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Abstract

The present paper provides a mathematical description of high-order moments of spik-
ing activity in a recurrently-connected network of Hawkes processes. It extends previous
studies that have explored the case of a (linear) Hawkes network driven by determinis-
tic rate functions to the case of a stimulation by external inputs (rate functions or spike
trains) with arbitrary correlation structure. Our approach describes the spatio-temporal
filtering induced by the afferent and recurrent connectivities using operators of the input
moments. This algebraic viewpoint provides intuition about how the network ingredients
shape the input-output mapping for moments, as well as cumulants.

1 Introduction

Immense efforts in neuroscience have been invested in measuring neuronal activity as well as
the detailed connectivity between neurons. Such studies have been too often conducted sepa-
rately, despite the fact that neuronal activity and synaptic connectivity are deeply intertwined.
Indeed, the synaptic connectome determines the neuronal activity, while the latter reshapes
the connectome through activity-dependent plasticity. To better understand the intricate link
between activity and connectivity at the neuronal level, it is important to build tractable
network models that relate one to the other.
In this paper we analytically compute the statistics of neuronal activity —described via mo-
ments and cumulants— from the connectivity. In particular, we investigate how the spik-
ing statistics propagates from an input population of neurons to an output population of
recurrently-connected neurons as a function of the synaptic kernels, see Fig. 1A.
In order to remain tractable, the neuronal activity is modeled using a Hawkes process (Hawkes
1971a; Hawkes 1971b), also known as (linear) Poisson neurons (Kempter, Gerstner, and
Van Hemmen 1999) whose firing activity depends on upstream neurons as represented in
Fig. 1B and C. Here we refer to the multivariate Hawkes process as Hawkes network. Hawkes’
model has attracted much attention in various disciplines such as neuroscience (Gilson, Burkitt,
and van Hemmen 2010; Mei and Eisner 2017), artificial intelligence (Etesami, Kiyavash, Zhang,
and Singhal 2016), seismology (Le 2018; Lima and Choi 2018), epidemiology (Saichev, Mail-
lart, and Sornette 2013) and finance (Errais, Giesecke, and Goldberg 2010; Bacry, Mastromat-
teo, and Muzy 2015). Due to the event-like nature of its activity, intrinsic correlations arise
and reverberate as echoes induced by the recurrent connectivity. The present study builds
upon Hawkes’ results that describe second-order correlations for mutually exciting point pro-
cesses (Hawkes 1971a; Hawkes 1971b) and extends them to higher orders. In particular, we
show how moments of arbitrary order propagate from one layer to the next.
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The vast majority of studies focuses on the first and second orders of spiking statistics (Hawkes
1971a; Hawkes 1971b; Gilson, Burkitt, and van Hemmen 2010; Brémaud, Massoulié, and
Ridolfi 2005; Tannenbaum and Burak 2017). Up to our knowledge, only two recent studies
have investigated higher-order cumulants (Jovanović, Hertz, and Rotter 2015; Ocker, Josić,
Shea-Brown, and Buice 2017). In the earliest (Jovanović, Hertz, and Rotter 2015), the authors
derived a recursive algorithm based on the theory of branching Hawkes processes to calculate
the cumulants for the spiking activity. The second study (Ocker, Josić, Shea-Brown, and
Buice 2017) relies on path-integral representation to explore the cumulants, which are closely
related to moments, for Hawkes process with possible non-linearities. If the path-integral
representation derived from field theory is adequate to tackle non-linearities, it provide limited
intuition on the geometrical aspect for the transmission of spiking density across layers. A
common limitation of both studies is that they provide little intuition about how the moments
propagate in neuronal networks, which we aim to address here. Moreover, the case of neurons
stimulated by inputs with correlated activity has not been explored yet for larger-than-second
orders.
A motivation for investigating higher-than-second orders of correlations in Hawkes networks
comes from the study of spike-timing dependent plasticity (STDP). The established for-
mula (Hawkes 1971a) is sufficient to analyze in recurrently-connected networks the effect of
the so-called pairwise STDP: As the synaptic weights between neurons are modified depending
on the time difference between input and output spikes, the overall effect can be captured by
the spiking covariances (Gilson, Burkitt, Grayden, Thomas, and van Hemmen 2009a; Gilson,
Burkitt, Grayden, Thomas, and van Hemmen 2009b; Pfister and Tass 2010). However, the
more elaborate model of triplet STDP (Pfister and Gerstner 2006; Gjorgjieva, Clopath, Audet,
and Pfister 2011) requires the knowledge about the third order of the spike statistics, involv-
ing input-output-output spikes. To gain intuition, a key is understanding how the synaptic
connectivity shapes the input correlation structure in a network as illustrated in Fig. 1A.
Another motivation is that, although pairwise correlations have been argued to be sufficient
to represent experimental data (Barreiro, Gjorgjieva, Rieke, and Shea-Brown 2014), this view
has been recently challenged and mechanisms related to higher-order correlations have been
found to improve descriptive statistical models (Shimazaki, Sadeghi, Ishikawa, Ikegaya, and
Toyoizumi 2015). In dynamic neuron models, even though population mean-field dynamics can
be captured by non-spiking models (Helias, Tetzlaff, and Diesmann 2013; Grytskyy, Tetzlaff,
Diesmann, and Helias 2013), networks with realistic sizes exhibit finite-size effects in their
pairwise correlations (van Albada, Helias, and Diesmann 2015). This calls for analytical tech-
niques to evaluate those at arbitrary orders, as was done recently for binary neurons (Dahmen,
Bos, and Helias 2016).
This led us to investigate a general solution for the spatio-temporal correlation structure via
moments of arbitrary orders in Hawkes processes as a function of the moments in the in-
put population. Our results are structured around three theorems. The first one describes
how moments (of arbitrary orders) propagate in feedforward networks, thereby generalizing
the results by (Kempter, Gerstner, and Van Hemmen 1999). The second theorem describes
the effect of recurrent connectivitywithin the output population, extending (Gilson, Burkitt,
Grayden, Thomas, and van Hemmen 2009b; Pfister and Tass 2010). The last theorem trans-
lates the mappings for moments into mappings for cumulants, in line with a recent line of
work (Jovanović, Hertz, and Rotter 2015; Ocker, Josić, Shea-Brown, and Buice 2017).

2 Results

Let us consider an input population of m neurons whose spiking activity (superposition of
Dirac deltas at spike times) is denoted by the vector of functions x(t) = (x1(t), · · · , xm(t)).
This input population together with some stochastic input rates λ(t) = (λ1(t), · · · , λn(t)) feed
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Figure 1: Overview of the present study. This schematic diagram presents the goal of
this work, which is the characterization of the mapping between the moments of the input and
output spike trains (i.e., their correlation structure) for a multivariate Hawkes process. In the
present paper we refer to it as a Hawkes network, where nodes are the individual neurons that
emit (or fire) spikes, borrowing terminology from neuroscience. The afferent and recurrent
connectivity are described by the kernel functions γik and εij , respectively. The matrices and
cubes represent the second- and third-order moments, which are formally tensors with “spatial”
coordinates (over neurons) and temporal variables. Note that the difference between space and
time here is simply their discrete and continuous natures. Dashed gray arrows represent cross-
order contributions from the input to the output moments. B: This diagram depicts the
response of the downstream neurons due to a spike fired by the red neuron. The red curves
represent the increase of firing rate following the spikes, which is given by the convolution of
the synaptic kernels εij . C: Similar diagram to panel B for a neuron with a self-connection
with kernel ε (thick bright red curve). The effective recurrent kernel ε̃ (dashed dark red curve)
is given by the superposition of the self-convolutions of ε (thin solid red curves in addition to
the thick one). It corresponds to the Green function of the network in the context of linear
dynamics.
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a network (output) population of n neurons denoted by y(t) = (y1(t), · · · , yn(t)) which are
also a superposition of Dirac deltas.

Definition 1 (Hawkes Process) The Hawkes process is a point-emission process whose in-
tensity ν(t) = (ν1(t), · · · , νn(t)) depends upon both the past input spiking activity x(u) and its
own past spiking activity y(u) with u < t as well as on a time-dependent (possibly stochastic)
rate λ : R→ Rn+:

νi(t) = λi(t) + (εij ∗ yj) (t) + (γik ∗ xk) (t) , (1)

where γ = {γik}n,mi,k=1 : R → Rn×m+ is a matrix of “synaptic” kernels, made of functions γik :
R → R+ that describe the causal effect from the input neuron xk on the network neuron yi.
These functions are equal to zero for all t ≤ 0. Similarly ε = {εij}n,ni,j=1 : R→ Rn×n+ is a matrix
of kernels εij : R → R+, each corresponding to the recurrent interraction from neuron yj to
neuron yi. Note that the convolution operator ∗ is a matrix convolution; see Eq. (5) below. In
this paper we omit the summation symbol in line with Einstein’s convention for tensor calculus.
All kernel functions and spontaneous rate functions are assumed to be positive-valued.
Let Ni(t) =

∫ t
0 yi(u)du be the counting process associated with the spiking activity yi(t), which

gives the number of spikes from 0 to t for the network neuron i. The increment of the ith

counting process Ni(t) in an infinitesimally small bin size dt is given by

dNi(t) ∼ Poisson
(
νi(t)dt

)
(2)

As a consequence, we have 〈dNi(t)〉 = νi(t)dt, hence 〈yi(t)〉 = 〈dNi(t)/dt〉 = νi(t).

Remark 1 (Atomic contributions and contraction of indices) Note that for an infinites-
imally small dt, the increment dNi(t) can take only 2 values: 0 or 1. In that case, we have for
any p ∈ N+ ,

(dNi(t))
p = dNi(t) (3)

Following, atomic contributions arise from the point-process nature of spike trains when taking
expectations of products of yi(t) for all possible redundancies in the time variables together
with the “spatial” coordinates (Daley and Vere-Jones 1988). For the example of the 2nd-order
moment, it corresponds to the twofold condition k1 = k2 and t1 = t2, which leads to the second
term in

〈xk1(t1)xk2(t2)〉 = 〈xk1(t1)〉 〈xk2(t2)〉+ 〈xk1(t1)〉 δk1k2δ(t2 − t1) . (4)

In the remainder we refer to terms involving Kronecker deltas δk1k2 and Dirac delta δ(t2 − t1)
as contractions of indices (here 1 and 2).

Definition 2 (Matrix convolution) In Eq. (1), the standard convolution is extended to a
matrix form, which involves a matrix multiplication. For the kernel matrix ε and vector y, the
ith element of the matrix convolution is given by

(εij ∗ yj) (t) ≡
n∑
j=1

∫ ∞
0

εij(u)yj(t− u)du . (5)

Definition 3 (Moments of order p) Let k = (k1, · · · , kp) denote a set of p coordinates kr ∈
Im = {1, · · · ,m}. The moment of order p of the input population evaluated at times t =
(t1, · · · , tp) is defined as

Xp
k(t) ≡

〈
p∏
r=1

xkr(tr)

〉
x

. (6)
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Similarly, the moment of order p of the output population for the coordinates i = (i1, · · · , ip) ∈
Ipn and the time variables t = (t1, · · · , tp) is defined as

Y p
i (t) ≡

〈
p∏
r=1

yir(tr)

〉
y,x,λ

. (7)

Note that the mathematical expectation corresponds to three sources of stochasticity, as indicated
by the superscript. Note that, due to the recurrent connectivity, the dependency of y on itself
also concerns the past activity.

Remark 2 (Symmetry of moments) The moments Xp
k(t) and Y p

i (t) have many symme-
tries. For the example of the input moments, any permutation Π of Ip such that the transformed
coordinates Π(k) = (kΠ(1), · · · , kΠ(p)) and Π(t) = (tΠ(1), · · · , tΠ(p)) leaves Xp

k(t) invariant:

Xp
Π(k)

(
Π(t)

)
= Xp

k(t) . (8)

Definition 4 (Generalized Spatio-Temporal Delta Function) Let δ̄k(t) be the general-
ized delta function defined for the set of coordinates k = (k1, · · · , kp) and times t = (t1, · · · , tp),
which combines the Kronecker and Dirac delta functions as

δ̄k(t) =


1 if p ∈ {0, 1} ,∏p
r=2 δ (tr−1 − tr) if k1 = · · · = kp and t1 = · · · = tp with p ≥ 2 ,

0 otherwise.
(9)

Note that for p = 2, one recovers the product of the standard Kronecker delta with the Dirac
delta: δ̄k1,k2(t1, t2) = δk1,k2δ(t1− t2). Note also that when the lower index k is omitted, we will
assume that k1 = · · · = kp (i.e. single neuron case).

Example 1 (Moment for a single spike train with oscillatory firing rate) Before pre-
senting the general result, we provide an illustrative example to fix ideas and help the reader
with concepts and notation.
Case p = 2:
For a single (input) neuron driven by a deterministic rate function µ, the contraction in the
2nd-order moment corresponds to the condition t1 = t2 without “spatial” coordinates here,
simplifying Eq. (4):

〈x(t1)x(t2)〉x = µ(t1)µ(t2) + µ(t1) δ(t2 − t1) . (10)

Case p = 3:
The 3rd-order moment for a single spike train is given by

〈x(t1)x(t2)x(t3)〉x = µ(t1)µ(t2)µ(t3) + µ(t1)δ(t2 − t1)µ(t3) + δ(t1 − t3)µ(t1)µ(t2)

+µ(t1)µ(t2)δ(t3 − t2) + µ(t1)δ(t2 − t1)δ(t3 − t1) . (11)

This expression exhibits two “extreme” cases where all time variables are equal t1 = t2 = t3 cor-
responding to the two Dirac delta δ(t2− t1)δ(t3− t1) = δ̄(t1, t2, t3) for the partition

{
{1, 2, 3}

}
,

and where they are all distinct giving µ(t1)µ(t2)µ(t3) for
{
{1}, {2}, {3}

}
. In addition, the three

remaining terms involve a contraction for 2 out of the 3 variables.
Numerical simulation:
Fig. 2 illustrates the moments for p = 2 and 3 with a single spike train driven by an oscillatory
firing rate. Note that “spatial” coordinates k in the above equation are simply ignored, together
with the Kronecker deltas. Fig. 2B, C and E highlight the atomic contributions along the
various “diagonals” where the time variables coincide. Away from those subspaces, the spike
densities are much lower, as can be seen in the scaling of values in the middle and right plots
of Fig. 2C and E. Note that the main diagonal for p = 3 is slightly larger than that for p = 2,
as autocorrelation effects cumulate.
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Figure 2: Input moments for a spike train. A: Spike raster (top plot) for 50 simulations
using an oscillatory rate function (bottom plot). B: 2nd-order moment (left plot) averaged
over 10000 simulations, where darker pixels indicate a higher spike density. The middle and
right diagrams illustrate the decomposition into a contribution due to rate correlation (co-
fluctuations) and to atomic contributions (diagonal in cyan), respectively. Each contribution
corresponds to a partition of I2 = {1, 2}, as indicated below. C: Example slices of the matrix
as indicated in the left diagram for a fixed t1 (middle plot) and along the diagonal (right plot).
Note the difference in scaling for the y-axis (1 order of magnitude). D: Decomposition of the
3rd-order moment using the partitions of I3 = {1, 2, 3}, similar to panel B. E: Main diagonal
of the 3rd-order moment corresponding to t1 = t2 = t3 and a plane corresponding to t1 = t2,
see the blue line and red plane in the left schematic diagram (color coded). All prediction
curves are calculated using Eq. (12).
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Proposition 1 (Moments for inputs driven by deterministic rate functions) Let Pp =
P(Ip) denote the set of all partitions Φ of the set Ip = {1, · · · , p}. If each input neuron is in-
dependent from each other and the firing rate of neuron xk(t) is given by µk(t), then the input
moment of order p over the coordinates k = (k1, · · · , kp) at times t = (t1, · · · , tp) can be
expressed as

Xp
k(t) =

∑
Φ∈Pp

∏
S∈Φ

δ̄kS
(tS) µkŠ (tŠ) , (12)

where S spans the disjoint subsets of Φ whose union is Ip, with kS = {kr, r ∈ S} and tS =
{tr, r ∈ S}. In addition, the instantaneous firing rate appears with a representative index, here
taken as the minimum Š = min(S). Recall the convention δ̄kS

(tS) = 1 when S is a singleton.

Remark 3 The grouping of indices from a given subset S in Eq. (12) is a direct consequence of
the contraction highlighted in remark 1, resulting in an atomic contribution where the paired
spatial coordinates and temporal variables related to S are involved in the generalized delta
function δ̄.

Proof of Proposition 1: Eq. (12) can be obtained using the moment generating func-
tion (Daley and Vere-Jones 1988; Ocker, Josić, Shea-Brown, and Buice 2017), via its pth

derivative for order p. Here we provide a proof by induction, which highlights the key obser-
vation that every combination of contractions can be described by a partition.
Let assume that Eq. (12) is valid for all orders 2 ≤ p′ ≤ p − 1. Now considering the order
p with given coordinates k and time variables t in Xk(t), we denote by S∗ the set of order
indices in Ip−1 such that coordinates and times are identical to their counterpart for p, namely
S∗ = {r ∈ Ip−1, kr = kp and tr = tp}. Using the probabilistic independence as before, we can
write:

Xk(t) =

〈 ∏
r∈Ip\S∗

xkr(tr)

〉 〈∏
r∈S∗

xkr(tr)

〉

=

 ∑
Φ′∈P(Ip\S∗)

∏
S∈Φ′

δ̄kS
(tS) µkŠ (tŠ)

 δ̄kS∗ (tS∗) µkŠ∗ (tŠ∗)

=
∑

Φ=Φ′∪{S∗}
Φ′∈P(Ip\S∗)

∏
S∈Φ

δ̄kS
(tS) µkŠ (tŠ) . (13)

In the second line, we have used the hypothesis for order p− |S∗| where |S∗| is the number of
elements in S∗ for the indices that are not in S∗, as well as the contraction for all elements in
S∗. The previous expression is valid for each S∗ ⊂ Ip containing p, which is determined by k
and t. We conclude by observing that the above dichotomy of partitions Φ actually spans the
whole set P(Ip) = Pp: ⋃

S∗⊂Ip
S∗3p

⋃
Φ′∈P(Ip\S∗)

Φ′ ∪ {S∗} = P(Ip) , (14)

which accounts for all possible configurations of k and t. This is also related to the decomposi-
tion of the Bell number —giving the number of partitions Φ ∈ Pp— in the sum of the Stirling
numbers of the second kind sp,q —giving the number of partitions Φ that have q groups. They
satisfy the relationship sp,q = sp−1,q−1 + qsp−1,q for all 2 ≤ q ≤ p − 1 (corresponding to the
above dichotomy), as well as the “boundary” condition sp,q = 1 when q = 1 or q = p. �

7



2.1 Network with afferent connectivity

Now that we have introduced definitions and concepts that will be useful to characterize
the high-order moments, we turn to the case of a network with afferent connections, but no
recurrent connections. The following theorem is the first of our two core results. We denote
the driving rate function of the network neurons that lumps together the spontaneous activity
and the input influx by

νε=0
i (t) = λi(t) + (γik ∗ xk) (t) . (15)

Definition 5 (Moment for the input rate λ) Considering the stochastic spontaneous rate
function λ (e.g., a Cox process), we define the corresponding moment of order p for the coor-
dinates i ∈ Ipn at times t = (t1, · · · , tp) as

Λpi (t) ≡

〈
p∏
r=1

λir(tr)

〉
λ

. (16)

Definition 6 (Tensor convolution operator) Let αij : R → Rn,m be a matrix of kernels.
We define the 2p-dimensional tensor that replicates the matrix α for all pairs of indices (irjr):

αp
ij(t) =

p∏
r=1

αirjr(tr) (17)

with i = (i1, · · · , ip) ∈ Ipn, j = (j1, · · · , jp) ∈ Ipm and t = (t1, · · · , tp). For a p-order tensor T pj
with coordinates j, the tensor convolution ~ between αp

ij and Xj evaluated at times t gives the
following tensor of oreder p:(

αp
ij ~ T

p
j

)
(t) ≡

∑
j=(j1,··· ,jp)

∫
u∈Rp

αp
ij(u)T pj (t− u)du

=
(
αi1j1

1∗ · · ·αipjp
p
∗ T pj1,··· ,jp

)
(t) . (18)

The second line is a reformulation to stress that the convolutions of α are applied on each of the
p dimensions —as indicated above each asterisk— on the tensor T p, followed by the summation
for the tensor product (similar to a matrix product), in line with the definition in Eq. (5).

In essence, this convolution operator involves the same joint “multiplication” on paired spatial
and temporal dimensions (related to ki and ti, the temporal convolution being seen as a function
multiplication operator) as the matrix convolution in Eq. (5), but extended on all dimensions
of the tensor. In particular, this operation is linear.

Definition 7 (Moment for the filtered inputs) As with the spontaneous rate λ, we define
the following moments of the input x filtered by the afferent kernels γ:

Γpi (t) ≡
(
γpik ~X

p
k

)
(t) , (19)

with i = (i1, · · · , ip) ∈ Ipn, k = (k1, · · · , kp) ∈ Ipm and t = (t1, · · · , tp).

Note that this definition implicitly involves the averaging over the statistics of the inputs x,
that is 〈· · · 〉x.

Definition 8 (Moment symmetrical expansion operator) Let us consider two tensors
of order q and r, say T qj′(t

′) with coordinates j′ = (j′1, · · · j′q) and t′ = (t′1, · · · t′q) as well as
U rj′′(t

′′) with coordinates j′′ = (j′′1 , · · · j′′q ) and t′′ = (t′′1, · · · t′′r). For any given p ≥ q + r, we

8



define the following tensor operation that constructs a moment of order p with i = (i1, · · · , ip)
and t = (t1, · · · , tp) from the tensors T and U of smaller orders q and r:

Ap[T q, U r]i(t) ≡
∑

A⊂Ip,B⊂Ip
|A|=q,|B|=r
A∩B=∅

∑
Φ∈Pp

Φ̌=A∪B

(∏
S∈Φ

δ̄iS (tS)

)
T qiA(tA) U riB (tB) . (20)

Here we have defined Φ̌ = {Š, S ∈ Φ}, the set of minima for the groups in the partition Φ. By
convention, the 0-order tensors are valued 1 when A or B = ∅.

Eq. (20) uses contractions to augment the order of the combinations of tensors T q and U r from
q+ r to p with all possible symmetries. In particular, if T q and U r are symmetric tensors (see
Remark 2) with respect to all their own dimensions, the output of Ap is symmetric as well.

Theorem 1 (Input-output mapping for afferent connectivity) Consider an uncoupled
Hawkes network (definition 1) whose neurons are excited by both inputs x (via afferent connec-
tions) and spontaneous rate λ, which are probabilistically independent. The moment My,ε=0

i

of order p of of the network population depends on all smaller-order moments Xq of the input
population as well as moments for the spontaneous firing rate Λr:

Y p,ε=0
i (t) =

∑
0≤q+r≤p

Ap [Γq,Λr]i (t) , (21)

where the moments Γ and Λ are defined in Eqs. (16) and (19), respectively. Note that the su-
perscript of the moment corresponds to the situation where the network population is decoupled
(i.e., ε = 0).

Proof of Theorem 1: Provided the statistics of inputs x and the spontaneous rate λ is
known, the spiking activity of the network neurons is determined by the driving rate function
νε=0
i in Eq. (15). Similar to Eq. (12) in Proposition 1, the Poisson nature of the spiking of the
network neurons thus gives the following expression for the unconnected neurons with spike
trains y:

Y p,ε=0
i (t) =

〈
p∏
r=1

yir(tr)

〉
y,x,λ

=

〈∑
Φ∈Pp

∏
S∈Φ

δ̄iS (tS)νε=0
iŠ

(tŠ)

〉
x,λ

=
∑

Φ∈Pp

(∏
S∈Φ

δ̄iS (tS)

)〈∏
S∈Φ

νε=0
iŠ

(tŠ)

〉
x,λ

=
∑

Φ∈Pp

(∏
S∈Φ

δ̄iS (tS)

)〈∏
r∈Φ̌

(λir(tr) + (γirk ∗ xk) (tr))

〉
x,λ

. (22)

In the previous expression, the contractions basically extend the moment of smaller order
|Φ̌| ≤ p for the driving rate νε=0 to the order p.
The product involving the sum of λiŠ + γiŠk ∗ xk gives 2|Φ̌| terms with |Φ̌| being the number
of elements in Φ̌. Now we develop this product to isolate the contributions originating from
the input moments of the same order, as well as with the spontaneous rate. To this end, we

9



define A ⊂ Ip the subset of indices belonging to Φ̌ that concern input neurons in Eq. (22),
while B = Φ̌ \A is the subset of indices that concern λ. This gives

Y p,ε=0
i (t) =

∑
Φ∈Pp

(∏
S∈Φ

δ̄iS (tS)

) ∑
A∪B=Φ̌
A∩B=∅

〈∏
r∈A

(γirk ∗ xk) (tr)

〉
x

〈∏
r′∈B

λir′ (tr′)

〉
λ

=
∑

Φ∈Pp

(∏
S∈Φ

δ̄iS (tS)

) ∑
A∪B=Φ̌
A∩B=∅

Γ
|A|
iA

(tA) Λ
|B|
iB

(tB)

=
∑

A⊂Ip,B⊂Ip
A∩B=∅

∑
Φ∈Pp

Φ̌=A∪B

(∏
S∈Φ

δ̄iS (tS)

)
Γ
|A|
iA

(tA) Λ
|B|
iB

(tB) . (23)

From the second line to the last line, we have swapped the summation terms of the partitions
Φ and the decomposition of Φ̌ in two subsets. The important point here is to understand that
the construction of Φ̌ from A and B exactly spans the whole set of partitions Pp. Note that
A and B can be empty sets. Finally, we simply group the subsets A of the same size q, and
similarly B of the same size r:

Y p,ε=0
i (t) =

∑
0≤q+r≤p

∑
A⊂Ip,B⊂Ip
|A|=q,|B|=r
A∩B=∅

∑
Φ∈Pp

Φ̌=A∪B

(∏
S∈Φ

δ̄iS (tS)

)
ΓqiA(tA) ΛriB (tB) , (24)

which gives Eq. (21) after using the expression for the operator Ap in Eq. (20). �

Remark 4 When the network of unconnected neurons is not driven by an spontaneous rate
(λ = 0), the moment expansion operator in Eq. (20) can be simplified with U = 0 as

Ap[T q, 0]i(t) =
∑
A⊂Ip
|A|=q

∑
Φ∈Pp

Φ̌=A

(∏
S∈Φ

δ̄iS (tS)

)
T qiA(tA) , (25)

which means that

Y p,ε=0
i (t) =

p∑
q=0

Ap [Γq, 0]i (t)

=
∑

Φ∈Pp

(∏
S∈Φ

δ̄iS (tS)

)
Γ
|Φ̌|
iΦ̌

(tΦ̌) (26)

Conversely, in the absence of spiking inputs (γ = 0) and when the driving rates λi(t) are
deterministic, the moments Λ simply come from the multiplication of the rate functions:

Y p,ε=0
i (t) =

∑
Φ∈Pp

∏
S∈Φ

[
δ̄iS (tS)λiŠ (tŠ)

]
. (27)

2.2 Network with recurrent connectivity

The last step is to consider connections determined by ε between the network neurons, the
second half of our core result.
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Definition 9 (Effective recurrent kernel) Let ε̃ : R→ Rn×n denote the effective recurrent
kernel and be defined as

ε̃ij(t) =
∑
n≥0

ε∗nij (t) (28)

where

ε∗nij (t) =

{ (
ε
∗(n−1)
il ∗ εlj

)
(t) if n > 0

δ̄ij(t, 0) if n = 0
(29)

is the nth order convolution.

Recall that the convolution is defined for kernel matrices, see Eq. (5). Because εij(t) = 0 for
t ≤ 0 and all pairs (i, j) (due to the causality requirement), ε̃ij(t) = 0 as well for t ≤ 0.

Property 1 The effective recurrent kernel ε̃ satisfies the following self-consistency equation:

(κ ∗ ε̃)ij (t) = δ̄ij(t, 0) , (30)

where κij(t) ≡ δ̄ij(t, 0)− εij(t). Therefore, ε̃ can be thought as the inverse of κ for the convo-
lution operator.

Proof of Property 1: By convolving the ε kernel with the effective recurrent kernel ε̃, we
find (omitting the time variables)

(ε ∗ ε̃)ij = εik ∗

∑
n≥0

ε∗nkj

 =
∑
n≥1

ε∗nij = ε̃ij − δ̄ij , (31)

which we reorganize to factorize ε̃, obtaining Eq. (30). �

Example 2 (Single neuron with self-connection and with spontaneous rate λ) We firstly
present an illustrative version of our proof by induction for a single neuron with self-feedback
and driven by a deterministic rate λ in the cases 1 ≤ p ≤ 3. In this example 〈· · · 〉 = 〈· · · 〉y
as there is no other source of stochasticity. Note that p = 2 corresponds to Hawkes’ re-
sults (Hawkes 1971a) with moments instead of (auto)covariances. The motivation is providing
a concrete case for stepping from orders p to p+ 1, which is formalized in the proof below.
Cases p = 1 and p = 2:
The first-order moment for p = 1 corresponds to the mean firing rate and can be calculated from
the spontaneous rate function λ by solving the self-consistency equation given by the second line
of Eq. (1) using the equality for the instantaneous firing rate 〈y(t)〉 = 〈ν(t)〉:

〈y(t)〉 = (ε̃ ∗ λ) (t) . (32)

For the second order, the point is to take into account the effects of spikes upon the future
spiking probability, with the effect of the self-feedback loop. Assuming t1 ≤ t2 (purple semi-
plane in Fig. 3A), we can develop y(t2) in 〈yy〉(t1, t2) using Eq. (1). This holds because the rate
function ν(t2) requires the knowledge of past spiking activity y(u) with u < t2, as illustrated by
the blue arrow in Fig. 3A, moving toward the diagonal t1 = t2. This development gives

〈yy〉(t1, t2) = 〈y(t1)ν(t2)〉+ 〈y(t1)〉δ(t2 − t1)

= 〈y(t1)[ε ∗ y](t2)〉+ 〈y(t1)〉λ(t2) + 〈y(t1)〉δ(t2 − t1)

= [ε
2∗ 〈yy〉](t1, t2) + 〈y〉λ(t1, t2) + 〈y〉δ21(t1, t2) . (33)

Note that ν is inside the angular brackets on the right-hand side of the first line, because ν(t2)
and y(t1) are not independent, when the difference in the time variables lies within the range

11



of ε̃. The last line is simply a rewriting using a specific notation with a line above multivariate
functions to indicate the order of the functions with respect to the time variables, which will be
useful for this example. In addition, we use the notation introduce in Eq. (18) where

2∗ indicates
the convolution performed on the second time variable t2 and the Dirac delta δ21(t2) := δ(t2−t1)
is a redundant expression as a function of t2, while keeping the information about t1.
The solution 〈yy〉(t1, t2) must satisfy Eq. (33) for all t1 ≤ t2, which is a Wiener-Hopf equation.
The atomic contribution (Dirac delta) acts as a “boundary condition” when t2 → t1. Our
strategy is the following: we propose a solution for the moment of order p = 2 and verify that
it satisfies the required Eq. (33). As the solution is fully symmetric in t1 and t2, this implies
that the solution is also valid on the complementary space t2 ≤ t1, being eventually valid for
all (t1, t2) ∈ R2. The putative 2nd-order moment is:

〈yy〉(t1, t2) =
[
ε̃

1∗ ε̃ 2∗ (λλ+ λδ21)
]
(t1, t2) , (34)

Note that our notation does not require the time variables, allowing for compact writing. We
use the equality in Eq. (30) on ε̃

2∗ to obtain

〈yy〉 = ε̃
1∗ (ε ∗ ε̃+ δ)

2∗ (λλ+ λδ21)

= ε
2∗ 〈yy〉+ ε̃

1∗ λλ+ ε̃
1∗ λδ21 . (35)

For the first term of the right-hand side in the upper line, the convolution by ε ∗ ε̃ on the
second variable t2 has been rewritten by moving ε out, while the rest is in fact 〈yy〉 in Eq. (34).
In the second term, the convolution by the Dirac on t2 and we obtain two terms involving
ε̃ ∗λ(t1) = 〈y〉(t1), see the solution for the 1st-order moment in Eq. (32). Together, these three
terms are the right-hand side of Eq. (33), which is thus satisfied.
Note also that ε̃(t) = 0 for t < 0 (reflecting causality of the overall “feedback’ kernel), which

implies that the operator ε̃
1∗ ε̃2∗ applied on the 2-dimensional function under the overline only

“spreads” the function mass towards future (see Fig. 3B).
Case p = 3:
Following the previous section, we extend the calculations to the case p = 3 in order to prepare
for the generalization to arbitrary p ≥ 2. As with p = 2, we consider the ordering t1 ≤ t2 ≤ t3
(purple subspace in Fig. 3C), which allows the development of the third time variable as was
done in Eq. (33)

〈yyy〉(t1, t2, t3) = ε
3∗ 〈yyy〉(t1, t2, t3) + 〈yy〉λ(t1, t2, t3) + 〈yy〉δ32(t1, t2, t3) , (36)

with the Dirac corresponding to the “boundary condition” when t3 → t2, corresponding to the
“lower” tilted plane of the purple subspace to which points the blue arrow in Fig. 3B. Note that
this involves only the atomic contribution δ32 (δ21 is in yy corresponding to (t1, t2)), the other
δ31 alone is not possible in this space. See also the discussion in Example 1 for the second-order
input moments. Now we pursue the calculations without the time variables in arguments, as
before for p = 2. The putative symmetric solution is

〈yyy〉 = ε̃
1∗ ε̃ 2∗ ε̃ 3∗ (λλλ+ λλδ32 + λλδ31 + λδ21λ+ λδ21δ32) , (37)

which involves the contractions for all partitions of {1, 2, 3}, in a similar fashion to Eq. (21).
We use again Eq. (30) as in Eq. (35) to obtain the convolution of ε with 〈yyy〉 on t3 and regroup
the other terms where the convolution with t3 vanishes because of the Dirac in order to use the
expression of the 2nd-order moment in Eq. (34), namely ε̃

1∗ ε̃ 2∗ (λλ+ λδ21) = 〈yy〉:

〈yyy〉 = ε
3∗ 〈yyy〉+ ε̃

1∗ ε̃ 2∗ (λλλ+ λδ21λ) + ε̃
1∗ ε̃ 2∗ (λλδ32 + λδ21δ32) + ε̃

1∗ ε̃ 2∗ λλδ31

= ε
3∗ 〈yyy〉+ 〈yy〉λ+ 〈yy〉δ32 + ε̃

1∗ ε̃ 2∗ λλδ31 . (38)
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Figure 3: Schematic diagrams supporting the calculations for the 2nd- and 3rd-
order moments. A: The development in Eq. (33) corresponds in expressing y(t2) as a
function of the past history. This requires that t2 > t1, as illustrated by the purple upper
triangle of the plane. The blue arrow indicates the “direction” of the development towards
the past network activity, which is necessary to evaluate the firing probabilities involved in
the moment. B: Schematic representation of the twofold convolution involved in Eq. (34) for
the calculation of the second-order moment. The Dirac delta correspond to a function that is
non-zero on the diagonal t1 = t2 only. The effect of the first convolution on t1 “spreads” the
diagonal function towards the “future” in the horizontal direction. Then, the convolution on
t2 “spreads” the whole towards the “future” in the vertical direction, resulting in a symmetric
function. Note that the result is distinct from outer product of the time vectors (ε̃ ∗ λ)(ε̃ ∗ λ).
C: Similar diagram as panel A to indicate the subspace for the condition t1 ≤ t2 ≤ t3 and
represent the development of the moment for p = 3 in Eq. (36).
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What remains to be seen is that the condition t1 ≤ t2 ≤ t3 implies that δ31 = 0 always: when
t1 = t3, in fact we have t1 = t2 = t3, which corresponds to δ21δ31. This means that the
last term in Eq. (38) vanishes and Eq. (36) is satisfied. The symmetry argument ensures the
validity over all (t1, t2, t3), as will be formalized below.
Numerical simulation:
The upper plot in Fig. 4A illustrates that the rhythm of the output spiking is altered by the
recurrent self-connection. This comes from the fact that, for an excitatory self-connection,
output spikes momentarily increase the firing rate, as can be seen when comparing the green
curve with the dotted black curve in the bottom plot. The output first-order moment in Fig. 4B
(solid gray curve for the simulation and dashed black curve for the prediction) is above the
input first-order moment related to the underlying firing rate λ (dotted black curve). Note also
the shift to later time.
The decomposition of the second-order moment in Fig. 4C illustrates that the effect of autocor-
relations (right plot) spreads from the diagonal due to the self-connection. The main diagonal
for p = 2 in Fig. 4D has larger values than the curve for p = 1 in Fig. 4B. In Fig. 4E, the main
diagonal for p = 3 (cyan curve) is even larger, indicating that effects due to autocorrelation
cumulate (as for input moments in Fig. 2).
The slices of the output third-order moment in Fig. 4E has different scales, but note the high
spike density along the diagonal of the red matrix, due to the spreading of atomic contributions
by the recurrent kernel ε.

Theorem 2 (Input-output mapping for recurrent connectivity) The moment Y p
i of or-

der p of the Hawkes process (definition 1) of the network population can be expressed as

Y p
i (t) =

(
ε̃pij ~ Y

p,ε=0
j

)
(t) . (39)

The effects of the recurrent connectivity on the input moments are determined by spatio-
temporal filtering described by the effective recurrent kernel ε̃p defined similarly to Eq. (17)
on the moment for uncoupled neurons in Eq. (21).

Proof of Theorem 2: Compared to Example 2, we consider the general case where inputs
and/or spontaneous activity drive the network neurons via νε=0 in Eq. (15). Let introduce the
conditional moment Mp

i (t) of order p defined as

Mp
i (t) ≡

〈
p∏
r=1

yir(tr)

〉
y|x,λ

, (40)

where the conditioning is over the input activity x and the spontaneous activity λ. Note that
the statistical averaging over x and λ of the conditional moment gives the (unconditional)
moment defined in Eq. (7):

〈
Mp

i (t)
〉
x,λ

= Y p
i (t). To demonstrate Eq. (39), we prove by

induction the following result on Mp
i (t), which straightforwardly leads to the expression in

Theorem 2 by taking the same statistical averaging over x and λ as done above:

Mp
i (t) =

(
ε̃pij ~M

p,ε=0
j

)
(t) , (41)

where the conditional moment of order p in the absence of recurrent coupling (ε = 0) is defined
as

Mp,ε=0
j (t) =

∑
Φ∈Pp

∏
S∈Φ

δ̄jS (tS) νε=0
jŠ

(tŠ) (42)

In Eq. (41) the effect of the past spiking activity of y due to the recurrent connectivity ε is
taken care of by all ε̃, considering νε=0 to be “deterministic” from the viewpoint of y provided
x and λ are known.
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(cyan curve) and theoretical prediction (dashed black curve) of the diagonal of the matrix for
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The conditioned moment Mp
i (t) in Eq. (41) must obey the constraints imposed by the dynamics

in Eq. (1). Under the condition on the time variables t1 ≤ · · · ≤ tp, we can develop for yip(tp)
using the past activity of (y1(t), · · · , yp(t)) for t < tp and the driving rate function νε=0

ip
(tp).

Let i = (i1, · · · , ip) denote the coordinates and t = (t1, · · · , tp) the time variables. The pth

order correlation of the output population can be expressed as

Mp
i (t) =

〈
p∏
r=1

yir(tr)

〉
y|x,λ

=

〈
p−1∏
r=1

yir(tr) · νip(tp)

〉
y|x,λ

+

〈
p−1∏
r=1

yir(tr)

〉
y|x,λ

δ̄ip−1ip(tp−1, tp) . (43)

Note that the generalized delta corresponds to the “boundary condition” tp = tp−1, as done in
the above examples to moments. A similar condition for the time lag was used in the case of
covariances (Hawkes 1971a; Gilson, Burkitt, Grayden, Thomas, and van Hemmen 2009b). By
using the development of νi(t) = (εij ∗ yj) (t) + νε=0

i (t), see Eqs. (1) and (15) and by setting
i′ = (i1, · · · , ip−1) which contains the p−1 first elements of i, and similarly t′ = (t1, · · · , tp−1),
we have

Mp
i (t) =

(
εip,jp

p
∗Mp

i′jp

)
(t) +

〈
p−1∏
r=1

yir(tr) · νε=0
ip (tp)

〉
y|x,λ

+

〈
p−1∏
r=1

yir(tr)

〉
y|x,λ

δ̄ip−1ip(tp−1, tp)

=
(
εip,jp

p
∗Mp

i′jp

)
(t) +Mp−1

i′ (t′)
[
νε=0
ip (tp) + δ̄ip−1ip(tp−1, tp)

]
. (44)

where the conditioned moment of order p − 1 appears in the right-hand side. Therefore, we
can use Eq. (41) for the order p− 1:

Mp−1
i′ (t′)

[
νε=0
ip (tp) + δ̄ip−1ip(tp−1, tp)

]
=

(
ε̃p−1
i′j′ ~M

p−1,ε=0
j′

)
(t′)

[
νε=0
ip (tp) + δ̄ip−1ip(tp−1, tp)

]
= ε̃p−1

i′j′

p−1
~

 ∑
Φ∈P0

p−1

∏
S∈Φ

δ̄jS (tS) νε=0
jŠ

(tŠ)
[
νε=0
ip (tp) + δ̄ip−1ip(tp−1, tp)

]
= ε̃p−1

i′j′

p−1
~

∑
Φ∈P0

p

∏
S∈Φ

δ̄jS (tS) νε=0
jŠ

(tŠ)


= ε̃p−1

i′j′

p−1
~ Mp,ε=0

j′ip
(t) . (45)

Note that the tensor convolution
p−1
~ applies to the first p − 1 indices j′ = (j1, · · · , jp−1) of

the tensor of dimension p. In the third line of Eq. (45), we only retain the partitions that
contribute to the summation under the condition t1 ≤ · · · ≤ tp. To do so we define the subset
P0
p−1 ⊂ Pp−1 of ordered partitions Φ, where the groups S ∈ Φ consist of all successive indices

between Š = min(S) and max(S) (equal for singletons). Following, we integrate the elements
in the squared brackets to the sum by augmenting the partitions Φ ∈ P0

p−1 to partitions in
P0
p . Note that the passage from the second line to the fifth line in Eq. (45) also corresponds

to taking ε = 0 in Eq. (43).
Going back to Eq. (44), we isolate Mp

i (t) on the left-hand side:(
κip,jp

p
∗Mp

i′jp

)
(t) = ε̃p−1

i′j′

p−1
~ Mp,ε=0

j′ip
(t) , (46)
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where κij(t) ≡ δ̄ij(t, 0)− εij(t) (see Prop 1). Using the property of ε̃ in Eq. (30), we obtain

Mp
i (t) =

[
ε̃ipj′p

p
∗
(
κj′p,jp

p
∗Mp

i′jp

)]
(t)

=

(
ε̃ipjp

p
∗
(
ε̃p−1
i′j′

p−1
~ Mp,ε=0

j′jp

))
(t)

=
(
ε̃pij ~M

p,ε=0
j

)
(t) . (47)

Note so far we have only established the validity of this result for t1 ≤ · · · ≤ tp. As said above,
this is equivalent of considering only ordered partitions P0

p . The generalization to an arbitrary
t = (t1, · · · , tp) can be obtained by noting that an arbitrary t = (t1, · · · , tp) can be mapped to
an ordered version using permutations, say Π(t) = t′ = (t′1 ≤ · · · ≤ t′p). The partition set P0

p

is thus replaced by
{

Π(Φ),Φ ∈ P0
p

}
with Π(Φ) being the partition of the image indices via Π.

Note that this covers entire set of all partitions Pp when considering all possible permutations.
This concludes the proof by induction.

�

Remark 5 (Large population size) In the limit of large population size (n → ∞) and in
the absence of the driving rates (λ = 0), the output moment of order p can simply be approxi-
mated by the single dominating term

Y p
i (t) '

(
ε̃pij ~ γpjk ~X

p
k

)
(t) (48)

This corresponds to the partition Φ = {Ip} and has a contribution of order np whereas all other
partitions Φ′ 6= Φ give a contribution of order np−|Φ′|+1 � np which is negligible.

3 Relationship with cumulants

We end with relating our results with previous work (Jovanović, Hertz, and Rotter 2015; Ocker,
Josić, Shea-Brown, and Buice 2017) focused on cumulants instead of moments, which is an
alternative manner to describe the spiking statistics in the network. The genuine relationship
between moments and cumulants appears via their generating functions (Daley and Vere-
Jones 1988; Balakrishnan, Johnson, and Kotz 1998). Let E(ζ,k, t) be the moment generating
function for the multivariate input xk(t) = (xk1(t1), · · · , xkp(tp)):

E(ζ,k, t) =

〈
exp

(
p∑
r=1

ζrxkr(tr)

)〉
x

, (49)

where ζ = (ζ1, · · · , ζp)T . This moment generating function can be used to express the pth

order moment over the coordinates k and times t:

Xp
k(t) =

∂pE(ζ,k, t)

∂ζi1 · · · ∂ζp

∣∣∣
ζ=0
≡ ∂pE(ζ,k, t)

∂ζ

∣∣∣
ζ=0

(50)

Similarly, the cumulant generating function

K(ζ,k, t) ≡ logE(ζ,k, t) (51)

allows for the calculation of the input cumulants X̄p
k(t) of order p:

X̄p
k(t) =

∂pK(ζ,k, t)

∂ζ

∣∣∣
ζ=0

(52)

17



Property 2 The formal relationship between the moment Xp
k(t) of order p and cumulants

X̄p′

k′(t
′) of order p′ ≤ p —here presented for the inputs— is given by

Xp
k(t) =

∑
Φ∈Pp

∏
S∈Φ

X̄
|S|
kS

(tS) , (53)

where Φ are the partitions of Ip composed of disjoint subsets S.

Proof of Property 2: The present proof —inspired by previous work (Daley and Vere-
Jones 1988; Balakrishnan, Johnson, and Kotz 1998)— relies on the following general result for
the (partial) derivative of exp (f) with respect to variables ζ = (ζ1, · · · , ζp) for an arbitrary
function f without specified arguments:

∂p exp (f)

∂ζ
≡ ∂p exp (f)

∂ζ1 · · · ∂ζp
=

∑
Φ∈Pp

∏
S∈Φ

∂|S|f

∂ζS

 exp (f) , (54)

which involves all partitions Φ ∈ Pp and the partial derivatives ∂|S|f
∂ζS

of order |S| with respect
to the variables ζr whose indices r ∈ S. For p = 1 with ζ1, we have the univariate case

∂ exp (f)

∂ζ1
=
∂f

∂ζ1
exp (f) . (55)

To demonstrate Eq. (54), we assume the expression to be valid for p − 1 and derive it for p,
using a proof by induction. Separating ζp from the remaining variables ζ′ = (ζ1, · · · , ζp−1), we
use Eq. (54) for p− 1:

∂p exp (f)

∂ζ
=

∂

∂ζp

∂p−1 exp (f)

∂ζ′

=
∂

∂ζp

 ∑
Φ∈Pp−1

∏
S∈Φ

∂|S|f

∂ζS

 exp (f)


=

 ∑
Φ∈Pp−1

∂

∂ζp

(∏
S∈Φ

∂|S|f

∂ζS

) exp (f) +

 ∑
Φ∈Pp−1

∏
S∈Φ

∂|S|f

∂ζS

 ∂f

∂ζp
exp (f) ,(56)

where the derivative with respect to ζp applied to the product yields two terms. The second
term corresponds to Eq. (55), which can be assimilated to the partition Φ′ ∈ Pp such that
Φ′ = Φ∪

{
{p}

}
. The first term actually gives |Φ| terms, one for each subset S of the product,

which depends on the actual partition Φ. For each Φ, we construct |S| partitions Φ′ ∈ Pp by
adding the index p to one of the subsets S ∈ Φ. Because a partition Φ ∈ Pp can only be of
one of the two types, we end up with

∂p exp (f)

∂ζ
=

 ∑
Φ∈Pp\Qp

∏
S∈Φ

∂|S|f

∂ζS
+
∑

Φ∈Qp

∏
S∈Φ

∂|S|f

∂ζS

 exp (f)

=

∑
Φ∈Pp

∏
S∈Φ

∂|S|f

∂ζS

 exp (f) , (57)

where Qp = {Φ ∈ Pp, {p} ∈ Φ} is the set of all partitions of Ip that contain the singleton {p}.
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Coming back to the moments, we prove Eq. (53) by applying Eq. (54) to the functionK(ζ,k, t):

Xp
k(t) =

∂p exp [K(ζ,k, t)]

∂ζ

∣∣∣
ζ=0

=
∑

Φ∈Pp

∏
S∈Φ

∂|S|K(ζ,k, t)

∂ζS
exp (K (ζ,k, t))

∣∣∣
ζ=0

=
∑

Φ∈Pp

∏
S∈Φ

X̄
|S|
kS

(tS) , (58)

after noticing that exp (K (0,k, t)) = 1. �

Corollary 1 A direct corollary of Proposition 2 is that, when the input neurons are inde-
pendent and of rate µk(tk), then the cumulant of order p of the input population x is given
by

X̄p
k(t) = δ̄k(t) µk1(t1) . (59)

The proof simply consists in identifying the terms in Eq. (12) to the cumulants, where k and
t are respectively replaced by kS and tS for each subset S.

Now we examine the general situation of a network with afferent and recurrent connectivities,
corresponding to the combined theorems for moments —see Eqs. (21) and (39). We define the
cumulant of order p for the spontaneous rate, filtered inputs and and outputs —namely Λ̄i(t),
Γ̄i(t) and Ȳi(t)— in the same manner as in Eq. (52) for inputs.

Theorem 3 (Mappings for cumulants) The cumulants are related by the following map-
pings:

Γ̄pi (t) =
(
γpik ~ X̄

p
k

)
(t) , (60a)

Ȳ p,ε=0
i (t) =

∑
Φ∈Pp

[∏
S∈Φ

δ̄iS (tS)

] [
Γ̄
|Φ̌|
iΦ̌

(tΦ̌) + Λ̄
|Φ̌|
iΦ̌

(tΦ̌)
]
, (60b)

Ȳ p
i (t) =

(
ε̃pij ~ Ȳ

p,ε=0
j

)
(t) . (60c)

Proof of Theorem 3: Eq. (60a) simply comes from the linearity of the filtering by γ. An-
other manner to prove it is to decompose the moment in terms of cumulants, as we do now to
demonstrate Eq. (60c).

By rewriting Eq. (39) in terms of cumulants using Eq. (53), we have

∑
Φ∈Pp

∏
S∈Φ

Ȳ
|S|
iS

(tS) = ε̃ij ~

∑
Φ∈Pp

∏
S∈Φ

Ȳ
|S|,ε=0
jS

(tS)


=

∑
Φ∈Pp

∏
S∈Φ

(
ε̃iSjS ~ Ȳ

|S|,ε=0
jS

)
(tS) . (61)

As before, we identify the terms for each S and Φ.

In contrast, Eq. (60b) is not straightforward and comes from the spiking nature of y driven by a
function νε=0 that possibly has high-order correlations (for example a Cox process). Basically,
it is the extension of cumulants of smaller orders by delta functions for all possible partitions
for each time variable of the smaller-order cumulant. For simplicity, we only show the result
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for Γ̄; note also that the additivity of the cumulant ensures the complete result. We rewrite
Eq. (26) —that is the equivalent of Eq. (21) in the absence of λ— in terms of cumulants using
Eq. (53):

∑
Φ∈Pp

∏
S∈Φ

Ȳ
|S|,ε=0
iS

(tS) =
∑

Φ∈Pp

(∏
S∈Φ

δ̄iS (tS)

) ∑
Φ′∈P(Φ̌)

∏
S′∈Φ′

Γ̄
|S′|
iS′

(tS′)

 . (62)

In Eq. (62) cumulants Γ̄ involve indices from distinct subsets S of the partition Φ, as they
“combine” the minima in Φ̌ according to Φ′. We now reorganize the expression to obtain a
similar expression to the left-hand side, where the terms in the product over S have a generic
expression with indices only in S. The product of generalized delta functions can be moved
inside the sum over Φ′, yielding

∑
Φ∈Pp

∏
S∈Φ

Ȳ
|S|,ε=0
iS

(tS) =
∑

Φ∈Pp

∑
Φ′∈P(Φ̌)

(∏
S∈Φ

δ̄iS (tS)

)( ∏
S′∈Φ′

Γ̄
|S′|
iS′

(tS′)

)
. (63)

For each pair of partitions Φ and Φ′, we construct a partition Ψ ∈ Pp, whose subsets T are
the unions of subsets S corresponding to the same S′ ∈ Φ′:

T =
⋃
S∈Φ,

Š∈S′∈Φ′

S . (64)

In addition, we define a partition Ψ′T ∈ P(T ) for each T ∈ Ψ that splits T into the original
subsets S ∈ Φ:

Ψ′T =
⋃
S∈T
{S} . (65)

The correspondence between the partitions is represented in Fig. 5 for a schematic example.
Using Eq. (65) with S ≡ T ′ ∈ Ψ′T for the each T , the first product in Eq. (63) can be rewritten
as ∏

S∈Φ

δ̄iS (tS) =
∏
T∈Ψ

∏
T ′∈Ψ′T

δ̄iT ′ (tT ′) . (66)

Because each S′ ∈ Φ′ = Φ̌ is the subset of minima Ψ̌′T for the corresponding T =
⋃
S, we

similarly reformulate the second product∏
S′∈Φ′

Γ̄
|S′|
iS′

(tS′) =
∏
T∈Ψ

Γ̄
|Ψ̌′T |
iΨ̌′

T

(tΨ̌′T
) . (67)

We can thus factorize the two products in the right-hand side of Eq. (63) to obtain(∏
S∈Φ

δ̄iS (tS)

)( ∏
S′∈Φ′

Γ̄
|S′|
iS′

(tS′)

)
=
∏
T∈Ψ

 ∏
T ′∈Ψ′T

δ̄iŤ ′ (tŤ ′)

 Γ̄
|Ψ̌′T |
iΨ̌′

T

(tΨ̌′T
) . (68)

Last, the key observation is that each pair Φ ∈ Pp and Φ′ ∈ P(Φ̌) is uniquely associated with an-
other pair made of a partition Ψ ∈ Pp and its corresponding set of partitions {Ψ′T ∈ P(T )}T∈Ψ:

(Φ,Φ′)↔ (Ψ,
{

Ψ′T
}
T∈Ψ

) . (69)

As a consequence, the double summation over Φ and Φ′ in Eq. (63) can be expressed as a
summation over Ψ and over its corresponding sub-partitions, namely∑

Φ∈Pp

∑
Φ′∈P(Φ̌)

↔
∑

Ψ∈Pp

∑
Ψ′T1
∈P(T1)

· · ·
∑

Ψ′T|Ψ|
∈P(T|Ψ|)

≡
∑

Ψ∈Pp

∑
Ψ′T∈P(T ),
∀T∈Ψ

, (70)
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Figure 5: One-to-one mapping between partitions. The partition Ψ is constructed
from the pair Φ and Φ′. To each element of T ∈ Ψ corresponds a partition Ψ′T that recovers
the original subsets in Φ. See Eqs. (64) and (65) in the main text for the mathematical
construction. Here the subsets are indexed as in Eq. (70) and the partitions are color-coded
for legibility.

with the explicit enumeration of Tr ∈ Ψ. With this substitution, Eq. (63) can be expressed as:

∑
Φ∈Pp

∏
S∈Φ

Ȳ
|S|,ε=0
iS

(tS) =
∑

Ψ∈Pp

∑
Ψ′T∈P(T ),
∀T∈Ψ

∏
T∈Ψ

 ∏
T ′∈Ψ′T

δ̄iT ′ (tT ′)

 Γ̄
|Ψ̌′T |
iΨ̌′

T

(tΨ̌′T
)

=
∑

Ψ∈Pp

∏
T∈Ψ

 ∑
Ψ′∈P(T )

( ∏
T ′∈Ψ′

δ̄iT ′ (tT ′)

)
Γ̄
|Ψ̌′|
iΨ̌′

(tΨ̌′)

 . (71)

Once again, we conclude by identifying the terms for each T and Ψ in the right-hand side and
S and Φ in the left-hand side of Eq. (71).

�
Note that Eq. (60b) for cumulants resembles its counterpart Eq. (21) for moments, but in
the case where the neurons are stimulated by both inputs and a spontaneous firing rate, the
corresponding cumulants are simply summed, whereas moments appear in a product.

4 Discussion

In this paper we analytically computed the statistics of neuronal activity in a recurrent network
—described via moments and then transposed to cumulants— from the statistics of the input
neuronal population. An important contribution of our study is the description of the prop-
agation of spiking moments in feedforward networks (Theorem 1) and recurrently-connected
networks (Theorem 2), which had not been explored before. Theorem 3 established the equiv-
alent mappings for cumulants. Compared to recent studies for cumulants (Jovanović, Hertz,
and Rotter 2015; Ocker, Josić, Shea-Brown, and Buice 2017), an important advantage of the
operator viewpoint taken here is that it provides intuition about the spatio-temporal filtering
induced by both afferent and recurrent connectivities.
The main technical challenge comes from the spiking nature of neurons which forces us to con-
sider all possible contractions, see Eq. (3). For rate-based neurons —still interacting through
spatio-temporal kernels— or equivalently assuming that the population size is very large such
that individual spikes have negligible effects, our results can be expressed in a much simpler
way (see Remark 5). In this case, the output moments can be approximated by a nested
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convolution: a first convolution of the input moments with the feedforward kernel followed by
a second convolution with the effective recurrent kernel. Quantifying the deviations from this
approximation for neuronal population of finite size is left for future work.
At the heart of the tractability in this study is the linearity assumption of the Hawkes process,
as the firing rate is linear in the membrane potential that simply sums the synaptic inputs.
This obviously imposes limitations to the scope of the results presented here. For instance,
inhibition, which is ubiquitous in the brain, cannot be exactly modeled with a purely mutu-
ally exciting process. A possibility to include a nonlinearity in the expression of the firing
rate in terms of the synaptic inputs, but the mathematical literature that explored this direc-
tion is scarce (Brémaud and Massoulié 1996). Mean-field approximations lead to analytical
results (Toyoizumi, Rad, and Paninski 2009), but they are only valid in the limit of weak
coupling. Another possibility is to rely on path-integral formulation and the related Feynman
diagram formalism (Ocker, Josić, Shea-Brown, and Buice 2017; Chen, Shojaie, Shea-Brown,
and Witten 2018), but the complexity of the results might preclude an intuitive understanding
of the combined effect of the feedforward and recurrent kernels in propagating spiking mo-
ments. Moreover, in the case of correlated inputs, the linear Hawkes process already leads to
complex cross-overs between cumulants —as can be seen in Eq. (60b), which also relates to
Cox processes (Lechnerová, Helisová, and Beneš 2008; Laier, Prokesova, and Jensen 2008)—
and many more are expected to appear for the nonlinear case.
In the context of neuroscience, our results can be directly applied to the field of synaptic plas-
ticity. For activity-dependent models, the expected weight change can be expressed from the
corresponding statistics of the spiking activity (Kempter, Gerstner, and Van Hemmen 1999;
Gilson, Burkitt, and van Hemmen 2010). Furthermore, since synaptic plasticity has been
demonstrated to depend on higher-order correlations (Pfister and Gerstner 2006; Clopath,
Büsing, Vasilaki, and Gerstner 2010), our formalism provides the adequate tools to analyti-
cally study synaptic plasticity in recurrently-connected networks, extending previous work that
relied on approximations (Gjorgjieva, Clopath, Audet, and Pfister 2011).
Efforts have been made to fit univariate Hawkes processes to empirical time series using
Bayesian estimation based on the likelihood (Ozaki 1979; Truccolo 2016; Laub, Taimre, and
Pollett 2015; Fujita, Medvedev, Koyama, Lambiotte, and Shinomoto 2018) or relying on
second-order statistics (Da Fonseca and Zaatour 2014; Bacry and Muzy 2016). Refinements
have also been explored in the case of sparse observations of the network activity over time
(Le 2018). It remains to be explored whether high-order moments can be useful for parameter
estimation.
Last, as mentioned in Fig. 1, the difference between space and time here is simply their discrete
and continuous natures. The moments tensors could also be defined with continuous space-
time variables, adapting Eq. (18) with a spatial integral in line with previous work (Møller and
Torrisi 2007). Because our proof relies on linear algebra, it can easily be extended to this new
context.
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