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Abstract

Owing to their significant advantages in terms of band-
width, power efficiency and especially speed, optical neu-
romorphic systems have arisen as interesting alternatives
to conventional semiconductor devices. Recently, pho-
tonic crystal nanolasers with excitable behaviour were first
demonstrated. Depending on the pumping strength, they
emit short optical pulses – spikes – at various intervals on
a nanosecond timescale. In this theoretical work, we show
how networks of such photonic spiking neurons can be
used for Bayesian inference through sampling from learned
probability distributions. We provide a detailed derivation
of translation rules from conventional sampling networks
such as Boltzmann machines to photonic spiking networks
and demonstrate their functionality across a range of gen-
erative tasks. Finally, we provide estimates of processing
speed and power consumption, for which we expect im-
provements of several orders of magnitude over current
state-of-the-art neuromorphic systems.

Introduction

In the overwhelming majority of artificial neural networks
(ANNs) in use today, neuronal outputs are determined by
smooth and continuous activation functions, and their val-
ues are updated synchronously for multiple neurons within
a network. In contrast, biological neurons, especially in
the mammalian cortex, communicate asynchronously with
short, stereotypical pulses called “spikes”. While the non-
differentiability of such spike-based codes indeed makes
them more difficult to train using error backpropagation
and therefore less attractive for conventional deep learn-
ing (however, see [1–3]), they possess several properties
that are extremely relevant in physical neuronal networks,
biological and artificial alike. First, they can be much
more efficient than time-continuous or rate codes: as in-
formation becomes implicitly encoded in the timing of the
spikes, rather than the value of neuronal outputs, a spike
code can save both energy and bandwidth. Thus, spiking
neurons have become the de-facto standard model for neu-
romorphic systems, both purely digital [4–6] and mixed-
signal [7–10]. Second, due to the all-or-nothing nature of
spikes, the transmission of information is significantly less

prone to disruption by noise. This makes spiking neural
networks particularly attractive for mixed-signal devices,
whose analog components (neurons and synapses) invari-
ably introduce spatio-temporal noise into the network dy-
namics.

By associating neuronal spikes with binary states, one
can link spiking neural networks to Boltzmann machines
(BMs) [11–13]. This machine learning model forms the ba-
sis for powerful variants such as deep belief networks [14]
and autoencoders [15], which have been used for applica-
tions ranging from acoustic modeling [16] to medical di-
agnostics [17] and quantum tomography [18]. By moving
to the spiking domain, one can harness the speed and ef-
ficiency of neuromorphic substrates for such applications.
Indeed, first demonstrations of such spike-based sampling
(SBS) networks on highly accelerated neuromorphic hard-
ware have already shown promising results [19–21].

However, despite the impressive results of electric and
electronic networks, electrical interconnects between com-
puting elements limit bandwidth, latency and energy ef-
ficiency [22]. In contrast, photonic transmission of infor-
mation offers significant advantages in terms of loss and
speed. Not only is the issue of Joule heating alleviated, but
the improved fan-in/-out by wavelength multiplexing also
allows large-bandwidth light-speed transmission of signals.
A photonic equivalent of a neuron is a laser with an ex-
citable response [23–25]; interaction between such neurons
with highly accelerated intrinsic dynamics is being devel-
oped [26]. Among a variety of possible implementations,
a semiconductor laser with a saturable absorber (SA) is of
particular interest here [27] because of the strong analogy
with the leaky integrate-and-fire (LIF) neuron model [28].

Semiconductor lasers can be miniaturized and inte-
grated in a photonic circuit and need tiny amounts of
power (about 100 µW) for operation [29]. These are essen-
tial requirements for advancing the neuromorphic state of
the art. Very recently, this technology was shown to pro-
duce an excitable response by introducing a section be-
having as an SA [30], making it promising for the imple-
mentation of efficient integrated photonic spiking neurons
(PSNs). In this work, we demonstrate the capability of
such PSN networks to implement BMs through SBS.

1

ar
X

iv
:2

50
1.

14
44

6v
1 

 [
ph

ys
ic

s.
op

tic
s]

  2
4 

Ja
n 

20
25

mailto:mail@ikboikov.net


Results

Preliminaries
Whenever a neuron fires a spike, it enters a refractory
period of some duration τ during which it cannot spike
again. Thus, a spike can be interpreted as representing
the onset of an “active” state

zk(t) = 1 ⇔ neuron has fired in (t− τ ; t] , (1)

with zk(t) = 0 otherwise. In BMs, the probability of
neuron ensemble being in a particular state z follows the
Boltzmann distribution p(z) ∝ exp [−E(z)/kBT ] , where
the energy E is defined as

E = −
∑
k<j

Wkjzkzj −
∑
k

bkzk ,

with neuronal biases bk and synaptic weights Wkj = Wjk,
kB is the Boltzmann constant, and T is the ensemble
(Boltzmann) temperature. Here, we disregard the units,
assume kBT = 1 and omit this term for brevity.

In SBS, a spiking neural network approximates p(z)
through a time-continuous analogon of Gibbs sam-
pling [11]. A particularly interesting variant builds on
LIF sampling (LIFS) neurons [12, 13], as they represent a
de-facto standard model across the vast majority of neuro-
morphic platforms. In LIFS, the required stochasticity is
generated by adding (or exploiting pre-existing) noise on
the neuronal membranes, which consequently follow the
Ornstein-Uhlenbeck process

τmu̇k = (b− u) +
∑
j

∑
tspike
j

Wkjκ(t− tspike
j ) + σW dW (2)

with an autocorrelation determined by the neuronal mem-
brane time constant τm (dW represents a Wiener process
scaled by a noise amplitude σW ). The interaction between
neurons is mediated by an additive postsynaptic potential
(PSP) kernel κ that is triggered by an incoming spike at
time tspike.

Spiking nanolasers
The PSNs discussed in this work are semiconductor lasers
composed of two sections: a gain section and an SA.
The two sections form a single resonator and are there-
fore spanned by a single laser mode (Fig. 1a). The gain
section is pumped to reach local electron population in-
version and stimulated emission of photons. The SA is
not pumped, such that here absorption always dominates,
yet saturating as the flux of absorbed photons increases.
As the pump rate increases beyond a certain threshold,
the absorption is overtaken by the stimulated emission;
akin to negative differential resistance in electronic oscil-
lators, this introduces a positive feedback which initiates
the emission of a pulse. In turn, this depletes the popula-
tion of excited electron-hole pairs, hence the gain, and the
laser is shut off. Therefore, the emission of a new pulse im-
mediately following a previous one is strongly suppressed.
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Figure 1: Spiking nanolasers. (a) Schematic of a PSN
coupled to a waveguide (gray). Here, the laser is a pho-
tonic crystal; its modes are standing-wave and optical
spikes are coupled out to the waveguide in both directions,
E is an electric field, λ is the wavelength in vacuum, and n
is the refractive index of the absorber. (b) Optical spike
emission. Dashed lines separate sections with different
scaling of the time axis.

After some time, the pumping re-establishes the initial
gain, and the nanolaser can spike again. This process
(Fig. 1b) bears a strong resemblance to the generation of
action potentials and the subsequent refractoriness found
in biological neurons, as described by the Hodgkin-Huxley
model [31].

The spiking dynamics in a semiconductor laser with an
SA is described by the Yamada model [27, 32], which ig-
nores spontaneous emission and therefore assumes a per-
fectly deterministic response. Here, we consider a laser
with a single optical mode; its field is distributed over
a volume comparable to λ3, where λ is the wavelength.
Moreover, the active region, where electron and hole pairs
are created, is even smaller. Under these conditions, spon-
taneous emission is not negligible, as the fraction of it go-
ing into the mode – the spontaneous emission factor β – is
between 0.1 and 1.0, whereas in macroscopic semiconduc-
tor lasers it is 10−4 or less [33]. Therefore, in nanolasers,
the average number of photons is much smaller, and the
relative noise due to the granularity is much larger, which
disrupts the otherwise deterministic spiking at regular in-
tervals controlled by pumping strength.

A rigorous description of noise requires a quantum me-
chanical formalism, which is exceedingly complicated for
semiconductor systems. Therefore, the semiconductor
laser is often approximated as a homogeneously broad-
ened two-level system, as intraband scattering is fast
enough such that electrons and holes are in thermal equi-
librium [34, 35]. The light-matter interaction within a
semiconductor can therefore be described as a collection
of dipoles interacting with the same optical mode. With
some approximations, such as fast dephasing of the polar-
ization with respect to the damping rate of carriers and
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photons, the quantum mechanical descriptions lead to rate
equations [36, 37].

The rate equations describe the evolution in time of
the populations of excited dipoles ne and photons S in a
cavity mode due to multiple processes. Stimulated emis-
sion and absorption are described by a term GS, where
G = γr(2ne − n0) represents the gain, n0 is the total
number of dipoles, and γr is the radiative transition rate.
Spontaneous emission and photon damping are described
by γrne and γS. Since ne ≤ n0, the maximum gain is
limited to γrn0; this condition is ensured by an optical
pumping term γp(n0 − ne), where γp is the pumping rate
and n0 − ne represents pumping saturation.

The stochastic equations are formed by including
the Langevin forces Fi(t) which are random variables
with zero mean and auto-/cross-correlation strengths
⟨Fi(t)Fj(t)⟩ = 2Dij . The Langevin forces are calculated
consistently with the rate equations [37] based on the Mc-
Cumber noise model [38] (see Nanolaser noise model in
Methods). Here, we extend the model by including two
separate sections, one providing gain with an excited pop-
ulation ne, and another one representing the SA, denoted
with the suffix a, with an excited population na, both in-
teracting with the same mode:

Ṡ = GS + γrne + γr,ana + FS(t) ,

ṅe = −γr(2ne − n0)S − γtne + γp(n0 − ne) + Fe(t) ,

ṅa = −γr,a(2na − n0,a)S − γt,ana + Fa(t) ,

(3)

where G = γr(2ne − n0) + γr,a(2na − n0,a) − γ is the net
gain including photon damping, and other parameters are
defined in Table 1 (see Nanolaser with quantum wells in
Methods). For clarity, we normalize γp by the thresh-
old pumping strength in the absence of noise γthr

p (see
Nanolaser with quantum wells in Methods) which we later
refer to as the “threshold”. It is important to note that
with noise, spike emission can also occur with γp < γthr

p .
Fig. 2a shows a time trace of the membrane potential of

a single LIFS neuron with parameters from [13] and Gaus-
sian noise. This serves as a reference for the behavior of
PSNs, which we discuss below. In Fig. 2b we show time
traces of PSN gain with pumping far from and close to the
spiking threshold, respectively. In this system, the gain is
a stochastic variable as it depends on stochastic electron
densities. As a result, when a PSN is not refractory, the
gain undergoes a random walk as shown in Fig. 2c, simi-
larly to the LIFS membrane potential. The ISI distribu-
tion, gain autocorrelation and probability density function
of a PSN are shown in Fig. 2d, e and f, respectively. These
are close to the corresponding properties of LIFS neurons,
with small deviations explained by the additional nonlin-
ear terms of the PSN state equations.

It has been pointed out that the granularity of light
challenges numerical integration based on the Langevin
forces [39–41]. Therefore, we further cross-checked the
results by implementing a rigorous discrete PSN model,
as proposed in [40] and concluded that both methods lead
to the same statistical properties of the PSN (see Discrete
nanolaser model in Methods).
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Figure 2: PSNs emulate LIFS neurons. (a) Membrane
potential of a LIF neuron. Shading represents the “ac-
tive” state after a spike emission. Below: properties of
a PSN far from (blue, γp = 0.955γthr

p ) and close to (or-
ange, γp = 0.995γthr

p ) the spiking threshold. (b) Gain
time traces. After a spike is emitted, the gain is reduced
drastically, and the PSN is considered “active” for a time
shown with shading. (c) Gain time traces between spike
emissions. (d) ISI histogram. (e) Autocorrelation of the
gain. For each spike at ts, the interval (ts−0.5τ ; ts+τ) was
omitted from the analysis to exclude the highly nonlin-
ear regime dynamics of the spiking process. The case far
from the threshold is fitted with an Ornstein-Uhlenbeck
process, as also obeyed by the free membrane potential
of LIFS neurons. (f) Histograms of gain values between
spike emissions and fit with normal distributions (black
lines).

Networks of spiking nanolasers

Interference-based interaction between PSNs is challeng-
ing: their bistability, combined with a potentially large
number, will complicate the necessary resonance align-
ment. For this reason, in this work we assume that PSNs
are incoherent, and their interaction is mediated by pho-
todiodes. Spikes are extracted from a PSN by coupling
to a waveguide. Connection weights can be implemented
optically using a waveguide crossbar array [42]. There,
each output waveguide incoherently combines optical sig-
nals from input waveguides, each weighted by a set of
couplers. Due to a lack of interference, these couplers
can only implement non-negative synaptic weights, but in
BMs, weights can be negative as well. For this reason, we
follow [43] and use balanced photodetectors, which require
an N × 2N crossbar array for N PSNs (see Fig. 3a). As a
result, optical spikes are converted into electrical current
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Figure 3: Setup of a PSN network. (a) Spiking nanolaser
interaction using a waveguide crossbar array. Couplers
(green) define the ratio of spike power sent to a balanced
photodiode: one photodiode increases the electric current
through the PSN, and the other one reduces it, corre-
sponding to an excitatory or an inhibitory synapse, re-
spectively. Limited electrical circuit bandwidth leads to
filtering of the spike, resulting in an almost alpha-shaped
PSP. (b) Change of the nanolaser gain upon a reception of
a spike (i.e. a PSP). The blue line shows an alpha-shaped
fit. (c) Gain time trace of a PSN affected by incoming
spikes (vertical lines) from two other PSNs: one is con-
nected with a positive weight (excitatory, green) and the
other with a negative one (inhibitory, orange).

that changes the pumping strength by

∆γp,k(t) =
∑

j
κkj

∫
LPF(t− t∗)Sj(t

∗)dt∗ , (4)

where κkj represents a coupling strength incorporating rel-
evant factors such as the coupling of a PSN to a waveg-
uide and the photodiode responsitivity, and LPF(∆t) is
the impulse response function of the photodiodes that we
assume to be a low-pass filter with a timescale τU due to
their limited bandwidth. The change of current induces a
change of gain shown in Fig. 3b; the change can be positive
(excitatory) or negative (inhibitory), as shown in Fig. 3c.

This implementation of connections induces an almost
alpha-shaped interaction kernel, again similar to typical
interaction kernels in both biological and abstract (LIF)
neuronal networks. For optimal performance of a network,
the timescale of ∆γp,k(t) can require optimization. Here,
it depends on τU, which we assume to be tunable, as dis-
cussed further below.

Membrane potential of spiking nanolasers

Consider a network of nanolasers and its k-th PSN is not
currently spiking, i.e. its gain does a random walk (see
Fig. 2c). Then, Eq. (3) is approximated by the follow-
ing stochastic equation for the gain (see Simplified gain

equation in Methods):

dGk ≈ [−(Gk −Gp,k)/τG + 2γrn0∆γp,k] dt+ σG dWk ,
(5)

where Gp is a drift term depending on the pumping
strength, and the second term corresponds to the PSN in-
teraction (see Eq. (4)). This equation is identical to that
of the membrane potential of a LIFS neuron (see Eq. (2))
with two assumptions. First, na ≪ ne, which holds during
non-spiking with moderate pumping strength. Second, is
that changes of ne due to incoming spikes need to be small,
otherwise the interaction between PSNs deviates from lin-
earity (see Simplified gain equation in Methods). Based
on the formal equivalence between the two equations, we
propose to use the gain G as the membrane potential of a
PSN:

uk(t) = (Gk(t)−G0)/∂uG ,

where G0 is the gain for which p(z = 1) = 0.5 (which
requires the yet unknown refractory period τ), and ∂uG
is a proportionality coefficient. Therefore, we must to find
these three parameters to relate membrane potentials of
LIFS neurons and PSNs.

Consider a single LIFS neuron with a logistic activation
function p(z = 1|ū) = σ(ū). We expect a similar be-
haviour from a single PSN, where Ḡ = Gp (see Eq. (5)).
In Fig. 4a we sweep the pumping strength Gp; for each
Gp, we solve Eq. (3) for a sufficiently long time and esti-
mate the activation function using Eq. (1) and the law of
large numbers:

p(z = 1|Gp) ≈ z̄(Gp) ,

where z̄ = ⟨z(m · τ)⟩m is an average PSN activation dis-
cretized with a time step τ . The goal is then to ensure
that

z̄(Gp) ≈ σ [(Gp −G0) /∂uG] ,

which is an optimization problem for the three variables
τ , G0 and ∂uG. With it solved, we find that the PSN ac-
tivation function matches the logistic activation function
of LIFS neurons well. Here, τ = 11 ns, which corresponds
to a sampling rate of approximately 0.1 GHz. Based on
the similarities between the expressions for membrane po-
tentials of LIFS neurons (Eq. (2)) and PSNs (Eq. (5)) we
find the following translation rules between the bias and
the pumping strength:

bk = (Gp,k −G0)/∂uG . (6)

Connections between LIFS neurons induce a change of
their membrane potentials according to Eq. (2). Consider
two LIFS neurons connected unidirectionally, i.e. only
W12 ̸= 0, with b2 = 2. This way, the second neuron acts
as the source of spikes, while the first is the recipient.
Sweeping b1 and W12 we obtain a set of curves p(z1 =
1|b1,W12) shown with lines in Fig. 4b. We now aim for a
similar behaviour in PSNs.

We convert b1 and b2 to PSN pumping strength accord-
ing to Eq. (6). We then sweep κ12 to obtain a set of curves
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Figure 4: Translation of Boltzmann parameters to PSN
parameters. (a) Spiking nanolaser activation function
(crosses) with a logistic function fit (line). (b) Impact
of connection weight on activation of a receiving neuron.
Lines and crosses show activation of a BM neuron and a
nanolaser, respectively. Each color corresponds to a re-
ceiving neuron bias b1 = −3,−2, . . . 3 increasing along the
arrow.

p(z1 = 1|Gp,1(b1), κ12). The goal is to find a proportion-
ality coefficient ξ such that

p(z1 = 1|Gp,1(b1), ξκ12) ≈ p(z1 = 1|b1,W12) . (7)

The result is given in Fig. 4b. We find that for limited
biases and weights, PSNs replicate the behaviour of LIFS
neurons well. Based on Eq. (7), we find the translation
rule for weights:

Wkj = ξκkj . (8)

Optical sampling from Boltzmann distribu-
tions
To investigate the accuracy of sampling with PSNs, we
first consider sampling from predefined Boltzmann dis-
tributions over a small set of binary random variables.
Following [13], biases and weights were drawn from Beta
distributions: bk ∼ 1.2(B(0.5, 0.5) − 0.5) and Wkj ∼
β(B(0.5, 0.5)− 0.5), where β controls the range of weights
and is either 0.6, 1.2 or 2.4. The generated biases and
weights are translated to PSN parameters using Eqs. (6)
and (8). The sampled distributions p are compared to the
target distributions p∗ by means of the Kullback-Leibler
divergence DKL(p ∥ p∗).

First, we optimize the PSP timescale controlled by τU.
On one hand, τU must be small enough such that a PSP
does not last longer than the refractory period τ . On
the other hand, too short τU will make the PSP short, but
strong, which can break the operating regime assumptions
(see Simplified gain equation in Methods). In LIFS neu-
rons, the PSP timescale is ideally slightly shorter than
the refractory period [13, Fig. 7]; we use this as a starting
point. In Fig. 5a we sweep τU and track the sampling ac-
curacy for all considered β. We find that the optimal τU
is approximately 0.37τ . Figure 3b shows a PSP with such
a timescale, and indeed, the PSP becomes negligible after
t = τ .

We proceed to sample from sets of 10 random Boltz-
mann distributions for different β. Fig. 5b shows the con-
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Figure 5: Sampling from random Boltzmann distribu-
tions with PSN networks. (a) Optimization of the pho-
todiode timescale: τU is swept and sampling performance
computed for PSN networks with maximum weights of
0.6 (blue), 1.2 (orange) and 2.4 (green). The solid black
line is the mean DKL for each τU. The dashed line shows
τU = 0.37τ . (b) Convergence of sampling from 10 ran-
dom Boltzmann distributions with weights up to 0.6, 1.2
and 2.4 from left to right. (c) Spike raster during sam-
pling from a Boltzmann distribution with weights up to
2.4. (d) Sampling result for a Boltzmann distribution in
(c). Gray: analytical distribution, green: sampling re-
sult. (e) Sampling from conditional distributions. From
left to right: p(z1345|z2 = [1]), p(z245|z13 = [1, 0]) and
p(z12|z345 = [1, 1, 1]). Colors match (d).

vergence of the sampling procedure towards the target dis-
tribution. We find that within each set the convergence
is almost identical. In Fig. 5d we compare a distribution
of samples to the exact distribution for β = 2.4, and we
note a very close match. Figure 5c shows a raster of spikes
during this sampling.

Next, we demonstrate Bayesian inference by sampling
from conditional probability distributions. We split the
five neurons in two arbitrary groups Y and X. The first
group is clamped to an arbitrarily chosen state y, and
the neurons in the second group are free; their probabil-
ity distribution is the conditional probability distribution
p(X|Y = y). In PSNs, we clamp the state by significantly
reducing or increasing the pumping strength. Figure 5e
shows the close match between the correct conditionals
and those sampled with our PSNs. We therefore conclude
that a network of PSNs can sample accurately from a wide
range of Boltzmann distributions over small state spaces,
as well as accurately perform Bayesian inference therein.
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Figure 6: Sampling from an arbitrary distribution with
a network of PSNs. (a) Architecture of the implemented
PSN network. Each line represents a pair of symmetric
synaptic connections. (b) Convergence of sampling with
an RBM (orange) and a PSN network (green). (c) Com-
parison of the target distribution (blue) to the distribu-
tions sampled by the RBM and the PSN network. (d)
Sampling from conditional distributions. From left to
right: p(z134|z2 = [0]), p(z24|z13 = [1, 0]) and p(z3|z124 =
[1, 0, 1]). Colors match (c).

Optical sampling from arbitrary distribu-
tions

Boltzmann distributions are only a subset of all possible
probability distributions over binary variables. However,
the “fully visible” sampling networks described above can
be extended by adding “hidden” neurons that are not ob-
served during sampling. Consequently, the probability
distribution of the visible layer becomes a marginal dis-
tribution over the full state space, which can, in principle,
take any shape, given a large enough hidden space. To
simplify training and improve convergence, a hierarchical
network structure is preferable, with no horizontal connec-
tions within individual layers [14]. Here, we emulate such
a two-layer restricted Boltzmann machine (RBM) with an
equivalently structured PSN network (see Fig. 6a). Given
enough hidden neurons, an RBM can sample from any dis-
tribution with arbitrary precision [44]. Consequently, by
implementing such an RBM with PSNs, optical sampling
from arbitrary distributions can be achieved.

For the target distribution p∗(z) we choose four binary
variables with the probability of each state sampled from
the inverse continuous uniform distribution and normal-
ized such that their sum is unity. The probability distri-
bution is shown in Fig. 6c.

Using the contrastive divergence algorithm [45], we train
an RBM with 4 visible and 10 hidden neurons. Its sam-
pled distribution over visible neurons pRBM(z) is shown in
Fig. 6c.

The parameters of the trained RBM were then trans-

ferred to a network of 14 PSNs. Its sampled distribution
over visible neurons pPSN(z) is also shown in Fig. 6c. We
find that the accuracy of the PSN network is very close
to that of the RBM, and sampling from the target distri-
bution p∗(z) and several conditionals shown in Fig. 6d is
correspondingly accurate.

Optical probabilistic inference

In this section, we demonstrate Bayesian inference from
incomplete information with PSN networks. For better
visualization, we chose three images of digits “0”, “3” and
“4” from the MNIST dataset [46], rescaled to 12×12 and
with brightness rounded to zero or unity. These images
were mapped to a fully connected network of 144 PSNs,
with one pixel assigned to each neuron. The PSN network
was then trained as an associative memory to store the
prepared images (see Probabilistic inference training in
Methods). Similar to the simulations described in previous
sections, we first trained an equivalent BM with wake-
sleep and then mapped the resulting parameters to the
PSN network.

First, we assess the mixing capability of the network by
observing its “dreaming” phase (corresponding to the sleep
phase during training). Without external input, the PSN
network correctly samples from the prior and switches
randomly between states forming the three images with
approximately equal probability. Figure 7a shows a two-
dimensional projection of PSN samples onto vectors cor-
responding to the images (see Probabilistic inference vi-
sualization in Methods). We found that the result is close
to that of the BM, and in most cases the network switches
between the numbers every few samples (Fig. 7b), indi-
cating good mixing between the states.

Next, we assess the inference capability of the network
in a pattern completion scenario. By applying additional
bias to a few neurons that are only active for two out of the
three patterns, we provide informative, but limited input
to the network. We chose five pixels that are black for
“0” and “3”, but not “4” (Fig. 7c), and apply an additional
positive bias to the corresponding neurons. The biases
of other neurons are unchanged, i.e. no information is
given. Such an input is ambiguous w.r.t. “0” and “3”, but
incompatible with “4”. As a result, the PSN network only
generates complete images of “0” and “3”, and randomly
switches between them.

Learning from data

Sampling from arbitrary distributions implies the ability
to sample from distributions dictated by real-world data.
Here, we learn a generative model of handwritten digits
based on the MNIST dataset [46]. Following [19], we
round the brightness of each pixel to minimum or max-
imum.

To work with this dataset, we use a hierarchical sam-
pling network: an RBM with three layers: visible, hidden
and label (Fig. 8a). The brightness of pixels is mapped to
an activity of a neuron in the visible layer. The activity
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Figure 7: Bayesian inference with a network of PSNs.
(a) Two-dimensional projection of network states after
sampling from the prior trained to store images of dig-
its “0”, “3” and “4”. Colored dots show projections of the
images. More samples are shown with darker dots; those
inside the half-circles are considered to be close to a corre-
sponding digit. The red line shows a trajectory of 100 sam-
ples. (b) Histogram of time in samples spent inside the
half-circles in (a) (colors match). (c) Input for Bayesian
inference. The five red markers show the pixels where pos-
itive bias is applied. Such an input is ambiguous w.r.t. “0”
and “3”, but incompatible with “4”. (d,e) Same as (a,b)
when provided the input shown in (c).

in the label layer shows which digit is represented in the
visible layer at the current point in time. For example, if
visible neurons form an image of “0”, only the label neuron
corresponding to a “0” will spike.

In this section, we consider three tasks: completion,
guided dreaming and classification. For completion, vis-
ible neurons are clamped to brightness of corresponding
pixels except for a bottom-right quadrant, which is as-
sumed “obscured” and remains free alongside other neu-
rons. The task is for the free visible neurons to complete
the obscured quadrant. For guided dreaming, one label
neuron is clamped, and the visible neurons are expected to
form an image of a corresponding digit. For classification,
visible neurons are clamped to brightness of correspond-
ing pixels, and the most active label neuron on average is
taken as the answer (“winner-takes-all”).

For these tasks, we use the BM parameters from [48]
(Fig. 8b,c), as they were already optimized for LIFS net-
works and are therefore expected to be favorable for an
implementation with PSNs. This network is composed of
1194 neurons: 784 in the visible, 400 in the hidden and
10 in the label layers, respectively. Its implementation
with PSNs thus represents a scaling test for our general
approach.

The simulation of PSNs during the tasks starts with a
burn-in phase, where no input is provided. Then, the in-
puts are provided sequentially, with each subsequent input
following immediately after the previous one.

For pattern completion with PSNs, 20 samples were
drawn for each image. This is a difficult inference task, as
the network should not simply produce an average image,

but instead needs to adapt to the style of each individual
input sample. Figure 8d shows the results for a few images
from the MNIST testing dataset. We found that in most
cases, the obscured parts were completed to a large degree
of accuracy.

For guided dreaming, label neurons were clamped for
200τ . To enforce top-down control (from labels to pixels),
we strengthened the weights between the hidden and label
layers by a factor of 2, while marginally reducing the oth-
ers by 10% (see Discussion). In Fig. 8e, we show how the
PSN network can thereby be used for generating images
from all learned classes.

While BMs are designed primarily as genera-
tive networks, especially when trained purely with
contrastive Hebbian methods and without dedicated
backpropagation-based fine-tuning, input classification
can still be viewed as a form of Bayesian inference; thus,
it is instructive to compare classification performance be-
tween the original BM and its PSN implementation.

Simulating the processing of 10,000 images of the test-
ing MNIST dataset with a PSN network of this size is
computationally intensive; we therefore drew samples un-
til the saturation of the classification convergence curve
(Fig. 8f). In this case, we drew 50 samples for each im-
age, yielding an average classification accuracy of 87.0%.
The RBM is much less demanding; we could thus draw
500 samples, obtaining 87.8% accuracy. Their confusion
matrices are compared in Fig. 8g; we note their similarity,
as well as the only marginal performance loss caused by
the exchange of substrates.

Interestingly, during the completion task, the networks
perform classification as well. However, the accuracy of
the PSN network is reduced to 75.0%, compared to 85.6%
for the RBM (Fig. 8f); we expect this to be mitigated by
further fine-tuning or direct in-situ training of the PSN
network (see Discussion). However, in both cases, we ob-
serve that the PSN network only needs a few samples to
converge to a solution, which is faster than the RBM and
can prove beneficial in time-constrained scenarios.

Discussion

In this work, we have demonstrated the feasibility of spike-
based sampling using networks of photonic spiking neu-
rons. We have rigorously derived an analogy between
the gain dynamics of a two-section semiconductor laser
and the membrane dynamics of biological neurons, both
above and below the spiking threshold. Using the resulting
translation rules, we have mapped the learned parameters
of Boltzmann machines to the corresponding quantities in
nanolaser networks and have demonstrated accurate sam-
pling across varied tasks of different scale and complexity.

While the analogy between PSNs, ideal LIFS neurons
and ideal BM neurons represents a good approximation,
we take note of two explicit differences. First, the refrac-
toriness in PSNs is a result of a steep drop in the gain.
This is more akin to the strong, but relative refractori-
ness of biological neurons, which is not as absolute as the
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refractoriness assumed by the LIFS model. Second, the
PSP shape in PSN networks is close to an alpha function.
This represents a deviation from the interaction kernels in
BMs, which are rectangular. Nevertheless, neither of these
properties is significantly detrimental to the ultimate net-
work sampling accuracy. This is in line with observations
from [11] and [13], which also explicitly address the issues
of relative refractoriness and PSP shape. We expect the
accuracy to further improve when parameter translation
is replaced by in-situ training of PSN hardware.

The use of photonic timescales fosters a large improve-
ment of sampling speeds compared to biological or elec-
tronic timescales. Even for highly accelerated neuromor-
phic systems such as BrainScaleS-1 [19] and BrainScaleS-
2 [10], convergence speeds for sampling from small Boltz-
mann distributions over 5 random variables amount to
ca. 10 seconds. With PSNs, these convergence times
drop by over 4 orders of magnitude to ca. 102 microsec-
onds. This acceleration factor would directly translate
to a corresponding decrease in times-to-solution for any
neuromorphic applications of SBS. Beyond the examples
of Bayesian inference discussed here, these include tasks
as diverse as stochastic constrained optimization [49] or
quantum tomography [20, 21].

In this work, we have considered photonic neuronal sam-
plers ranging in size from a few PSNs up to more than a
thousand. While the implementation of individual compo-
nents has seen recent experimental validation, the large-
scale implementation of PSN networks in integrated pho-
tonics faces several challenges, which we discuss below.

We have assumed photonic crystal nanolasers as PSNs.
Their small footprint promises high-density integration,
but power dissipation then becomes an important issue.
It is therefore necessary to reduce the amount of power
required for PSN operation. Electrically driven nanolasers
with the pump threshold of 10 µA have been recently
demonstrated [50]. The photonic crystals nanolasers sim-
ilar to those used in this work can also be pumped elec-
trically, requiring about 100 µA each [29]. We estimate
that for the MNIST tasks, 1194 nanolasers would require
3×3 mm2 of chip space and, excluding optical and elec-
trical losses and controller power consumption, approx-
imately 700 mW of power: 100 mW for pumping and
600 mW for the amplification of spikes. With a sampling
rate of 0.1 GHz, such a network of PSNs is equivalent to
an RBM running at 64 TFLOP/s and 95 TFLOP/J.

The photonic crystal nanolasers are complex optical
structures that require a dedicated fabrication process. A
recently demonstrated technique of micro transfer print-
ing, where each cavity is transferred from a wafer on the
chip, has been shown to be scalable [51].

The implementation of dense programmable optical in-
terconnects is one of the most challenging and actively
pursued goals. In this work, the largest interconnect ma-
trix considered was 784×400. As the PSN network is
incoherent, the implementation of positive and negative
weights would require balanced photodetectors which dou-
bles the number of required matrix outputs (see Fig. 3a).

Table 1: Parameters of the PSN model.
Parameter Value Definition
γ 0.2 THz photon damping rate
γr 2.79× 10−6γ transition rate
γr,a 5.31× 10−6γ same, for the SA
γt 1.28× 10−3γ carrier damping rate
γt,a 1.01× 10−3γ same, for the SA
χg 3 differential gain ratio
n0 1.02× 106 gain section dipole count
n0,a 8.20× 105 same, in the SA

A naïve implementation with integrated programmable
switch matrices [52] would be limited by chip space. The
largest implementations currently demonstrated, such as
a 240×240 port switch [53], would be still several times
below the requirement. However, the number of necessary
input ports can be significantly reduced by frequency mul-
tiplexing. Three-dimensional interconnects [54] are also
promising for more extreme cases and multi-chip systems.

Methods

Nanolaser with quantum wells
The rate Eq. (3) describe the interaction of light with
quantum dots [36, 37]. These semiconductor nanostruc-
tures, akin to artificial atoms, localize carriers within a
few nanometers, and therefore are well modelled with a
two-level electronic system. However, this work builds on
the experimental results reported in [30], where the gain
material consists of quantum wells. There, unlike in quan-
tum dots, the gain depends nonlinearly on the density of
carriers in the conduction band (i.e. the population of ex-
cited dipoles in our model divided by the volume of the
section). This nonlinear dependence is approximated by
a piecewise linear function. The slope is larger at lower
carrier density, with a ratio χg. To ensure that ne ≤ n0,
we corrected the pumping term in Eq. (3) by replacing
ne → 2ne/(χg + 1).

The pump rate at threshold γp is computed from Eq. (3)
by assuming a steady state without noise, G = 0 and
S ≈ 0, which leads to γthr

p = γtn
thr
e /[n0 − 2nthr

e /(χg + 1)],
where nthr

e = (γ + γran0,a + γrn0)/2γr.

Nanolaser noise model
The stochastic Eq. (3) are composed of deterministic
(“drift”) and stochastic (“diffusion”) parts that can be rep-
resented in matrix form:

du = µ(u, t) dt+ σ(u, t) dW ,

where u = [S, ne, na]
T. In this work, the diffusion term

follows the approach in [38, A.13.1.2] based on the Mc-
Cumber noise model [55] and is comprised of five Langevin
forces corresponding to the following groups of processes:

1. electron-photon interaction in the gain section,
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2. same, in the SA,
3. electronic processes inside the gain section,
4. intrinsic optical loss,
5. electronic processes inside the SA.

The Langevin forces are stochastic processes represented
with Wiener processes with zero average and cross-
correlation 2Dij ; for i = j, the latter represents the au-
tocorrelation or noise spectral density. For the groups of
processes described above, we find

2De
SS = γrn0S + γrne ,

2Da
SS = γr,an0,aS + γr,ana ,

2Do
ee = γp

(
n0 −

2ne

1 + χg

)
+ (γt − γr)ne ,

2Dγ
SS = γS ,

2Do
aa = (γt,a − γr,a)na ,

where ne, na and S are the averaged (not stochastic) val-
ues. This way, the diffusion matrix becomes:

σ(u, t) = √
2De

SS

√
2Da

SS

√
2Dγ

SS

−
√
2De

SS

√
2Do

ee
−
√

2Da
SS

√
2Do

aa

 .

The equations are integrated using the SKSROCK
solver from the DifferentialEquations.jl library [56] in the
Julia programming language [57].

Simplified gain equation
Here, we derive the Eq. (5). Consider a network of PSNs.
A derivative of the gain of a PSN is given in Eq. (3):

Ġ = 2γrṅe + 2γr,aṅa .

Assume the PSN is not currently emitting a spike, i.e.
its gain does a random walk shown in Fig. 2c, in which
case, S ≈ 0. Then, substitute the derivatives of electron
populations from Eq. (3):

Ġ ≈− 2γrγtne + 2γr(γp +∆γp(t))(n0 − ne)−
− 2γr,aγt,ana + 2γrFe(t) + 2γr,aFa(t) =

=− 2γrne(γt + γp) + 2γrγpn0 − 2γr,aγt,ana+

+ 2γr∆γp(t)(n0 − ne) + 2γrFe(t) + 2γr,aFa(t) .

where ∆γp(t) is given in Eq. (4). Then, replace 2γrne =
G+ γ − γr,a(2na − n0,a) + γrn0:

Ġ ≈− (γt + γp)(G+ γ − γr,a(2na − n0,a) + γrn0)−
+ 2γr∆γp(t)(n0 − ne) + 2γrγpn0 − 2γr,aγt,ana+

+ 2γrFe(t) + 2γr,aFa(t) .

Rearranging the terms we find

Ġ ≈− (γt + γp)G+ 2γr,a(γt + γp − γt,a)na−
− (γt + γp)(γ + γr,an0,a + γrn0) + 2γrγpn0−
+ 2γr(n0 − ne)∆γp(t) + 2γrFe(t) + 2γr,aFa(t) .

The second term on the first line is negligible compared to
the first, as during the random walk na ≪ ne. The terms
on the second line can be considered a drift term:

Gp = γ + γr,an0,a + γrn0 + 2τGγrγpn0 .

where τG = 1/(γt+γp). This way, the dynamical equation
becomes

dG ≈ [−(G−Gp)/τG + 2γr(n0 − ne)∆γp(t)] dt+σG dW .

Here, the interaction term can be nonlinear as ne changes
due to incoming spikes; we assume that such interaction is
weak. Moreover, during the walk, the gain section is close
to transparency, i.e. ne ≈ n0/2. Finally, we find

dG ≈ [−(G−Gp)/τG + 2γrn0∆γp(t)] dt+ σG dW .

Discrete nanolaser model
In this work, we assumed a continuous model, i.e. S, ne
and na are continuous variables and stochastic processes
are approximated by Langevin forces. However, the par-
ticles are discrete, and so are the processes. In a typical
laser, the number of photons and electron-hole pairs in
lasers is large, and such a model is a good approximation.
However, for nanolasers this can be disputed, given their
small volume and the operation regime close to the thresh-
old. Therefore, we consider a discrete model based on [37,
58].

We consider all processes separately – 10 total – as
stochastic with rates: γr/r,aSne/a for stimulated emission
in the gain section / SA, γr/r,aS(n0/0,a − ne/a) for pho-
ton absorption in the gain section / SA, γS for optical
loss, γr/r,ane/a for spontaneous emission in the gain sec-
tion / SA, γt/t,ane/a for nonradiative recombination and
out-of-mode spontaneous emission in the gain section /
SA, γp(n0 − 2ne/(χg + 1)) for pumping. When an event
happens, a single particle is added or removed from ap-
propriate variables. For example, for stimulated emission
in the SA, S → S+1 and na → na − 1. Such a simulation
is considerably more computationally demanding, but is
rigorous and more accurate for this system.

The simulation was carried out using the SSAStepper
solver from the DifferentialEquations.jl library [56]. Fig. 9
shows a comparison between the models. We find that
they give very similar results in the operating regime of
interest.

Probabilistic inference training
The approach used here follows [13]. A fully visible BM
was trained to store three digits – “0”, “3” and “4” – taken
from the MNIST dataset and scaled down to 12×12. The
intensity of each pixel, ranged from zero to unity, was
rounded to 0.05 or 0.95. This way, we define the target
statistics ⟨zk⟩tgt and ⟨zkzj⟩tgt for the BM. We start with
arbitrary weights wkj and biases bj and collect a sufficient
number of samples to estimate ⟨zk⟩ and ⟨zkzj⟩. Then, we
refine the BM parameters using the following update rules:
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Figure 9: Comparison of the simplified continuous model
used throughout the article (blue) and the rigorous dis-
crete model (orange). (a) Distribution of gain outside the
refractory period. Below and above the threshold corre-
spond to normalized pumping of 0.96 and 1.0. (b) Same,
autocorrelation of gain. (c) ISI distribution for normalized
pumping of 1.0. (d) Activation curves assuming identical
τ used in Fig. 4.

∆bk ∝ ⟨zk⟩tgt−⟨zk⟩ and ∆Wkj ∝ ⟨zkzj⟩tgt−⟨zkzj⟩. Then,
sampling and refinement is repeated until a satisfactory
result is achieved.

Probabilistic inference visualization
The projection procedure is identical to [13], but also takes
into account the non-orthogonality of the basis vectors B0,
B3 and B4:

M̂proj =

(
sin(φ0

B) sin(φ3
B) sin(φ4

B)
cos(φ0

B) cos(φ3
B) cos(φ4

B)

)(
B̂⊤B̂

)−1

,

where B̂ = (B0,B3,B4).

Data availability
The parameters of the RBM used for sampling from an
arbitrary distribution, the distribution itself and the BM
used for probabilistic inference are available upon a rea-
sonable request. The RBM used for the MNIST tasks is
in the supporting dataset of [48]. The MNIST dataset is
publicly available [46].

Code availability
Simulation code is available upon a reasonable request.
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