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Abstract

In both machine learning and in computational neuro-
science, plasticity in functional neural networks is frequently
expressed as gradient descent on a cost. Often, this imposes
symmetry constraints that are difficult to reconcile with lo-
cal computation, as is required for biological networks or
efficient neuromorphic hardware. For example, wake-sleep
learning in networks characterized by Boltzmann distribu-
tions inherently builds on the assumption of symmetric con-
nectivity. Similarly, the error backpropagation algorithm is
notoriously plagued by the weight transport problem be-
tween the representation and the error stream. Existing so-
lutions such as feedback alignment tend to circumvent the
problem by deferring to the robustness of these algorithms
to weight asymmetry. However, such solutions are known
to scale poorly with network size and depth and require ad-
ditional mechanisms to improve their functionality.

We introduce a complementary learning rule for spiking
neural networks, which uses spike timing statistics to ex-
tract and correct the asymmetry between effective reciprocal
connections. Apart from being quintessentially spike-based
and fully local, our proposed mechanism takes advantage of
a ubiquitous feature of physical neuronal networks: noise.
Based on an interplay between Hebbian and anti-Hebbian
plasticity, synapses can thereby recover the true local gradi-
ent. This also alleviates discrepancies that arise from neuron
and synapse variability – an omnipresent property of phys-
ical neuronal networks, both biological and artificial. We
demonstrate the efficacy of our mechanism using different
spiking network models. First, we show how a combination
of Hebbian and anti-Hebbian plasticity can significantly im-
prove convergence to the target distribution in probabilistic
spiking networks as compared to Hebbian plasticity alone.
Second, in neuronal hierarchies based on cortical microcir-
cuits, we show how our proposed mechanism effectively en-
ables the alignment of feedback weights to the forward path-
way, thus allowing the backpropagation of correct feedback
errors.

1 Introduction

Prominent models of neuronal computation rely on core
assumptions that inevitably give rise to symmetry con-
straints on their connectivity. For example, prominent re-
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current network models such as Hopfield networks [1] and
Boltzmann machines [2] require a symmetric weight matrix,
which also needs to be enforced during wake-sleep learn-
ing [3]. They effectively inherit this property from their
spin-glass archetypes in solid-state physics, for which the
symmetry of particle interactions follows from fundamental
laws of nature.

Perhaps even more prominently, the reverse calculation of
gradients in deep neural networks naturally requires knowl-
edge of the forward weights [4–6]. While this weight trans-
port is inconsequential when calculations are simply carried
out by an arithmetic logic unit, models of error backprop-
agation in the brain require the corresponding backward
transport circuitry to mirror the forward one [7–9].

In general, network models for physical neuronal sub-
strates1 such as the brain or analog neuromorphic hardware
are bound to constraints that are inherent to their physics.
One such restriction is (spatiotemporal) locality, a funda-
mental property of physical networks which strongly lim-
its the information that may enter synaptic plasticity rules.
Consequently, the physical plausibility of complex, non-local
learning algorithms is determined by their amenability to
implementation using only local operations.

Another characteristic feature of physical neuronal com-
puting is the inevitable presence of inherent temporal and
spatial parameter variations across neurons and synapses.
In the brain, these naturally emerge, for instance, from the
morphological variety among different neurons of the same
cell type; in analog neuromorphic hardware, component
variability inevitably occurs during the manufacturing pro-
cess. This expresses the need for homeostatic mechanisms
additional to functional learning rules to increase robustness
and maintain operational stability [10–15]. A direct and of-
ten ignored consequence of substrate heterogeneity is that
the effect of the weight on a postsynaptic neuron crucially
depends on the neuron parameters (synapse model, con-
ductance values, etc.), meaning that identical weight values
elicit different post-synaptic potentials (PSPs) in different
neurons. What counts on the computational level however
is the effective weight.

Hence, for promoting functionality and increasing the bio-
logical plausibility, learning algorithms for physical neuronal
networks should address both the weight transport problem
and the resilience to inherent parameter variability. In the

1To make the distinction between artificial neural networks
(ANNs) as used in deep learning and physical, time-continuous net-
work models for biological or bio-inspired applications, we will refer
to the former type as neural networks and to the latter as neuronal.

1

ar
X

iv
:2

50
3.

02
64

2v
1 

 [
q-

bi
o.

N
C

] 
 4

 M
ar

 2
02

5



following, we propose a solution to these problems in spik-
ing networks and investigate its effectiveness for two com-
mon learning schemes that are notoriously plagued by the
weight transport problem: wake-sleep learning [3] and error
backpropagation (BP) [4, 6].

By describing spiking dynamics as sampling from an un-
derlying Boltzmann distribution, spiking sampling networks
(SSNs) create a direct link between spiking neuronal net-
works and Boltzmann machines. They are thus able to learn
probabilistic internal representations of the world, which of-
fers an algorithmic interpretation of certain activity patterns
in the brain [16–18], while also enabling the instantiation
of Bayesian generative and discriminative models in neuro-
morphic hardware [19–22]. However, they also inherit the
weight symmetry constraints from their ANN counterparts.

Additionally, these networks are usually trained with a
spiking variant of the contrastive divergence / wake-sleep
algorithm [3, 23], which minimizes the difference of corre-
lations between data-constrained and free sampling phases.
Since correlations are symmetric under the exchange of neu-
rons, weight updates of reciprocal synapses must also be
identical (as would also follow directly from the general sym-
metry constraint on the weight matrix). However, since in
physical networks the calculation of these weight updates
happens in different synapses that cannot communicate di-
rectly, symmetry is not generally guaranteed. Therefore,
the actual weight updates may differ significantly from the
ones assumed by the algorithm; apart from deviating from
the intended trajectory of learning, this may also lead to a
forgetting of previously learned features. Altogether, this
can result in a significant drop in performance, as we also
show later.

Similar issues have initially led to a strong pushback
against BP-like learning in the brain [9, 24]. With the emer-
gence of biologically plausible adaptations of BP [25–37],
several issues of standard BP have been mitigated; how-
ever, many of these algorithms still (at least implicitly) rely
on copying the weights from the bottom-up pathways to the
top-down pathways for correct transportation of errors; for
example, approaches such as the Kolen-Pollack algorithm
and variants [31–34] defer the weight transport problem to
a weight update transport problem. Another common way
to circumvent the weight transport problem is to ignore it
altogether. Feedback alignment (FA) [38] builds on the ob-
servation that during training, forward weights tend to align
to random, but fixed backward connections, and can there-
fore transport meaningful errors across layers. However, FA
is known to scale poorly in deeper networks [39–41] (see also
fig. 1b).

Furthermore, only few bio-plausible adaptations of BP
consider networks of spiking neurons, e.g. [32, 42]. For bi-
ological realism, known solutions to weight transport such
as phaseless alignment learning (PAL) [41] need to be re-
evaluated for their applicability in spiking networks. In this
work, we provide a fully spike-based solution to the weight
transport problem, and also introduce a bio-plausible, spik-
ing implementation of error BP based on dendritic cortical
microcircuits [29, 35].

In summary, physically plausible realizations of function-
ally powerful learning rules require additional homeostatic
mechanisms to establish robustness against inevitable pa-
rameter variability across neurons and synapses and to
maintain operational stability. In this work, we address

a1 wake-sleep

∆Wij ∝ ⟨zizj⟩wake

− ⟨zizj⟩sleep

a2 backprop

∆Wji ∝ ejri

ej = r
′
jBjkek

Bjk ≡ Wkj

b

Figure 1: The weight transport problem in physical neu-
ronal networks. Many successful learning rules presuppose cer-
tain symmetry properties of the underlying network structure.
This poses challenges to reconcile them with the locality princi-
ple of physical neuronal computation. a1) In wake-sleep learn-
ing, the network is trained using correlation measurements. Since
these measurements are carried out by two distinct, individually
parameterized synapses (here Wji and Wij), weight updates are
not symmetric. a2) The BP algorithm relies on the transporta-
tion of the gradient across layers, which requires a copy of the for-
ward weights (green) to the backward path (blue). b) Depending
on the misalignment between the true BP gradient (green arrow)
and the trajectory followed by FA, learning can be slowed down
significantly (violet) or fail completely (orange).

these problems and propose that nature has found a solution
to the challenges of weight transport and robustness in noisy
inhomogeneous substrates. We demonstrate that a partic-
ular form of spike-timing-dependent plasticity (STDP) is
capable of aligning the synaptic weights of reciprocally con-
nected neurons in a recurrently connected network. We
therefore call this framework spike-based alignment learn-
ing (SAL). Similarly to its rate-based sibling PAL [41], SAL
is designed to augment existing spike-based learning rules
that are subject to the weight transport problem.

To this end, we combine three essential, but otherwise
basic elements of cortical dynamics. We leverage the spike-
based communication between neurons in order to directly
access temporal discrepancies arising from asymmetries in
the effective connectivity. However, these only become
tractable in the presence of noise, here an explicit feature
rather than a bug. Ultimately, the resulting information can
enter a modified STDP rule which thereby becomes capable
to correct undesirable deviations.

2 Results

2.1 Neuron and synapse model

Consider two neurons i and j that are mutually connected
through the weights Wij and Wji and are affected by dif-
ferent types of spatial and temporal noise (see fig. 2a). On
analog neuromorphic chips, hardware components are sub-
ject to inevitable variability in the manufacturing process,
the so-called fixed pattern noise, that cannot be fully com-
pensated by calibration [43–45]. Likewise, neurons of the
same type vary in their morphology such as cell body size
and dendritic tree structure, as well as physiological prop-
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erties such as ion channel density [46, 47]. These factors
critically influence the input-output relationship of different
neurons [48, 49]. Hence, what counts from a computational
point of view is not so much a parameter of the synapse
alone, but rather the effective weight, i.e., the effect of a
synaptic event on the postsynaptic firing probability, which
is what we describe as W .

Temporal noise is also omnipresent in any physical sub-
strate. The list of sources include thermal noise, sen-
sory noise or the stochastic nature ion channels and re-
ceptors [50]. Furthermore, cortical neurons are known to
undergo constant bombardment with irregular spike trains,
some of which may be considered background noise [51–
54]. The situation in neuromorphic hardware is similar,
with noise on neuronal membranes being either intrinsic (for
analog neurons) or extrinsic, through background synaptic
bombardment. We thus consider neurons to operate in a
regime of stochastic spiking.

For mathematical tractability, we thus choose a gener-
alized linear model (GLM) as our neuron model, although
the working principle of SAL is of a more general nature
and thus applicable to other models as well. Each neuron is
described by its membrane potential ui,

ui(t) = bi +
∑
k

Wik(t)

∞∫
0

κ(s)Sk(t− s)ds, (1)

where bi is a constant bias, Wik are the input weights, κ(t)
the kernel of the PSP and Sk(t) the input spike train from
neuron k (for more details see section 4.1).

The noise sources and resulting voltage fluctuations are
not modeled explicitly, instead we capture the emerging
randomness in the inherent probabilistic spiking mecha-
nism of the GLM. For simplicity, we assume that the noise
process has a constant mean over time, which simply en-
ters the neuronal bias bi, along with other constant biases
such as the leak potential. The output spikes are pro-
duced by an inhomogeneous Poisson process with an ab-
solute refractory period of length τref , where the instanta-
neous firing probability of a non-refractory neuron is given
by ri(t) = τ−1

ref exp (ui(t)).

2.2 Spike timing correlations reflect weight
asymmetry

The working principle of SAL resides on the observation
that weights leave a characteristic imprint on the cross-
correlation between pre- and postsynaptic spike trains.
Each spike generated by one of the neurons elicits a PSP
in the respective postsynaptic partner. For an excitatory
synapse, this transiently raises the postsynaptic neuron’s
firing probability. The magnitude of the change is depen-
dent on the synaptic weight, meaning that the postsynaptic
neuron reacts on average more often, and especially earlier,
to an incoming spike for a larger weight. Correspondingly, a
spike transmitted through an inhibitory synapse would cre-
ate a negative PSP, causing the postsynaptic neuron to fire
less often and later. Hence, the distribution of the spike
timing difference ∆tij = tj − ti carries information about
the synaptic weights. In the following, we will call this the
spike-timing difference distribution (STDD) pij(∆t). Only
nearest-neighbor pre-post spike pairs are taken into account,
since the timing of the first postsynaptic spike carries all rel-
evant information.

To illustrate the effects of weight asymmetry on the
STDD, consider the case of two neurons reciprocally con-
nected by excitatory weights with Wji > Wij > 0. For
clarity, the curves in fig. 2 are calculated for rectangular
PSPs, and a detailed discussion of other kernel shapes is
provided in section 2.5.

Every time neuron i spikes, neuron j will “answer” with a
certain probability with a postsynaptic spike after some ∆t,
just as neuron j will respond to a spike from i fig. 2b. How-
ever, since Wji is greater than Wij , neuron j will respond
to neuron i on average faster than vice versa. Therefore,
the probability density is shifted on the right-hand side of
the STDD (causal from the point of view of Wji, ∆tji > 0)
towards the center, and on the left-hand side (anti-causal
ones, ∆tji < 0) away from the center to the left (fig. 2c1,
top panel). This leads to an asymmetry between the left
and right side of the STDD, which is informative of the
weight difference. Importantly, both synapses observe the
same spikes and therefore the STDD of Wij is the same as
that of Wji but mirrored at ∆t = 0. Thereby, weight infor-
mation of both synapses is directly available at each synapse
and can be used for a local STDP-based plasticity rule.

The effect of excitatory reciprocal PSPs on the STDD
can thus be summarized as follows. First, the higher the
average value of the weights is, the more probability mass
is concentrated in the interval between −τref and τref , and
correspondingly less mass is contained in the tails of the
distribution. Second, the greater the difference between the
two weights, the more mass is transported towards ∆t = 0
on the causal half of the distribution and away from it on the
anti-causal half (from the perpective of the weight that is
too strong), which increases the asymmetry around ∆t = 0.

The same principles hold if one or both synapses are in-
hibitory, with the only difference being that a strong in-
hibitory synapse pushes the probability of a post-synaptic
spike to larger ∆t. In general, we can thus conclude the
following. First, the smaller the average of the two weights,
the more mass is located in the tails of the distribution.
Second, the greater the difference between two weights, the
more mass is transported away the y-axis on the causal half
of the distribution and towards it on the anti-causal half.

The key benefit of having noise in the system becomes
apparent here. Without noise, single synapses might be too
weak to contribute significantly to the STDD, while strong
synapses would pull its entire mass towards zero. Noise
allows a smooth sampling of all possible ∆t, and allows all
synapses to contribute to it.

2.3 Spike-based alignment learning

As synapses have direct, local access to the STDD, they can
use it to correct asymmetries towards their otherwise inac-
cessible reciprocal counterparts. Just like classical STDP
harnesses the STDD for Hebbian learning, SAL uses it for
symmetrization.

Instead of a classical Hebbian STDP window with a pos-
itive causal and a negative anti-causal branch, SAL uses an
anti-Hebbian window (fig. 2c2):

∆Wij =

{
η αc f

+(∆tij) if ∆tij ≥ 0 (causal),

η αa f
−(∆tij) if ∆tij < 0 (anti-causal),

(2)

Here, η is the learning rate and f(∆t) describes the shape
of the STDP kernel, which we assume to be f±(∆t) =
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Figure 2: Principles of spike-based alignment learning. a) Two reciprocally connected neurons i and j embedded in a
recurrent neural network fire stochastically due to external spike noise. Here, weight Wji (orange synapse) is stronger than Wij

(green). Because SAL symmetrizes effective weights rather than pure synaptic strengths, effects of morphological differences between
the two neurons or the synaptic location at the dendritic tree are implicitly balanced out. This underpins the feasibility of SAL in both
biological and neuromorphic substrates (illustration adapted from [55]). b) Example spike trains with colored spike-timing differences
∆t (causal in purple and anti-causal in blue), as seen from the perspective of Wji. c1) Spike-timing difference distribution (STDD)
distribution for two reciprocally connected neurons as described in section 2.2. The upper panel shows two excitatory weights,
the lower two inhibitory ones. c2) STDP with an anti-Hebbian window used by SAL for weight alignment. d) Time course of
symmetrization with SAL. If both weights are plastic, they converge to their common mean (red); if only one weight uses SAL, it
converges to the other one (gray). e) Phase diagram showing the evolution of the two weights under SAL. The arrows indicate the
direction of the weight update through SAL, the color map in the background the magnitude of the update. The blue line indicates
the attractor of SAL which lies on the diagonal Wij = Wji. SAL always converges to the desired solution Wij = Wji from any
starting point in the Wij-Wji-plane. The example trajectories from d) are depicted in red and gray.

exp (∓∆t/τref) unless stated otherwise. The prefactors αa/c

determine the type of plasticity, such as Hebbian, anti-
Hebbian or SAL. In SAL, they are chosen such that causal
spike pairs weaken the synapse (αc = −1) and anti-causal
ones strengthen it (αa = 1). This simple plasticity rule
is capable of extracting the asymmetry from the STDD to
produce average weight updates that align the two weights
such that they converge to their mean. Figure 2d shows
the result of a numerical simulation for a pair of recipro-
cally connected neurons; a detailed analytical proof of the
stability of fixed points under SAL is given in section 4.2.2.

The shape of the STDP window f plays a key role in ex-
tracting the information relevant for symmetrization from
the STDD: For instance, an exponential window f(∆t) =
exp(∆t/τ) “looks” primarily at ∆t-values close to zero,
where the weight differences manifest themselves as asym-
metry around ∆t = 0. The STDP time constant should
roughly match the width of the PSP-kernel, because it de-
termines the typical size of features in the STDD.

Importantly, SAL can be applied asymmetrically to re-
ciprocal synapses. For instance, it is sufficient for only one
synapse to be equipped with a SAL rule in order for it to
follow its reciprocal weight (fig. 2d,e, gray). This is par-
ticularly useful in setups with distinct forward and back-
ward streams, such as for BP, where the forward weights
are learned with an error-correcting learning rule and the
backward weights use SAL for alignment (see section 2.4.2).
As shown in the phase plane diagram fig. 2e, SAL is able to
symmetrize weights over a large parameter range.

Conceptually, the interplay between functional plasticity
and SAL can be understood as follows. Under theoretically
ideal circumstances (no noise, perfect initialization), net-

works that require weight symmetry would start out with
reciprocal synaptic weights already lying on the diagonal of
the phase plane diagram, and functional plasticity would
move these weights along the diagonal. In realistic scenar-
ios, reciprocal weights would be more randomly distributed,
and functional plasticity would, in general, not drive them
towards symmetry, and maybe even away from it. With
SAL, plasticity receives a persistent, orthogonal drive to-
wards its stable manifold on the diagonal, enabling the func-
tional component to operate correctly along its orientation.

Importantly, just like classical Hebbian STDP, SAL only
uses information available at the locus of the synapse, and
a plasticity kernel compatible with observations from hu-
man cortex [56]. This makes it a suitable candidate for how
nature might have addressed the weight transport problem.
The learning rule is also compatible with implementations
of STDP on neuromorphic platforms [44, 57–60], which alle-
viates the problem of fixed-pattern noise in analog systems
and avoids expensive copy operations in digital ones.

2.4 SAL in functional spiking networks

SAL is designed to enhance functional learning rules that
by definition require weight symmetry and are therefore dif-
ficult to reconcile with the noisy reality of physical neu-
ronal substrates, whether biological or artificial. SAL can
be implemented either in a phaseless manner or by adding
reoccurring symmetrization phases during learning; in pro-
grammable hardware, such phases are easily introduced,
while in biology, they can occur while the brain is not at-
tending to external sensory stimuli, most prominently dur-
ing sleep.
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In the following, we present two scenarios that demon-
strate the effectiveness of SAL: First, we turn to SSNs [61,
62], which require both initial weight symmetry and sym-
metric weight updates for exact gradient descent. We show
that SSNs are sensitive to both noise on the initial weight
matrix and on the STDP mechanism and how SAL improves
learning under such inhomogeneous conditions.

Second, we demonstrate the efficacy of SAL in a micro-
circuit model of hierarchical cortical computation [29, 35].
There, the local error correction relies on the backward
transportation of gradients through cortical microcircuits,
which inherits the weight transport problem from classi-
cal error backpropagation. We show that the microcircuits
equipped with SAL evolve much more similarly to BP com-
pared to FA, which is prone to misalignment.

2.4.1 SAL in spiking sampling networks

In this section, we demonstrate the effectiveness of SAL
in the framework of SSNs [61, 62]. As a model for the
Bayesian brain, SSNs can explain characteristics of percep-
tion in noisy, ambiguous environments[63, 64]. These net-
works form probabilistic latent representations of the world
and explore these learned internal states through sponta-
neous activity (sampling). Interestingly, the sampling pro-
cess is driven by noise, the same resource that SAL uses for
synaptic symmetrization. Due to the complex correlations
that they need to learn between their constituent neurons,
SSNs provide a powerful test case for SAL.

SSNs represent a natural way to mathematically formalize
the dynamics of sampling in a biologically plausible manner
by extending the theory of Boltzmann machines to spiking
networks. However, they also inherit the need for a symmet-
ric weight matrix from their machine learning counterparts.
An SSN consists of N bidirectionally connected neurons,
each modeled as a GLM following eq. (1), with absolute
refractory time τref , rectangular PSPs, and a logistic acti-
vation function. Each neuron k is assigned a binary state:
zk = 1 if the neuron is refractory and zk = 0 otherwise,
resulting in a network state vector z ∈ [0, 1]N (see fig. 3).
The probability for the network to be in a state z is given
by

p(z) =
1

Z
exp

[
1

2
z⊺Wz + z⊺b

]
, (3)

where Z =
∑

z exp
[
1
2
z⊺Wz + z⊺b

]
represents the normal-

ization factor, W ∈ RN×N is a symmetric weight matrix
(i.e., W = W ⊺) and b ∈ RN a vector containing all neu-
ronal biases.

The network can be trained to a suitable target distribu-
tion p∗(z) by gradient descent on the Kullback-Leibler di-
vergence between p and p∗. This ultimately yields the wake-
sleep algorihm with a local Hebbian learning rule. Training
consists of two alternating phases: a wake phase, which is
constrained by the target distribution, and a sleep phase, in
which the network samples freely from its current internal
distribution. A weight update is then given by

∆Wij = η [⟨zizj⟩wake − ⟨zizj⟩sleep] , (4)

where η denotes the learning rate and ⟨·⟩x the expecta-
tion value in the respective phase. Note that because of
⟨zizj⟩ = ⟨zjzi⟩, wake-sleep will always produce symmetric
weight updates.

Figure 3: Working principle of SSNs. a) An SSN consists
of a recurrent spiking network with symmetric reciprocal connec-
tions in theory, but asymmetric ones in practice. b) Each neu-
ron fires stochastically as a function of the membrane potential
(blue), which gives rise to a sampling process from an underlying
distribution p(z). The refractory state of each neuron is mapped
to a binary variable z ∈ [0, 1] (green and red). STDP with a
left-right symmetric window (orange) is used to implement spike-
based wake-sleep. Because the synaptic update is local to each
synapse, reciprocal weight updates are also asymmetric. c) Ex-
ample sampled distribution for N = 4 neurons.

In the framework of SSNs, the estimation of ⟨zizj⟩x can be
carried out by STDP as introduced in eq. (2): We use left-
right-symmetric, triangular STDP windows with f(∆t) =

max
(
− ∆t

τref
− 1, 0

)
and αa/c = 1 for the wake and αa/c =

−1 for the sleep phase to get an approximation of ⟨zizj⟩x
purely by observing the spikes. A global gating signal can
induce the phase switching [65]. To distinguish between
eq. (4) and its bio-plausible version relying on STDP, we
will refer to the former as state-based wake-sleep and to the
latter as spike-based wake-sleep; throughout this work, we
use spike-based wake-sleep learning. Because of synapse-
specific parameter variations in physical substrates, spike-
based wake-sleep can be subject to noise, which we model as
synapse-specific variations of αa/c. The biases are trained
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with ∆bi = η [⟨zi⟩wake − ⟨zi⟩sleep], which boils down to a
measurement of the firing rate.

When integrating the SSN model with the STDP version
of wake-sleep on noisy physical substrates, we encounter the
challenges discussed in section 1: First, the network must
be initialized with symmetric weights, which requires the
transport of effective weights between synapses. Any initial
weight asymmetry will persist if symmetric weight updates
are applied. Second, the STDP mechanism for the esti-
mation of ⟨zizj⟩ is located at a specific synapse Wij and
is subject to parameter variations that are, in general, not
identical to those of Wji. Therefore, the STDP measure-
ments for ⟨zizj⟩ and ⟨zjzi⟩ will differ and thereby violate
the requirement for symmetric weight updates during wake-
sleep. Asymmetric weight updates will lead to diverging
weight pairs, which distort the learned distribution and can
even unlearn previously learned representations.

We address these issues by introducing an additional SAL
update that co-occurs during the sleep phase. SAL quickly
levels initial weight asymmetry and facilitates learning in
noisy STDP scenarios by counterbalancing weight diver-
gence. This stabilizes learning, particularly in lifelong online
learning settings. It removes any assumption of implicit in-
formation exchange between synapses, ensuring that wake-
sleep is truly local.

To illustrate the effect of SAL, we conduct two types of
experiments, in which we consecutively introduce different
types of noise: the synaptic noise scenario and the plastic-
ity noise scenario. In both scenarios, we train a network of
N = 7 neurons to approximate a target Boltzmann distri-
bution p∗.

Synaptic noise scenario: The first experiment (fig. 4)
simulates fixed pattern noise on the synaptic weights by
randomizing the initial weight matrix. To do so, we add
Gaussian noise with variance σnoise

init to the weight matrix.
All synapses share identical STDP parameters (αa/c = ±1),
making the learning process equivalent to state-based wake-
sleep.

SAL demonstrates a rapid capability to symmetrize
weights, and is able to recover optimal training perfor-
mance (fig. 4a1). This is consistent across various noise
levels and weight differences (fig. 4a2). The ability of an
SSN to learn target distributions is found to be critically
dependent on the symmetry of reciprocal weights. Even mi-
nor deviations from symmetry hinder learning (fig. 4b1,b2).
By applying SAL in alternating phases with functional plas-
ticity (wake-sleep), we demonstrate that it does not impede
learning speed (fig. 4b1). Consequently, SAL enables re-
covery of training performance comparable to the noise-free
baseline (blue) (fig. 4b2).

Plasticity noise scenario: The second experiment
(fig. 5) introduces noise to both the initial weight matrix
and the wake-sleep STDP kernels. I.e., an initial noise value
of σnoise

init = 0.2 is used; additionally, a random variable ξ
is drawn from a truncated Gaussian distribution for each
synapse to model STDP inhomogeneity (αa/c = ±1± ξ).

Even small discrepancies in STDP parameters for wake-
sleep lead to weight divergence in reciprocal synapses
(fig. 5a1). Without regularization, this divergence can
cause unlearning of distributions (fig. 5b1). SAL effec-
tively counteracts the tendency of reciprocal weights to di-

verge, maintaining alignment throughout the training pro-
cess (fig. 5a1,a2). Consequently, wake-sleep learning is sig-
nificantly improved with SAL, facilitating a more accurate
learning of target distributions even when symmetric wake-
sleep plasticity remains active (fig. 5a1,a2). However, due
to the presence of the wake-sleep drift, the baseline perfor-
mance cannot be fully recovered.

2.4.2 Application 2: Cortical microcircuits

We now consider a specific implementation of SAL in den-
dritic cortical microcircuits. Such units have been suggested
to enable the transmission of forward signals and back-
ward errors across cortical hierarchies, realizing a biologi-
cally plausible variant of gradient descent through BP [29].
To our knowledge, our implementation represents the first
spiking version of this microcircuit model, thereby offering
an alternative implementation of spike-based backpropaga-
tion to burstprop [32].

Each microcircuit comprises two types of neuron popu-
lations: pyramidal cells and interneurons. These neurons
are organized into layers that correspond to cortical areas,
following a biologically plausible connectivity pattern (see
fig. 6a).

Student-teacher task In the following, we explore the
model in a student-teacher task. Here, a chain of two pyra-
midal neurons is trained with SAL and, for comparison, with
FA and BP as a reference. A teacher configuration of the
same size and depth is set up with fixed target weights to
produce a non-linear input-output mapping. The objective
for the student circuits is to learn this function by adapting
their weights accordingly.

A crucial aspect of this task is that successful learning
requires the simultaneous adaptation of all the synapses in
the network. For the latent layer, it is essential that a mean-
ingful error signal is transmitted through the feedback con-
nections. To illustrate the limitations of FA, we conducted
experiments where the feedback weights were randomly ini-
tialized; i.e., in ∼ 50% of experiments, feedback weights
were initialized with opposite sign compared to feed-forward
weights. Consequently, in these scenarios, the transported
error also had the wrong sign, causing weight updates in the
incorrect direction, and resulting in high average losses with
a very large spread towards even higher values (fig. 6b1) and
a drive of the weights away from their target (fig. 6c, green).

In contrast to the previous experiments with SSNs, here
SAL was only applied to the backward weights BPP

1,2. This
allows BPP

1,2 to quickly align with W PP
2,1 at the start of

training and subsequently follow its target, as shown in
fig. 6b1,b2. This facilitates fully local learning from any
initial weight configuration: in fig. 6a2, BPP

1,2 is initially set
with the incorrect sign (indicated by the red dashed line),
which should have been positive. As a result, W PP

1,0 receives
an erroneous error signal and decreases its value during the
first 5 epochs. With SAL, BPP

1,2 learns to eventually switch
to the correct sign. From this moment on, a meaningful er-
ror signal is induced in vapi

1 , enabling W PP
1,0 to converge to

its target value (indicated by the gray dashed line).

The study highlights the importance of correct error sig-
nal transmission through feedback connections for success-
ful learning, demonstrating the limitations of FA and the
effectiveness of SAL in aligning backward connections with
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Figure 6: SAL enables accurate BP in a spiking cortical microcircuit model. a) Cortical microcircuit model for biologically
plausible error backpropagation based on [29], which we augment with a spiking mechanism. b1) Performance of different learning
rules on a teacher mimic task. SAL outperforms FA, and training performance is on par with weight copying (BP). Note the large
performance variability of FA, which depends critically on the initial weights. b2) Evolution of top-down and bottom-up weights

during SAL learning for a case where initial feedback weights carry the wrong sign. Forward weights WPP
1,0 first evolve in the wrong

direction (with FA, they would explode, see h), but the gradual alignment of the backward weights BPP
1,2 improves the feedback

error signals, ultimately recovering the performance of vanilla BP. c) Distribution of final validation loss and learned weights in the
student network.

feedforward weights, thus ultimately facilitating fully local
BP learning.

2.5 Other PSP shapes and their effect

So far, we have only considered rectangular PSP shapes.
More biologically plausible PSPs exhibit a more complex
behavior when using SAL, effectively introducing a bias-
dependent behavior in the symmetrization (fig. 7). The bias
serves as a proxy for the base firing rate, which can result
from neuron-specific leak potentials or different input rates
from the surrounding networks, averaged over time. In the
following, we discuss how SAL behaves in complex networks
when other PSPs shapes are used.

We turn back to the two neuron system of section 2.2. As
the most important feature for evaluating the effectiveness
of SAL, we assess the shape of the basin of attraction in the
Wij/Wji plane as visualized by the phase plane diagram in
fig. 2e. The basin of attraction provides information about
the weight pairs to which SAL converges.

We employ an α-shaped kernel

κ(t) = Θ(t)
τref
τ2
syn

t exp

(
− t

τsyn

)
, (5)

with different synaptic constants τsyn (see fig. 7a) to model
PSPs often found in biological neurons and used in neuro-
morphic hardware. These are compared with the rectangu-
lar kernel used in previous results.

In fig. 7c, we visualize the attractors of the rectangular
and α-shaped PSPs with a short and long time constant τsyn.
For the sake of clarity, we do not plot the flow field, but con-
centrate on the shape of the attractors. Notably, SAL con-
verges in all cases, i.e., all fixed points are indeed stable and
remain organized as line attractors, ensuring that SAL gives
rise to useful weight updates. For a formal proof, we refer

to section 4.2.2. Furthermore, the signs of the weights are
matched in all cases (i.e., sgn(Wij) = sgn(Wji)), indepen-
dently of the biases and the PSP shape2. This is an impor-
tant result, as sign-conserving FA has been shown to permit
learning performance close to BP even without matching
weight amplitudes [40].

These deviations are best understood by considering the
effect of PSP shapes on the STDD (fig. 7b). Here, we pro-
vide a qualitative explanation, but refer to section 4.2.1 for
the exact analytical result.

Since the firing probability is a monotonic function of the
membrane potential, we expect the shape of the STDD to
roughly follow that of the PSPs. Indeed, for rectangular
PSPs, we observe a flat distribution, as a constant PSP leads
to a uniform spiking probability in the postsynaptic neuron
j for all ∆t < τref . On the other hand, for |∆t| > τref ,
the spike timing differences are produced by two indepen-
dent Poisson processes, giving rise to a left-right symmetric
exponential distribution.

For α-PSPs, the STDD shape is still similar to that of
the PSP, but the strict left-right symmetry is broken. We
identify two main causes for this effect.

First, we note that α-PSPs extend beyond the refractory
period and can therefore stack, unlike the rectangular PSPs
with τsyn = τref . The probability of such stacking increases
with the presynaptic partner’s firing rate, which, in turn, is
determined by its bias. Unequal biases lead to asymmetric
stacking probabilities and therefore to asymmetric STDDs.
Furthermore, this stacking also means that the spiking pro-
cesses are not independent anymore for |∆t| > τref . How-
ever, this phenomenon has a much smaller effect due to the
exponential decay of the SAL STDP kernel. Evidently, these
stacking effects are altogether more pronounced for longer

2We will discuss what sign changes mean in networks subject to
Dale’s law in section 3.
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Figure 7: SAL works with different PSP shapes. a) We consider a two-neuron system together with three common PSP
kernels. b) STDDs at W12 = W21 = 1 for three different bias combinations. The STDDs of the α−kernels show a slight asymmetry
if b1 ̸= b2. c) Phase plane diagram of reciprocal weights for nine bias combinations. For clarity, only the attractors are shown. The
biases used here are marked as squares in the respective color in panel d). Rectangular PSPs always yield perfect symmetrization
(all attractors are located on the diagonal). On the other hand, symmetrization is not perfect for α−PSPs. The attractor deviates
from the diagonal if the difference in biases is large, with longer PSPs causing larger deviations. Importantly, however, the sign of
the weights is always aligned correctly. Red circles indicate the weights used for the STDDs above. d) Average relative deviation of
the attractor from the diagonal as a funtion of biases b1 and b2. Rectangular PSPs symmetrize perfectly for all biases. Short PSPs
(middle) only cause small deviations (less than 10% across the whole bias-space), while long PSP tails incur larger deviations (right).

PSPs, and thus represent the main reason for the discrep-
ancies in fig. 7b-d, right panels.

The second cause of STDD symmetry breaking is best ob-
served in fig. 7b, middle panel, where a second bump around
±τref stands out. This is an “echo” of the PSP’s peak: If
neuron i has a high bias, the probability for it to spike again
(independently of neuron j) immediately after the end of its
refractory period, i.e., after approximately τref is also raised.
If now a spike in neuron j is elicited by the first PSP from
neuron i, a causal ∆t is followed by its anticausal “echo”
at ∆t′ ≈ ∆t− τref . Since this effect is also bias-dependent,
it also breaks the STDD symmetry for unequal neuronal
biases. Being most pronounced for short, peaked PSPs, it
represents the main cause behind the deviations in fig. 7b-d,
middle panels.

Finally, we quantify the deviation of the attractor from
the diagonal by computing the average relative distance to
the diagonal as a function of b1 and b2 (see also section 4.5).
In general, the relative deviation is smaller for shorter PSPs,
as well as for smaller biases (fig. 7d, middle and right panel).

This indicates an effective method for further improving
synaptic alignment if vanilla SAL is not sufficient. By intro-
ducing a further alignment phase into the learning procedure
during which functional plasticity is absent and neuronal bi-
ases are sufficiently reduced (for example, through negative
input currents or background inhibition), SAL can always be

ensured to perform weight symmetrization to the required
precision even when neuronal biases remain diverse.

3 Discussion

Plausible algorithms for physical computing – whether in-
stantiated in neuromorphic hardware or biological brains –
need to tackle the weight transport problem. In this paper,
we have presented SAL, a fully local algorithm for effec-
tive weight transport in spiking neuronal networks based on
STDP.

SAL enables the alignment of bottom-up and top-down
information flow (for instance, of the sensory information
and error signals, depending on the computational paradigm
[66–68]), thereby fulfilling the core requirement of credit as-
signment in physical systems: the locality of information in
space and time. In the domain of neuromorphic computing,
SAL can play a key role in the implementation of fully lo-
cal on-chip learning schemes. In models for computation in
the brain, SAL can increase the biological plausibility when
networks are subject to symmetry constraints. Addition-
ally, we emphasize SAL’s ability to increase the robustness
of networks to the omnipresent fixed pattern noise found
in any physical substrate. More concretely, SAL automati-
cally balances effective weights and does not just copy the
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numerical value. Thus, the effect of morphological variance
of different neurons on computation is also compensated.

In contrast to other approaches, SAL is free of any
(oftentimes implicit) assumption regarding the symme-
try of shared parameters between the involved neurons
and synapses: Instead, SAL works independently in each
synapse and compensates for asymmetric weight updates.
Moreover, SAL uses the omnipresent temporal noise in phys-
ical substrates as a resource: While noise in neural network
is often regarded as destabilizing for computation, it actu-
ally drives the stabilizing effect of SAL. Finally, we have
also shown that SAL is mostly agnostic to the underlying
network topology. It is compatible with a plethora of net-
work architecture that involve reciprocal connectivity. In
this context, we also highlight that it has allowed us to
demonstrate the first functional spiking implementation of
the backpropagating microcircuits proposed in [29].

Related work Broadly, existing approaches to address
the weight transport problem can be divided into four cat-
egories:

First, some studies simply assume weight symmetry in
their theoretical derivations and implement physically im-
plausible copy operations in their simulations. While this
allows to show that the respective algorithms are in gen-
eral capable of successfully performing credit assignment,
the absence of a solution to the weight transport problem
calls their biological plausibility into question, while also
limiting their applicability for neuromorphic on-chip learn-
ing. An example here is equilibrium propagation [28] or the
work by Xie and Seung [27].

Second, random, fixed backprojections as in FA [38, 69]
are often cited as a one-fits-all approach to solve the weight
transport problem. However, numerous studies have high-
lighted its limitations when it comes to scaling to deeper net-
works or robustness [40, 41]. The detrimental effect of mis-
aligned weights carries over to spiking networks, as we have
shown here. Importantly, it is known that weight alignment
does not need to be perfect for transportation of meaningful
gradients in deep networks [40, 41, 70]. Instead, the conser-
vation of the sign is usually sufficient, which SAL guarantees
for the most widely assumed PSP shapes.

The third category is formed by algorithms that are based
on weight decay. The idea was first introduced by Kolen
and Pollack [31], using a constant weight decay that causes
the network to gradually forget its asymmetric initial state.
However, symmetrization then relies on strictly symmetric
weight updates, and it is not clear how these symmetric
updates can come about given heterogeneous synapses and
plasticity; in that sense, weight decay algorithms only rele-
gate the weight transport problem to a weight update trans-
port problem. By contrast, SAL relaxes all implausible con-
straints on symmetric updates because it is able to dynam-
ically realign weights during training.

In the fourth category, we summarize algorithms that
dynamically learn useful reciprocal weights in a physically
plausible manner. With (difference) target propagation,
[71–74] learn pseudo-inverse backprojections to perform
Gauss-Newton optimization. For error backpropagation,
[25, 26, 41, 75] learn feedback weights that approximately
align with the forward Jacobian, but are data-specific and
do not necessarily match the forward weights in angle or
amplitude.

A particular example from this class of algorithms is
PAL [41], as it can be regarded as the rate-based comple-
ment to SAL. Notably, their common denominator is the
functional role of noise: In PAL, the information carrying
signal is augmented by high frequency noise, which moves
in loops through the network. On its way, the noisy signal is
affected by the synaptic weights and therefore carries infor-
mation that can be exploited locally to align weights. A fur-
ther commonality between SAL and PAL is their ability to
train all backprojections in a network at the same time and
without disturbing forward weight learning. Note, however,
that all the aforementioned approaches are quintessentially
rate-based, i.e., they are based on time-continuous informa-
tion exchange between neurons. SAL, on the other hand,
is designed from the ground up for spiking networks, where
discrete, sparse events are the central information carrier.

In [42], a spiking model for autoencoders using STDP
was introduced. Similarly to SAL, an anti-Hebbian window
(called “mirrored STDP”) is employed to learn the back-
ward projections of the autoencoder. Despite the apparent
similarity between SAL and mirrored STDP, the two plas-
ticity rules actually serve a different purpose: In [42], the
combination of Hebbian and anti-Hebbian learning produces
the same weight updates in the forward and backward di-
rection. In this sense, it is a spiking, biologically plausible
implementation of the Kolen-Pollack algorithm [31]. As a
result, mirrored STDP cannot equilibrate initial weight dif-
ferences. Furthermore, it is not discussed whether the model
can compensate for parameter noise on neuronal and plastic-
ity parameters, which is a crucial feature of SAL and decisive
for its efficacy in neuronal systems with analog components,
whether biological or neuromorphic.

A different approach to spike-based credit assignment is
proposed in [76]. Following the energy-based paradigm of
equilibrium propagation, O’Connor et al. propose a spik-
ing stochastic approximation thereof. While the authors
demonstrate the feasibility of their approach, they also ac-
knowledge that it lacks a solution to the weight transport
problem; this is exactly the gap which SAL is able to fill,
and a combination of SAL with Spiking Equilibrium Prop-
agation could shed light on neuronal credit assignment and
drive efficient hardware implementations.

BurstProp [32], a solution to credit assignment in layered
spiking networks, uses a local plasticity rule together with
postsynaptic bursts to determine the sign of the synaptic
change of the forward weights. However, the authors im-
plement FA for the transportation of the top-down teaching
signal; as above, BurstProp may be combined with SAL to
improve biological plausibility and learning performance.

Applications and constraints Aside from computation
in the brain, SAL specifically targets spiking neuromorphic
systems, especially if they contain analog components. Such
systems are prone to substrate variability and parameter
drift, which destabilize training performance and limit real-
world applicability. This applies, for example, to emulations
of quantum systems on analog spiking hardware [21, 22] or
Bayesian inference using spiking nanolasers [77]. In all of
these cases, asymmetries due to substrate variability con-
stitute the main limiting factor for the task performance of
the respective networks.

Importantly however, STDP-like learning forms the stan-
dard for on-board/on-chip learning on many platforms [20,
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58, 78–82]. Therefore, SAL may provide the missing link for
stable, physical learning systems: by facilitating a fully local
implementation of effective weight sharing, it can compen-
sate parameter noise and drift. Additionally, it paves the
way for a fully local, analog implementation of BP.

This capability positions SAL as a robust solution for
adaptive systems, such as smart sensors and wearable de-
vices, which must cope with challenges like sensor degrada-
tion or environmental changes while maintaining efficiency
and autonomy. In this context, we expect that memristive
devices [58, 82], known for their high density and low power
consumption, provide an ideal substrate for implementing
SAL’s learning rules.

Complementary to this, SAL is designed to address weight
transport in spiking theories of the brain. It suggests a
functional need for diverse STDP curves, thus providing an
explanation for their observation in nature [12, 83].

However, contrary to many hardware platforms [20, 79,
80], biological synapses cannot simply switch their sign,
as they typically express only one type of neurotransmit-
ter. This makes biological synapses either excitatory or in-
hibitory, a phenomenon known as Dale’s law [84]. So far, we
have neglected this aspect in all discussions and simulations
of our method. However, an important property of SAL is
its ability to change the sign of a given synapse. To align
SAL with Dale’s principle, we point out that (excitatory)
pyramidal neurons in the cortex are not only connected di-
rectly (via purely excitatory connections), but also via in-
hibitory interneurons. The resulting effective weight is thus
the sum of the inhibitory and direct excitatory weights. By
modulating only the weight of the direct excitatory synapse,
the whole range from effective inhibition to excitation of the
postsynaptic neuron can be covered. In such circuits, SAL
can act only on the direct excitatory pathway, but still align
the total effective weights between the forward and back-
ward paths.

In summary, we contend that symmetry is not just a mere
token of theoretical elegance, but also an important ingredi-
ent for practical deployment across a wide range of models
and applications. Instead of working around it when faced
with its absence, SAL offers a solution for recovering and
maintaining symmetry in real physical systems, by making
use of noise as a fundamental computational ingredient.

4 Methods

As in the main text, bold lowercase variables x denote vec-
tors, bold uppercase letters X matrices. We denote spike
times of neuron i as ti. The most recent spike emitted by
neuron j before the time t is denoted as t′i. The set of all
past spikes from neuron i is denoted by {ti}. The output
spike train from neuron i is

Si(t) =
∑
{ti}

δ(t− ti), (6)

where δ(x) is the Dirac delta distribution.

4.1 Neuron model

We use a generalized linear model (GLM) [85] to model the
dynamics of spiking neurons. The membrane potential of

neuron k is given by

ui(t) = bi +
∑
k

Wik(t)

∞∫
0

κ(s)Sk(t− s)ds, (7)

where bi is the neuron’s bias, which can be associated with
the leak potential, κ(t) the kernel of the post-synaptic poten-
tial (PSP), Sk(t) the spike trains coming from the presynap-
tic neuron k, and Wik the corresponding synaptic weight. If
not stated otherwise, we employ a rectangular PSP kernel,

κ(t) = Θ(t)−Θ(t− τsyn) , (8)

where τsyn denotes the synaptic time constant.
The output spikes of a neuron are generated by an inho-

mogeneous Poisson process with absolute refractory period
of length τref . The spiking probability in the time interval
[t; t+ dt] is given by

p(ti|t′i) =

{
ri(t) dt if t− t′i > τref

0 else,
(9)

where
ri(t) = τ−1

ref exp (ui(t)) (10)

is the instantaneous firing rate, rescaled by the refractory
period. The timescale of the rectangular PSP kernel is
matched with the length of the refractory period τsyn = τref .

We choose this model to account for stochastic firing pat-
tern found throughout networks in the brain and to model
the presence of temporal noise in the nervous system while
being mathematically tractable. It can be shown that leaky
integrate and fire (LIF) neurons in the high-conductance
driven by high-frequency spike noise state can have similar
statistical properties as the model presented above [62].

4.2 Spike-based alignment learning

The working principle of spike-based alignment learning
(SAL) builds on the observation that weights leave a char-
acteristic imprint on the distribution of spike timing differ-
ences of pre- and postsynaptic spikes. In section 2.3 and
figs. 2 and 7, we have given a qualitative understanding of
our weight alignment mechanism, which we now follow up
with a more detailed explanation.

Typically, unequal reciprocal weights Wij ̸= Wji pro-
duce skewed/asymmetric spike-timing difference distribu-
tions (STDDs). This is informative of the weight difference
and can be exploited for symmetrization. This asymme-
try can be extracted by a standard spike-timing-dependent
plasticity (STDP) rule, which updates Wij after every oc-
currence of a nearest-neighbor spike pair with ∆tij = t′i− t′j
via

∆Wij = η
(
Θ(−∆tij)αaf

−(∆tij)︸ ︷︷ ︸
anti-causal

+Θ(∆tij)αcf
+(∆tij)︸ ︷︷ ︸

causal

)
.

(11)
Here, f(∆t) defines the shape of the learning window, which
we choose to be f(∆t) = exp(t/τ) in accordance with [86].
αc (αa) is the prefactor for the (anti)causal branch, which
we set to be +1 (−1) to strengthen (weaken) Wij if a
(anti)causal spike pair occurs.

In practice, SAL works with spike pairs of infinite-range
as long as the number of causal and anti-causal ∆t are the
same; i.e. on average, a spike contributes as many times
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to causal ∆t as to anti-causal ones; if this is not the case,
weights do not necessarily converge to a fixed point when
using SAL. In fact, the experiments in section 2.4 use corre-
lations of all spike pairs, demonstrating that SAL also works
beyond the strict analytical regime of nearest neighbor spike
pairs. The infinite-range STDP rule can be written as

Ẇij(t) = η
(
Sj(t)

∞∫
0

αa(s)f
−(s)Si(t− s)ds

+ Si(t)

∞∫
0

αc(s)f
+(s)Sj(t− s)ds

)
(12)

4.2.1 Analytical calculation of the spike-timing dif-
ference distribution

Our analytical computation of the STDD builds on the in-
sight that a time discretized version of the GLM can be
expressed as a discrete-time Markov chain. The following
derivation is inspired by [61]. We introduce a discrete count-
ing variable ζi ∈ N, that defines the state of neuron i and a
state vector ζ ∈ NN collecting the states of all N neurons
in the network. Due to the Markov property, the network
state ζ′ of the next time step depends only on the current
state ζ.

ζi counts the number of time steps since neuron i has
spiked the last time. Depending on its own state ζi and the
states of the other neurons ζk, neuron i can spike with some
probability, for which we set ζ′i = 1. If it doesn’t spike, the
counter is incremented, ζ′i = ζi + 1.

For each neuron, we define analogous to eq. (7) a mem-
brane potential

ui = bi +
∑
k

Wikκ(ζk), (13)

where bi is the neuron’s bias, Wik the synaptic weight and
κ(ζk) the PSP induced by the last spike from neuron k.

The update rules of the Markov chain is determined by the
transition operator T (ζ′|ζ) which describes the probability
to obtain a certain state ζ′ given the current state ζ. The
transition operator T (ζ′i|ζ) for a single neuron is given by:

T (ζ′i = 1|ζ) =

{
ri

0

for ζi > τref

else
(spike) (14a)

T (ζ′i = ζi + 1|ζ) =

{
1− ri

1

for ζi > τref

else
(no spike) (14b)

All other transitions are forbidden. As before, τref rep-
resents the refractory period, but here as a natural num-
ber in terms of time steps. We use a spiking probability
ri = (1 + exp(−(ui − log τref)))

−1. Because ui does not
depend on ζi itself, all neurons can be updated in parallel.

Starting from the transition rules eq. (14) for one neu-
ron, we can construct the transition rules for a two neuron
system ζ(2) = (ζ1, ζ2). In this case, if neuron 1 is not re-
fractory, it can spike with a probability of r1 derived from
u1 = b1 + W12κ(ζ2). Respectively, neuron 2 spikes with a
probability determined by u2 = b2 +W21κ(ζ1). The result-
ing nine possible transitions are:

• neuron 1 and 2 are refractory (ζ1 < τref and ζ2 < τref):

T (ζ′1 = ζ1 + 1, ζ′2 = ζ2 + 1|ζ1, ζ2) = 1 (15a)

• neuron 2 is refractory (ζ2 < τref); 1 can spike (ζ1 ≥ τref):

T (ζ′1 = 1, ζ′2 = ζ2 + 1, |ζ1, ζ2) = r1 (15b)

T (ζ′1 = ζ1 + 1, ζ′2 = ζ2 + 1, |ζ1, ζ2) = (1− r1) (15c)

• neuron 1 is refractory (ζ1 < τref); 2 can spike (ζ2 ≥ τref):

T (ζ′1 = ζ1 + 1, ζ′2 = 1, |ζ1, ζ2) = r2 (15d)

T (ζ′1 = ζ1 + 1, ζ′2 = ζ2 + 1, |ζ1, ζ2) = (1− r2) (15e)

• neuron 1 and 2 can spike (ζ1 ≥ τref and ζ2 ≥ τref):

T (ζ′1 = 1, ζ′2 = 1|ζ1, ζ2) = r1 r2 (15f)

T (ζ′1 = 1, ζ′2 = ζ2 + 1, |ζ1, ζ2) = r1 (1− r2) (15g)

T (ζ′1 = ζ1 + 1, ζ′2 = 1, |ζ1, ζ2) = (1− r1) r2 (15h)

T (ζ′1 = ζ1 + 1, ζ′2 = ζ2 + 1, |ζ1, ζ2)= (1− r1) (1− r2) (15i)

All other transitions are forbidden (T (ζ′1, ζ
′
2|ζ1, ζ2) = 0).

With these transition probabilities (eq. (15)) we can
compute STDD of the two neuron system. In the fol-
lowing derivation, we introduce a maximum value Z ≫
max(τref , τsyn) for ζi to limit the possible state space of our
two neuron system to a finite number.

Let us define the probability state vector π ∈ RZ2

, that
contains the probabilities for all states,

π =
(
p(ζ

(2)
1,1), . . . , p(ζ

(2)
1,Z), p(ζ

(2)
2,Z), . . . , p(ζ

(2)
Z,Z)

)⊺
, (16)

where we use the shorthand ζ
(2)
i,j = (ζ1 = i, ζ2 = j). To-

gether with the transition matrix T ∈ RZ2×Z2

the evolu-
tion of the two neuron system from state π to π′ can be
computed via

π′ = Tπ. (17)

T contains the transition probabilities defined in eq. (15)
where the columns and rows are arranged in the same order
as in π,

For calculating the STDD, we are interested in the in-
variant or steady state distribution of the system, i.e. the
distribution π∗ which does not change when T is applied.
We obtain π∗ by solving the eigenvalue problem

λπ∗ = Tπ∗ (18)

for the real eigenvalue λ = 1.

In the following, we are calculating the probability that
neuron 2 spikes ∆t time steps after neuron 1 (i.e. the right
side of the STDD). To calculate negative ∆t values (i.e. the
left side), we can use the symmetry of the two neuron system
and simply swap neuron 1 and 2 in the equations.

We start with a steady state vector π∗
right, where all en-

tries for which ζ1 > 1 are set to zero, i.e. we consider only
those states and their probabilities, for which neuron 1 has
just spiked.

Obtaining a ∆t means that both neurons undergo ∆t− 1
transitions where they increment their ζs (as described by
eqs. (15a), (15c), (15e) and (15i)). They are put together in
the transition matrix T nospike, which is basically a version
of T in which all rows in which ζ′1 = 1 or ζ′2 = 1.

After the ∆t− 1 steps, neuron 2 spikes for which we con-

struct an additional matrix T spike ∈ RZ×Z2

that contains
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Figure 8: a) STDD deviation δ(t) for W12 = W21 + ε (with
ε = 0.005) and rectangular PSPs, for positive (left) and negative
weights (right). b) Integrated deviation ∆(t) for positive (left)
and negative (right) weights.

the transition probabilities eqs. (15d) and (15h). Hence, the
right side of the STDD p(∆t > 0) is given by

p(∆t > 0) =

Z−1∑
i=1

T spikeT
i−1
nospikeπ

∗
right. (19)

The whole distribution is obtained by concatenating the
right and left distribution.

4.2.2 Proof for the existence and stability of fixed
points in SAL

To show the existence and stability of fixed points in SAL,
we introduce the following notation: We use a ·̂ to indicate
the time-mirrored version of a variable, i.e., ĝ(t) := g(−t).
Furthermore, we use a ·+ to indicate the right part of a
function, i.e. positive domain t ≥ 0, and ·− for the left part.

For the STDP kernel we assume f+(t) > 0, f−(t) < 0
and f+(t) = −f̂−(t) as well as positive derivatives f+′

(t) =
f−′

(t) > 0. The exact shape does not matter in our consid-
eration.

We denote the STDD for a given set of symmetric weights
W12 = W21 with p0(t). Additionally, we introduce a distri-
bution pε(t) of a set of weights W21 = W12 + ϵ with a small
ε → 0. From this, we define for t ≥ 0 the deviation

δ := p+ε − p+0 −
(
p̂−ε − p̂−0

)
. (20)

Importantly, the STDD is defined such that it contains only
nearest-neighbor spike pairs. Hence, every causal spike pair
is followed by an anti-causal pair, and it follows directly that
∞∫
0

p+(t)dt =
∞∫
0

p̂−(t)dt. Using the definition of the deviation

eq. (20), we thus note that

∞∫
0

δ(t)dt = 0. (21)

To prove the existence of fixed points of SAL, we turn
to the expectation value for a weight update ⟨Ẇij⟩. The
expectation value for a symmetric STDP kernel is given by

〈
Ẇij

〉
=

0∫
−∞

f−(t)p−(t)dt+

∞∫
0

f+(t)p+(t)dt (22)

=

∞∫
0

f+(t)
[
p+(t)− p̂−(t)

]
dt. (23)

For brevity, we omit the synapse indices here for the STDD
pij . As demonstrated in fig. 7, the STDD is symmetric
(p+0 = p̂−0 ) for Wij = Wji if and only if the PSP shape is
rectangular, independent of the choice of the biases, and for
arbitrary PSPs if b1 = b2. Hence, the average weight update
is zero, ⟨Ẇij⟩ = 0, and W12 = W21 is a unique fixed point.

We now show that the fixed points are stable under small
perturbations of one weight, which is represented by pε.
That means that ⟨Ẇ21⟩ < 0 if ε > 0, i.e., W21 > W12

and vice versa that ⟨Ẇ21⟩ > 0 if ε < 0. Since the STDDs
are identical (just time-mirrored) for the two synapses, the
same derivation holds for W12. We start with ϵ > 0. The
expectation value analog to eq. (22) is

〈
Ẇ21

〉
=

∞∫
0

f+(t)
[
p+ε (t)− p̂−ε (t)

]
dt (24)

=

∞∫
0

f+(t)
[
p+0 (t) + δ(t)− p̂−0 (t)

]
dt (25)

=

∞∫
0

f+(t)δ(t)dt. (26)

By introducing the variable ∆(t) :=
t∫
0

δ(t′)dt′ and integrat-

ing by parts, we can reformulate eq. (24) as

〈
Ẇ21

〉
= f+(t)∆(t)

∣∣∣∣∣
∞

0

−
∞∫
0

f+′(t)∆(t)dt. (27)

Because of ∆(0) = 0 and limt→∞ ∆(t) = 0 (see fig. 8), the
boundary terms vanish. Importantly, because of ∆(t) > 0
for all t > 0 and because of our assumption f+′

(t) > 0, the
integral evaluates to a finite positive number. Therefore, for
a positive ε, we have ⟨Ẇ21⟩ < 0. For a negative ε, δ and
consequently ∆ change the sign and therefore the integral
term evaluates to a negative number, and ⟨Ẇ21⟩ < 0. Hence,
in the vicinity around the fixed pointW21 = W12, the weight
updates move W21 towards W12, which shows that W12 =
W21 is a stable solution.

4.3 Sampling with spikes

To demonstrate the effectiveness of SAL in networks with
strong recurrence, we turn to spiking sampling networks
(SSNs), which we train to represent arbitrary Boltzmann
distributions. The framework of SSNs was introduced
in [61]. It builds on the theory of Boltzmann machines
(BMs), which originate from the field of statistical physics
and are used to represent probability distributions over bi-
nary variables zi of a system of N coupled spins or – in
the language of neural networks – a recurrent network of
stochastic binary neurons.

For this system, we define an energy function

E(z) = −1

2
z⊺Wz − b⊺z, (28)

that assigns a scalar energy value to every possible configu-
ration z ∈ [0, 1]N of the system. W ∈ RN×N is a symmetric
weight matrix with vanishing diagonal that contains the in-
teractions strengths between the neurons and b ∈ RN the
vector of neuronal biases.
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The probability of a state z is determined by the Boltz-
mann distribution,

P (z) =
1

Z
exp (−E(z)) , (29)

where Z =
∑

z′ exp (−E(z)) is the partition function.

To make the link between the theory of BMs and spiking
neural networks, we map the refractoriness of a neuron to
the binary variable zi, where zi = 1 is assigned to a neuron
which is refractory and zi = 0 to a neuron which is not.
The neuron model employed here is the same as defined
in section 4.1 by eqs. (7) to (10). Driven by its intrinsic
randomness, the network randomly evolves over time and
explores different network states along some random tra-
jectory through the state space, which we call sampling.
The relative frequency by which the states z are visited rep-
resents the underlying joint probability distribution p(z).
In [61], the authors have shown the equivalence between
Markov chain Monte Carlo (MCMC) from Boltzmann dis-
tributions and the sampling with networks of spiking GLMs.

By choosing a suitable number of neurons and partition-
ing the network into a population of visible and hidden neu-
rons, the marginal distribution over the visible population
can approximate any joint probability distribution.

The training of the network consists of minimizing the dif-
ference between the network distribution p(z) and the target
distribution p∗(z). To do so, we minimize the Kullback-
Leibler divergence (DKL), a standard measure of similarity
between two probability distributions. Minimization with
respect to the network’s weights and biases yields optimized
parameters

θ̂ = argmin
θ

DKL(p∥p∗), θ ∈ {b,W }, (30)

where DKL(p∥p∗) :=
∑

z p(z) log
p(z)
p∗(z) . The weights and bi-

ases are updated iteratively by performing gradient descent
on DKL. Training is split into two reoccurring phases: In
the wake phase, the network is constrained by the target
distribution (it “sees” the target pattern), while during the
sleep phase, it is allowed to sample freely from its internal
distribution. This results in the wake-sleep algorithm used
for training BMs [3],

∆Wij = ηW [⟨zizj⟩wake − ⟨zizj⟩sleep] (31)

∆bi = ηb [⟨zi⟩wake − ⟨zi⟩sleep] , (32)

where ⟨·⟩wake = ⟨·⟩p∗(z) denotes the expectation value
with respect to the target distribution p∗(z) and ⟨·⟩sleep =
⟨·⟩p(z|b,W ) with respect to the distribution of the free model.
We refer to eqs. (31) and (32) as state-based wake-sleep.

In an SSN, the estimation of the correlations ⟨zizj⟩x can
be realized directly on the spike-trains by a standard STDP-
rule as introduced in eq. (11), which we refer to as spike-
based wake-sleep. The STDP-window has the shape of a left-

right symmetric triangle with f(∆t) = max
(
− ∆t

τref
− 1, 0

)
and αa/c = 1 for the wake and αa/c = −1 for the sleep
phase. In the limit of small learning rates, the accumulated
weight updates using spike-based STDP after the two phases
is equivalent to the weight update produced by state-based
wake-sleep. This allows us to minimize DKL in an efficient
online manner, relying only on the knowledge of last spike
times instead of accumulated expectation values.

synaptic noise plasticity noise
w/o SAL w/ SAL w/o SAL w/ SAL

W ∗ U [−1, 1]
b∗ U [−1, 1]
W init N (0, 0.2)
binit N (0, 0.2)
σnoise
init variable variable 0.2 0.2

σnoise
STDP 0 0 variable variable

ηW 0.01 0.01 0.001 0.001
ηb 0.01 0.01 0.001 0.001
ηSAL 0 0.01 0 0.002
τref 50 timesteps
duration

sleep phase

1000 τref

Table 1: Simulation parameters for the SSN experiments.

4.3.1 Simulation details

We train a fully connected BM of size N = 7 to sample
from random target distributions of the same dimension. To
compute the target distributions p∗, we generate Boltzmann
distributions using eq. (29) with parameters W ∗ and b∗

sampled from a uniform distribution. This ensures that the
BM is able to solve the task of representing p∗ with high
precision.

Prior to training, the network is initialized with random
biases binit and weights W init drawn from a normal distri-
bution. The upper triangle of W init is copied to the lower
triangle to ensure symmetry.

Depending on the experiment type, parameter noise is
added to the network upon initialization: In the synaptic
noise scenario, Gaussian noise with µ = 0 and a standard
deviation σnoise

init is added to each weight to model weight
asymmetry of different strength prior to training. In the
plasticity noise scenario, all runs are conducted with Gaus-
sian noise with σnoise

init = 0.2 added to W init. Additionally,
we also add noise to the STDP factors: For each synapse
Wij , a random noise value ξij is drawn from a normal dis-
tribution with µ = 0 and σnoise

STDP. For the wake phase, this is
added to both causal and anticausal prefactors, αa/c + ξij ,
and subtracted for the wake phase, αa/c − ξij . This models
synaptic heterogeneity and ensures that reciprocal synapses
produce non-equal weights updates, although they receive
the same spike trains and should produce as the same up-
dates as expected.

Each scenario is simulated twice, one time without SAL
and a second time with an additional SAL phase. To ac-
celerate learning, sampling during the wake phase is re-
placed by calculated target coactivation ⟨zizj⟩wake and rates
⟨zi⟩wake. Weight updates are applied in batches after each
phase (wake-sleep or SAL). Learning rates are optimized
through visual inspection, and training progress is moni-
tored using the DKL between p and p∗. For each scenario,
a reference run without the specific noise type is conducted
(blue/purple lines and markers in figs. 4 and 5), and training
is halted when the DKL ceases to decrease. For each noise
level in figs. 4 and 5, we train the same 5 distributions with
4 seeds each, resulting in different 20 runs, and compare the
DKL and variance of weight differences Var (Wij −Wji) be-
tween runs with and without SAL. The relevant simulation
parameters are given in table 1.
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4.4 Spiking cortical microcircuits

To demonstrate SAL in the context of biologically plausible
backpropagation (BP) in spiking networks, we turn to the
model of cortical microcircuits presented in [29] and extend
it to communication with actual spikes instead of rates.

4.4.1 Mathematical description of the model

The general scheme of the circuit is depicted in fig. 6. For
a proof of the equivalence between the (rate-based) micro-
circuit model and BP, we refer the reader to [29] and [41].

In the absence of a teaching signal, e.g., from higher cor-
tical areas, pyramidal cells function as representation units,
responsible for feed-forward activation. We denote variables
associated with these cells with a superscript ·P. They re-
ceive bottom-up sensory inputs via their basal dendrites
and top-down error/learning signals through the apical den-
drite, integrating these inputs at the soma. Such preferential
targeting of dendritic compartments by top-down/bottom-
up projections is consistent with observations of pyramidal
cells in cortex [87–91]. In the model, the complex dynam-
ics of pyramidal cells are modelled with a simplified three-
compartment model, which includes distinct basal, apical,
and somatic voltages.

Interneurons (indicated by a superscript ·I) are located
in the hidden layers of the network and aim to replicate
the activation of pyramidal cells in the layer above. They
are divided into two compartments, representing the den-
dritic tree and the soma. Across the layers, the popula-
tions of pyramidal neurons and interneurons are organized
such that the number of interneurons in the hidden layers
matches the number of pyramidal cells in the layer above.
Pyramidal cells project laterally to these interneurons and
receive signal back from them to their apical tree.

In accordance with the previous models of this work (sec-
tions 2.4.1 and 4.1), neurons are modelled as GLMs, i.e., we
use the spiking mechanism presented in eq. (9) together with
the activation function eq. (10). The membrane potential
dynamics of pyramidal cells integrate the compartments,

uP
ℓ (t) = bℓ + λbasvbas

ℓ (t) + λapivapi
ℓ (t), (33)

where bℓ represents the neuronal biases and vbas
ℓ and vapi

ℓ

the basal and apical voltages respectively together with their
coupling strengths λbasand λapi.

The basal compartment vbas
ℓ (t) = W PP

ℓ,ℓ−1κ̂
p
ℓ−1(t) receives

input spikes from the pyramidal neurons in the layer below.
Here, W PP

ℓ,ℓ−1 denotes the bottom-up weights from layer ℓ−1
to ℓ and κ̂x

ℓ−1,i(t) =
∫∞
0

κ(s)Sx
ℓ−1,i(t−s) ds the filtered spike

train from neuron i in layer ℓ− 1.
The apical compartment vapi

ℓ (t) = BPP
ℓ,ℓ+1κ̂

p
ℓ+1(t) +

LPI
ℓ,ℓκ̂

I
ℓ(t) integrates the top-down input from the upper layer

(through BPP
ℓ,ℓ+1) and compares it to the activity of the in-

terneurons received through the lateral weights LPI
ℓ,ℓ.

In this model, interneurons consist of two compartments,
representing the soma and a dendritic tree. Their somatic
voltage is given by

uI
ℓ(t) = bℓ + λdenvden

ℓ (t) = bℓ + λdenLIPκ̂P
ℓ (t), (34)

receiving input from the population of pyramidal neurons in
the same layer through afferent lateral weights LIP.

During training, the top layer neurons are described by

uP
L(t) = bL + λbasvbas

L (t) + λnudgevapi
L (t), (35)

where the apical compartment induces a nudging by the
current error signal, i.e. the difference between the tar-
get voltage utgt and bottom-up input plus bias, vapi

L =
utgt − (bL + λbasv̄bas

L ). Note that we have introduced a
time-smoothed version v̄bas

L of the basal input, which we
obtain by taking a moving average over present and past
voltages vbas

L (t). The averaging of vbas is needed because
the target is provided by a vector with smooth, continuous
values and hence the error signal encoded in vapi is required
to be smooth in time as well. λnudge controls the nudging
strength of the target, which is set to zero in absence of a
teaching signal.

The microcircuit model has to be operated in the so-called
self-predicting state, in which uI

ℓ matches uP
ℓ in the absence

of a top-down teaching signal. In this state, the apical volt-
age vapi

ℓ is zero when the network receives no training signal
(or the network has learned perfectly) because the top-down
input from the layer ℓ + 1 and the lateral input from the
interneuron in layer ℓ cancel. The self-predicting state is

realized if LIP
ℓ,ℓ = λbas

λdenW
PP
ℓ+1,ℓ, which can be dynamically

learned as done in the original model. Here, we set it for
computational efficiency.

Following this logic, LPI
ℓ,ℓ and BPP

ℓ,ℓ+1 are matched such

that vapi
ℓ = 0 in absence of a top-down teaching signal.

This, too, can be achieved dynamically by a local learning
rule [29]; here, we also set LPI

ℓ,ℓ = −BPP
ℓ,ℓ+1.

Following the derivation presented in [29], one can show
that vapi

ℓ effectively encodes a local error signal: If uP
ℓ+1

is nudged towards a target, a residual voltage is induced
in vapi

ℓ . It can be shown that this model together with a
local plasticity rule inspired by [92] can approximate the BP
algorithm [29, 41]. Our spiking adaptation of the bottom-up
learning rule connecting neuron i to neuron j is

ẆPP
ℓ,ℓ−1, ji(t) = (36)

η
[
φ(ūP

ℓ,j(t))− φ(bℓ,j + λbasv̄basℓ,j (t))
]
SP
ℓ−1,i(t) ,

where η is the learning rate and φ(u) = τ−1
ref exp(u) the

activation function of the GLM. In addition to v̄bas, the
learning rule also requires the smoothed somatic membrane
potential ūP.

Similar to phaseless alignment learning (PAL) for the
rate-based case [41], we endow the (now spiking) microcir-
cuit model with SAL, replacing feedback alignment (FA)
with dynamical alignment of backward connections BPP

with their feed-forward partner weights W PP.

4.4.2 Simulation details

Using this setup, we demonstrate that SAL outperforms FA,
and retains the efficient credit assignment of BP. We point
out that the simulations are carried out with fully recurrent
dynamics and fully spike-based communication as described
by eqs. (33) to (36), setting our work apart from similar ap-
proaches, where spikes are replaced by rates and neuronal
dynamics by steady-state approximations, or the challenges
of recurrence are lifted by computing the forward and back-
ward passes separately.

We use a teacher microcircuit network to produce a non-
linear input-output mapping that the student network has
to learn. The teacher consists of one hidden microcircuit
and a pyramidal output neuron. Teacher and student have
the same size and parametrization, but only the student is
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nudged by the target. Crucially, to achieve the optimal out-
put, the student network has to learn the exact same weights
as the teacher, which is only possible if a meaningful error
signal arrives at the hidden neuron.

Training is divided into epochs of 20 shuffled training in-
puts, an optional SAL phase of five inputs, and a validation
phase without nudging of six validation inputs. Each input
consists of a voltage that is converted into spike trains using
eqs. (9) and (10). The input for the training phases consists
of nine equally spaced voltages between −3 and 3; the input
for the validation consists of six voltages between −2.7 and
2.7. In all cases, the targets are the time-averaged somatic
voltages uP

L recorded from the output neuron of the teacher
network.

When using “BP”, the value of WPP
2,1 is copied to BPP

1,2

after every time step. When using FA, When using SAL,
λapi is set to 1 during the SAL-phases. Otherwise, SAL-
plasticity is not activated in BPP

1,2 .

All relevant simulation parameters are given in table 2.
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Figure 9: Schematic of the microcircuit model: bio-plausible
transportation of error signals and local error representation in
apical dendrites. Adapted from [41]

4.5 Other PSP shapes

For calculating the average relative deviation between the
true attractor and the diagonal W21 = W12 in the phase
plane diagram fig. 7, we define a map W ′

21 → W ′
12 = g(W ′

21),
that characterizes all pointsW ′ = (W ′

21,W
′
12) on the attrac-

tor. The function g does not need to be defined or fitted by
a analytical function, instead, we determine enough points
on the attractors numerically. It also does not matter if we
map W ′

21 → W ′
12 or vice versa, since the problem is sym-

metric under the exchange of indices. We define the relative
deviation of a point on the attractor from the diagonal by

δ(W21) :=
W21 − g(W21)

W21 + g(W21)
. (37)

The average relative deviation is then

D :=
1

Wmax
21 −Wmin

21

Wmax
21∫

Wmin
21

|δ(W ′
21)|dW ′

21, (38)

where Wmax
21 and Wmin

21 are the maximal and minimal weight
values in the phase plane diagram.

BP FA SAL

λapi 0.02

λnudge 0.6

λbas 1.0

λden 1.0
tmoving average 2000 timesteps
τref 10 timesteps
η for WPP

1,0 0.2 0.2 0.2
η for WPP

2,1 0.003 0.003 0.003
η for BPP

1,2 n.a. 0.0 0.001
b1 −1.0
b2 −1.0
teacher WPP

1,0 2.0
teacher WPP

2,1 2.0
training values
per iteration

20

validation values
per iteration

6

values for SAL
per iteration

0 0 5

presentation time 2000 τref
student init WPP

1,0 U [−3, 3]
student init WPP

2,1 U [−3, 3]
student init BPP

1,2 = WPP
2,1 U [−3, 3] U [−3, 3]

Table 2: Simulation parameters for the cortical microcircuits.

Code availability

The simulations were performed by custom code written in
Python (v3.11), numpy (v2.0) and numba (v0.60). All code
is made available under https://github.com/unibe-cns/

sal-code.
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