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Abstract

The frequently used neural model of Hodgkin and Huxley (HH) reproduces the dy-
namics in a neuron very well. However, it is not practicable to describe reinforcement 
learning of a neuron, of neural networks respectively. Since it is possible to emulate 
the spiking behavior of the HH-model under noisy input by the simpler escape noise 
model, the latter is commonly used to model reinforcement learning.
Thus, the aim of this thesis is to formally map the model of HH to an escape rate 
neuron. The attempt presented in this work uses a discrete time approximation of the 
noisy membrane potential as the sum of a deterministic potential given by the HH-
model and a noise term, which is shown to reasonably be described by an Ornstein-
Uhlenbeck (OU) process. It turns out that the desired mapping is not at all feasible for a 
gaussian OU process, but works at least for subthreshold stimulus if it is replaced by an 
Ornstein-Uhlenbeck-Lévy process, namely an OU process with stable increments with
stability-index α ∈ (1+

√
5

2 , 2). Thus some important results about stable distributions
and the OUL process are presented and proven to allow a mapping from the HH model 
to an escape rate model in the case of subthreshold stimulus.
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1 Introduction

The mystery of the human brain has driven research for centuries. Why is it able to
memorize words, pictures and even very complex and abstract connections? These
kind of questions have motivated natural scientists as well as philosophers to develop
theories and perform experimental research which lead to a far deeper insight into the
mechanism of the brain. However, there are still a lot of questions that are not yet an-
swered. Especially the questions about memorizing and learning are still in research
and there are quite different concurrent approaches to solve these problems.
During the 20th century natural scientists began to develop mathematical models for
nerve cells (neurons) and networks, based on the growing knowledge of the biological
structure, to eventually understand how people or other creatures can process informa-
tion, how they learn and, finally, how they can save this knowledge for future tasks.

1.1 Physiological Background

Like other cells, neurons are surrounded by a membrane which separates the interior
from the extracellular space. Because of this membrane, it is possible to have a different
ion concentration inside the neuron than in the surrounding liquid. This difference in
concentration generates an electrical potential V which drives the neural dynamics.
A neuron can be devided roughly into three functionally distinct parts, the dendrites,
the soma and the axon (see figure 1). The dendritic tree can be seen as the signal receiv-
ing unit, the soma as the processing unit and the axon as the transmitting unit. Most
of the input from other neurons is received via synapses at the dendritic tree. In these
synapses the incoming electric signals, viz. spikes, trigger a complex biochemical pro-
cess which generates either an excitatory or an inhibitory postsynaptic potential (PSP).
However, the strength of the PSP triggered by a certain input signal depends heavily
on the physical and neurochemical characteristics of each synapse. The fact that it is
the synapses where the brain is most flexible, is the reason why they are believed to be
the location of learning and memory [12]. The impact of the synapses on the strength
of the PSP is interpreted as an adjustable weight w.
At the end of the dendritic tree, all the PSP’s add up in the soma generating a change
in the membrane potential. If the total input produces a membrane potential crossing
a certain neural threshold, the soma fires a spike that is transmitted through the axon,
which itself is connected dendrites of other neurons.

Figure 1: Schematic Neuron [28]
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These observations motivate modeling the potential caused by incoming currents Ii
by adding up the PSP’s weighted by corresponding wi’s and letting the neuron spike if
a threshold ϑ is reached.

1.2 Detailed vs. Formal Spiking Neural Models

The different attempts in modeling single neurons can be divided into two categories.
The detailed neural models aim to describe the chemical processes in the cell, including
the biophysics of ion-channels, dendritic trees, synaptic interaction and so on. A very
popular example is the model proposed by Hodgkin and Huxley in 1952 which is pre-
sented in more detail in section 3. An argument for studying such complex models is
the idea, that one has to consider all the anatomical and physiological details to even-
tually understand the nervous system. The problem of this concept is that such models
are difficult to construct an often even more difficult to analyze. Typically, such models
lead to a large number of nonlinear differential equations which make the model very
expensive in finding numerical solutions. Already the model from Hodgkin and Hux-
ley contains four nonlinear differential equations, even though it completely ignores
the influence of the spacial structure.
The formal spiking neural models aim to reduce the complexity of the description of
a neuron, while keeping the spiking nature and the essential elements of the behav-
ior. The motivation for such models is that they allow studying more easily compu-
tational and functional principles of neural system such as the reinforcement learning
from section 4. These simplified models cannot describe the entire range of functions
of a neuron, so they usually focus on an essential feature and describe it as a function
of what the modeler considers to be crucial. E.g. the escape noise model from section
2 describes the spiking as a function of the instantaneous membrane potential (and its
slope) in order to perform reinforcement learning [9].

1.3 Aim of the Thesis

The models and learning processes treated in this thesis will be confined to a single
neuron. As indicated above, the detailed neural model of Hodgkin and Huxley has
the poor property, that it causes too much effort to be analyzed as to be feasible to
describe reinforcement learning. However, simpler models such as the escape noise
model can reproduce their spiking nature quite well if the input is noisy, which means
that besides the desired input, there is always some stochastic input interpreted as back-
ground noise and implemented by a stochastic process ξt. For this reason the escape
noise model is usually used as a simplification if applied for reinforcement learning.
Thus the aim of this thesis is to give a formal reason for this simplification, by for-
mally mapping the neural model from Hodgkin and Huxley to an escape noise model.
Section 3.3 and all of section 7 contain the research parts of the thesis, while the other
sections contain definitions and results from existing literature relevant for the research
parts.

2



1.4 Idea

A previous attempt to perform the mapping from HH model to an escape rate model
failed, because it assumed a simple voltage threshold [18, 19]. The idea of the mapping
presented in this thesis is slightly different, since it assumes a threshold condition sen-
sitive to the voltage V as well as its slope V̇ . This additional sensitivity on the slope is
motivated by a reduction of the HH model shown in section 3.3.
Now the noisy potential Ṽ and its slope ˙̃V are expressed as the sum of their determin-
istic values V , V̇ respectively, and a stochastic component, modeled by a discrete time
approximation of a stochastic process ξt, namely an Ornstein-Uhlenbeck process, that
vanishes in the limit ∆ → 0. Due to the sensitivity to V̇ , the model can have an escape
rate in the limit ∆→ 0 even though the model gets deterministic. It will be shown that
this turns the reduced HH model into an escape noise model in the limit ∆ → 0 for
subthreshold stimulus.

2 Escape Noise Neuron with Reset

The basic idea of the escape noise model is to split the input of a neuron into a deter-
ministic input current, which may be seen as the input from a certain subset of neurons,
and a stochastic input current, interpreted as background noise from the activity of the
other neurons. This section shall give a brief insight into such models and describe why
they are useful in terms of studying learning processes.

2.1 Definition

The escape noise neuron is a threshold model and thus spikes if the membrane potential
reaches ϑ. The spikes are not modeled in detail but only described by a stereotype ac-
tion potential. The stochastic input current yields the possibility that the neuron spikes
even though the deterministic membrane potential has not yet reached the threshold.
Since the exact value of the noise component can not be predicted, this gives a spiking
probability, also called escape rate, depending on the instantaneous membrane poten-
tial of the neuron.

Definition 2.1. For t > 0, let Vt be the potential, I(t) the incoming current, τm a time
constant. The escape noise neuron with reset is defined by

i) V0 = 0

ii) Vt̂ = 0 if t̂ spike time

iii) V̇t = − Vt
τm

+ I(t)

and has an instantaneous escape rate ϕ(Vt|t̂), in the following referred to as firing rate,
where t̂ is the time of the last spike, viz. reset.
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Example. A common escape rate ϕ(Vt|t̂) appears in the Arrhenius model

ϕ(Vt|t̂) ∼ exp

{
−

(1− Vt|t̂)2

σ2

}
,

where the escape rate depends only on the distance between the threshold and the
membrane potential.

Even though most authors use firing rates based on a pure voltage threshold, this
concept is questionable. As discussed in section 3.2.2, the model from Hodgkin and
Huxley indicates a dependence not only on the voltage Vt, but also on the slope V̇t.
Thus, a more sophisticated version of the Arrhenius model could have a firing rate

ϕ(Vt, V̇t|t̂) = w exp

{
−

(1− (Vt|t̂ + V̇t|t̂))
2

σ2

}
.

However, to keep notations simple, the slope will not be mentioned where there is no
explicit reference to it.

2.2 Properties

By construction, an escape noise neuron has an instantaneous escape rate, that is inde-
pendent of the history of the membrane potential. Therefore, the spike process gener-
ated by this neuron is an inhomogeneous Poisson process.

2.2.1 Spiking as a Poisson Process

Definition 2.2. A stochastic process is a collection {Xt; t ∈ T} of random variables Xt,
defined on the same probability space.

Definition 2.3. [4] A counting process {Ct; t ≥ 0} is a stochastic process that satisfies
i) Ct ≥ 0

ii) Ct is an integer
iii) Ct is non-decreasing

for all t ≥ 0.

According to these preliminary definitions, an inhomogeneous Poisson process can
be defined as

Definition 2.4. [4] An inhomogeneous Poisson process is a continuous time counting pro-
cess {Nt; t ≥ 0}with the properties

i) N0 = 0
ii) Nt increases by jumps of size 1 almost sure

iii) for any t, s ≥ 0, the increment Nt+s −Nt is independent of the history {Nu;u ≤ t}
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Proposition 2.5. [5] The number of events of an inhomogeneous Poisson process in an interval
(a, b] has a Poisson distribution with parameter

λa,b =

∫ b

a
λ(t)dt,

where λ(t) is the time dependent poisson rate.

The Poisson process generated by the escape noise neuron counts the number N of
spikes and has the Poisson rate ϕ(Vt).

2.2.2 Interspike Interval Distribution

It is common to characterize noisy neuron models by their interspike interval (ISI) dis-
tribution PI(t|t̂) depending on the incoming current I(t) and a given spike at t̂.

Definition 2.6. Let t̂ be the time of the last spike. Then the interspike interval distribution
PI(t|t̂) of the escape noise neuron with reset is

PI(t|t̂) = ϕ(Vt|t̂) exp

{
−
∫ t

t̂
ϕ(Vt′ |t̂)dt′

}
Remark. The exponential term in this definition can be interpreted as the probability of
the neuron staying quiescent from t̂ to t. Thus PI(t|t̂) is the product of the firing rate at
time t and the probability of not firing in (t̂, t).

3 Hodgkin-Huxley Model

Named after its developers Alan Lloyd Hodgkin an Andrew Fielding Huxley, who pre-
sented the model in 1952, the HH model describes the dynamics of a neuron. It is based
on their research on the giant axon of the squid. They showed that the consistence of
the membrane guarantees a nearly perfect electrical insulation. However, some specific
proteins in the membrane act as ion gates and enable the ion concentration in the cell
to change. The HH model now describes the voltage-dependent ion channels and the
changes of the membrane potential caused by the currents through the channels and
some incoming current I(t).

3.1 Definition

Hodgkin and Huxley found in their experiments three different types of ion currents:
an inward sodium (Na+) current, an outward potassium (K+) current and a leakage
current (l) that consists mainly of Cl− ions. They describe the membrane as an electri-
cal circuit, where the membrane potential is replaced by a capacitor Cm, and the ion
channels by parallel resistances (see figure 2).
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Figure 2: Diagram of the HH model [26]

If an external current I(t) is applied to the cell, the law of conservation of electric
charge leads to:

I(t) = ICm(t) + INa(t) + IK(t) + Il(t) (1)

The definition of the capacity Cm = Q/V where Q is the charge and V the voltage
across the capacitor yields ICm(t) = dQ/dt = CdV/dt and thus

Cm
dV

dt
= −

∑
k

Ik(t) + I(t) k = Na,K,l (2)

The HH model describes the three ion channels not by resistances Ri but by conduc-
tances gi, which is equivalent since gi = 1/Ri. While the leakage channel has a constant
conductance gl, the other ion channels have a maximum conductance gNa or gK, respec-
tively. However, only parts of the sodium an potassium channels are open at the same
time. The ratio of open channels is by additional voltage dependent variables m,n and
h. Hodgkin and Huxley formulated their model of the three components as follows:∑

k

Ik(t) = gNam
3h(V − ENa) + gKn

4(V − EK) + gL(V − El) (3)

The parameters ENa, EK and El are the equilibrium potentials, whose values, as well as
those of the conductances, are basically results of experiments by Hodgkin and Huxley,
even though some of them have been slightly corrected after further research.

Table 1: Empirical parameters of the HH model [9]

x Ex (mV) gx (mS/cm2)
Na 115 120
K -12 36
L 10.6 0.3

The gating varbiables m,n and h are defined by the following differential equations

ṁ = αm(V )(1−m)− βm(V )m

ṅ = αn(V )(1− n)− βn(V )n (4)
ḣ = αh(V )(1− h)− βh(V )h
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where the voltage dependent functions αk and βk are empirical functions, adjusted by
Hodgkin and Huxley to fit the experimental data as good as possible (see table 2).

Table 2: Empirical functions depending on V (mV) [9]

x αx(V ) βx(V )

n (0.01V−0.1)
1−exp{1−0.1V }

0.125
exp{V/80}

m (0.1V−2.5)
1−exp{2.5−0.1V }

4
exp{V/18}

h (0.07)
exp{0.05V }

1
1+exp{3−0.1V }

Definition 3.1. [9] The Hodgkin-Huxley model describes the membrane potential of a
neuron through the equations (2)-(4) with the empirically fitted values from table 1 and
functions from table 2.

3.2 Properties

3.2.1 Dynamics

Obviously, the dynamics of the model is given by the behaviour of m,n and h. Figure
3 shows that m and n are increasing as V increases, while h is decreasing. In the figure
m∞(V ), n∞(V ), h∞(V ) are the asymptotic values of m,n and h for a fixed potential V
as t→∞.

Figure 3: Voltage dependent gating variables [27]

Interesting is the fact, that these changes follow different time scales. This is obvious
if the equations (4) are rewritten as

ṁ =
m∞(V )−m

τm(V )

ṅ =
n∞(V )− n
τn(V )

(5)

ḣ =
h∞(V )− h
τh(V )

7



where m∞(V ), n∞(V ), h∞(V ) are the asymptotic values of m,n and h for a fixed poten-
tial V as t → ∞. The time constants τm,n,h indicate, how fast the gating variables react
on a change of the potential.

m∞(V ), n∞(V ), h∞(V ) =
αm,n,h(V )

αm,n,h(V ) + βm,n,h(V )
(6)

τm,n,h =
1

αm,n,h(V ) + βm,n,h(V )
(7)

Figure 4 shows, that τm is always much smaller than τn and τh.

Figure 4: Time constants of the gating variables [27]

Thus, if an incoming current is rising V , m opens the sodium channels quickly and
the INa current increases, whereas the variable hwill close the channels and stop the INa
with a certain delay. On a similar slow time scale, the variable n activates the potassium
current, which lowers the potential. The effect of these two currents is a short action
potential (spike) due to the fast activation of INa, followed by a negative overshoot due
to the slow timescale of n.

3.2.2 Threshold Behavior

Not every incoming current generates a spike. I(t) has to rise V sufficiently for m
to allow a strong sodium current, and at the same time it has to rise V fast enough,
such that h is not yet closing the channels and n does not activate the voltage lowering
current IK . Thus the HH neuron spikes only, if V and V̇ are higher than some critical
value, what motivates to describe the HH model as a threshold model [9].

3.3 Reduction

Even though it is very close to the biological processes in the soma, the HH model is
not really feasible for describing reinforcement learning, since it is very laborious. In
this context, the substantial interest is to describe the spiking behavior of the neuron
(see section 4). This section motivates several reductions that should provide the main
characteristics of the HH model in the spiking behavior.
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3.3.1 Reduction of the Gating Variables

As seen in section 3.1, there are three types of ion gates defining the dynamics of the
HH model. A first step of simplification is to eliminate the leakage current, which has
a rather small influence, since the conductance gl is relatively small (see table 1). Sec-
ondly the observations of section 3.2 show that, since INa is the only inward current,
the sodium channel is responsible for generating a spike. Thus, even though eliminat-
ing the potassium current IK will heavily change the after spike behavior of the model,
the threshold property from section 3.2.2 survives due to the different dynamics of the
gating variables m and h.
Over all, this first reduction leads to a simpler version of equations (2) and (3):

Cm
dV

dt
= −INa(t) + I(t) (8)

where

INa(t) = gNam
3h(V − ENa) (9)

3.3.2 Simplification of the Gating Variables

This reduced model still contains two differential equations for the variables m and
h. While they describe the dynamics of these variables very precise, they prevent an
efficient handling of the model. The following approximations yield a much easier
version of equation (9):
The dynamics of the gating variables m and h indicate, that an inactivation by h can
only happen, if V changes on a slow time scale compared to τm. Thus assume m(Vt) ≈
m∞(Vt), h(Vt) ≈ h∞(Vt) and let Vt change to Vt+∆t = V +∆V in time ∆t ≈ τm, with ∆V
small to yield the desired slow changing potential. Thenm(Vt+∆t) can be approximated
by

m(Vt+∆t) ≈ m∞(Vt+∆t) (10)

since m changes on a similar time scale as V . In contrast, since ∆t � τh, h reacts a lot
slower on changes in V and thus approximately stays at h(Vt):

h(Vt+∆t) ≈ h(Vt) (11)

Thus by assumption

h(Vt+∆t) ≈ h∞(Vt)

= h∞(Vt+∆t − (Vt+∆t − Vt))

= h∞(Vt+∆t − τm
Vt+∆t − Vt

τm
)

Now ∆V/τm ≈ ∆V/∆t =: V̇t+∆t yields

h(Vt+∆t) ≈ h∞(Vt+∆t − τmV̇t+∆t) (12)

9



Thus the following reformulation of (9) is a feasible approximation for a potential V ,
that changes slowly compared to τm:

INa(t) = gNam
3
∞(V )h∞(V − τmV̇ )(V − ENa) (13)

3.3.3 Threshold Behavior of the Reduction

As in the original model (see section 3.2.2), the reduction (13) emits a spike if INa is
strong, which happens if V is high enough to increase m and at the same time V̇ is
high enough to ensure h not to close the channels. To get a simple threshold condition,
INa(V, V̇ ) is approximated linearly in V and V̇ around (V0, V̇0):

INa(V, V̇ ) ≈ c+
∂INa

∂V
(V − V0) +

∂INa

∂V̇
(V̇ − V̇0) (14)

Thus the threshold condition INa(V, V̇ ) > θ yields

∂INa

∂V
(V − V0) +

∂INa

∂V̇
(V̇ − V̇0) > θ − c (15)

which is basically equivalent to aV + bV̇ > θ. Thus it is straight forward to replace it by

V + V̇ > 1 (16)

Since the after-spike course of the membrane potential is again stereotype, it is replaced
by a reset as in the escape rate model.

3.4 Reduced HH as Dynamic Integrate&Fire Neuron

Summarysing the steps from the previous section, the reduced model that will be treated
in the following is defined by:

Definition 3.2. Let I(t) be the incoming current, INa(t) the inward sodium current and
m∞(V ), h∞(V ) the gating variables defined by (6).
The dynamic I&F model (dI&F) is defined through the threshold condition

Vt + V̇t > 1

eliciting a spike when Vt + V̇t crosses the threshold 1 from below. After a spike at time
t̂ the potential as well as its derivative are reset to 0:

Vt̂ = V̇t̂ = 0

Vt and V̇t are given by the differential equation

Cm
dVt
dt

= −INa(t) + I(t)

where INa(t) = gNam
3
∞(Vt)h∞(Vt − τmV̇t)(Vt − ENa).

As mentioned in section 1.3 the escape noise neuron is only used if the input is noisy.
Thus, the deterministic dI&F model will be analyzed for stochastic input in section 7.
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4 Reinforcement Learning

This section gives a short introduction into the main ideas of the well studied concept of
reinforcement learning and shows the advantage of an instantaneous escape rate model
over the HH-model.

4.1 Definition

Empirical research lead to the conclusion, that the information in neuronal signals is
neither represented by the individual spiking patterns nor by the spike timing. In fact
experiments gave evidence for the spike firing rate to be the information carrier. Thus
the considered learning rules and neuron models are defined by incoming and emitted
firing rates.
Threshold neurons can be seen as decision units who control their firing rate y based
on the incoming firing rates xi of the connected neurons. Reinforcement learning now
assumes that the neuron gets a feedback on its response y, that measures the quality of
y compared to a target response ŷ in terms of a reward function R(y, x).

Definition 4.1. Let X ⊂ Rn+ be the set of possible of incoming patterns of firing rates,
Y ⊂ R+ the set of response firing rates and ŷ ∈ R+ the target firing rate.
Then R : Y ×X → R such that for x ∈ X fixed

i) R(ŷ, x) ≥ R(y, x) ∀y ∈ Y

ii) R(y, x) = R(ŷ, x) ⇐⇒ y = ŷ

is a reward function.

Synaptic weights are adapted to generate neuronal responses such that the reward
increases, is maximized respectively, meaning the neurons response reaches the target
ŷ.
The process of generating a response y to an input x depends on synaptic weights wi
(see section 1.1), which allow the neuron to control the influence of an input xi, and a
threshold condition∑

n

xiwi = x · w > θ

Thus learning, viz. increasing the reward, is a matter of adapting the weights w prop-
erly. Since the response y is only stochastically depending on the input x, the expected
reward

E[R] =
∑
x,y

R(y, x)Pw(y, x) =
∑
x,y

R(y, x)P (x)Pw(y|x) (17)

should be maximized.
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4.1.1 Gradient Descent

To make sure that a change of w actually causes an improvement, the learning rule will
be defined using method of gradient descent.

Definition 4.2. Let F (w) : Rn → R be C1(Rn), with a local minimum at ŵ ∈ Rn,
w0 ∈ Rn a guess for the minimum and λi > 0.
Iterating the rule

w := w − λi∇F (w)

defines the method of gradient descent.

Remark. The method of gradient descent acts as a method for finding a local maximum
of a function by changing the direction of the defining rule to

w := w + λi∇F (w),

which will be denoted as learning rule ∆w ∝ ∇F (w).

The function to be maximized is F (w) = E[R], given by (17), which yields

∆w ∝ ∂

∂w

∑
x,y

R(y, x)P (x)Pw(y|x)

=
∑
x,y

R(y, x)P (x)
∂

∂w
Pw(y|x)

=
∑
x,y

R(y, x)P (x)Pw(y|x)
1

Pw(y|x)

∂

∂w
Pw(y|x)

=
∑
x,y

R(y, x)Pw(y, x)
∂

∂w
logPw(y|x). (18)

The learning rule (18) is not very practicable, since evaluating the sum might be very
expensive. Moreover, reinforcement learning as described above requires adaption of
the weights after every incoming pattern, whereas (18) uses all possible pairs (y, x) in
every single adaption.

4.1.2 Stochastic Gradient Descent

The solution solving the problem of the gradient descent described above is called
stochastic gradient descent:

Definition 4.3. Let F (w) =
∑

i Fi(w) and therefore∇F (w) =
∑

i∇Fi(w).
Adapting w by evaluating the gradient at a single pattern (y,x)

w := w + λi∇Fi(w),

is the method of stochastic gradient descent.
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Under some assumptions to the function F, the stochastic gradient descent guaran-
tees the convergence of w.

Theorem 4.4. [2] Let F (w) have the following properties:

i) F (w) ∈ C3(Rn) and bounded from below

ii) The learning rates λi satisfy:
∑

i λi =∞ and
∑

i λ
2
i <∞

iii) Ex(‖(x,w)‖k) ≤ Ak +Bk‖w‖k for Ak, Bk > 0, k = 2, 3, 4

iv) for some D > 0: infw2≥D w∇F (w) > 0

Then the stochastic gradient descent guarantees:

1. The weights wt are confined in a bounded region of Rn with probability 1.

2. F (wt) converges almost surely

F (wt)
a.s.−−−→
t→∞

F∞

3. ∇F (wt) converges almost surely to 0

∇F (wt)
a.s.−−−→
t→∞

0

Remark. Since the function F (w) may have several local extremal points (and even
asymptotic plateaus), the stochastic gradient descent only guarantees the convergence
to an extremal point, which may be different from the global extremal point. At least,
the possibility of diverging on an asymptotic plateau is excluded by the confinement
result.

Thus the learning rule is defined by (18) according to the stochastic gradient descent:

Definition 4.5. The reinforcement learning rule for adaption of the weightsw of a neuron
is

∆w ∝ R(y, x)
∂

∂w
logPw(y|x)

4.1.3 Reinforcement Learning Process

After this preliminary definitions, reinforcement learning is defined as follows:

Definition 4.6. [10] A reinforcement learning process consists of

i) set of inputs X ⊂ Rn+

ii) set of responses Y ⊂ R+

13



iii) an initial weight vector w ∈ Rn

iv) set of probability distributions Pw(y, x) over X

v) reward function R(y, x) : Y ×X → R

vi) learning rule ∆w ∝ R(y, x) ∂
∂w logPw(y|x).

The system is learning by sampling x ∈ X and adjusting the weights by ∆w, depending
on the response y . Theorem 4.4. shows the convergence under some conditions for
F (w) = E[R(y, x)].

4.2 Advantage of Escape Noise over Hodgkin-Huxley

The motivation to map the reduced version of the Hodgkin-Huxley model to an escape
noise neuron is the need of an explicit formula for the conditional probability Pw(y|x),
in order to study the learning process of a single neuron as well as of a neuronal net-
work. While this is possible in the case of an escape noise neuron, due to the property
that the intervals between two spikes are independent and distributed according to
definition 2.6, it is in general impossible for any integrate-and-fire models, such as the
HH-model, since they heavily depend on the history of the membrane potential Vt.
For an escape noise neuron, the conditional probability Pw(y, x) can be defined as fol-
lows:

Definition 4.7. A spike train xi is a set of spiking times t1 < t2 < · · · < tn

xi := {t1xi , t
2
xi , . . . , t

n
xi}.

The potential generated by an incoming spike train x is the sum of the postsynaptic
potentials of the spikes:

∆V x
t = wix

ε
i (t) (19)

= wi
∑
tjxi∈xi

PSP (t− tjxi) (20)

and thus, the membrane potential at time t is

Vt =
∑
i

wi
∑
tjxi∈xi

PSP (t− tjxi) (21)

where in the first sum i runs over all connected neurons. Note that Vt depends only on
the incoming spike trains {xi} and the weights w.

Proposition 4.8. Let X = {xi} be given a pattern of incoming spike trains. Then the proba-
bility of a spike train y of an escape noise neuron in an interval [0,T] is

P (y|X) = exp

{
−
∫ T

0
ϕ(Vt)dt

} ∏
tsp∈y

ϕ(Vtsp)

where Vt is given by (21).
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Proof. The spike train y can be interpreted as a sequence of ISI I1, I2, . . . , In and a qui-
escent interval [tn,T], with Ij = tj − tj−1 and t0 = 0. As seen before, these ISI’s are
independent and it follows:

P (y|X) = exp

{
−
∫ T

tn
ϕ(Vt)dt

} n∏
j=1

P (tj |tj−1)

= exp

{
−
∫ T

tn
ϕ(Vt)dt

} n∏
j=1

ϕ(Vtj ) exp

{
−
∫ tj

tj−1

ϕ(Vt)dt

}

= exp

{
−
∫ T

tn
ϕ(Vt)dt

}
exp

−
n∑
j=1

∫ tj

tj−1

ϕ(Vt)dt


n∏
j=1

ϕ(Vtj )

= exp

{
−
∫ T

0
ϕ(Vt)dt

} n∏
j=1

ϕ(Vtj )

5 Ornstein-Uhlenbeck Processes

Many processes in physics, biology and financial mathematics are usually described
by an Ornstein-Uhlenbeck (OU) process. While for a long time such phenomena have
been assumed to result from gaussian distributed processes, there has been some recent
research that comes to the conclusion that some applications have more likely a heavy
tailed distribution, particularly a stable distribution (see section 5.3.1) [3]. In fact section
7 shows that in order to map the HH-model to an escape noise model, it is necessary to
assume heavy tailed noise. Therefore main results for the standard case of the gaussian
OU process as well as for the OU process for arbitrary stable distributions are presented
in this section.

5.1 Notations and Preliminary Definitions

Definition 5.1. A stochastic Process (Xt, t ≥ 0) has independent increments if for any
sequence (ti)

n
i=1 with 0 ≤ t1 < t2 < · · · < tn−1 < tn <∞

Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1

are independent.

Definition 5.2. A stochastic Process (Xt, t ≥ 0) has stationary increments if for any τ > 0
the distribution of Xt+τ −Xt is independent of t.
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5.2 Ornstein-Uhlenbeck Process

The OU process can be motivated as a process describing the impact of the environment
to the velocity of a Brownian particle. The random impacts of neighbouring particles is
described by a Wiener process.

Definition 5.3. [23] A standard Wiener process Wt satisfies:
i) W0 = 0

ii) Wt as independent increments
iii) Wt −Ws ∼ N (0, t− s) for 0 ≤ s ≤ t

According to this definition, a time discrete Wiener process can be written as

(∆Wt) = Wt+τ −Wt =
√
τηt (22)

where ηt ∼ N (0, 1).

An OU process as indicated above is therefore defined as

Definition 5.4. [5] Let β, σ, τ > 0. A time discrete OU process ξt with zero mean solves

(∆ξt) = −βξtτ + σ(∆Wt)

and therefore satisfies

ξt+τ − ξt = −βξtτ + σ
√
τηt

The OU process ξt has again a gaussian distribution

Proposition 5.5. Let ξt be an OU process as defined above and ξ0 = 0. Then

ξt ∼ N
(

0,
σ2

2β
(1− e−2βt)

)
and ξt has the asymptotic stationary distribution N(0, σ

2

2β ).

Remark. The proof of proposition 5.5 is analog to the proof of proposition 5.22 and thus
is omitted.

5.3 Lévy Process

Definition 5.6. [17] A stochastic process Xt with X0 = 0 a.s. is called Lévy process, if
i) Xt has independent increments

ii) Xt has stationary increments
iii) Xt is continuous in probability: ∀s, ε > 0 lim

s→0
P (|Xt+s −Xt| > ε) = 0

The class of Lévy processes contains a wide range of stochastic processes. Obvi-
ously the Wiener process is a Lévy process. However, since there is no condition on
the distribution of the increments of a Lévy process, the increments can be changed to
have distributions other than the gaussian, namely stable distributions, defining again
a Lévy process, though with heavily different properties.
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5.3.1 Definition of Stable Distributions

An important property of gaussian random variables is that their sum is again gaus-
sian. Since stochastic processes ξt like the Wiener and the OU process are basically a
sum of the increments, distributions without this property would in general make it
impossible to find the distribution of ξt. In the following, the special case of degenerate
distributions is excluded, since most statements about stable distribution do not hold
in this case. Moreover, there is no use for a degenerate distribution in terms of noise.

Definition 5.7. [16] Let X,X1, . . . , Xn i.i.d. The distribution of X is called stable, if
∀n ∈ N ∃cn > 0, dn s.t.

X1 + · · ·+Xn
d
= cnX + dn

The symbol d
= means equality in distribution.

A distribution is strictly stable if this holds for dn = 0 ∀n ∈ N.

Remark. Obviously, the gaussian distribution is stable and even strictly stable if it has
zero mean. The only other stable distribution on R, that can be written in a closed form,
is the Cauchy distribution.

As indicated in the remark, most stable distributions can not be written in a closed
form. However, they can be parametrized in a rather simple way by its characteristic
function φ(k) = E[exp {ikx}]. The function φ(k) completely determines the distribution
of X.

Proposition 5.8. A random variable X is stable if and only ifX d
= γZ+δ, where γ > 0, δ ∈ R

and Z has the characteristic function

φ(k) =

{
exp

{
−|k|α[1− sign(k)iβ tan(πα2 )]

}
α 6= 1

exp
{
−|k|[1 + sign(k)iβ 2

π log(|k|)]
}

α = 1

for α ∈ (0, 2] and β ∈ [−1, 1].

Note that in the case of a symmetric distribution around zero β = 0 and δ = 0. This
gives the simpler form

φ(k) = exp {−γα|k|α} (23)

for the characteristic function of γZ. Since the noise term of the stochastic HH neu-
ron (see section 7.1) will always be assumed symmetric and centered at zero, only the
simpler case (23) will be treated to avoid irrelevant technical difficulties.

Definition 5.9. Let X be a stable random variable, with a symmetric distribution cen-
tered at zero. Then X is S(α, γ) if it as the characteristic function

φ(k) = exp {−γα|k|α} (24)

with α ∈ (0, 2] and γ > 0.
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Thus, there are the two parameters α and γ left, that define the characteristic function.
While γ is a scale parameter similar (but not equal) to the standard deviation in the
gaussian case, α is the index of stability.

Example. The characteristic function of a gaussian distribution N(0, σ2) is

φ(k) = exp

{
−1

2
σ2k2

}
.

Thus, a random variable X ∼ S(2, γ) has a gaussian distribution X ∼ N(0, 2γ2).

5.3.2 Properties of Stable Distributions

Even though there are no explicit formulas for most stable distributions, it is possible
to state theoretical properties.

Theorem 5.10. [16] All S(α, γ) distributions are continuous with a density that is C∞(R).

Unlike the gaussian distribution, stable distribution for α 6= 2 are heavy tailed, mean-
ing that the probability P (X > x) decays not exponentially but only by a power-law as
x→∞.

Theorem 5.11. [16] Let X ∼ S(α, γ) with α ∈ (0, 2) and γ > 0.
Then as x→∞,

P (X > x) ∼ cαγα
1

xα
(25)

f(x|α, γ) ∼ αcαγα
1

x1+α
(26)

where f(x|α, γ) denotes the density and cα = sin(πα2 )Γ(α)/π. Since S(α, γ) distributions are
symmetric, the analog properties hold for P (X < −x) and f(−x|α, γ) as x→ −∞.

Note that here h(x) ∼ g(x) as x → a means lim
x→a

h(x)/g(x) = 1. Due to this slow
decay, the existence of the mean and the variance depends on the value of α.

Proposition 5.12. [16] Let X ∼ S(α, γ) and α ∈ (0, 2).
Then E[|X|p] <∞ if p ∈ (0, α) and E[|X|p] =∞ if p ≥ α

Thus the mean and the variance are given by

Lemma 5.13. Let X ∼ S(α, γ). Then

E[X] =

{
0 α ∈ (1, 2]

not defined α ∈ (0, 1]
V ar(X) =

{
2γ2 α = 2

∞ α ∈ (0, 2)

The distribution of sums or weighted sum of stable random variables are given in an
intuitive way, given by proposition 5.14.
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Proposition 5.14. [16] The S(α, γ) distribution has the following properties
a) If X ∼ S(α, γ), then for a 6= 0

aX ∼ S(α, |a|γ)

b) The characteristic functions, densities and distribution functions are jointly continuous in
x, k respectively, and both parameters (α, γ).

c) If X1 ∼ S(α, γ1) and X2 ∼ S(α, γ2) are independent, then

X1 +X2 ∼ S(α, γ)

where γα = γα1 + γα2 .

From these properties follows immediately

Lemma 5.15. Let Xi ∼ S(α, γi). Then

X1 + · · ·+Xn ∼ S(α, (γα1 + · · ·+ γαn )
1
α )

Since the classical central theorem only holds for α = 2, otherwise the variance is
infinite by Proposition 5.13 and the conditions of the theorem are not satisfied, this very
simple form of a sum of i.i.d. stable random variables motivates the question wether
there is a similar property in the case α < 2.

Theorem 5.16. Classical central limit theorem
Let X1, X2, . . . be i.i.d. with E[X] = 0 and Var(X) = σ2 <∞. Then

1

σ
√
n

(X1 + · · ·+Xn)
d→ Z ∼ N(0,1) as n→∞

In fact, the stability property allows to state a generalized version of the central limit
theorem that holds for all α ∈ (0, 2]. Again, the distributions are assumed to be sym-
metric and centered at zero.

Theorem 5.17. [16] Generalized central limit theorem
Let α ∈ (0, 2]. A random variable Z is stable if and only if there is a sequence X1, X2, . . . i.i.d.
and constants an > 0 such that

an(X1 + · · ·+Xn)
d→ Z as n→∞

The generalized central theorem states, that the only possible distribution being the
asymptotic distribution of a scaled sum X1 + · · · + Xn of i.i.d. random variables is a
stable distribution.

Definition 5.18. A random variable X is in the domain of attraction of Z if and only if
there are constants an > 0 such that

an(X1 + · · ·+Xn)
d→ Z,

where X1, X2, . . . are i.i.d. copies of X.
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By theorem 5.17 the only distributions having a domain of attraction are stable dis-
tributions. The following proposition follows from theorems 5.11 and 5.17, and gives
conditions under which the asymptotic distribution is a standardized stable distribu-
tion, analog to the statement in the classical central limit theorem.

Proposition 5.19. [16] LetX1, X2, . . . be i.i.d. with a symmetric distribution centered at zero.
Let the tail probabilities satisfy xαP (X > x)→ c as x→∞, for α ∈ (1, 2) and c > 0.
Then

an(X1 + · · ·+Xn)
d→ Z ∼ S(α, 1) as n→∞

if an = 1

n
1
α

(Γ(α) sin(πα2 )/cπ).

This shows, that a distribution with heavy tails has to be scaled by an ∼ n−
1
α in order

to get convergence to a stable distribution. Note that for α = 2, this is again the scaling
of the classical theorem 5.16.

5.3.3 Lévy Flight

For increments ηt with a stable distribution of index 0 < α < 2, the corresponding
process Lαt , often called Lévy flight, has the following properties:

Proposition 5.20. Let ηt be i.i.d. S(α, 1) with α ∈ (0, 2), and let Lαt =
∑t

t=0 ηt. Then:
i) Lαt is a Lévy process

ii) Lαt − Lαs ∼ (t− s)
1
αS(α, 1) for t > s.

Proof. w.l.g. s=0:
i) by the definition of Lαt

ii) by lemma 5.15 and since γt = 1 ∀t:

γα =

t∑
t=0

γαt = t

Thus

Lαt ∼ S(α, t
1
α ) = t

1
αS(α, 1)

The last property indicates that a Lévy flight is always scaled by t
1
α . For α = 2 this

shows the scaling of the Wiener process.
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5.4 Ornstein-Uhlenbeck-Lévy Process

As will be shown in section 7.2, the OU process from definition 5.4 does not allow a
proper scaling to yield a firing rate in the sense of the escape noise model. However, it
turns out that this is indeed only possible for stable distributions with index α ∈ (1, 2),
whereas a mapping to an escape noise model can only be achieved if α ∈ (1+

√
5

2 , 2).
Proposition 5.22 shows that an OU process ξt driven by a Lévy flight instead of a Wiener
process, has again a stable distribution and is therefore a useful modification of the
standard case. The definition of the Ornstein-Uhlenbeck-Lévy (OUL) process is analog
to the OU process:

Definition 5.21. Let β, σ, τ > 0. A time discrete Ornstein-Uhlenbeck-Lévy process ξt cen-
tered at zero solves

(∆ξt) = −βξtτ + γ(∆Lαt )

and therefore satisfies

ξt+τ − ξt = −βξtτ + γτ
1
α ηt

for ηt ∼ S(α, 1).

The OUL process ξt has again a stable distribution of index α:

Proposition 5.22. Let ξt be an OUL process as defined above and ξ0 = 0. Then

ξt ∼ S

(
α,

γ

(αβ)
1
α

(1− e−αβt)
1
α

)

and ξt has the asymptotic stationary distribution S(α, γ/(αβ)
1
α ).

Remark. This result is a generalization of proposition 5.5 for the standard OU process.
For α = 2:

σ̃2 = 2γ̃2 =
2γ2

2β
(1− e−2βt) =

σ2

2β
(1− e−2βt)

Proof. Consider the homogeneous case of definition 5.21: dξHt = −βξHt dt, which has
the solution

ξHt = C1e
−βt

By the method of variation of constants obtain

C ′1(t) = γeβtdLαt =⇒ C1(t) = γ

∫ t

0
eβsdLαs + C2
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and thus

ξt = C2e
−βt + γe−βt

∫ t

0
eβsdLαs

Then, the initial condition ξ0 = 0 yields

ξt = γe−βt
∫ t

0
eβsdLαs

The latter can be expressed as the limit of a discrete expression:

ξt = lim
n→∞

n−1∑
i=0

γe−β(t−τi)[Lατi+1
− Lατi ]

where 0 = τ0 < τ1 < · · · < τn = t is a partition of [0, t]. Denote τi+1 − τi by (∆τi).
By proposition 5.20 each summand is distributed as γe−β(t−τi)(∆τi)

1
αS(α, 1) or equiva-

lently S(α, γe−β(t−τi)(∆τi)
1
α ). Then by Lemma 5.15

ξt ∼ lim
n→∞

S

α,(n−1∑
i=0

γαe−αβ(t−τi)(∆τi)

) 1
α


= S

(
α, γ

(∫ t

0
e−αβ(t−s)ds

) 1
α

)

= S

(
α,

γ

(αβ)
1
α

(1− e−αβt)
1
α

)

and the statement follows. Note that the second equation holds, since by proposition
5.14 the distribution is jointly continuous in both parameters.

5.5 OU vs. OUL

Even though the framework of the OUL process is very similar to the OU process, the
properties differ quite heavily. From the properties of the distributions S(α, γ) follows
that ξt has infinite variance for all α < 2 and not even a mean for α < 1. Whereas
in the gaussian case α = 2 the sample paths are almost sure continuous, the sample
paths of an OUL process are not continuous for α < 2. Due to the heavy tails of the
increment distribution for α < 2, the sample paths of an OUL process are of jump-type
as illustrated by figure 6 [7].
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Figure 5: Sample path of an OUL process with α = 2 [11]

Figure 6: Sample path of an OUL process with α = 1.5 [11]

6 Stochastic Version of the dI&F Neuron

As already mentioned in section 2, in vivo experiments give reasons to divide the
presynaptic neurons into two categories. The first category contains the neurons who’s
spikes are actually carrying information relevant for the observed neuron, for the learn-
ing process respectively. The membrane potential caused by this neurons will be re-
ferred to as the deterministic part given by the differential equation from the dynamic
I&F (dI&F) neuron from definition 3.2. The second category is interpreted as back-
ground noise, coming from the activity of neurons that are not directly involved in
the considered learning process an thus will be described by a stochastic process, rea-
sonably chosen to be an OU process as shown in this section. The introduction of
the stochastic potential in 6.2 leads to a dI&F neuron with stochastic input, which is
mapped to an escape noise neuron in section 7.

6.1 Noise as Ornstein-Uhlenbeck Process

The large number N of presynaptic neurons causing the background noise is assumed
to emit spikes and initiate postsynaptic potentials at random times and to be stochasti-
cally independent. The PSP’s are double exponentials of the form

PSP (t|ti) = Vi(1− e
t−ti
τr )e

− t−ti
τd (27)

where τr � τd, such that the raise time is very small compared to the decay time, and
the amplitudes Vi are assumed to be gaussian distributed with zero mean. Then the
following theorem shows that summing up all the PSP’s leads to an OU process in the
limits τr → 0 and N→∞.
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Theorem 6.1. [21] Let N presynaptic neurons initiate PSP’s at random times ti given by a
Poisson process and the PSP’s evolve as in (27) in the limit τr → 0. Let Vmax ∼ N(0, σ2).
Then

ξt :=
1√
N

N∑
i=1

PSP (t|ti)

converges in distribution to an OU process as N →∞.

Figure 7 shows two PSP’s of the form (27) - PSP+ (excitatory) initiated at time ti
and PSP− (inhibitory) initiated at time tj . The solid line is the potential resulting by
summing PSP+ and PSP−.

Figure 7: PSP+ and PSP− (both dashed) and the resulting Potential

The resulting potential obviously converges to a continuous but non-differentiable
function in the limit τr → 0, matching the corresponding properties of the OU process.
Thus the noise term ξt will be modeled by an OU process in the gaussian case and
analog by an OUL process if the amplitudes are assumed to have a stable distribution
of index α < 2.
Note that the gaussian as well as the heavy-tailed case will be called OU process where
there is no explicit reference to their specific properties.

6.2 Stochastic Potential

Section 6.1 motivates a model which describes the total membrane potential Ṽt as the
sum of the deterministic potential Vt and a stochastic noise ξt given by an OU process
in discrete time. Since the membrane potential of a HH neuron is deterministic, the
potential of the model should get deterministic in the limit ∆→ 0. Thus the noise ξt is
scaled by a function a(∆) such that lim

∆→0
a(∆) = 0:

Definition 6.2. Let Vt be the potential given by definition 3.2, ξt a time discrete OU
process and a(∆) s.t. lim

∆→0
a(∆) = 0. The stochastic potential of the dI&F neuron is then

defined by

Ṽt := Vt + a(∆)ξt.
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Obviously lim
∆→0

Ṽt = Vt. Condition 1 in section 7 gives a condition on a(∆) that guar-

antees a stochastic spiking behavior of the dI&F neuron even in the limit ∆→ 0.

7 dI&F Neuron with Stochastic Input

As motivated in the previous section, the membrane potential Ṽt can be split into a
deterministic part Vt and a stochastic part ξt, where the latter can be expressed by a
time-discrete OU process, later formally converted into a continuous-time process by
taking the limit ∆ → 0. In section 7.2 the common attempt of gaussian noise is dis-
cussed, which turns out to not even allow to define a firing rate, and in section 7.3 it
is shown, that the same setting for Lévy-stable noise of index α ∈ (1+

√
5

2 , 2) allows a
mapping to an escape noise neuron if the stimulus is assumed to be subthreshold.

7.1 Setting

Since the dI&F threshold-model depends on the slope ˙̃Vt of the potential as well as on
Ṽt, define the derivative of the stochastic potential from definition 6.2 as

˙̃Vt = V̇t + a(∆)ξ̇t (28)

where ξ̇t is given by definiton 7.1.

Definition 7.1. Let ξt be a time discrete OU process with time step ∆. The derivative of
ξt is defined as

ξ̇t :=
ξt+k∆ − ξt

k∆

for a k ∈ N.

Replacing Vt and V̇t by their stochastic versions Ṽt and ˙̃Vt in definition 3.2 yields the
dI&F neuron with stochastic input.

7.1.1 Firing Rate

Goal is to find a scaling a(∆) such that the noise term disappears in the limit ∆ → 0.
However, the convergence of a(∆) to zero has to be of a specific rate to guarantee the
existence of a finite firing rate.

Definition 7.2. Let Ṽt be the stochastic potential of the dI&F neuron. The probability
P (Ṽt + ˙̃Vt > 1) of a spike in [t, t+ ∆] is

Pt(∆) = P

(
ξt + ξ̇t >

1− (Vt + V̇t)

a(∆)

)

25



Definition 7.3. Let Pt(∆) be the probability of having a spike in [t, t+ ∆].

ρ(Vt, V̇t) :=
Pt(∆)

∆

is the firing rate of the discrete neuron model at time t.

To be able to map the dI&F neuron with stochastic input to the escape noise model,
it is necessary that ρ(Vt, V̇t) stays finite and non-zero even in the limit ∆ → 0, which is
achieved if Pt(∆) ∝ ∆. Therefore the first condition is

Condition 1. The scaling a(∆) satisfies lim
∆→0

a(∆) = 0 and yields Pt(∆) ∝ ∆.

Remark. In order to prevent Pt(∆) → 1 as ∆ → 0, which would obviously contradict
Pt∆) ∝ ∆, the stimulus needs to be assumed subthreshold. Thus, the following theo-
rems contain the condition Vt + V̇t ≤ 1− ε for some ε > 0.

7.1.2 ISI Distribution

If the firing rate ρ(Vt, V̇t) exists, viz. condition 1 is satisfied, the dI&F neuron with
stochastic input should also allow to get an expression for the distribution of the inter-
spike intervals as in definition 2.6.

Definition 7.4. Let ρ(Vt, V̇t) be the firing rate at time t and PI(t|t̂) the ISI distribution
for t > t̂, where t̂ is the time of the last spike. The ISI distribution is of escape noise type
if it is of the form

PI(t|t̂) = ρ(Vt, V̇t) exp

{
−
∫ t

t̂
ρ(Vs, V̇s)ds

}
Therefore a second condition on the dI&F neuron with stochastic input can be for-

mulated as follows

Condition 2. The ISI distribution is of escape noise type in the limit ∆→ 0

7.1.3 Continuity and Differentiability

Reinforcement learning from definition 4.6 requires Pw(y|x) to be continuous in w and
∂
∂wPw(y|x) to be finite. Since only Vt and V̇t depend on w, this means that Pw(y|x) has
to be continuous in Vt and V̇t and moreover the derivatives of Pw(y|x) with respect to
Vt, V̇t respectively, have to be finite. Moreover, the derivatives should not vanish in
the limit ∆ → 0 in order to allow reinforcement learning. Proposition 4.8 and the ISI
distribution of definition 7.4 imply that these conditions are satisfied for Pw(y|x) if they
hold for ρ(Vt, V̇t). Thus the third condition is

Condition 3. The firing rate ρ(Vt, V̇t) is continuous in Vt and V̇t and its first order deriva-
tives ∂

∂Vt
ρ(Vt, V̇t) and ∂

∂V̇t
ρ(Vt, V̇t) have to exist and be finite and non-zero in the limit

∆→ 0.
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7.2 dI&F Neuron with Gaussian Noise

It seems most natural to describe noise in a biological phenomenon by a gaussian dis-
tribution. Thus by definition 5.4 the noise term ξt is given by

ξt+∆ = (1− β∆)ξt + σ
√

∆ηt (29)

where ηt ∼ N(0, 1). However, it turns out that a membrane potential with gaussian
noise does not allow a firing rate independent of ∆. Thus the stochasticity of the dI&F
neuron disappears in the limit ∆→ 0.

Theorem 7.5. The dI&F neuron with stochastic input can not be mapped to an escape rate
neuron if the noise is gaussian.

For the proof of theorem 7.5, the propositions 7.6 and 7.7 lead to an expression for
ρ(Vt, V̇t) depending on a(∆), which does not allow a proper scaling according to condi-
tion 1.

Proposition 7.6. Let ηt ∼ N(0, 1), ξt as in definition 5.4 and ξ̇t as in definition 7.1.
Then ξt + ξ̇t has a gaussian distribution with zero mean and variance σ2

∆ as ∆ → 0. Thus the
variance tends to infinity as 1

∆ .

Proof. To rewrite ξ̇t, note that ξt+k∆ can be written as

ξt+k∆ = (1− β∆)kξt + σ
k−1∑
i=0

(1− β∆)i
√

∆ηt+i∆

≈ ξt − kβ∆ξt + σ
√

∆

k−1∑
i=0

ηt+i∆

where the second equation skips all terms with coefficients of order o(∆).

Thus as ∆→ 0

ξt + ξ̇t ≈ ξt +
−kβξt∆ + σ

√
∆
∑k−1

i=0 ηt+i∆
k∆

= (1− β)ξt +
σ

k
√

∆

k−1∑
i=0

ηt+i∆

≈ σ

k
√

∆

k−1∑
i=0

ηt+i∆.

Since ηt are i.i.d. N(0,1), their sum is again gaussian with mean zero and variance

V ar

(
k−1∑
i=0

ηt+i∆

)
=

k−1∑
i=0

V ar(ηt+i∆) = k
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Thus by the approximation above

Var(ξt + ξ̇t) =
σ2

∆

Proposition 7.7 now gives an explicit formula for the firing rate ρ(Vt, V̇t).

Proposition 7.7. Let Ṽt and ˙̃Vt be as in section 7.1, and ξt + ξ̇t as in proposition 7.6.
Then

ρ(Vt, V̇t) =
1− (Vt + V̇t)

σ2π
exp

{
−(1− (Vt + V̇t))

2

2σ2

∆

a2(∆)

}
a(∆)− 2∆a′(∆)

2
√

∆a2(∆)

Proof. Denoting f(x) = 1
2π exp

{
−1

2x
2
}

the density of the standard gaussian distribu-
tion, definition 7.2 yields

Pt(∆) =

∫ ∞
g(∆)

f(x)dx

where g(∆) = 1−(Vt+V̇t)
σ

√
∆

a(∆) . By definition 7.3 Pt(∆) = ρ(Vt, V̇t)∆ and thus

ρ(Vt, V̇t) =
d

d∆
Pt(∆)

= −f(g(∆))
d

d∆
g(∆)

= −f(g(∆))
1− (Vt + V̇t)

σ

1
2
√

∆
a(∆)−

√
∆a′(∆)

a2(∆)

and the statement follows.

To satisfy condition 1, the scaling a(∆) should be chosen such that ρ(Vt, V̇t) in propo-
sition 7.7 is independent of ∆ and non-zero.

Proof of theorem 7.5. By proposition 7.7 the firing rate ρ(Vt, V̇t) is independent of ∆ if
and only if a(∆) ∝

√
∆. However, this yields ρ(Vt, V̇t) = 0 since Pt(∆) is independent

of ∆ as well and thus condition 1 can not be satisfied.

7.3 dI&F Neuron with Heavy-Tailed Noise

As seen in the previous section, modeling the noise by a standard OU process fails
in satisfying condition 1. This rises the question wether there are other distributions
for ηt which allow to avoid the problem of the gaussian case. Since the noise should
still follow an OU process, the only reasonable candidates are the stable distributions
described in section 5.3.1. Then by definition 5.21 the OUL process satisfies

ξt+∆ = (1− β∆)ξt + γ∆
1
α ηt (30)

with ηt ∼ S(α, 1) and α ∈ (0, 2].
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7.3.1 Scaling

To perform an approximation analog to the one in proposition 7.6 it is necessary to
restrict the stability index to α > 1. Since the gaussian case has been excluded as well,
only α ∈ (1, 2) will be considered in the following.

Theorem 7.8. Let Ṽt and ˙̃Vt be the dI&F neuron with stochastic input, Vt + V̇t ≤ 1 − ε for a
ε > 0 and ηt ∼ S(α, 1) with index α ∈ (1, 2). Then as ∆→ 0

ρ(Vt, V̇t) ∼
cα
kα−1

(
γC

1− (Vt + V̇t)

)α
if and only if a(∆) = C∆, C > 0.

Corollary 7.9. By theorem 7.8, condition 1 is satisfied for ηt with a stable distribution of
index α ∈ (1, 2) and a scaling by a(∆) = C∆.

For the proof of theorem 7.8 the following proposition gives an approximation of
ξt + ξ̇t as ∆→ 0 and its distribution.

Proposition 7.10. Let α ∈ (1, 2), ξt be as in definition 5.21 and ξ̇t as in definition 7.1.
Then ξt + ξ̇t has a stable distribution of index α and scaling parameter γ(k∆)

1−α
α as ∆ → 0.

Thus the scaling parameter tends to infinity as 1/∆
α−1
α .

Proof. ξt+k∆ can be expressed in terms of ξt and the increments ηt, . . . , ηt+k∆:

ξt+k∆ = (1− β∆)kξt + γ
k−1∑
i=0

(1− β∆)i∆
1
α ηt+i∆

≈ ξt − kβξt∆ + γ∆
1
α

k−1∑
i=0

ηt+i∆

where the second equation skips all terms with coefficients of order o(∆).

Thus as ∆→ 0

ξt + ξ̇t ≈ ξt +
−kβξt∆ + γ∆

1
α
∑k−1

i=0 ηt+i∆
k∆

= (1− β)ξt +
γ

k
∆

1−α
α

k−1∑
i=0

ηt+i∆

≈ γ

k
∆

1−α
α

k−1∑
i=0

ηt+i∆.
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The approximation holds since α ∈ (1, 2). Then by proposition 5.14

ξt + ξ̇t ∼ S(α,
γ

k
∆

1−α
α k

1
α )

= S(α, γ(k∆)
1−α
α )

According to theorem 7.8, in contrast to the gaussian case, the choice of a(∆) = C∆
yields a finite firing rate ρ(Vt, V̇t).

Proof of theorem 7.8. Note, that here again f(∆) ∼ g(∆) ⇐⇒ lim
∆→0

f(∆)/g(∆) = 1.

By proposition 7.10: ξt + ξ̇t ∼ S
(
α, γ(k∆)

1−α
α

)
as ∆ → 0. The subthreshold condition

yields 1−(Vt+V̇t)
a(∆) →∞ as ∆→ 0 and thus by theorem 5.11

Pt(∆) = P

(
ξ̇t >

1− (Vt + V̇t)

a(∆)

)

∼ cα(γ(k∆)
1−α
α )α

[
1− (Vt + V̇t)

a(∆)

]−α
=

cαγ
αk1−α

(1− (Vt + V̇t))α
∆1−αaα(∆)

By choosing a(∆) = C∆ follows Pt(∆) ∝ ∆ and the proposition.

7.3.2 ISI Distribution

By corollary 7.9, the dI&F neuron with stable noise of index α ∈ (1, 2) satisfying condi-
tion 1 is defined by

Ṽt = Vt + C∆ ξt (31)
˜̇Vt = V̇t + C∆ ξ̇t (32)

and guarantees the existence of a Poisson-like firing rate. However, this does not yet
proof an ISI distribution of escape noise type in the limit ∆ → 0. Thus this section
proofs that this can be achieved if α ∈ (1+

√
5

2 , 2). Moreover, all the following statements
assume k = 1 in definition 7.1.

Theorem 7.11. Let PI(t|t̂) be the ISI of the dI&F neuron with stochastic input after a spike at t̂,
and ρ(Vs, V̇s) the firing rate from definition 7.3. Let α ∈ (1+

√
5

2 , 2) and assume Vs+ V̇s ≤ 1−ε
for s ∈ [t̂, t] and some ε > 0. Then in the limit ∆→ 0

PI(t|t̂) = ρ(Vt, V̇t) exp

{
−
∫ t

t̂
ρ(Vs, V̇s)ds

}
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Corollary 7.12. Let α ∈ (1+
√

5
2 , 2) and assume Vs + V̇s ≤ 1 − ε for s ∈ [t̂, t] and some

ε > 0, then by theorem 7.11 condition 2 is satisfied.

The proof of theorem 7.11 follows from the following theorem which gives an expres-
sion for a quiescent interval [t, t̂]

Theorem 7.13. Let P̃I(t|t̂) be the probability of a quiescent interval [t̂, t], and ρ(Vs, V̇s) the
firing rate from definition 7.3. Let α ∈ (1+

√
5

2 , 2) and assume Vs + V̇s ≤ 1− ε for s ∈ [t̂, t] and
some ε > 0. Then in the limit ∆→ 0

P̃I(t|t̂) = exp

{
−
∫ t

t̂
ρ(Vs, V̇s)ds

}
Proof of theorem 7.11. Note that

∫ t
t̂ PI(s|t̂)ds = 1− P̃I(t|t̂). Thus

PI(t|t̂) =
∂

∂t

(
1− P̃I(t|t̂)

)
= − ∂

∂t
exp

{
−
∫ t

t̂
ρ(Vs, V̇s)ds

}
= exp

{
−
∫ t

t̂
ρ(Vs, V̇s)ds

}
∂

∂t

∫ t

t̂
ρ(Vs, V̇s)ds

= ρ(Vt, V̇t) exp

{
−
∫ t

t̂
ρ(Vs, V̇s)ds

}
where the second equation follows from theorem 7.13.

Thus the rest of this section yields the proof of theorem 7.13. Note that since t̂ is
arbitrary, t̂ = 0 is assumed and any reference to t̂ is omitted to keep notations simple.

Definition 7.14. Define xt = Ṽt + ˙̃Vt. Then the probability P̃ (t) of a quiescent interval
[0, t] can be defined as

P̃I(t) := Eη0,...,t [
∏
s≤t

θ(1− xs)]

where θ(xt) is an indicator function such that θ(xt − 1) =

{
1 xt > 1

0 xt ≤ 1
.

Remark. Note that E[θ(1− xs)] = P (xs ≤ 1) = P (Vt + V̇t + C∆(ξt + ξ̇t) ≤ 1).
Theorem 7.15 gives an estimation of the error done by replacing the indicator func-

tion of the last time step t by (1−Pt(∆)). Note that f(∆) = o(∆) ⇐⇒ lim
∆→0

f(∆)/∆ = 0.

Proposition 7.15. Let P̃I(t) be the probability of a quiescent interval [0, t], and Ps(∆) the
probability of a spike at time s. Let α ∈ (1+

√
5

2 , 2) and assume Vs + V̇s ≤ 1 − ε for s ∈ [0, t]
and some ε > 0. Then as ∆→ 0

P̃I(t) = Eη0,...,t−∆ [
∏
s<t

θ(1− xs)](1− Pt(∆)) + o(∆)
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Proof. By definition xs is independent of ηt for s < t. Thus

P̃I(t) = Eη0,...,t [
∏
s≤t

θ(1− xs)]

= Eη0,...,t−∆ [
∏
s<t

θ(1− xs)Eηt [θ(1− xt)]]

Note that k = 1 in definition 7.1 yields ξ̇t ≈ γ∆
1−α
α ηt as ∆ → 0. Thus, consistent with

the definition above, denote xt = Vt + V̇t + C∆ ξt + γC∆
1
α ηt. Then

Eηt [θ(1− xt)] =

∫ ∞
−∞

θ(1− (Vt + V̇t + C∆ ξt + γC∆
1
α ηt))dµ(ηt)

and the θ-function yields ηt <
1−(Vt+V̇t)

Cγ∆
1
α
− ∆1− 1

α

γ ξt. Hence

Eηt [θ(1− xt)] =

∫ 1−(Vt+V̇t)

Cγ∆
1
α
−∆

1− 1
α

γ
ξt

−∞
dµ(ηt)

=

∫ 1−(Vt+V̇t)

Cγ∆
1
α

−∞
dµ(ηt)−

∫ 1−(Vt+V̇t)

Cγ∆
1
α

1−(Vt+V̇t)

Cγ∆
1
α
−∆

1− 1
α

γ
ξt

dµ(ηt)

= (1− Pt(∆))− h(Vt + V̇t,∆, ξt)

Thus

P̃I(t) = Eη0,...,t−∆ [
∏
s<t

θ(1− xs)](1−Pt(∆))−Eη0,...,t−∆ [
∏
s<t

θ(1− xs)h(Vt + V̇t,∆, ξt)]

where h(Vt + V̇t,∆, ξt) :=
∫ 1−(Vt+V̇t)

Cγ∆
1
α

1−(Vt+V̇t)

Cγ∆
1
α
−∆

1− 1
α

γ
ξt

dµ(ηt).

To show: Errt(∆) := Eη0,...,t−∆ [
∏
s<t θ(1− xs)h(Vt + V̇t,∆, ξt)] = o(∆).

Note that
∏
s<t θ(1− xs) ≤ 1 yields

|Errt(∆)| ≤ E[|h(Vt + V̇t,∆, ξt)|]

Set ε̃ = ε
2 , denote lt := 1− (Vt + V̇t) and write the mean above as J(∆) +K(∆), where

J(∆) := E[θ(lt − C∆ξt − ε̃) |h(1− lt,∆, ξt)|]
K(∆) := E[θ(ε̃+ C∆ξt − lt) |h(1− lt,∆, ξt)|]

Note that J(∆) is the mean over ξt ≤ lt−ε̃
C∆ and thusK(∆) the mean over ξt > lt−ε̃

C∆ . Then

|Errt(∆)| ≤ J(∆) +K(∆)

and by the lemmas 7.16 and 7.17, J(∆) as well as K(∆) are o(∆) and the proposition
follows.
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The following lemmas show that J(∆) and K(∆) are both o(∆) and thus complete
the proof of proposition 7.15.

Lemma 7.16. Let lt := 1 − (Vt + V̇t), J(∆) = E[θ(lt − C∆ξt − ε̃) |h(Vt + V̇t,∆, ξt)|] and
Vt + V̇t be subthreshold as in the theorem. Then

J(∆) = o(∆)

Proof. The θ-function yields that only ξt ≤ lt−ε̃
C∆ contributes to J(∆). Note that the length

of the interval of the integration is ∆1− 1
α

γ ξt. Since
∫ b
a f(x)dx ≤ (b − a)maxx∈(a,b)f(x) if

f(x) ≥ 0, it follows that

J(∆) ≤ E[|∆
1− 1

α

γ
ξtfmax|]

where fmax refers to the maximum of the density of ηt on the corresponding interval.
Note that

f(x) ≤

f
(

lt
γC∆1/α

)
if ξt ≤ 0

f
(

ε̃
γC∆1/α

)
if ξt > 0

Thus for ξt ≤ 0:

J(∆) <
∆1− 1

α

γ
f

(
lt

γC∆1/α

)
E[|ξt|]

∼ ∆1− 1
α

γ
αcαγ

α (γC∆1/α)α+1

lα+1
t

E[|ξt|]

= αcαγ
2αCα+1 ∆2

lα+1
t

E[|ξt|]

By assumption lt ≥ ε. Thus

≤ αcαγ
2αCα+1

εα+1
∆2E[|ξt|]

= o(∆)

since E[|ξt|] <∞ by lemma 5.13.
For ξt > 0

J(∆) <
∆1− 1

α

γ
f

(
ε̃

γC∆1/α

)
E[|ξt|]

∼ ∆1− 1
α

γ
αcαγ

α (γC∆1/α)α+1

ε̃α+1
E[|ξt|]

=
αcαγ

2αCα+1

ε̃α+1
∆2E[|ξt|]

= o(∆)

again since E[|ξt|] <∞.
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Lemma 7.17. Let lt := 1 − (Vt + V̇t), K(∆) = E[θ(ε̃ + C∆ξt − lt) |h(Vt + V̇t,∆, ξt)|] and
Vt + V̇t be subthreshold as in the theorem. Then

K(∆) = o(∆)

Proof. The θ-function yields that only ξt > lt−ε̃
C∆ contributes to K(∆). Again the length

of the interval of the integration is ∆1− 1
α

γ ξt. The same idea as in the proof of the previous
lemma leeds to

K(∆) ≤ E[θ(ε̃+ C∆ξt − lt)|
∆1− 1

α

γ
ξtfmax|]

where fmax <∞ since f(x) is a density and C∞ by theorem 5.10. Thus

K(∆) ≤ ∆1− 1
α

γ
fmaxE[θ(ε̃+ C∆ξt − lt)|ξt|]

=
∆1− 1

α

γ
fmax

∫ ∞
lt−ε̃
C∆

|ξt|dµ(ξt)

By propostion 5.22 ξt ∼ S(α, γ/(αβ)
1
α ). Thus as ∆→ 0

K(∆) ≤ ∆1− 1
α

γ
fmax

∫ ∞
lt−ε̃
C∆

αcα
γα

αβ

ξt

ξα+1
t

dξt

=
cαγ

α−1

β
∆1− 1

α fmax

∫ ∞
lt−ε̃
C∆

1

ξαt
dξt

=
cαγ

α−1

β
∆1− 1

α fmax

(
C∆

lt − ε̃

)α−1

≤ cα(2γC)α−1

βεα−1
fmax∆α− 1

α

since lt − ε̃ ≥ ε/2. Note that α ∈ (1+
√

5
2 , 2) yields α− 1

α > 1 and thus

K(∆) = o(∆)

Using theorem 7.15, the following theorem states that P̃I(t) is given by the product
of the non-spike probabilities up to an error E(∆) that vanishes in the limit ∆→ 0.

Theorem 7.18. Let P̃I(t) = Eη0,...,t [
∏
s≤t θ(1 − xs)] be the probability of a quiescent interval

[0, t], and Ps(∆) the probability of a spike at time s. Let α ∈ (1+
√

5
2 , 2) and assume Vs + V̇s ≤

1− ε for s ∈ [0, t] and some ε > 0. Then as ∆→ 0

P̃I(t) =
∏
s≤t

(1− Ps(∆)) + E(∆),

where lim
∆→0

E(∆) = 0.
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Proof. By iterating proposition 7.15:

P̃I(t) =
∏
s≤t

(1− Ps(∆)) +

t/∆−1∑
s=0

Errs(∆)

Hence

P̃I(t) =
∏
s≤t

(1− Ps(∆)) + E(∆)

where E(∆) :=
∑t/∆−1

s=0 Errs(∆) = t
∆o(∆) and thus lim

∆→0
E(∆) = 0.

Now theorem 7.13 can be proven as follows.

Proof of theorem 7.13. By theorem 7.18 P̃I(t) =
∏
s≤t(1− Ps(∆)) + E(∆). Define Ẽ(∆) :=

1 + E(∆)∏
s≤t(1−Ps(∆)) . Then

log P̃I(t) = log

∏
s≤t

(1− Ps(∆)) + E(∆)


= log

Ẽ(∆)
∏
s≤t

(1− Ps(∆))


=
∑
s≤t

log
(

1− ρ(Vs, V̇s)∆
)

+ log
(

Ẽ(∆)
)

By the taylor approximation of log(x) around x = 1:

log P̃I(t) =
∑
s≤t

[
−ρ(Vs, V̇s)∆ + o(∆)

]
+ log

(
Ẽ(∆)

)
= −

∑
s≤t

ρ(Vs, V̇s)∆ +
t

∆
o(∆) + log

(
Ẽ(∆)

)
Thus

log P̃I(t) = −
∫ t

0
ρ(Vs, V̇s)ds

in the limit ∆→ 0 if lim
∆→0

log
(

Ẽ(∆)
)

= 0. Therefore, proving that lim
∆→0

E(∆)∏
s≤t(1−Ps(∆)) = 0

completes the proof. Note that Vs + V̇s ≤ 1 − ε yields Ps(∆) < 1
2 and thus for ∆ > 0:∏

s≤t(1− Ps(∆)) > 0. Moreover∏
s≤t

(1− Ps(∆)) ≥ (1− ρmax∆)
t
∆

35



and thus, since ρmax := cα

(
γC
ε

)α
<∞, in the limit ∆→ 0∏

s≤t
(1− Ps(∆)) ≥ exp {−tρmax} > 0

which yields lim
∆→0

E(∆)∏
s≤t(1−Ps(∆)) ≤ exp {tρmax} lim

∆→0
E(∆) = 0.

7.3.3 Continuity and Differentiability

Since ρ(Vt, V̇t) = Pt(∆)
∆ the continuity in Vt as well as in V̇t follows from the continuity

of Pt(∆) (see theorem 5.10). Theorem 7.19 shows that the firing rate from theorem 7.8
has to desired properties the perform reinforcement learning.

Theorem 7.19. Let ρ(Vs, V̇s) be the firing rate from theorem 7.8, α ∈ (1, 2) and Vs+V̇s ≤ 1−ε
for s ∈ [t̂, t] and some ε > 0.
Then ρ(Vs, V̇s) is strictly increasing and differentiable in both variables.

Thus condition 3 is satisfied for subthreshold stimulus as in the theorem:

Corollary 7.20. Let ρ(Vs, V̇s) be the firing rate from theorem 7.8, α ∈ (1, 2) and Vs+ V̇s ≤
1− ε for s ∈ [t̂, t] and some ε > 0, then by theorem 7.19 condition 3 is satisfied.

Proof. Note that ∂
∂Vs

ρ(Vs, V̇s) = ∂
∂Vs

Ps(∆)
∆ = 1

∆
∂
∂Vs

Ps(∆) and use again theorem 5.10 for
the differentiability of Ps(∆) which proofs the differentiability of ρ(Vs, V̇s).

∂

∂Vs
Ps(∆) =

∂

∂Vs
P

(
ξs + ξ̇s >

1− (Vs + V̇s)

C∆

)

= −f

(
1− (Vs + V̇s)

C∆

)
∂

∂Vs

1− (Vs + V̇s)

C∆

=
1

C∆
f

(
1− (Vs + V̇s)

C∆

)

By proposition 7.10 ξs + ξ̇s ∼ S(α, γ∆
1−α
α ), where the tails of the probability density f

are given by theorem 5.11, thus as ∆→ 0

∂

∂Vs
Ps(∆) ∼ αcα(γ∆

1−α
α )α

C∆

(
C∆

1− (Vs + V̇s)

)α+1

=
αcα(γC)α

(1− (Vs + V̇s))α+1
∆

Thus

∂

∂Vs
ρ(Vs, V̇s) =

αcα(γC)α

(1− (Vs + V̇s))α+1
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in the limit ∆ → 0. Hence ρ(Vs, V̇s) is strictly increasing since ∂
∂Vs

ρ(Vs, V̇s) > 0. Note
that the proof for ∂

∂V̇s
ρ(Vs, V̇s) is analog and thus omitted.

Remark. From the proof of theorem 7.19 follows that the derivatives of ρ(Vs, V̇s) are
bounded by αcα(γC)α

εα+1 . Thus the subthreshold condition guarantees the finiteness of the
reinforcement learning rule from definition 4.6, whereas the learning rule would tend
to infinity in the limit Vs + V̇s → 1.

7.3.4 Conclusion

The results from sections 7.3.1 -7.3.3 show, that the dI&F model with heavy-tailed noise
turns into an escape noise neuron in the limit ∆→ 0.

Theorem 7.21. Let the potential of the dI&F neuron with stochastic input be given by Ṽt,
˙̃Vt

from section 7.1 with a(∆) = C∆ and k = 1 in definition 7.1. Let ξt be an OUL process as in
definition 5.21 with α ∈ (1+

√
5

2 , 2) and Vs + V̇s ≤ 1− ε for s ∈ [t̂, t] and some ε > 0. Then the
ISI distribution of the dI&F neuron with stochastic input is given by

PI(t|t̂) = ρ(Vt, V̇t) exp

{
−
∫ t

t̂
ρ(Vs, V̇s)ds

}
in the limit ∆→ 0. Moreover PI(t|t̂) is continuous and differentiable in w.

Thus, the dI&F neuron with stochastic input can be mapped to an escape noise model
if the noise is chosen to have a stable distribution of index α ∈ (1+

√
5

2 , 2) and the poten-
tial is assumed to be subthreshold such that Vt + V̇t ≤ 1− ε for some ε > 0.

7.3.5 Further Reduction

For the classical escape noise neuron the firing rate is a function of the instantaneous
voltage only, without dependence on its derivative. Once the HH model is reduced
to an escape noise neuron with instantaneous rate ρ(Vt, V̇t) = ρ̃(Vt + V̇t), one can re-
parametrize the voltage into an effective voltage of the form Ṽt = Vt + V̇t. Correspond-
ingly, the effective postsynaptic potential triggered by a presynaptic spike will have the
form P̃SP(t) = PSP(t) + ˙PSP(t), such that Ṽt is still the waited sum of the P̃SP’s anal-
ogous to (19). Note that for a PSP-shape representing a low-pass filtering of the form

given in Fig. 7 (i.e. defining P̃SP via τ ˙̃PSP(t) = −P̃SP(t) + PSP(t)), the effective P̃SP
will again show a biologically reasonable shape (starting at 0, quickly increasing, and
decaying back to 0).
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8 Summary

8.1 Preliminaries

The well known model of Hodgkin-Huxley (HH) has been simplified to the differential
equation

Cm
dVt
dt

= −INa(t) + I(t) (33)

where I(t) is an external current and INa(t) = gNam
3
∞(Vt)h∞(Vt− τmV̇t)(Vt−ENa). The

dynamics of this model indicates not only a sensitivity on the potential Vt but as well
on its slope V̇t, which motivates the definition of the dynamic I&F neuron, given by the
equations above and the threshold condition Vt + V̇t > 1 with a reset to Vt = V̇t = 0
after every spike.
The membrane potential caused by a noisy input current I(t) is modeled by a discrete
time approximation of time step ∆, given by

Ṽt = Vt + a(∆)ξt (34)
˙̃Vt = V̇t + a(∆)ξ̇t (35)

where ξt is a discrete time Ornstein-Uhlenbeck (OU) process and ξ̇t a formal derivative
given by definition 7.1. Since the HH model is deterministic, the scaling a(∆) is chosen
such that lim

∆→0
Ṽt = Vt and lim

∆→0

˙̃Vt = V̇t.

The aim of the thesis was to map the HH model, simplified to this setting, to an escape
noise model, viz. to yield an expression for the interspike interval (ISI) distribution of
the form

PI(t|t̂) = ρ(Vt, V̇t) exp

{
−
∫ t

t̂
ρ(Vs, V̇s)ds

}
(36)

in the limit ∆ → 0. This obviously requires the firing rate ρ(Vt, V̇t) to survive and stay
finite in the limit ∆→ 0 which is equivalent to being independent of ∆. To be a feasible
model for reinforcement learning, the firing rate ρ(Vt, V̇t) is additionally required to be
continuous and differentiable in both variables.

8.2 Results

The most intuitive way of modeling noise by a gaussian distributed input, which yields
a gaussian distributed OU process ξt, turns out not to allow a mapping to an escape
noise model. The reason for this being the simple fact, that there is no scaling a(∆)
yielding a firing rate ρ(Vt, V̇t) independent of ∆.
The same setting has been analyzed for an input noise that is assumed to have a stable
distribution of index α ∈ (1+

√
5

2 , 2), where α = 2 would be a gaussian distribution. The
resulting OU process is called Ornstein-Uhlenbeck-Lévy (OUL) process and allows a
mapping to an escape noise neuron, as shown in theorem 7.21:
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Theorem. Let the dI&F neuron with stochastic input be given by Ṽt,
˙̃Vt as defined above with

a(∆) = C∆. Let ξt be an OUL process as in definition 5.21 with α ∈ (1+
√

5
2 , 2) and Vs + V̇s ≤

1− ε for s ∈ [t̂, t] and some ε > 0. Then the ISI distribution of the dI&F neuron with sochastic
input is given by

PI(t|t̂) = ρ(Vt, V̇t) exp

{
−
∫ t

t̂
ρ(Vs, V̇s)ds

}
in the limit ∆→ 0. Moreover PI(t|t̂) is continuous and differentiable in w.

Hence, the mapping of the heavy-tailed dI&F neuron to an escape noise neuron
works only for subthreshold stimulus such that Vt + V̇t ≤ 1 − ε for some ε > 0. In
contrast, common escape noise models are well-defined for arbitrary stimulus.

8.3 Discussion

The rapid and variable spike initiation process has recently been debated in terms of
the underlying biophysical process [14, 15, 25]. The ideas presented in this work of-
fer a computational perspective to this phenomenon. It particularly explains why the
sodium current INa is inactivating when the voltage depolarizes. In fact, the existence
of the gating variable h in the HH model implies, that action potentials (spikes) can
only be generated if there is a strong and fast depolarization. This not only makes the
spikes more sparse, but – with the noise scenario presented here – also makes the spike
generation be an instantaneous function of the voltage and its derivative. But being
an instantaneous function, the synapses can easily calculate their contribution to the
postsynaptic activity and, for instance, implement a learning rule which follows the
gradient of the expected reward [24].
Introducing heavy-tailed noise instead of gaussian noise at least allows a mapping for
subthreshold stimulus. This raises the question, whether noise caused by random activ-
ity of other neurons is necessarily gaussian, which could be studied further since heavy
tailed weight distributions have been experimentally found in [13, 22] and where sug-
gested to emerge from a spike-timing dependent synaptic plasticity [8].
Even though mapping the dI&F model to an escape noise model worked only for sub-
threshold stimulus, the results of this work give interesting insights about how attempts
for a complete mapping could be designed. The sensitivity to the slope V̇t offers the pos-
sibility to yield an instantaneous firing rate and should therefore be retained. Since the
model has to be feasible for arbitrary stimulus, the input noise needs to be implemented
in a different way, e.g. by modeling the ion channels by a Poisson process with a rate
depending on Vt and V̇t.
The existence of a real mapping would be a computational link between the biologically
reasonable model of HH and the escape noise model and thus an important motivation
for working on escape noise models.
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