information decay that causes them to break down in the presence
of realistic neuronal noise. Based on the suggested phase coding, a scale-free and reliable plan-
ning now becomes possible within a single network. We have shown that the attractor property
of the phase locking state makes the coding scheme robust against background noise generated
from the stochastical firing of external neurons. Higher noise levels can be countered by addi-
tional readout cycles to be evaluated per action decision.

Spatial planning has been suggested to involve neurons in the medial prefrontal cortex
(mPFC) that could be responsible for goal encoding [26]. In fact, impaired planning perfor-
mance after mPFC lesioning [27], and human activity mapping during detour tasks, confirm
the engagement of this area in navigating towards a goal [28, 29]. Wherever the goal encoding

Fig 8. Planning in complex environments. (a) Propagated wave of activity from the goal at (1,1) through a 20 × 20 network with obstacles (black bars) is
demonstrated in space-space color coded plot of firing times relative to the goal neuron. The intrinsic frequency of the goal neuron is 18 Hz. (b, c) Two
examples of navigation path (blue lines) in the network from different start positions (•) to the same goal (3) such that a slight shift of the starting position
implies an entirely different shortest path. The input to the planning layer is mgoal

ext = 12.5 and μext = 12 and the noise level is σext = 0.7. The planning time takes
1 s and readout time is 150 ms.

doi:10.1371/journal.pone.0127269.g008
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neurons reside, our theory predicts that they should display a well-timed firing pattern as part
of the direction encoding network. Crucially, this network does not need to uniformly tile the
whole free space of an environment. Instead, the nodes of the planning network typically repre-
sent critical spots where directional decisions need to be taken, as in the vicinity of an obstacle
or at crossing or bifurcation points of paths. If the synaptic strengths within the planning net-
work are constant, the algorithm will find the shortest path within the graph of these nodes.
While the shortest graph-theoretic path may not match with the shortest Euclidean path in the
2-dimensional environment, varying the synaptic strengths may convey additional distance
information. For instance, a stronger synaptic strength will advance the firing of the postsynap-
tic neuron, and by virtue of moving towards earlier spikes, this implicitly tells that the path
across this postsynaptic neuron is shorter.

Although we are considering a planning network with nearest neighbor connectivity, this
network may still represent only a sparse selection of a larger network with many more neu-
rons around each of our planning cells. When changing the environment, another sub-network
with neurons that are physically close but have still only sparse overlap may be used for plan-
ning in this new environment. In a similar way as place cells in the hippocampus are remapped
in a novel environment [30], the same planning neurons may be used in different spatial
contexts.

Phase-coding of directional information has several hallmarks. First, the model predicts
that the waiting time for an agent put into a well-explored maze until it heads off towards the
home location increases with the distance, i.e. the length of the shortest path, to the home loca-
tion. This waiting time corresponds to our planning time necessary for the network to settle in
a steady state. Second, phase coding inherently assumes (relative) periodic firings that leads to
activity oscillations, although it does not imply the existence of a global metronome (see Fig 3c
and [31]). This is reminiscent to oscillatory activity during navigational planning observed in
humans [32] and rats [33]. Third, to make a single decision about a new direction, oscillations
must transiently build up in our planning network before the decision is taken. Such oscilla-
tions could be related to hippocampal-cortical oscillations observed when an animal must take
a directional decision in front of the junction in a Y-maze [34]. Fourth, knowing the planning
times of an agent that hypothetically uses our algorithm, we can predict the network size
involved in this planning. If planning time is estimated from the waiting time at the start posi-
tion to be 2 s, for instance, the steady state after this time is reached at roughly diagonal posi-
tion 35 (Fig 6b), and this yields a squared network size of roughly 1200 neurons (or small
neuronal populations), offering 1200 decision spots for the navigation in an environment. Mul-
tiple copies of such a network could provide redundancy and could therefore help to reduce
the readout time, but not the planning time itself. So the limit on the network size imposed by
the planning time implies a limit on the spatial resolution of the internal map.

In terms of human cognition the suggested breadth-first search algorithm may underly the
pop-up effect of just ‘seeing’ the shortest path when navigating in a relatively simple environ-
ment or looking at a map thereof. In complex planning problems, however, the shortest path
ceases to simply pop-up when the spatial resolution of the available network or networks
becomes insufficient. We then need to resort to heuristic strategies such as defining intermedi-
ate goals to decompose the complex planning problem into a sequence of simpler tasks, such as
known for the transition from parallel to sequential search and sequence representation [35,
36]. In this sense, on a behavioral level, our model predicts that planning time should at some
point start to increase nonlinearly with task complexity and that this should go in hand with an
increasing likelihood that the chosen path is suboptimal.

The planning model finally may be extended by a network of position cells that provides the
required positional information. This would endow the model with different interesting
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features. Such a position network may be used for mental navigation in terms of forward replay
to new or old goals. In turn, reverse replay of past sequences in such a position network could
be used for learning the backward connections in the planning network that point from the
goal to the start, e.g. using classical spike-timing dependent plasticity [37]. Replay activity is in
fact observed in hippocampal recordings [38]. Finally, because the movement is directed
towards adjacent planning cells that fire earlier and earlier in phase, a place cell that receives
input from the corresponding planning neuron would similarly advance its firing phase during
the movement across its place field. Yet, as far as our planning network that operates by a
phase code remains hypothetical, any re-interpretation of the experimentally observed phase
precession (see e.g. [1]) in terms of a directional input from a planning network must also
remain speculative.

Methods
Model equations and parameters
Wemodeled the voltage dynamics of the planning neuron at position (i, j) according to

C
dVij

dt
¼ "IijL " IijNa " IijK " IijM þ IijextðtÞ þ !Iijsyn ; ð2Þ

with leak current IijL ¼ gLðVij " ELÞ, sodium current IijNa ¼ gNam
3h ðVij " ENaÞ, potassium cur-

rent IijK ¼ gKn
4ðVij " EkÞ, and outward potassium current with low threshold

IijM ¼ gMq ðVij " EkÞ. The subscript ij for the gating variablesm, h, n and q is ignored to lighten
the notation. The conductance is C = 1 (unitless), and the leak conductance is gL = 0.2 (in units
of ms−1). All parameters taken from [17, 39], see also Supporting Information (S2 Text). The
dynamics of the ion currents, in particularly the after-hyperpolarizing current IM, implies that
an action potential elicited by some planning neuron cannot fire a neighboring neuron that
just fired before, and this guarantees a forward spread of each single activity wave throughout
the network without reverberations.

The synaptic current IijsynðtÞ is obtained as a sum across the neighboring neurons (if existing),

IijsynðtÞ ¼ gsyn
X

k¼i(1; l¼j(1

sklðtÞðEe " VijÞ :

The conductance is set to gsyn = 1 if the place (i, j) can be reached and = 0 if it represents a fixed
obstacle. The reversal potential is Ee = 0. The synaptic gating variable skl of the presynaptic neu-
ron (k, l) describes the release probability as a function of the presynaptic potential, see [40] and
Supporting Information (S2 Text).The external current IijextðtÞ in Eq 2 that drives the planning
neurons (i, j) is produced by Nij afferents that are stochastically selected with connection proba-
bility c = 0.8 from a pool of NE external neurons, each stochastically firing with a Poisson rate of
νHz. Denoting the spike times of the n’th afferent to neuron ij by tspn , the synaptic strength by J
and the synaptic time constant by τs (= 2 ms), the external current follows the dynamics

ts
dIijext
dt

¼ "Iijext þ Jts
XNij

n

X

tspn

dðt " tspn Þ :

This stochastic current can be characterized by its mean and standard deviation of the form
mij
ext ¼ Jntsc NE and sext ¼ J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ntscNE

p
, respectively [41], both in units of mV/ms. A value of

mij
ext ¼ 12:5 and σext = 0.7 corresponds to an average of NE cν = 730500 input spikes per seconds

with a synaptic strength of J = 0.081 (in units of mV/ms), and for σext = 1.5 we had NE cν =
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160000 and J = 0.375. The case σext = 0 was simulated by a DC current for Iijext with mean mij
ext (Figs

1 and 2).
For each neuron encoding a position in the environment, 4 action neurons are assigned in

the action layer (Fig 2a). These action neurons are described by the leaky integrate-and-fire
model with dynamics of the membrane potential

dVaij

dt
¼ "

Vaij

tm
þ I

aij
ext þ I

aij
PRðtÞ þ I

aij
RRðtÞ : ð3Þ

The index a stands for the cardinal directionsW, E, N, and S that are represented by an action
neuron at each position (i, j). Moreover, τm = 20 ms is the membrane time constant, I

aij
ext is a

constant external input and I
aij
PR and I

aij
RR are synaptic inputs to action neurons aij from the plan-

ning (P) and readout (R) layer, respectively. An action neuron emits a spike whenever its
potential reaches a threshold potential Vthr = −50 and is then instantaneously reset to Vreset =
−65. The external input (e.g. from hippocampal place cells) to the action neurons is set to I

aij
ext ¼

10 if the agent is at position (i, j) and 0 else.
The action neuron aij receives synaptic input I

aij
PR from the planning layer if its corresponding

neuron emits a spike (see Fig 2a). More precisely, I
aij
PRðtÞ ¼ ge saði;j;aÞðtÞ with index function α(i, j,

W) = (i, j − 1), α(i, j, E) = (i, j+1), α(i, j, N) = (i − 1, j), α(i, j, S) = (i+1, j). Here, ge = 0.8 is the
excitatory synaptic conductance and skl(t) is again the synaptic gating variable driven by the
membrane potential of the presynaptic neuron kl. To insure that at most the first of the four
action neurons allocated to the same position is spiking we consider the mutual inhibition
among these neurons of the form

I
aij
RR ¼ ginh

X

taij<t

PSPðt " taijÞ ;

with postsynaptic potential PSP(t) = (t/τ2)exp(−t/τ)Θ(t) characterized by τ = 2 ms, ginh = −20
and step function Θ(t) = 1 for t> 0 and Θ(t) = 0 else. The sum is taken over all spikes emitted
by presynaptic neuron aij at times taij.

Scale-free planning: Non-decaying local phase differences
Here we give an intuitive account of why the local phase difference in the steady state is strictly
positive throughout a network of arbitrary size. Let us assume that the local phase differences
at some position were zero, i.e. the oscillator fire synchronously with its neighbors. In this case
no interaction is possible and the oscillators fire with their common intrinsic frequency. But
this contradicts the fact that the intrinsic frequency of the goal is higher than others, and that
in the steady-state of a periodic traveling wave all oscillators fire with the same frequency.
Next, to reach a common oscillation frequency, the difference between the driving currents of

the goal and the remaining neurons, Igoalext > Iext , needs to be compensated by different firing
phases. As the individual synaptic currents have a strictly positive initial slope, we conclude
that the firing phase difference between the current position and its neighbors can not be
smaller than a fixed positive value. For an analytical explanation see Supporting Information
(S1 Text).

Supporting Information
S1 Text. Non-fading directional information in the planning network: Mathematical
proofs.
(PDF)
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Non-fading directional information in the planning network: mathematical
proofs

Here we study the existence of periodic traveling waves in networks of coupled neural
oscillators that spread out from a goal location. We prove that at any position of the
network, there is a minimal, strictly positive local phase difference that points the
direction towards the goal, independently of the network size.

Traveling waves in neuronal networks

The dynamics of coupled nonlinear neuronal oscillators using conductance-based neu-
rons such as of the Hodgkin-Huxley (HH) type have extensively been studied [1–6].
A basic question concerning the dynamics of these coupled oscillators is when phase
locking can occur, i.e. when a stable periodic solution exists for which all the neuronal
oscillators generate action potentials with a common period. The dynamics of such
systems typically can not be solved analytically. However, in the case of weak coupling,
averaging theory [7] can be used to reduce the system to a phase model for which the
analysis is much simpler [3, 5, 8]. For the reduced phase model, the relevant dynami-
cal variables are the local phase differences between the oscillators, and the effective
interaction between oscillators only depends on these. Yet, the calculation of the inter-
action function, the so-called phase resetting curve, typically needs to be numerically
evaluated [1, 3, 6].

Another class of studies considers synaptically coupled chains of Integrate-and-Fire (IF)
oscillators [9–12]. These work specify conditions for the existence of stable phase-locked
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solutions that are valid for arbitrary coupling strengths. IF neurons may be regarded
as a reduction of HH-type neurons, capable for generating realistic spike trains [12,13].
The discontinuous nature of the IF model allows for a rich dynamical behavior and at
the same time simplifies the analysis of the dynamics and the characterization of phase
locking solutions. In fact, conditions for the convergence of the dynamics of coupled IF
oscillators to a steady state solution can explicitly be formulated [14, 15]. Therefore,
instead of studying traveling waves with HH-type neurons (see Eq.1 in the main text),
we shall consider coupled IF neurons. We follow [16] and [12] in analyzing traveling
waves in 1D chains and 2D arrays of synaptically coupled IF neurons in the oscillatory
regime.

Starting with a synchronous state of the coupled IF oscillators we consider a step-like
current injection into the IF neuron that represents the goal location. This perturbation
speeds up the goal oscillator and initiates waves of action potentials traveling through-
out the network. The activity eventually converges a periodic traveling wave, i.e. to a
phase-locked solution where again all frequencies are the same, but with firing phases
that increase with the distance from the goal. We show that in this steady state, local
phase differences between neighboring oscillators have a strictly positive lower bound
at any position of the network. In the context of navigational planning, this implies
that in the whole network there is always a minimal amount of directional information
to find the shortest path towards a goal.

One-dimensional chains of IF neurons

We consider a chain of N synaptically coupled IF oscillators. The subthreshold dynam-
ics of each oscillator is governed by

dVi
dt

= − Vi
τm

+ Ii + εI isyn(t), i = 1 · · ·N , (1)

where Vi is the membrane potential of the i-th neuron, τm denotes the membrane time
constant, Ii is the external input to neuron i, I isyn(t) is the total synaptic current from
nearest neighbors of neuron i, and ε ≥ 0 is the coupling strength. For convenience,
we set τm = 1. Each neuron fires a spike whenever its voltage reaches the threshold
potential Vth = 1; thereafter it is instantaneously reset to Vre = 0 for a time period
Tref (absolute refractory period). We assume Ii > 1 so that in the absence of coupling
(ε = 0) each oscillator fires at a rate 1/Ti, with Ti = Tref +ln(Ii/(Ii−1)). The synaptic
input to neuron i from its nearest-neighbor neurons j is

I isyn(t) =
∑
j=i±1

∑
n

α(t− tnj ), (2)

2



where the second summation runs over all the spikes emitted prior to time t by presy-
naptic neuron j at times tnj and α(t) = (t/τ 2) exp(−t/τ)Θ(t), with τ the decay time
constant and with Θ(t) = 1 for t ≥ 1 and Θ(t) = 0 for t > 0. To ensure that on a time
interval of a few milliseconds the activity spreads uni-directionally between neighboring
neurons we assume that the neurons only consider the synaptic inputs arriving within
their non-refractory period, and hence that the refractory time is absolute. Note that
this assumption approximates the effect of mainly the after-hyperpolarizing potassium
current IM in the HH-type model presented in the main text.

We want to find conditions for the existence of traveling waves. A (periodic) traveling
wave is a phase-locked state in which all the neurons fire at regular intervals of length
T but firing times are shifted according to a phase. Following [12], we define a phase-
locked solution to be a self-consistence solution to Eqs. (1, 2) in which the n-th firing
times of neuron i satisfies tni = (n+θi)T , where T is the collective period of the network
and 0 ≤ θi < 1 is the phase of neuron i. Under such ansatz for the firing times, we
integrate Eq. 1 between two successive firing times θiT and T + θiT and obtain

1

1 − e−T+Tref
= Ii +

ε

eT − eTref

∫ T

Tref

esI isyn(s+ θiT ) ds . (3)

Now, using Eq. 2 and the assumption of ignoring input during the absolute refractory
time, we obtain

I isyn(s) =
∑
j=i±1

α(s− T − θjT ) ·

·
[
Θ(T − Tref + (θj − θi)T ) − Θ((θj − θi)T )

]
,

(4)

with the step-function Θ defined above. Eq. 3 then becomes

1

1 − e−T+Tref
= Ii +

∑
j=i±1

KT (θi − θj), (5)

where

KT (φ) = ε(eT − eTref )−1 ·

·
∫ T

Tref

esα(s− T + φT )
[
Θ(T − Tref − φT ) − Θ(−φT )

]
ds .

(6)

We next abbreviate Ω = 1/(1− e−T+Tref ) and the local phase difference φi = θi+1 − θi.
The conditions for the phase locking solutions of a chain of IF oscillators then read

Ω = I1 +K+
T (−φ1),

Ω = Ii +K+
T (−φi) +K−

T (φi−1), i = 2 · · ·N − 1

Ω = IN +K−
T (φN−1) ,

(7)
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Figure 1. Plot of G(φ) = I − I1 +K−
T (φ) , Eq. 10, as a function of the local phase difference

φ. A stable solution corresponds to zero crossing of G with a positive slope. The graph in
particularly shows that the synaptic interaction function K−

T (φ) (≡ KT (φ), Eq. 6) is strictly
increasing for small φ, with K−

T (0) = 0. Parameter values: I1 = 1.4, I = 1.3, τ = 2τm,
ε = 0.5, Tref = 5τm, and T = 6.25τm.

with boundary conditions K−
T (φ0) ≡ 0 ≡ K+

T (−φN). Here K−
T = K+

T = KT , and the
superscripts (−) and (+) are merely referring to two summands j = i−1 and j = i+ 1
in Eq. 5 and thus indicate whether the interactions from the left or right neighbor of
neuron i, respectively, is considered.

Of particular interest from the perspective of planning is a traveling wave solution in
which the firing phase increases monotonically from the goal neuron along the chain.
For the rest of this Section we shall assume that the neuron at position 1 represents
the goal neuron. It receives the input I1 > I > 0, while all other neurons receive the
identical input (Ii ≡ I, i = 2 · · ·N). Solutions to Eq. 7 define the local phase difference
of oscillators, φi , and the collective frequency of oscillations, 1/T . These solutions a
priori include both synchronous and traveling waves. But a synchronous state can be
excluded as substituting φi = 0 (i = 1 · · ·N) in the above system, and using the fact
that K+

T (0) = K−
T (0) = 0, results in I1 = I which contradicts our assumption.

We next show that the remaining traveling wave solution has a fixed local phase differ-
ence across the network. Due to the additional drive of the goal neuron at position 1,
and because the absolute refractory time covers the time difference between the firing
of neighboring neurons, there is no backward interaction, i.e. neuron i is only affected
by its left neighbor j = i− 1. This implies that K+

T (. . . ) = 0 in the system (7). Next,
because the synaptic drive α(t) is a monotonically strictly increasing function for small
t > 0, the same holds for K−

T (φ) for small φ > 0, see Fig. 1. Because Ii ≡ I for all i ≥ 2
each of the equations for i ≥ 2 is therefore solved by a unique local phase difference
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Figure 2. Traveling wave in a chain of 30 IF neurons induced by a step current injection in
neuron 1 (Eq. 1). Colors encode voltage at steady state. The collective period and the local
phase differences are T = 6.25τm and φ = 0.026, respectively. These numbers correspond to
the solutions obtained from Eqs 8 and 9.

φi−1 = φ > 0. Hence, the system (7) of N equations is reduced to the two equations,

Ω = I1 (8)
Ω = I +K−

T (φ) , (9)

where φ ≡ φi−1 for i = 2 · · ·N . Note that these two equations are equivalent to the
phase-locking conditions for a pair of IF oscillators. From Eq. 8, using the definition
of Ω, the population frequency 1/T is found, and with Eq. 9 this implies that all the
neurons in the steady state oscillate with the same frequency as that of the goal neuron.
Moreover, Eq. 9 gives the phase-locking solution φ, indicating that at steady state there
is a constant firing phase difference between neighboring neurons.

To determine stability of the solution we subtract (8) from (9) which gives the condition

G(φ) = I − I1 +K−
T (φ) = 0 . (10)

Figure 1 shows a plot of G(φ); as can be seen there is only one solution of Eq. 10,
φ = 0.026. This solution corresponds to a traveling wave in which firing phases are
monotonically increasing from neuron 1 along the chain with fixed local phase difference
φ (see Fig. 2). For a pair of IF oscillators, [16] obtained a condition for the stability of
a phase-locking solution as ∂φG(φ) > 0. This condition holds here too, implying the
stability of the phase-locking solution φ for the chain of IF oscillators. The speed of
the wave propagation as discussed in [17] depends on various aspects of the model and
on the dynamics and strength of the synapses. Here, it depends on ε, τ and I1− I, but
importantly, it is independent of the chain length (the solutions φ and T are valid for
any N).

Figure 2 shows a traveling wave in a simulation with 30 IF neurons in a chain, induced
by a frequency difference between goal neuron 1 (I1 = 1.4) and the other neurons (I =
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Figure 3. Evolution of the local phase differences (a) and interspike intervals (b) for neurons
1 to 30 (represented by the 30 colored lines appearing from left to right) as a function of the
number of collective cycles of length T . Both local phase differences and interspike intervals
reach the steady state after 40 cycles. Note that the local phase difference of a fixed neuron
i from its neighbor j = i − 1 monotonically increases in time, i.e. with each cycle of the
oscillation (as represented by a single curve in (a)).

1.3). The color coding reflects membrane potential of the neurons after the transient
period. The frequency difference is propagated from neuron 1 throughout the chain
with a constant increase in firing time, φ T = tni+1 − tni = 0.165. In Figure 3a we show
the dynamics of the local phase differences φi of neurons 1 to 30 (corresponding to the
30 lines from left to right, respectively) as a function of the number of collective cycles.
All the neurons reach the steady state value of the phase difference at φ = 0.026, as it
was predicted by the solution of Eq. 10. In Figure 3b the interspike intervals of each
oscillator (represented again by lines) is plotted as a function of the number of collective
cycles. In the steady state, all neurons reached the population period T = 6.25τm after
nearly 40 periods of firing. The same value of T is obtained by solving Eq. 8 for the
parameters given in the caption of Fig. 1.

Two-dimensional arrays of IF neurons

We next consider a N × N array of coupled IF oscillators in which each oscillator is
connected with its four neighbors. We define the local phase differences of neuron ij
to the east and north neighbor, respectively, by

ψij = θi,j+1 − θij, i = 1 · · ·N, j = 1 · · ·N − 1

φij = θi+1,j − θij, i = 1 · · ·N − 1, j = 1 · · ·N (11)

Following the corresponding arguments from the 1D case presented above, we obtain
the phase-locking conditions for the 2D-array of coupled IF oscillators in the steady
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state,

Ω = Iij +Kx+
T (−ψij)+Kx−

T (ψi,j−1) +Ky+
T (−φij) +Ky−

T (φi−1,j) , (12)

(i, j = 1 · · ·N) with the KT ’s representing the interaction functions defined in Eq. 6,
and the superscripts x+ and x− (y+ and y−) indicating whether the synaptic drive of
neuron ij is coming from the east and west (north and south) neighbor, respectively.
Here, the cardinal directions refer to the 2D plot of the network (e.g. in Fig. 2b and 3 of
the main text) with the goal neuron (1,1) displayed in the bottom-left (= south-west)
corner. Iij is a fixed external input to the neuron at position (i, j). For the boundary
neurons Eq. (12) is subject to the conditions Ky−

T (φ0j) ≡ Kx−
T (ψi0) ≡ Ky+

T (−φN,j) ≡
Kx+
T (−ψi,N) ≡ 0.

As in the 1D case, we consider an input current Iij = I to all IF neurons except the goal
neuron, for which the input current is I11 > I. The fact that the external drive of the
goal neuron is stronger than that for the other neurons, together with the assumption
of an absolute refractory period, implies that the effective interactions are directed
from the goal neuron to the subsequent east and north neighbors (i.e. in the direction
of higher indices). The system of equations (12) therefore becomes

Ω =I11 (13)
Ω =I +Kx−

T (ψ1j), j = 1 · · ·N − 1 (14)
Ω =I +Ky−

T (φi1), i = 1 · · ·N − 1 (15)
Ω =I +Kx−

T (ψi,j−1) +Ky−
T (φi−1,j), i, j = 2 · · ·N . (16)

Note that the symmetry of the interactions in the south-to-north and west-to-east di-
rection (Ky−

T = Kx−
T ) results in a symmetry of phase differences along these directions,

φij = ψji , respectively. Eqs 14 and 15 corresponding to the first row and first column of
neurons, respectively, are therefore reduced to the 1D case (Eqs 7 and 9, respectively),

Ω = I +K−
T (φi1) , (17)

with φi1 = ψ1i for i = 1 · · · (N − 1), and Ky−
T = Kx−

T = K−
T = KT as defined in Eq.

6. Since K−
T is monotonically increasing, there is again a unique solution φi1 = φ1 > 0

for Eq. 17, and this holds for any network size N .

For neurons positioned off from the network boundary, the south-to-north and west-
to-east interactions add up and the total input current in Eq. 16 reduces to

Ω = I +K−
T (ψi,j−1) +K−

T (φi−1,j) .
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Figure 4. Plot of the vertical local phase differences φij in an array of 100× 100 IF oscillators
at steady state.Top line represents the local phase differences in the first column, φi1 = φ1.
Each line from left to right represents the vertical local phase differences φij for fixed column
index j as a function of the row number i. The index j of the curves increases from very left
(j = 1) to very right (j = 100). The steady-state local phase difference in 2D is also strictly
positive, with upper bound φ1 = 0.026 and a lower bound φ100 = 8× 10−4.

Since Ω = I11 (Eq. 14) we conclude that

K−
T (ψi,j−1) +K−

T (φi−1,j) = I11 − I > 0 , (18)

independently of the position (i, j) of the neuron and independently of the network
size N . Since K−

T (φ) for small φ is strictly increasing, see Fig. 1, there is some γ > 0
(depending on the synaptic transmission and neuron parameters) such that in the
relevant regime K−

T (φ) ≥ γ φ. Hence, from Eq. 18 we conclude that at any position
(i, j) of the network the local phase differences to the west (ψi,j−1) and south (φi−1,j)
neighbor in the steady state are summed up to a strictly positive value,

ψi,j−1 + φi−1,j ≥ (I11 − I)/γ > 0 . (19)

Further, due to the strictly positive slope of K−
T (φ), this phase-locked solution is stable.

In fact, a positive perturbation of the phase to the east or north (corresponding to a
delayed firing of neuron ij with respect to the west or south neighbor) would strengthen
the interaction K−

T (ψi,j−1) and K−
T (φi−1,j), respectively, and speed up the firing of

neuron ij, thereby correcting for its delay. Conversely, a negative perturbation from
the steady-state phase (corresponding the an earlier firing of neuron ij) would imply
a decrease of the interaction strength and would therefore correct the perturbation by
delaying the firing of neuron ij again.

Since these local phase differences encode the direction towards the goal, we conclude
from inequality (19) that in the steady state there is always a strictly positive directional
information throughout the network. Remember that the four action neurons at a given
position (i, j) read out which of the four neighboring neurons fires first, and then elicit
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the action to move towards the position corresponding to that neuron. Hence, an animal
at position (i, j) will choose to move towards position (i, j−1) or (i−1, j), depending on
whether the local phase difference ψi,j−1 or φi−1,j is larger, i.e. whether neuron (i, j−1)
or (i− 1, j), respectively, fires earlier. Note also that due to the goal position at (1, 1)
the neurons at positions (i, j+1) and (i+1, j) ‘behind’ neuron ij fire later than neuron
ij, and hence these directions are not chosen.

In Figure 4 we show a simulation of the vertical local phase differences φi,j in an array
of 100 × 100 coupled IF neurons at steady state. Each line in the plot corresponds to
φi,j for a fixed column j. The upper bound is determined by the local phase differences
along the first column, φ1 = φi,1 = 0.026 (top line). The same value of the local phase
difference is obtained by solving Eq. 17. The vertical local phase difference φij between
neurons in the next columns j = 2 · · · 100, as a function of the row number i, are shown
by the lines from left to right, respectively. The last column determines the lower bound
φ100 = 8 × 10−4. Hence, the results from the 1D case also carry over the the 2D case
where in the steady state there is again a lower positive bound for the local phase
differences.
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S2 Text

Azadeh Khajeh-Alijani, Robert Urbanczik, Walter Senn

Details on the HH-type model

Here we give the details of the ionic currents and synaptic gating variables of the HH
model. The ionic currents were implemented according to [1,2] and are reproduced here
for the readers convenience. The gating variables x = m,h, n and s obey the dynamics

dx

dt
= ax(Vij)(1 − x) − bx(Vij)x .

The parameters for the currents are EL = -67 mV, ENa = 50 mV, EK = -100 mV, gL =
0.2, gNa = 100, gK = 80, gM = 3 (all conductances are mS/cm2) and

am(Vij) = 0.32(Vij + 54)/
[
1 − exp(−(Vij + 54)/4)

]
,

bm(Vij) = 0.28(Vij + 27)/
[
− 1 + exp((Vij + 27)/5)

]
,

ah(Vij) = 0.128 exp(−(Vij + 50)/18),

bh(Vij) = 4/
[
1 + exp(−(Vij + 27)/5)

]
,

an(Vij) = 0.032(Vij + 52)/
[
1 − exp(−(Vij + 52)/5)

]
,

bn(Vij) = 0.5 exp(−(Vij + 57)/40)
]
,

Also for the M -current, we have

τq(Vij)
dq

dt
= q∞(Vij) − q,

Email address: azadeh.alijani@gmail.com (Azadeh Khajeh-Alijani, Robert Urbanczik,
Walter Senn).
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where

τq(Vij) = τ̄ /
[
3.3 exp((Vij + 35)/20) + exp(−(Vij + 35)/20)

]
,

q∞ = 1/
[
1 + exp(−(Vij + 35)/10)

]
and τ̄ = 400 mS.

The synaptic gating variable determining I ijsyn(t) is given by [3]

dskl
dt

= −skl/τs +
α(1 − skl)

1 + e−(Vkl−V̄ )/∆V
(1)

with τs = 2, α = 2, V̄ = −5, and ∆V = 2.
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