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Summary Animals collect information about their environment through a variety of senses that need
to be integrated into a coherent perspective. Since all sensory information is both incomplete and cor-
rupted by noise, this integration has the main goal of increasing the information otherwise obtained
from only a single sense. The Bayes-optimal estimate for the most likely stimulus under the assump-
tion of independent Gaussian noise is obtained by averaging estimates from different modalities while
weighting each with its respective reliability. It was previously demonstrated in behavioral experiments
that animals and humans combine multisensory stimuli in this optimal manner (Ernst and Banks, 2002;
Fetsch et al., 2009; Nikbakht et al., 2018). What type of neuronal circuitry is able to perform such
sensory integration? We present a neuron model capable of implementing the required computations
by exploiting the biophysical dynamics of conductance-based neurons with dendritic compartments.
Furthermore, a plausible error-driven plasticity rule enables neurons to learn not only input-output
mappings, but to also simultaneously represent the respective reliabilities of each input that are neces-
sary for a Bayes-optimal integration. In addition, the model supports dynamic reweighting of modalities
and can thereby react to changes in stimulus reliabilities on a much shorter time scale than the one of
synaptic plasticity. While both neuron and synapse dynamics are derived from a probabilistic descrip-
tion of neuronal processing, the model does not require a Bayes-optimal teacher but only input-output
samples, allowing efficient learning. To illustrate our model, we present a feed-forward circuit receiving
input from two different modalities with different associated reliabilities and show that after learning,
the circuit optimally takes into account the respective reliabilities when processing new information.
Finally, we discuss extensions of our model to non-linear dendritic compartments and to multi-layered
cortical circuits that learn continuous input-output mappings (Dold et al., 2018).

Additional Detail The Bayesian estimation of a random variable x from multiple observations xi
proceeds by computing the posterior distribution p(x|x0, . . . , xn), via a suitably chosen generative model
p(xi|x) and prior distribution p(x). Similarly, here we seek the posterior distribution of output rates
of a neuronal circuit, given activities in multiple input populations projecting to separate dendritic
compartments: p(r1|r0) = p(r1|r00, . . . , rD0 ). To compute this posterior, we define a generative model
p(rd0|r1) := 1
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a deterministic mapping from rates via the inverse transfer function: u1 := ρ−1(r1). Choosing an
appropriate prior and assuming rates of neurons projecting to different dendrites to be conditionally
independent we can apply Bayes’ theorem to arrive at:
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n := dim(r1). The typical somatic potential represents a compromise between the dendritic potentials
according to their respective reliabilities, similar to products of experts (Hinton, 2002). Dendritic
potentials (ud1) are determined from presynaptic rates (r0) and synaptic weights (w), where we assume
excitatory projections from the input layer directly onto modality-specific dendrites and via branch-
specific inhibitory interneurons with transfer function ρI. The dendritic conductance is hence given by
gd1 := gL +wEr0 +wIρI(r0) and the dendritic potentials by ud1 :=

gLEL+wEEEr0+wIEIρI(r0)
gL+wEr0+wIρI(r0)

. We define the
energy function E(u1, r0) := − log p(u1|r0) and propose that neuron and weight dynamics minimize this
energy by gradient descent (Rao and Ballard, 1999; Scellier and Bengio, 2017; Sacramento et al., 2018).
This leads to the following neuron dynamics, resembling a leaky integrator with conductance-based
synapses: cmdu1
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. Note
the similarity to the maximum-a-posterior (MAP) estimate for combining observations from n sources
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Figure 1: Multisensory integration of visual and tactile information in conductance-based neurons with dendrites. (a)
Sketch of multimodal neuron receiving inputs from unimodal populations. (b) Energy E(u1, r0) as a function of training
step. (c) Root-mean-square deviation (RMSD) of true orientations θ∗i and estimates θ̂i. See text for abbreviations. (d)
Relative weight of visual (blue) and tactile (green) input. For the different conditions, the visual weight is given by:
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T ) ("VT"). Corrupting noise on the visual
modality 42% smaller than on the tactile modality.

with corrupting Gaussian noise of different magnitudes: x̂ = 1/
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. For appropriate

relative ratios of gd1, the stationary somatic potential can hence be interpreted as the Bayes-optimal
combination of dendritic potentials. The dynamics of excitatory weights is given by:
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. Inhibitory weights follow identical dynamics with
EE → EI. While the first term matches average somatic and potentials similar to a previously proposed
somatodendritic error reduction rule (Urbanczik and Senn, 2014), the second term matches the total
conductance with the variability of the total dendritic potential with respect to the somatic potential.

To illustrate this model, we consider a cue-combination task from visual and tactile orientation
information. Each modality is represented by a homogeneous population with von Mises tuning curves
in which each neuron has a different preferred orientation. All neurons in one population project to a
specific dendritic branch on each of the neurons in the output population where they elicit dendritic
potentials ud1 (figure 1a). For simplicity, we assume large and symmetric transfer conductances between
the somatic and dendritic compartments and a linear transfer function for interneurons. Training
consist in generating ground-truth orientations θ∗ which are used to generate noisy modality-specific
orientations represented by the visual and tactile population with modality specific reliabilities: θV/T ∼
N (θ∗, σ2

V/T ). For each output neuron, θ∗ determines a specific target potential u1 which in combination
with the input-driven dendritic potentials ud1 is used to compute synaptic weight updates according
to equation (2) and the corresponding rule for inhibitory synapses. From the output population the
estimated angle θ̂ is reconstructed using a population-vector readout (see, e.g., Herz et al., 2017). Over
the course of learning synaptic plasticity continuously decreases the energy (figure1b). We compare the
root-mean-square deviation between the ground-truth orientation θ∗, and the Bayes-optimal maximum
a posteriori estimate ("MAP"), a naive estimate that equally weights visual and tactile input ("sym"),
the estimate reconstructed from the output population providing only visual input ("V"), only tactile
input ("T"), or both visual and tactile input ("VT") (figure1c). While the naive and single modal
estimates perform significantly worse than the MAP estimate, the estimate reconstructed from the
population when both modalities are active achieves similar error levels. The output population indeed
learned the reliabilities associated with each modality (figure1d) and takes these into account when
combining information from the two channels.

We presented a neuron model capable of performing multisensory integration based on learned
modality-specific reliabilities and demonstrated that it achieves similar performance to a Bayes-optimal
observer. On a conceptual level, our approach makes use of divisive normalization, similar to pre-
viously proposed models of multisensory integration (Ohshiro et al., 2011) but without the need for
additional recurrent circuitry. Due to this reduced complexity our model can be trained using an ex-
tended error-reducing learning rule, making it particularly suitable to be integrated into multi-layer
cortical microcircuits in which errors can be backpropagated across layers (Sacramento et al., 2018).
In particular, this would support a plastic hierarchical representation of reliabilities for various sensory
streams.
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