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Population coding is widely regarded as a key mechanism for achieving reliable behavioral decisions. We
previously introduced reinforcement learning for population-based decision making by spiking neurons.
Here we generalize population reinforcement learning to spike-based plasticity rules that take account
of the postsynaptic neural code. We consider spike/no-spike, spike count and spike latency codes. The
multi-valued and continuous-valued features in the postsynaptic code allow for a generalization of binary
decision making to multi-valued decision making and continuous-valued action selection. We show that
code-specific learning rules speed up learning both for the discrete classification and the continuous
regression tasks. The suggested learning rules also speed up with increasing population size as opposed
to standard reinforcement learning rules. Continuous action selection is further shown to explain realistic
learning speeds in the Morris water maze. Finally, we introduce the concept of action perturbation as
opposed to the classical weight- or node-perturbation as an exploration mechanism underlying reinforce-
ment learning. Exploration in the action space greatly increases the speed of learning as compared to
exploration in the neuron or weight space.

Keywords: Spiking neural network; population coding; reinforcement learning; decision making; action
perturbation; spike-timing-dependent synaptic plasticity; code specificity; policy gradient.

1. Introduction

Experimental data show that the sign of synaptic
modifications can depend on the timing of pre- and
postsynaptic spikes in the range of milliseconds.1,2

But when linking synaptic plasticity to learning and
behavior as in motor control, the relevant time scale
may easily become tens or hundreds of milliseconds.
In fact, behaviorally relevant information is often
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known to be encoded in neuronal firing rates rather
than in precise spike times.3,4 This raises the ques-
tion whether spike-timing-dependent plasticity5 is in
any case the appropriate means to adequately change
synaptic strengths, or whether plasticity should not
be governed by different quantities tighter related to
the behavioral information.

Here we address this question from a theoreti-
cal point of view by considering synaptic plasticity
within a spiking neural network6 (SNN) designed to
incorporate behavioral decisions or actions. Behav-
ioral responses are recognized to be encoded in a
population of neurons coding for the same quan-
tity.7,8 The postsynaptic responses of the popula-
tion neurons are aggregated by a decision-making
circuit. In contrast to previous work,9,10 we con-
sider here a probabilistic read-out stage to facilitate
exploration and denote this stochasticity as action
perturbation. Yet, while population coding increases
the reliability of the behavioral decisions, it has also
been shown that reinforcement learning based on
standard spike-timing-dependent synaptic plasticity
slows down with increasing population size.9 To over-
come this problem it was suggested that the decision
made by the population should be taken into account
for modifying individual synapses targeting the pop-
ulation neurons.9 This decision-dependent modula-
tion of synaptic plasticity intrinsically incorporates
information about the involved neuronal code. We
show how to derive different learning rules for pop-
ulation coding which are specific to the code used
for decision making. The concept is applied to a
spike/no-spike, a spike count and a latency code. In
contrast to existing population learning,9–11 the rules
apply not only to binary decisions, but also to deci-
sion making with multiple alternatives or to action
selection in a continuous spectrum.

The learning rules are deduced by differently
estimating the stochastic gradient of the expected
reward. Though other optimization methods are pos-
sible,12 the training of neural networks by gradient-
based methods has been especially fruitful. Our
introduction of action perturbation allows learn-
ing to proceed along the gradient of the expected
reward instead of optimizing some other, though
related, objective function.9 While code-specificity
in the overall learning rule naturally enters as a
modulation term formed by the population decision,
the base synaptic plasticity kernel which takes only

pre- and postsynaptic quantities into account may
itself be code-specific or not. It was previously sug-
gested that for a single decision-making neuron the
code-specificity of this base plasticity kernel should
improve learning speed, but the claim could not yet
be substantiated in simulations.13 We discuss advan-
tages and disadvantages of the code-specificity in
terms of the modularity of base plasticity rules to
be incorporated in population learning.

2. Models and Methods

2.1. Population coding and policy
gradient

The basic setup in population coding is the following:
each neuron ν in the population of size N receives a
presynaptic stimulus Xν of duration T and generates
a stochastic output spike train Y ν . For a summary
of the notation used throughout the manuscript we
would like to refer the reader to Table 1. The neu-
rons need not have exactly the same input, but
we assume that the Xν are highly correlated. The
lack of connectivity between the population neurons
avoids issues relating to population spike correla-
tions.8 The decision readout circuitry aggregates the
output spike trains into a decision D based on how

Table 1. Notation used throughout the manuscript.

ν Neuron index
N Population size
T Stimulus duration
X Input spike pattern
Xν Input spike train of neuron ν
Y Output spike trains of all neurons

Y ν/Y Output spike train of neuron ν
W Weight matrix

wν/w Weight vector of neuron ν
f Feature vector of all neurons

fν/f Feature of neuron ν

f\ Feature vector of all other neurons
Ai Activity of population i
f̄i Feature average of population i

D/D Scalar/vectorial decision
R Reward
η Learning rate

psp Postsynaptic potentials for unity weights
u Membrane potential
φ Escape rate/instantaneous firing rate

µw Expected number of output spikes
ϑ Scalar target value for feature expansion
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neurons encode information. Our central assumption
is that the decision does not depend on the full
output spike trains (list of spike times), but only
on their coding features, e.g. the number of spikes
(length of the list) or the latency of the first spike
(first entry in the sorted list). We present throughout
the manuscript how this knowledge about the neu-
ral code can be exploited to yield fast learning rules.
We adopt a general approach and characterize each
spike train by its coding feature fν , which assigns a
numerical value to any spike train Y ν . To facilitate
exploration the decision making is stochastic, which
we denote as action perturbation. Depending on the
input and the decision the system receives reward.
During learning the synaptic weights W of the pop-
ulation neurons are adjusted in order to maximize
the expected reward.

Let PW(Y |X) be the probability density that a
population with weight vectors W = (w1, . . . ,wN )
generates the output spike trains Y = (Y 1, . . . , Y N )
in response to the stimulus X. Conditioned on the
stimulus, the neurons are independent, so we have

PW(Y |X) =
N∏

ν=1

Pwν (Y ν |X). (1)

Let P (D | f(Y)) be the probability of having the pop-
ulation decision D for a given f = (f1, . . . , fN),
where fν is the output feature of neuron ν, which
is just a function of Y ν . For sake of concise nota-
tion we skip the functional dependence and write fν

instead of f(Y ν). We use in the following the nota-
tion for discrete D, but actions can be continuous val-
ued too and sums over D must merely be replaced by
integrals. The population decision yields the reward
R(D,X). We want to maximize the expected reward,

⟨R⟩ =
∑

D

∫
dY dXR(D,X)P (D,Y,X)

=
∑

D

∫
dY dXR(D,X)P (D | f)

×PW(Y |X)P (X), (2)

where we rewrote the joint distribution P (D,Y,X)
using that D only depends on the features f and not
the full spike trains Y and its conditional indepen-
dence of X given f . We calculate the gradient ∇ν ⟨R⟩
with respect to the weight vector wν of neuron ν,
i.e. the vector of partial derivatives with respect to
all afferent weights of neuron ν.

In policy gradient learning14 one estimates the
gradient by Monte Carlo sampling. Since one also
samples over the stimuli, it suffices to focus on a
single stimulus, suppressing the dependence on X .
With this notation the straightforward approach is
to sample the gradient, the components of which can
be expressed using (1),

∇ν ⟨R⟩ =
∑

D

R

∫
dY P (D | f)PW(Y)∇ν ln Pwν (Y ν)

= ⟨R∇ν ln Pwν (Y ν)⟩, (3)

where we used the identity∇ν Pwν (Y ν) = Pwν (Y ν)×
∇ν ln Pwν (Y ν), which is often referred to as the ‘log-
trick’. This yields the standard learning rule15,16

∆wν = ηR∇ν ln Pwν (Y ν) (4)

with some positive learning rate η. The average
weight change is in the direction of the gradient,
the rule performs stochastic gradient ascent in the
expected reward. It makes no assumptions about the
code used in reading out the population. Learning
speed deteriorates with increasing N for this rule,9

thus we consider it just for the sake of comparison in
this paper, but the expression∇ν ln Pwν (Y ν), known
as characteristic eligibility in reinforcement learn-
ing,14 constitutes a base synaptic plasticity kernel
that will reappear in the derivation of the gradient
rules for population learning. Note that the standard
learning rule uses stochasticity in the output spike
trains to estimate the reward gradient, thus imple-
menting node perturbation.17 For fluctuations that
are positively correlated with reward, the weights are
adapted to increase the probability to reproduce this
spike train pattern.

Though it is not a remedy for the performance
degradation with population size, it is still notewor-
thy that Eq. (3) can be slightly modified by sub-
tracting a reinforcement baseline from the reward,
which is conditionally independent of Y ν given wν

and X,14 to reduce the variance of the updates while
keeping their mean. A common choice is to subtract
the stimulus-specific mean reward obtained as run-
ning average over past rewards.18 This replacement
of the reward by the reward prediction error can
also be done in all rules we present. In the examples
we choose reward values balanced around zero and
expect this modification would increase performance
only marginally.
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2.2. Weakly code-specific rules

We denote rules where code-specificity enters only
on the neural level through modulatory factors as
“weakly code-specific”, in contrast to “tightly code-
specific” rules that are code-specific on the synaptic
level.

2.2.1. First-order expansion

The whole point of population coding is to exploit
redundancy. In other words the influence of any sin-
gle neuron feature fν on P (D | f) should be small
in a large population. While details will depend on
the specific read-out, in all of the architectures we
consider below, the influence of any single neuron
on P (D | f) decays with population size as 1/

√
N , to

keep the variance of the population activity invari-
ant under a change in population size, or even as
1/N , such that the mean of the population activ-
ity is size invariant. Considerations for the square
root decay hold for the linear decay too and we con-
servatively assume a decay with 1/

√
N in the fol-

lowing theoretical derivations. A common choice will
be that the decision depends only on the normal-
ized sum of features A =

∑
µ fµ/

√
N , hence by the

chain rule each successive derivation of P (D |A(f))
with respect to fν contributes another factor ∂A

∂fν =
1/
√

N and the nth derivative is of order O(N− n
2 ).

In particular is the second derivative of order O( 1
N ).

For example a binary decision task (D = ±1)
with P (D |A(f)) = 1

2 (1 + tanh(AD)) has derivatives
∂P (D |A(f))

∂f = D
2
√

N
cosh−2(A) and ∂2P (D |A(f))

∂f2 =
−D

N tanh(A) cosh−2(A). Due to this, the influence of
any single neuron is well described by linearization.
To lighten the notation in the following we focus on
one neuron (the expressions for the other neurons
being entirely analogous) and skip the neuron index
ν. We denote the feature vector of all other neurons
by f\. Linearizing we have:

P (D | f) = P (D | f\, f)

= P (D | f\, ϑ) + (f − ϑ)
∂

∂f
P (D | f\, ϑ)

+O
(

1
N

)
, (5)

where P (D | f\, ϑ) would be the decision probability
if the considered neuron had produced the output
feature ϑ, i.e. 1

2 (1 + D tanh(A + (ϑ − f)/
√

N)) in

our example, and ∂
∂f P (D | f\, ϑ) is the derivative of

P (D | f) with respect to f evaluated at the value ϑ,
e.g. D

2
√

N
cosh−2(A + (ϑ − f)/

√
N). Here the exact

value of the O( 1
N ) term will depend on the choice of

the parameter ϑ and one will want to choose ϑ such
that |f − ϑ| tends to be small for the feature values
encountered during learning.

When plugging this into Eq. (3) a term arises
containing P (D | f\, ϑ). But since it does not
depend on the output of neuron ν, and since∫

dY Pw(Y )∇ ln Pw(Y ) = ∇
∫

dY Pw(Y ) = 0, the
term vanishes. Hence up to O( 1

N ) corrections:

∇⟨R⟩ =
∑

D

R

∫
dY PW(Y)

∂P (D | f\, ϑ)
∂f

× (f − ϑ)∇ ln Pw(Y ). (6)

For the read-outs we use below, not only P (D | f)
but also its partial derivatives depend only weakly
on any single neuron and, in particular, we have:

∂

∂f
P (D | f) =

∂

∂f
P (D | f\, ϑ) + O

(
1
N

)
. (7)

Note that ∂
∂f P (D | f) is itself of order O(1/

√
N). The

term P (D | f\, ϑ) of order O(1) vanished, we take the
terms of order O(1/

√
N) into account, and we can

neglect higher orders. Hence up to O( 1
N ) corrections:

∇⟨R⟩ =
∑

D

R

∫
dY PW(Y)

∂P (D | f)
∂f

× (f − ϑ)∇ ln Pw(Y )

=
∑

D

R

∫
dY PW(Y)P (D | f)∂ ln P (D | f)

∂f

× (f − ϑ)∇ ln Pw(Y ).

The ensuing update rule

∆w = ηR
∂ ln P (D | f)

∂f
(f − ϑ)∇ ln Pw(Y ) (8)

has a structure similar to the standard learning rule
given by Eq. (4), but now the reward signal is remod-
ulated by feedback from the decision making and the
feature actually produced by the neuron. The deci-
sion signal ∂ ln P (D | f)

∂f is of order O(1/
√

N) for the
population readouts considered below and the fea-
ture value f is of order O(1), hence the variance of
the obtained gradient estimate is about a factor of
N smaller than the standard estimate in Eq. (4).
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2.2.2. Exact linearization for binary features

While above linearization is an approximation that
increases in accuracy for large population size, an
exact linearization is possible even for small popu-
lation sizes, if the coding feature takes on only two
values, denoted as f0 and f1, because one can always
draw an exact line through two points. An exam-
ple of such a binary feature is the spike/no-spike
code considered later in Sec. 3.1.1. We describe the
line through P (D | f\, f0) and P (D | f\, f1) by one
point on the line and its slope. The point has coor-
dinates (µf1 + (1−µ)f0, SµP (D | f\)), and the slope
is DP(D | f\)

f1−f0
, using the definitions

SµP (D | f\) := µP (D | f\, f1) + (1− µ)P (D | f\, f0),

DP(D | f\) := P (D | f\, f1)− P (D | f\, f0),

where µ is a free parameter that does not depend on
f , but is otherwise arbitrary. The linear function is
only evaluated at f0 and f1, yielding

P (D | f\, f) = SµP (D | f\) + (δf1f − µ)DP(D | f\),

where δ is the Kronecker delta, as can be veri-
fied by inserting the definitions for SµP (D | f\) and
DP(D | f\) together with f0 or f1.

When plugging this into Eq. (3) the term contain-
ing SµP (D | f\) vanishes, because it does not depend
on the neuron for which the gradient is calculated.

∇⟨R⟩ =
∑

D

R

∫
dY PW(Y)P (D | f)DP(D | f\)

P (D | f)

× (δf1f − µ)∇ ln Pw(Y ). (9)

In order to write it in a form that can be sampled,
we had to introduce the denominator P (D | f). This
term is problematic, because rare decisions D can
potentially lead to large values of the gradient esti-
mator, as has been pointed out.19 We follow the sug-
gestion to choose

µ =
P (D | f\, f0)
SP (D | f\)

with

SP (D | f\) = P (D | f\, f1) + P (D | f\, f0),

which circumvents a small denominator and yields
the update rule

∆w = ηR
DP(D | f\)
SP (D | f\)

(2δf1f − 1)∇ ln Pw(Y ). (10)

Compared to the standard learning rule given by
Eq. (4) an additional factor DP(D | f\)

SP (D | f\)
arises. Its abso-

lute value is smaller than 1, because the sum of two
positive numbers is bigger than the difference, hence
resulting in an estimate of lower variance than the
standard one in Eq. (4).

2.3. Tightly code-specific rules

In above rules the feature itself entered the learn-
ing rule introducing code-specificity on the neural
level, whereas on the synaptic level they share the
base plasticity kernel ∇ ln Pw(Y ). We can further
improve the gradient estimator when code-specificity
enters not only on the neural but on the synaptic
level. These rules are hence denoted as “tightly code-
specific”.

Pulling all terms in Eq. (6) that do not depend
on the considered neuron outside of the integral over
Y (note that PW(Y) factorizes), we obtain

∇⟨R⟩D,Y =
∑

D

R

∫
dY\ PW(Y\ )

∂P (D | f\, ϑ)
∂f

×
∫

dY Pw(Y ) (f − ϑ)∇ ln Pw(Y )︸ ︷︷ ︸
g

.

(11)

For the last integral we have ⟨g⟩Y = ⟨⟨g⟩Y |f⟩f . The
index of the angle brackets indicates the distribu-
tion over which the average is calculated and is
suppressed throughout the manuscript if obvious
to avoid notational clutter. Partial averaging with
respect to P (Y | f) yields

⟨(f − ϑ)∇ ln Pw(Y )⟩Y |f

= (f − ϑ)
∫

dY Pw(Y | f)∇ ln Pw(Y )

= (f − ϑ)
∫

dY
P (f |Y )
Pw(f)

∇Pw(Y )

= (f − ϑ)
1

Pw(f)
∇
∫

dY P (f |Y )Pw(Y )

= (f − ϑ)∇ ln Pw(f),

where we used Bayes’ rule in the second line. Hence,
using Eq. (7), we obtain a first tightly code-specific
plasticity rule

∆w = ηR
∂ ln P (D | f)

∂f
(f − ϑ)∇ ln Pw(f), (12)
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which has a reduced variance compared to Eq. (8)
due to analytical averaging. It amounts to replac-
ing the log-likelihood of the output spike train by
the log-likelihood of the feature, as has been done
for single neurons.13 This replacement of the base
synaptic plasticity kernel ∇ ln Pw(Y ) by ∇ ln Pw(f)
introduces code-specificity also on the synaptic level.

Further averaging with respect to Pw(f) yields
∫

dfPw(f)(f − ϑ)∇ ln Pw(f) = ∇⟨f⟩,

where we assumed continuous features and used
again that

∫
dfPw(f)∇ ln Pw(f) = ∇

∫
dfPw(f) =

0. For discrete features the integral merely has to be
replaced by a sum and the probability density func-
tion by the probability mass function. For some codes
we can calculate the gradient of the feature mean ⟨f⟩
analytically instead of leaving it to the sampling pro-
cedure. Using this result, Eq. (7) and the ‘log-trick’
to write Eq. (11) in a form suited for sampling leads
to a second tightly code-specific update rule,

∆w = ηR
∂ ln P (D | f)

∂f
∇⟨f⟩, (13)

which has even less variance.
(f − ϑ)∇ ln Pw(f) is an unbiased estimate for

the gradient ∇⟨f⟩ obtained by the well-known ‘log-
trick’. We propose another unbiased estimate of the
gradient, obtained by partial integration. Denoting
the cumulative probability distribution by Cw(f) we
have

∇⟨f⟩ = ∇
∫

dfPw(f)f = 0−∇
∫

dfCw(f)

= −
∫

dfPw(f)
∇Cw(f)
Pw(f)

=
〈
−∇Cw(f)

Pw(f)

〉
.

Note that the derivative of the ‘surface term’ van-
ishes, because at the integration boundaries Cw is
zero and one respectively independent of w. This
results in a third tightly code-specific update rule

∆w = −ηR
∂ ln P (D | f)

∂f

∇Cw(f)
Pw(f)

. (14)

As shown in Appendix A this is even an exact policy
gradient rule. Convex combinations of the derived
estimators yield again valid estimators, in particular
could one also add a term of the form ϑ∇ ln Pw(f)
to the estimate obtained by partial integration. An
example for a tightly code-specific rule obtained by
partial integration is the latency code presented in
Sec. 3.1.3.

The update (13) has the smallest variance and
is the preferred rule if an analytical expression for
the gradient of the feature mean ∇⟨f⟩ exists, other-
wise it is not obvious whether the log-trick estimator
or the newly proposed partial integration estimator
has lower variance. We find that for a broad class
of probability functions the latter is the case (e.g.
Pw(f) ∝ fa exp(−f bh(w)) with f, a ≥ 0, b > 0
and h any different positive function), though not
generally because rather exotic exceptions exist (e.g.
Pw(f) ∝ fa exp(−f bh(w)) with a < 0 and large
enough b).

We derived tightly code-specific rules by analyt-
ical averaging, which guarantees gradient estimates
of lower variance compared to weakly code-specific
rules. While the derivation by isolating a single
neuron’s contribution is intuitive, it relies on an
approximation valid for large population sizes. In the
appendix we show that instead of utilizing integra-
tion by parts in the last step to derive Eq. (14),
we can directly start with partial integration and
Eq. (14) turns out to be even exact. In Appendix
A we also present the resulting update rule in the
case of discrete features.

A summary of the derived rules is shown in
Table 2 for the case of large population sizes, i.e.
even for discrete features the difference DP (D | f) is
replaced by the differential, giving rise to the term
∂ lnP (D | f)

∂f which all rules have in common. These are
the rules we used in the simulations presented in the
results section.

2.4. Single neuron model

We use simple Poisson-type neurons where the post-
synaptic firing rate is given by a nonlinear function
φ(u) of the membrane potential u. The membrane
potential at time t is:

u(t) = u0 +
∑

i

wi

∑

s∈Xi

ϵ(t− s)

= u0 + wT psp(t). (15)

Here u0 is the resting potential and ϵ(t) denotes the
shape of the postsynaptic potential evoked by a sin-
gle presynaptic spike at time 0. For future use, we
have introduced psp(t) as the postsynaptic poten-
tials that would be evoked if the synaptic weights
were unity. As has been shown15,16,20 the derivative
of the log-likelihood of actually producing the output

1450002-6
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Table 2. Summary of the derived learning rules for continuous features with arbi-
trary population size or for discrete features in the limit of large population size. The
performance increases (typically) from top to bottom.

Code-specificity Learning rule Derivation

Weak ∆w = ηR∂ ln P (D | f)
∂f (f − ϑ)∇ ln Pw(Y ) Linear expansion

Tight ∆w = ηR∂ ln P (D | f)
∂f (f − ϑ)∇ ln Pw(f) Averaging w.r.t. Pw(Y | f)

∆w = ηR∂ ln P (D | f)
∂f

−∇Cw(f)
Pw(f) Partial integration

∆w = ηR∂ ln P (D | f)
∂f ∇⟨f⟩ Averaging w.r.t. Pw(Y )

spike train Y , known as likelihood ratio in classical
statistics or as characteristic eligibility,14 is given by

∇ ln Pw(Y ) =
∫ T

0
dt

(
∑

s∈Y

δ(t− s)− φ(u(t))

)

× φ′(u(t))
φ(u(t))

psp(t). (16)

This expression constitutes the base synaptic plas-
ticity kernel of the weakly code-specific rules. It con-
siders the full output spike train and enables to
learn postsynaptic firing at one or several desired
firing times,15 a task that has attracted much
research attention and various other rules have been
suggested.21

3. Results

We illustrate the framework by deriving policy-
gradient rules for classification and regression tasks
as well as different neural codes. We then study
their performance at simple computational tasks.
In all simulations throughout the paper we use
an exponential stochastic intensity φ(u)∝ exp(u), a
resting potential of u0 =−1 (arbitrary units) and,
if not mentioned otherwise, stimulus length T =
500ms. The postsynaptic kernel is given by ϵ(t) =

1
τM−τS

(e−t/τM − e−t/τS ), where τM = 10ms is used
for the membrane time constant and τS = 1.4ms
for the synaptic time constant. We assume that each
population neuron synapses onto a site in the input
layer with probability of 80%. Initial values for the
synaptic strength were picked from a Gaussian distri-
bution with mean 1 and standard deviation equal to
2.5, independently for each afferent and each neu-
ron. Further the learning rate η was chosen opti-
mally for each population size. For each scenario we

low pass filtered the reward with a time constant of
50 trials. We averaged over 10 simulated runs and
the figures show the mean (symbols) and its SEM
(errorbars).

3.1. Classification tasks

For the decision making we assume binary decisions
D = ±1. To start with unbiased initial conditions we
consider the difference activity between two popula-
tions, cf. Fig. 1. Each of the two populations Popi,
i = 1, 2 consists of N neurons with summed up
and normalized population activity Ai ∝ 1√

N

∑
ν fν

i .
The normalization is proportional to 1√

N
, reflecting

the fact that, given the stimulus, neuronal responses
are conditionally independent. The decision is cho-
sen stochastically with P (D | f) = P (D |A1, A2) =

1
1+exp(−2(A1−A2)D) . The modulating population fac-

tor is thus ∂ ln P (D |A1,A2)
∂A1/2

= ±(D − tanh(A1 −A2)),
where the sign is positive/negative for neurons in
Pop1 and Pop2, respectively. To be concise, in the

decision
making

activity

output
features

input spike pattern X

Fig. 1. Architecture of the spiking neural network for
the stimulus classification task. The decision is stochastic
with probability P (D |A1, A2) = 1

1+exp(−2(A1−A2)D) .

1450002-7



2nd Reading

November 28, 2013 12:4 1450002

J. Friedrich, R. Urbanczik & W. Senn

following we take the sign to be positive and hence
present the plasticity rules for neurons in Pop1. It is
also possible to keep the weights of the second pop-
ulation fixed, so that it does not learn rather than
learning with opposite sign.

On a side note, multi-class classifications are
straight forwardly implementable in two ways.
One approach is to use many binary classifiers,
which gives rise to a multi-layer architecture as
has already been presented elsewhere.10 A sec-
ond approach is to use one population for each
of the k possible classes and use the general-
ization of the logistic function to multiple vari-
ables, known as softmax action selection, P (D =
j |A1, A2, . . . , Ak) = exp(Aj)Pk

i=1 exp(Ai)
. This results in

the simple expression ∂ ln P (D=j |A1,A2,...,Ak)
∂Ai

= δij −
P (D = j |A1, A2, . . . , Ak) for the population factor.

3.1.1. Spike/no-spike code

Let us first consider the case of a binary feature and
assume the following spike/no-spike code: f = f0 =
−1 if the considered neuron does not spike within a
given time window [0, T ], otherwise f = f1 = 1. For
the decision making we assume that the population
readout sums up the features, Ai = 1√

N

∑
ν∈Popi

fν .
The reward is delivered at the end of this period. For
this code an analytical expression for∇⟨f⟩ exists. We
derive it, using that the number of output spikes is
Poisson distributed with mean µw, hence the prob-
ability of no spike is an exponential function of this
mean:

P (f = f0) = e−µw and P (f = f1) = 1− e−µw ,

⟨f⟩ = 1− 2e−µw ,

∇⟨f⟩ = 2e−µw∇µw.

Plugging this into the learning rule Eq. (13), and
absorbing the constant into the learning rate, yields
the tightly code-specific rule:

∆w = ηR(D − tanh(A1 −A2))
∇µw

exp(µw)
(17)

with

∇µw =
∫ T

0
dt φ′(u(t))psp(t) (18)

and

µw =
∫ T

0
dt φ(u(t)), (19)

where µw is the expected number of output spikes
within time window [0, T ]. Note that merely this
expected value enters the learning rule, but not
whether a postsynaptic spike was actually elicited
or not. Plasticity depends only on the time course of
the postsynaptic membrane potential but not on the
spike timing.

We next turn to the weakly code-specific rule of
Eq. (8) and set ϑ = 0 to balance the case of spike
(f = 1) and no spike (f = −1). This and Eq. (10)
both yield for large population sizes

∆w = ηR(D − tanh(A1 −A2))f∇ ln Pw(Y ) (20)

with ∇ ln Pw(Y ) given in Eq. (16). We want to point
out that the same update arises only due to our
choice of the logistic function for P (D |A1, A2). In
the case of choosing e.g. the (shifted and scaled) error
function as sigmoidal, the term DP/P in Eq. (9) can
indeed become large. The same learning rule can also
be derived by averaging over the two possible out-
comes f0 and f1.9

We test the learning rules on the task of learn-
ing 10 stimulus-response associations. We use the
same pattern statistics presented in Ref. 13, encoding
the stimulus information in the rate pattern of 100
presynaptic neurons. For each stimulus, a different
input pattern of duration T = 500ms is generated
by drawing the firing rate of each input neuron inde-
pendently from an exponential distribution with a
mean of 10Hz. In each trial, the input spike trains are
generated anew from Poisson processes with these
neuron- and stimulus-specific rates. Half the stim-
uli have a target label +1 and the other half −1.
To learn the 10 prescribed stimulus–response asso-
ciations, learning episodes are repeated with a ran-
domly chosen stimulus–response pair used for each
episode, immediately reinforced by R = ±1. Fig-
ures 2(a) and 2(d) illustrate that for the weakly code-
specific rule (20) learning speeds up with increasing
population size as opposed to standard reinforcement
learning,9 whereas the tightly code-specific rule (17)
is rather insensitive to a change in population size.
The tightly code-specific rule outperforms the weakly
one, but for large population sizes the performances
become similar and the benefit of using the tightly
code-specific rule is marginal. Both learning rules
are superior to the standard node perturbation rule
equation (4), which is shown for the sake of compar-
ison, too.
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3.1.2. Spike count code

Next we assume that the coding feature f is the
number of spikes within a given time window [0, T ].
The probability distribution for the spike count is a
Poisson distribution Pw(f) = µf

w exp(−µw)/f ! with
mean µw as defined above in (18). For a Poisson
distribution the term −∇Cw(f)

Pw(f) in (14) yields simply
∇⟨f⟩ = ∇µw. The correctly normalized activities are
Ai = 1√

Nθ

∑
ν∈Popi

fν . Here θ is the mean number of
output spikes per neuron during one stimulus. The
ensuing tightly code-specific rule is

∆w = ηR(D − tanh(A1 −A2))∇µw (21)

with ∇µw given in (19). Note that the plasticity is
not spike-timing dependent. If the neuronal code is
not spike-timing dependent, then neither is the tight
plasticity rule.

Turning now toward the weakly code-specific rule
(8) we expand around some target output activity θ.
This results in

∆w = ηR(D − tanh(A1 −A2))(f − θ)

×∇ lnPw(Y ) (22)

P
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)

Trials

spike/no-spike

Trials

spikecount

Trials

spike latency

(a) (b) (c)
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Populationsize Populationsize Populationsize

(d) (e) (f)

Fig. 2. (Color online) Simulation results for the classification task. Upper row: Learning curves for (a) spike/no-spike
code, (b) spike count code and (c) spike latency code. Filled disks are used for the tightly code-specific rule, open circles
for the weakly code-specific rule and open squares with dashed lines for the standard node perturbation rule (4). We used
(17) and (20) for the spike/no-spike code, (21) and (22) for the spike count code, (23) and (24) for the spike latency code.
The learning rules are summarized in Table 3, too. The population sizes used are: N = 5 (red), 40 (blue) and 250 (green).
Lower row: Average reward after 200 (gray) and 500 (black) trials for (d) spike/no-spike code, (e) spike count code and
(f) spike latency code.

with ∇ ln Pw(Y ) given in (16). Here we obtain the
standard update rule equation (4) with the two mod-
ulating factors (D − tanh(A)) and (f − θ). The first
one is again the attenuated decision signal. The sec-
ond factor contains the behavior of the single neu-
ron with respect to the decision boundary θ, thus
its sign represents the decision of the single neuron.
Taken together R(D−tanh(A))(f−θ) constitutes an
individual reward for the neuron. Note that the rule
postulates a global modulatory signal of the form
R(D − tanh(A)) which is then combined with the
local postsynaptic information (f − ϑ).

Figures 2(b) and 2(e) show simulation results
for both newly derived update rules as well as
for the standard node perturbation rule equa-
tion (4). For the weakly code-specific rule, we
expanded around some target activity θ = 5 cor-
responding to 10Hz output rate. The tightly code-
specific rule, outperforms the weakly code-specific
one, and it quickly reaches perfect performance.
Importantly, for both rules learning speeds up with
population size (Fig. 2(e)), in contrast to node
perturbation.
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Table 3. Summary of the derived classification learning rules for the specific codes. GM = ηR(D − tanh(A1 −
A2)) denotes the global modulatory signal. ∇ ln Pw(Y ) =

R T
0 dt (

P
s∈Y δ(t − s) − φ(u(t)))φ′(u(t))

φ(u(t)) psp(t),

µw =
R T
0 dt φ(u(t)) and ∇µw =

R T
0 dtφ′(u(t))psp(t) have already been introduced in (16), (18) and (19).

The performance of the tightly is always superior to the weakly code-specific rule, cf. Fig. 2.

Spike/no-spike Spike count Spike latency

Weak ∆w = GMf∇ lnPw(Y ) ∆w = GM(f − θ)∇ ln Pw(Y ) ∆w = GM(e−
f
τ − θ)∇ ln Pw(Y )

Tight ∆w = GM ∇µw

exp(µw) ∆w = GM∇µw ∆w = GMe−
f
τ

R f
0 dt φ′(u(t))psp(t)

φ(u(f))

3.1.3. Spike-latency code

After presenting examples for binary and multival-
ued discrete features we turn now to continuous cod-
ing features by considering the latency f of the first
spike time after stimulus onset as the relevant fea-
ture. We assume that a neuron’s first spike trig-
gers some process in the population readout. The
strength of this effect decreases exponentially with
the latency of the first spike, c = exp(− f

τ ) if the neu-
ron spiked and c = 0 if not, and for the population
activity holds Ai = 1√

N

∑
ν∈Popi

cν . The probability
density of the spike latency is given by the prod-
uct of the probability density to fire at time f and
the probability that the neuron did not spike earlier,
Pw(f) = φ(u(f)) exp(−

∫ f
0 dt φ(u(t))). Whereas for

the previously considered codes the gradient of the
feature mean could be calculated analytically, that
is not the case now. Hence we make use of Eq. (14)
instead of Eq. (13). The cumulative distribution is
given by one minus the probability that the neuron
did not fire earlier, Cw(f) = 1−exp(−

∫ f
0 dt φ(u(t))).

Hence the term ∇Cw(f)
Pw(f) in (14) yields ∇

R f
0 dt φ(u(t))
φ(u(f)) ,

leading to the tightly code-specific learning rule:

∆w = ηR(D − tanh(A1 −A2))e−
f
τ

×
∫ f
0 dt φ′(u(t))psp(t)

φ(u(f))
. (23)

Let us assume the case that A1 > A2 is positively
correlated with reward. Because for such activities
the decision is on average D = 1, it further fol-
lows ⟨R(D− tanh(A1 −A2))⟩ > 0. In the considered
case learning should increase the activity A1 (and
decrease A2), hence the neurons in Pop1 should emit
their first spike earlier. In other words, the expected
number of spikes between stimulus onset and the
observed first spike latency f needs to increase. The

gradient of this quantity is exactly the integral in
the learning rule. Weight changes occur in the cor-
rect direction and are further modulated by some
factors that depend on the observed first spike time.
A slight similarity to the tightly code-specific rule for
the spike count (21) code exists. There the expected
number of spikes over the whole stimulus was mod-
ified, whereas here only the expected number up to
the observed first spike changes. In the theoretical
part we mentioned that in most cases the gradi-
ent estimate obtained by partial integration is better
than the one obtained by the ‘log-trick’. Indeed, sim-
ulations using update rule equation (12) did not yield
good results (data not shown).

To obtain the weakly code-specific rule we expand
c around θ:

∆w = ηR(D − tanh(A1 −A2))(c− θ)∇ ln Pw(Y )

(24)

with ∇ ln Pw(Y ) given in (16). The intuition for this
rule has already been described for (22) in the case
of the spike count code.

We tested the learning rules again on the task
of learning 10 stimulus–response associations. We
use the same pattern statistics as above, i.e. Pois-
son spike trains with exponentially distributed rates
with a mean of 10Hz, but keep the input spike train
patterns fixed. Instead of generating the input spike
trains anew in each trial they are initially gener-
ated once and for all. Simulations were done using
threshold θ = 1

2 and time constant τ = 250ms. Fig-
ures 2(c) and 2(f) show simulation results for both
newly derived rules as well as for the standard node
perturbation rule. Again, learning speeds up with
population size only for the new action perturbation
rules, and the tightly code-specific rule clearly out-
performs the weakly code-specific one. The weakly
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code-specific rule considers the whole spike train
instead of only the relevant part until the first spike
occurs. Therefore the difference between tightly and
weakly code-specific rule becomes even more dra-
matic for smaller values of τ and hence shorter first
spike latencies.

3.2. Continuous actions

In order to demonstrate the generality of our
approach we next turn to continuous actions. In the
previous section we have already focused on different
codes, here we consider just the spike count code. We
start with a basic regression task and finally present
results for a navigation task.

3.2.1. Plain regression

Instead of learning to produce a lower or higher activ-
ity than a contrast population, here the goal of a
population is to learn a specific target output activ-
ity. We define the output activity as mean number of
output spikes, f̄ = 1

N

∑
ν fν , and the action as activ-

ity corrupted by some Gaussian noise ξ, D = f̄ + ξ.
This leads to following tightly code-specific learning
rule from Eq. (13):

∆w = ηRξ∇µw (25)

with ∇µw given in (19). Note that the population
average enters via ξ = D − f̄ into the rule. There is
an intuition why the learning rule performs gradient
ascent on the expected reward. The noise ξ fluctuates
around zero on a trial to trial basis enabling explo-
ration of the reward landscape. Note that the noise
arises only in the action space, not in the weight22

or neuron space.17 The noise directly explores new
actions, and the received feedback is exploited to esti-
mate the reward gradient. We therefore refer to (25)
as pure action perturbation rule, whereas general
action perturbation might be combined with neu-
ronal noise, as is the case for weakly code-specific
rules. The action D is the sum over the features
and the fluctuation, therefore for fluctuations ξ that
are positively correlated with reward the features
should change in the direction of these fluctuations
in order to increase the probability to reproduce the
rewarded action D, whereas for negative correlation
the features should be modified in the opposite direc-
tion. Thus the mean of each neuron’s feature should

change proportional to Rξ, which is implemented by
modifying the weights accordingly.

The weakly code-specific rule reads

∆w = ηRξ(f − θ)∇ ln Pw(Y ) (26)

with∇ ln Pw(Y ) given in (16). To gain some intuition
let us assume the case R > 0 and ξ > 0 for which the
features should increase. Here a comparison of the
feature with the threshold θ is done for each neuron.
If f > θ, then the neuron successfully contributed to
the learning task and the probability to reproduce its
output spike train is increased, whereas if the feature
is smaller than the reference value θ the probability
is decreased.

In the simulations (Fig. 3) we used a thresh-
old θ = 5 corresponding to 10Hz output rate and
ξ was drawn from a centered normal distribution
with standard deviation 0.4. A total of 11 input
rate patterns were generated as described above
and each has been associated with some target rate
z ∈ {5, 6, 7, . . . , 15}Hz. After each trial the action D
is compared to the target value zT for the pattern,
where T = 500ms is the stimulus length, and the
given reward depends gradually on how close they
are, R = −(D−zT )2. For each episode one out of 11
prescribed stimulus-action associations is randomly
chosen. The results obtained for classification hold
for regression, too: The tightly code-specific rule out-
performs the weakly one, and for both rules learning
improves with increasing population size, in contrast
to standard node perturbation, cf. Fig. 3.

3.2.2. Water maze

To finally test the learning rules in a realistic
paradigm, we simulated Morris’ water maze learning
task23 with variable start condition, a task known to
involve hippocampus.24 Hippocampus is represented
as a population of place cells,25 with place cells cen-
ters organized on a rectangular grid, cf. Fig. 4. Hip-
pocampal place cells are modeled as Poisson neurons
with a firing rate ν that is a Gaussian function of the
animal position in the environment,

νi(x, y) = ν0 exp
(
− (x− xi)2 + (y − yi)2

2σ2

)
,

where (x, y) is the current position of the animal,
(xi, yi) is the position at which the ith place cell gives
the strongest response, ν0 = 100Hz is the maximum
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Fig. 3. (Color online) Simulation results for the regression task. (a) Learning curves for the tightly (25, filled discs) and
weakly (26, open circles) code-specific rules as well as the standard rule (4, open squares). The population sizes used are:
N = 10 (red), 20 (blue), 40 (green) and 80 (magenta). (b) Average reward after 2000 (gray) and 4000 (black) trials. (c)
Output firing rates for each pattern using the tightly code-specific rule with N = 80 neurons. The thin solid lines indicate
the target activity. Coloring is used for different target values.
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Fig. 4. (Color online) Architecture for water maze task.
Place cells encode the position of the animal through
place-dependent firing rates. Tuning curves are shown for
the yellow and red highlighted place cells. Place cells are
connected via feed-forward connections to the action cells
(wiring probability 80%). The readout of each action cell
population is fed to an action selection circuitry.

firing rate of the place cell. We consider in our simu-
lations 100 such neurons placed on a grid of 10× 10
cells, with a distance of 1 (arbitrary units) between
two neighboring cells and with σ = 1.2 being the
width of each place field. The ensemble activity of
place cells encodes the position (x, y) of the animal.
These place cells project onto action cells, modeled
as described in Sec. 2.4. The population of action
cells represents the next action to be chosen by the
model rat and is organized in four populations of
size N , one for each cardinal direction. The vector of

movement D is determined by the linear combina-
tion of the populations’ mean spike count per stim-
ulus length f̄i = 1

N

∑
ν fν

i , with i = N, E, S, W , plus
some Gaussian noise,

D =

(
∆x

∆y

)
=

(
f̄E − f̄W

f̄N − f̄S

)
+

(
ξx

ξy

)
.

The activity of the action cells relates to the change
of the animal’s position according to the update
(x, y) ← (x, y) + (∆x, ∆y). The average length of
D does not depend on N but is proportional to
the individual stimulus duration T , thus the ani-
mal’s speed is independent of N and T . Here we
choose T = 250ms, hence actions are taken with
theta frequency.

Typically the animal performs a sequence of
actions until it reaches the platform, hence reward
is delayed. For tasks involving delayed reward, for
each synapse an eligibility trace E, which keeps
some memory of the neuronal spiking and behav-
ioral actions, needs to be introduced.26 Whenever an
action is chosen the trace changes according to the
following update.

tight : E ← e−
T
τ E + ξ∇µw, (27)

weak : E ← e−
T
τ E + ξ(f − θ)∇ ln Pw(Y ). (28)

Here ξ depends on the population the considered
neuron belongs to, ξ = ±ξx/y, where ξx and ξy were
drawn from a normal distribution with mean 0 and
variance 1. Between the action times the eligibil-
ity traces decay exponentially with time constant τ ,
for which we used 2 s. This decay has already been
included in the above updates. As soon as reward

1450002-12



2nd Reading

November 28, 2013 12:4 1450002

Code-Specific Learning Rules for Populations of Spiking Neurons

is delivered the synaptic weights are updated pro-
portionally to the product of reward and eligibility
trace,

∆w = ηRE. (29)

We simulated a model rat navigating in a square
maze. The rat performs a number of trials, with each
trial consisting of an attempt to find the goal within
a time limit of 90 s. At the beginning of each trial,
the rat is placed near one of the walls of the maze.
Actions are chosen at theta frequency (every 250ms).
The rewarded region (target) is always at the center
of the maze, whereas the initial position of the rat
varies, as in the experimental paradigm.24 Positive
reward (R = 1) is only given if the rat reaches its
target and negative reward (R = −1) if it hits the
wall. Thus, synaptic modifications take place either
at the time the rat reaches the platform or hits a wall.
When a new set of trials starts, the positions of the
rat is reinitialized and the synaptic eligibility traces
reset. Thus each new set of trials corresponds to a
different animal. The simulation results are summa-
rized in Fig. 5. Panel a depicts the performance of the
rat measured by the time it takes to reach the target,
corresponding to the escape latency in the experi-
mental literature. Similar to other algorithms, such
as a variant with Hebbian bias25 or using a continu-
ous time actor-critic framework,27 the escape latency
reaches asymptotic performance within the first 20
trials, in line with experimental results.24 As panel b
depicts the number of times the rat hits the wall also
decreases during learning. The speed of learning as
well as the final performance increases with increas-
ing population size for the tightly as well as the
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Fig. 5. Simulation results for the water maze task. Escape latency in seconds (a) and number of wall hits (b) for
population sizes N = 1 (black diamonds), 5 (red squares) and 40 (blue circles). Filled symbols are used for the tightly
code-specific rule (27) and open symbols for the weakly code-specific rule (28). (c) Trajectories in trials 1, 20, 40 and 100
for one and the same run (animal) using the tightly code-specific rule with N = 5 neurons. Green and red coloring is used
to indicate the target and walls respectively.

weakly code-specific rules. The common observation
that the former outperforms the latter holds here too.
For one animal the trajectories in trials 1, 20, 40 and
100 are shown in panel c. Whereas in the first trial
the rat meanders around searching for the target, in
the last trial it swims straight to the target.

4. Discussion

We have generalized population learning for differ-
ent neuronal codes and multi-valued decision mak-
ing. We presented two mathematical techniques to
derive such rules, one based on linear approximation
around a target feature, and one based on partial
integration across feature values. The first technique
yields modular learning rules which are weakly code-
specific, with a spike-timing-dependent base synap-
tic plasticity kernel which is modulated by a reward
signal and a code specific population signal. Fur-
ther analytical averaging leads from weakly to tightly
code-specific learning rules where details of the code-
irrelevant spiking information are integrated away.
For cases where an analytical expression does not
exist and hence one has to resort to sampling, we
propose a gradient estimator based on integration
by parts to obtain a tightly code-specific rule. We
found that in our population setting, the strongly
code specific rule is superior in learning performance
as compared to the weakly code-specific rule. This
holds true for all population sizes, in particular also
for the single neuron setting. The latter has been
theoretically predicted before, but not yet been con-
vincingly demonstrated in simulations.13 However,
as we find for population coding, a code-specific
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base plasticity rule does significantly improve learn-
ing performance as compared to the noncode-specific
version. An improvement was observed for all three
codes: spike/no-spike, spike count and spike latency
code. Moreover, all our rules improve in learning
speed with increasing population size.

The generality of our schemes for deducing synap-
tic learning rules in a decision-making circuitry is
expressed in the variety of neuronal codes and tasks
it applies to. Previous restrictions to binary decision
making are relieved by extending the theory to mul-
tiple choice alternatives and continuous action selec-
tions. While the continuous action selection scenario
requires a graded reward signal, this does not need
to be provided by an external teacher, as assumed
in our basic regression example. Instead the grading
can emerge automatically due to the use of decay-
ing eligibility traces based on a binary event, as is
the case when a rat moving in Morris’ water maze
found its target. The reward attributed to a decision
is remodulated by the eligibility trace, and decisions
leading to earlier reward have higher eligibility and
receive stronger reinforcement.

For mathematical clarity we presented the rules
for an episodic learning scenario. But a biological
plausible implementation of a fully online scheme
is also possible9,10: to avoid an explicit separation
of stimuli in time, eligibility traces can be further
low-pass filtered across stimulus boundaries. Concen-
trations of different neurotransmitters can be used
to encode feedback about the population decision
and the global reward signal (e.g. acetylcholine or
dopamine).

The set of population learning rules we derived
can be seen as generalizations of previously studied
single neuron learning rules derived in a policy gradi-
ent framework. The weakly code-specific population
rule shows a base synaptic plasticity kernel which is
spike-timing dependent.15,16 This base synaptic plas-
ticity is modulated by the noise component present
in the decision-making circuitry at the population
level, much like it was previously suggested by weight
or node perturbation at the synaptic and neuronal
level, respectively.17,28 Interestingly, however, the
rule which outperforms all other rules displays a
remarkable feature at the single neuron level: its base
plasticity kernel is not depending on whether a post-
synaptic spike was actually elicited or not (Eqs. (17),
(21) and (25)), but only on the probability of eliciting

such a spike, and hence only on the time course of the
postsynaptic membrane potential. As current inter-
pretations of synaptic plasticity experiments focus
on postsynaptic spikes rather than on the membrane
potential dependence (for a review see Ref. 29), it
would be interesting to reconsider these experiments
and test how far they are compatible with our sug-
gestion for an efficient and code-specific population
learning rule.
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Appendix A

In the main text we derived tightly code-specific
rules by analytical averaging, which guarantees gra-
dient estimates of lower variance compared to weakly
code-specific rules. While the derivation by isolating
a single neuron’s contribution is intuitive, it relies
on an approximation valid for large population sizes.
Instead of utilizing partial integration in the last step
to derive Eq. (14), we here start directly with partial
integration and Eq. (14) turns out to be even exact.

We choose to start with considering discrete fea-
tures and handle the case of continuous features at
the end by taking the limit. We apply partial sum-
mation to

∑
f P (D | f)PW(f) before calculating the

gradient of ⟨R⟩ =
∑

D

∑
f P (D | f)PW(f)R.

We first assume that the features f take values
in a fixed set (independent of W) of n + 1 scalars,
f0 < f1 < · · · < fn. Being precise with regard to
random variable and its realization for the considered
neuron but remaining concise for the other variables,
we write the gradient as

∇⟨R⟩ =
∑

D

R
∑

f\

PW(f\)

×∇
∑

i

P (D | f\, f = fi)︸ ︷︷ ︸
di

Pw(f = fi)︸ ︷︷ ︸
pi

=
∑

D

R
∑

f\

PW(f\)

×∇

⎛

⎝−
∑

i

(di+1 − di)
i∑

j=0

pj

⎞

⎠ ,
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where the second line is obtained by partial summa-
tion, noting that the ‘surface term’ vanishes. Setting
Cw(fi) =

∑i
j=0 Pw(fj) to denote the cumulative

probability as well as ∆P (D | f) = P (D | f\, fi+1) −
P (D | f\, fi) for the difference operator, we put the
above result into a form useful in the context of a
sampling procedure:

∇⟨R⟩ =
∑

D

R
∑

f

PW(f)P (D | f)∆P (D | f)
P (D | f)

×
(
−∇Cw(f)

Pw(f)

)
.

The above result is also valid when the features take
values in a discrete but infinite set of scalars with the
ensuing learning rule

∆w = −ηR
∆P (D | f)
P (D | f)

∇Cw(f)
Pw(f)

. (A.1)

When n is finite, no update arises when the fea-
ture value is fn since ∇Cw(fn) = ∇1 = 0. Instead of
using forward differences di+1−di in the partial sum-
mation above, we could also have used the formula-
tion with the backward differences di−di−1, yielding
an expression for the gradient where no update arises
when the feature value is f0. A general update rule is
obtained by taking convex combinations of the two
expressions. This introduces a tunable parameter κ,
with 0 ≤ κ ≤ 1, and yields the update

∆w = −ηR

(
κ

∆P (D | f)
P (D | f)

∇ν Cw(f)
Pw(f)

+ (1− κ)
∆P−(D | f)

P (D | f)
∇ν C−

w(f)
Pw(f)

)
(A.2)

with the backward difference function ∆P−(D | f) =
P (D |f\, fi)−P (D |f\, fi−1) and C−

w(fi) = Cw(fi−1).
For features which can take on a continuous range

of values one can simply use partial integration or
take the continuous limit ∆fi → df of (A.1) or (A.2),
giving the update

∆w = −ηR
∂ ln P (D | f)

∂f

∇Cw(f)
Pw(f)

. (A.3)

Note that we recovered Eq. (14) without using any
approximations.
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