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Recently, the problem of credit assignment in cortical networks has been addressed by several
models suggesting a biologically plausible implementation of backprop [1], e.g., by drawing
parallels to predictive coding [2] or proposing a circuit-level implementation using interneurons
[3-5]. However, these models have so far been restricted to supervised learning.

Here, we propose an extension of these models to unsupervised learning by using a layer-wise
recurrent network architecture with convex gating of the forward and backward information
�ow, controlled by . Similar to [2,4], the neurosynaptic dynamics are derived as gradient
descent on an energy function composed of two squared error terms and a cost function, 

, where  and  are the membrane potentials
and rates of neurons in layer i,  the discriminative weights (DW) projecting from layer i-1 to i, 
the generative weights (GW) from layer i+1 to i and  the cost function weighted by a scalar 

 (Fig. 1A). This way, we obtain standard leaky dynamics where forward and backward inputs
are convexly combined at the soma (Fig. 1B). The resulting synaptic plasticity for  and  is
driven by the dendritic prediction of somatic activity [6]. For small gating  the plasticity rules for
GW and DW, even though they are formally identical, perform di�erent optimization tasks: the
GW minimize a reconstruction error in the visible layer, whereas the DW learn to match the
generative input entering the same layer.

Di�erent from previous models [7-12], this network allows the simultaneous training of encoding
(DW) and decoding (GW) weights in a deep folded autoencoder with a bottleneck in the highest
layer (Fig. 1C,D). Both the encoding, decoding as well as the error propagation for the plasticity of
the generative weights is done via the same neurons simultaneously. In addition, the visible layer
is not clamped during training but only nudged towards the correct activity. The model can be
directly connected to the microcircuits proposed in [3,4] by having the generative weights and
errors project to apical compartments, and forward ones to basal compartments of pyramidal
neurons (Fig. 1B). Thus, the presented model proposes a biologically plausible implementation of
e�cient simultaneous discriminative and generative learning in cortical hierarchies.
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constant at 0.1. (D) Same as (C) but for CIFAR10.
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