
Neural Networks 133 (2021) 11–20

l
t
m
e
e
t
n
i
d
d

s
e
o
w
s
l

(

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Structural plasticity on an accelerated analog neuromorphic hardware
system
Sebastian Billaudelle a,∗,1, Benjamin Cramer a,∗,1, Mihai A. Petrovici a,c,
Korbinian Schreiber a, David Kappel b, Johannes Schemmel a,2, Karlheinz Meier a,2

a Kirchhoff-Institute for Physics, Heidelberg University, Germany
b Georg-August-University Göttingen, Germany
c Department of Physiology, University of Bern, Switzerland

a r t i c l e i n f o

Article history:
Received 4 March 2020
Received in revised form 17 July 2020
Accepted 28 September 2020
Available online 12 October 2020

Keywords:
Structural plasticity
Receptive fields
BrainScaleS
Spiking
Neural networks

a b s t r a c t

In computational neuroscience, as well as in machine learning, neuromorphic devices promise an
accelerated and scalable alternative to neural network simulations. Their neural connectivity and
synaptic capacity depend on their specific design choices, but is always intrinsically limited. Here,
we present a strategy to achieve structural plasticity that optimizes resource allocation under these
constraints by constantly rewiring the pre- and postsynaptic partners while keeping the neuronal
fan-in constant and the connectome sparse. In particular, we implemented this algorithm on the
analog neuromorphic system BrainScaleS-2. It was executed on a custom embedded digital processor
located on chip, accompanying the mixed-signal substrate of spiking neurons and synapse circuits. We
evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize
the network topology with respect to the nature of its training data, as well as its overall computational
efficiency.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Experimental data shows that plasticity in the brain is not
imited to changing only the strength of connections. The struc-
ure of the connectome is also continuously modified by re-
oving and creating synapses (Bhatt et al., 2009; Grutzendler
t al., 2002; Holtmaat & Svoboda, 2009; Xu et al., 2009; Zuo
t al., 2005). Structural plasticity allows the nervous system
o reduce its spatial and energetic footprint by limiting the
umber of fully expressed synaptic spine heads and maintain-
ng sparsity (Knoblauch & Sommer, 2016). The lifetime of den-
ritic spines, involved at least in excitatory projections, varies
ramatically (Trachtenberg et al., 2002).
The process of spine removal depends on the spine head size:

maller spines are removed while larger ones persist (Holtmaat
t al., 2005, 2006). At the same time, new spines are continu-
usly created. The spine volume also shows a strong correlation
ith the amplitude of the respective synaptic currents (Mat-
uzaki et al., 2001), hence suggesting a coupling of a connection’s
ifetime and its synaptic efficacy.

∗ Corresponding authors.
E-mail addresses: sebastian.billaudelle@kip.uni-heidelberg.de

S. Billaudelle), benjamin.cramer@kip.uni-heidelberg.de (B. Cramer).
1 Authors with equal contribution.
2 Shared senior authorship.
ttps://doi.org/10.1016/j.neunet.2020.09.024
893-6080/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access a
Neuromorphic devices implement novel computing paradigms
by taking inspiration from the nervous system. With the prospect
of solving shortcomings of existing architectures, they often also
inherit some restrictions of their biological archetypes. The exact
form and impact of these limitations depend on the overall design
and architecture of a system. Ultimately however, all physical
information processing systems, with neuromorphic ones making
no exception, have to operate on finite resources.

For most neuromorphic systems, synaptic fan-in is – to various
degrees – one of these limited resources. This applies to analog
as well as digital platforms, especially when they implement fast
on-chip memory. For example, TrueNorth and ODIN both allocate
fixed memory regions for 256 synapses per neuron (Akopyan
et al., 2015; Frenkel et al., 2018). Loihi imposes an upper limit
of 4096 individual presynaptic partners per group of up to 1024
neurons located on a single core (Davies et al., 2018). In contrast,
the digital neuromorphic multi-core platform SpiNNaker (Furber
et al., 2013) allows to trade the number of synapses per neuron
against overall network size or simulation performance. In gen-
eral, digital systems often make use of time-multiplexed update
logic, and hence can be designed to alleviate the issue of a limited
fan-in by increasing memory size — albeit at the cost of prolonged
simulation times.

Analog and mixed-signal systems mostly do not allow this
trade-off, because their synapses are implemented physically,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.neunet.2020.09.024
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2020.09.024&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:sebastian.billaudelle@kip.uni-heidelberg.de
mailto:benjamin.cramer@kip.uni-heidelberg.de
https://doi.org/10.1016/j.neunet.2020.09.024
http://creativecommons.org/licenses/by/4.0/


S. Billaudelle, B. Cramer, M.A. Petrovici et al. Neural Networks 133 (2021) 11–20

a
D
o
M
n
p
u
s
t
n
c
f
B

h
s
o
b
o
n
r
t
c
2
s
f
s
m
d

a
t
a
i
e
m
u
p
a
u

t
c
w
i
h
c
t
a
t

2

S
o
s
p
i
c
a
S
c

m
d

e
i

nd therefore often constitute a fixed resource. Examples include
YNAP-SEL (providing 64 static synapses per neuron on four
f its cores and 256 learning synapse circuits on a fifth core,
oradi et al., 2018; Thakur et al., 2018), Spikey (256 synapses per
euron, Schemmel et al., 2007), and BrainScaleS-1 (220 synapses
er neuron, Schemmel et al., 2010). For this manuscript, we have
sed a prototype system of the BrainScaleS-2 architecture with 32
ynapses per neuron. At full scale, a single application-specific in-
egrated circuit (ASIC) features 256 synapses per
euron, with the additional option of merging multiple neuron
ircuits to larger logical entities in order to increase their overall
an-in Aamir, Müller et al. (2018), similarly to its predecessor
rainScaleS-1 (Schemmel et al., 2010).
The above list of neuromorphic systems is certainly not ex-

austive, but it hints towards an ubiquitous issue of limited
ynaptic resources. A promising way to address this issue is to,
nce again, draw inspiration from the biological nervous system
y supporting the emulation of sparse networks. In the field
f machine learning, Denil et al. (2013) found that multi-layer
etworks in fact express many redundant connections for a wide
ange of common machine learning datasets. Consequently, new
raining schemes have been developed to incorporate the con-
ept of sparsity during training (Bellec et al., 2017; Wen et al.,
016), allowing to compress large, fully connected networks into
maller, sparse representations without a significant loss in per-
ormance. In order to make neuromorphic devices amenable to
uch compressed models, it appears desirable to deeply anchor
echanisms for sparse networks and structural plasticity in the
esign of the systems themselves.
In this paper we present an efficient structural plasticity mech-

nism and an associated on-chip implementation thereof for
he BrainScaleS-2 system, directly exploiting the synapse array’s
rchitecture. It leverages the fact that the network connectivity
s partially defined and resolved within each synapse, which is
nabled by local event filtering. This design choice promotes the
apping of sparse network graphs to the synapse matrix. The
pdate algorithm is implemented on the embedded plasticity
rocessor, which directly interfaces the synaptic memory through
vector unit. This near-memory design allows efficient parallel
pdates to the network’s topology and weights.
Our approach enables fully local learning in a sparse connec-

ome while inherently keeping the synaptic fan-in of a neuron
onstant. We further demonstrate its ability to optimize the net-
ork topology by forming clustered receptive fields and study

ts robustness with respect to sparsity constraints and choice of
yperparameters. While enabling an efficient, task-specific allo-
ation of synaptic resources through learning, we also point out
hat our implementation of structural plasticity is computation-
lly efficient in itself, requiring only a small overhead compared
o the computation of, e.g., synaptic weight updates.

. Methods

The BrainScaleS-2 architecture, which we discuss in
ection 2.1, provides all features required to implement flexible
n-chip plasticity rules, including our proposed mechanism for
tructural reconfiguration. Section 2.2 describes the algorithm for
runing and reassignment of synapses as well as an optimized
mplementation thereof. This structural plasticity scheme can be
oupled with various weight dynamics. In this work, we employ
correlation-based weight update rule, which is described in

ection 2.3. The combination of both is tested in a supervised
lassification task, as outlined in Section 2.4.
 i

12
Fig. 1. BrainScaleS-2 prototype ASIC. (A) Block-level schematic. The analog neu-
romorphic core contains neuronal and synaptic circuits, which are accompanied
by, inter alia, an analog parameter storage and the CADC for digitizing synaptic
correlation data. It is surrounded by digital logic which interfaces the full-custom
circuits and handles configuration data as well as spike traffic. The PPU is closely
attached to the analog core, allowing it to access synaptic weights, address
labels, and digitized correlation traces from the CADC. (B) Photograph of the
BrainScaleS-2 prototype ASIC. (C) Experimental setup.

2.1. BrainScaleS-2 architecture

BrainScaleS-2 is a family of mixed-signal neuromorphic chips
implemented in a 65nm process (Fig. 1). It is centered around an
analog neural network core implementing neuron and synapse
circuits that behave similarly to their biological archetypes. State
variables such as membrane potentials and synaptic currents
are physically represented in the respective circuits and evolve
in continuous time. Leveraging the intrinsic capacitances and
conductances of the technology, time constants of neuron and
synapse dynamics are rendered 1000 times smaller compared to
typical values found in biology. This thousandfold acceleration
facilitates the execution of time-consuming tasks, such as per-
forming high-dimensional parameter sweeps, the investigation of
learning and metalearning, or statistical computations requiring
large volumes of data (Bohnstingl et al., 2019; Cramer et al.,
2020).

The analog core features 32 silicon neurons3 (Aamir, Strad-
ann et al., 2018) implementing leaky integrate-and-fire (LIF)
ynamics CmV̇m = −gl(Vm − El) + Isyn, where Vm represents

the membrane potential, Cm the membrane capacitance, gl the
leak conductance, and El the resting potential. Synaptic currents
Isyn are modeled as superpositions of spike-triggered exponential
kernels. The membrane is connected to a reset potential by a pro-
grammable conductance for a finite refractory period as soon as
the membrane potential crosses a firing threshold Vth. All neurons
are individually configurable via an on-chip analog parameter
memory (Hock et al., 2013) and a set of digital control values.

Each neuron is associated with a column of 32 synapse
circuits3 (Friedmann et al., 2017), which receive their inputs
from the chip’s digital backend. Incoming events are tagged with
addresses, which denote their presynaptic origins (Fig. 2). A 6bit
label is stored alongside the 6bit weight in the synapse-local
static random-access memory (SRAM). It allows to filter afferent
spike trains by their addresses; only an event matching the locally
stored label is forwarded to the postsynaptic neuron circuit. Each
synapse also implements an analog circuit for measuring pairwise
correlations between pre- and post-synaptic spike events (Fried-
mann et al., 2017), enabling access to various forms of learning
rules based on nearest-neighbor spike-timing-dependent plastic-
ity (STDP). The analog correlation traces are made accessible by
the column-parallel analog-to-digital converter (CADC).

3 Later versions of the system feature 512 neuron circuits with adaptive-
xponential LIF dynamics and inter-compartmental conductances. Each neuron
s connected to 256 synapse circuits. Support for conductance-based synapses
s planned for future versions.



S. Billaudelle, B. Cramer, M.A. Petrovici et al. Neural Networks 133 (2021) 11–20

t
e
a
a
t
i
t
i
i
r
d
a
l
c
t
w
I
I
l
∼

t
a
i
t
e
d
F
a
a
a

2

i
e
p
o
m
a
(

f
s

s
p

Fig. 2. Synaptic event filtering enables efficient structural plasticity. Events are
identified with an address denoting their source (numbered and marked by
color). Spike trains from different origins can be overlayed and injected into
a single synapse row. Synapses filter afferent events by comparing the source
address to a label stored in their local SRAM and forward only matching spikes
to the postsynaptic neurons. Addresses and labels can be reconfigured by the
PPU to implement weight dynamics and structural changes.

The versatility of the BrainScaleS-2 architecture is substan-
ially augmented by the incorporation of a freely programmable
mbedded microprocessor (Friedmann et al., 2017), which en-
bles the execution of custom programs interacting with the
nalog emulation of the neuro-synaptic dynamics. Together with
he single instruction, multiple data (SIMD) vector unit, which
s tightly coupled to the synapse array’s SRAM controller and
he CADC, it forms the PPU, which allows the efficient on-chip
mplementation of synaptic plasticity rules. Access to the chip-
nternal configuration bus further allows the processor to also
econfigure all other components of the neuromorphic system
uring experiment execution. The PPU can thus be used for a vast
rray of applications such as near-arbitrary learning rules, on-
ine circuit calibration, or the co-simulation of an environment
apable of continuous interaction with the network running on
he neuromorphic core. On the prototype system used in this
ork, the plasticity processor runs with a frequency of 100MHz.

ts SIMD unit operates in parallel on slices of 16 synapses.4
terating row-wise across the synapse matrix, this parallel access
ets plasticity algorithms scale ∼ O(m) with the indegree m but
O(1) with the number of postsynaptic neurons.
A field-programmable gate array (FPGA) is used to interface

he ASIC with a host computer. It also provides sequencing mech-
nisms for experiment control and spike handling. Our exper-
ments were based on this paradigm. However, it was shown
hat the PPU can replace all of the FPGA’s functionality during
xperiment runtime (Wunderlich et al., 2019), dramatically re-
ucing the overall system’s power consumption. In this case, the
PGA is only used for initial configuration as well as to read out
nd store observables for later analysis and visualization. This is
n essential prerequisite for the scalability of the BrainScaleS-2
rchitecture.

.2. Pruning and reassignment of synapses

We propose a mechanism and an optimized hardware
mplementation for structural plasticity inspired by two well-
stablished biological observations. First, we assume that im-
ortant, informative synapses have larger absolute weights. In
ur particular setting, this is achieved by Hebbian learning, aug-
ented by slow unlearning, as outlined in Section 2.3, but this
ssumption holds for many other plasticity mechanisms as well
Frémaux & Gerstner, 2016; Mostafa, 2017; Oja, 1982; Urbanczik

4 Later versions of the system include multiple PPUs, which are clocked at
requencies of up to 400MHz and feature vector registers capable of handling
lices of 128 synapses.
13
Fig. 3. Illustration of weight dynamics. The evolution of synaptic weights is
governed by a Hebbian potentiation term and a regularizing force of opposing
sign. A stochastic component in the weight update term leads to a random walk.
Synapses with an efficacy below the pruning threshold θw are regularly reas-
igned to new receptors, allowing neurons to find more informative presynaptic
artners, to which the connections can then be strengthened.

for row in 0 ... 31 do
w← synram_weights_read(row)
w← w + alpha * min(f_max,correlation_read(row))
w← w - beta * w * rates_read()
w← w + gamma * rng(-1,1)
if w < theta_w then
w← w_init
a← rng(0,k)
synram_labels_write(row,a)

end if
synram_weights_write(row,w)

end for

Algorithm 1: Plasticity algorithm including weight updates
and structural reconfiguration. The update algorithm is
executed by the on-chip PPU and is applied iteratively to
the synapse rows. Synapses within a row are processed
in parallel. The PPU supports SIMD vector instructions
including arithmetic operations and access to the synaptic
memory (synram_weights_{read,write}(), synram_
labels_write()) and CADC data (correlation_read()). It
has also access to the neuronal firing rates (rates_read()) and
uniform pseudo-random number generators (rng()).

& Senn, 2014; Zenke & Ganguli, 2018). Second, we enable the
network to manage its limited synaptic resources towards poten-
tially improving its performance by removing weak synapses and
creating new ones instead.

A synapse’s eligibility for pruning is determined by the value
of its weight: it is removed in case its efficacy falls below a thresh-
old θw (Fig. 3). Whenever an afferent synapse is removed, the
postsynaptic neuron replaces it with a connection to a randomly
selected presynaptic partner, thus conserving its indegree. The
newly created synapse is initialized with a low weight winit. The
pruning process takes place at a slower timescale than the net-
work dynamics and weight updates, giving the synaptic weights
time to develop and integrate over multiple update periods.

The implementation on BrainScaleS-2 exploits an in-synapse
resolution of the connectome. Each event carries a label denot-
ing its origin, allowing synapses to distinguish different sources.
A synapse filters afferent spike trains by comparing this event
address to the locally stored value and forwards only matching
events to its postsynaptic neuron. Pruning and reassigning of
synapses is implemented by remapping the label stored in the
synapse-local SRAM, which effectively eliminates the previous
connection.

As compared to other synaptic pruning and reassignment
strategies, our algorithm and implementation of structural plas-
ticity requires a particularly low overhead. The in-synapse def-
inition of the connectome allows a purely local reassignment



S. Billaudelle, B. Cramer, M.A. Petrovici et al. Neural Networks 133 (2021) 11–20

m
n
l
i
t
n
i

2

o
t
s
a
w
a
2
w

f

T
r
a
d
p
o
t
f
u
o
a
r
B
m
m
α

m
t
s
C

r
d
a
s
s
r
c
s
b
k
o

n
o
a
i
e
h

g

w

s

p
b
s
u
r
o
T
n
f

echanism which avoids global access patterns; for example,
o reordering of routing tables is required, which can otherwise
ead to increased computational complexity (Liu et al., 2018). At
ts core, reassignment only involves a single SRAM access. Also
he evaluation of the pruning condition and the selection of a
ew presynaptic partner can be realized with just a few simple
nstructions (Algorithm 1).

.3. Correlation-driven weight update algorithm

The synaptic reassignment algorithm described above is based
n the assumption that high weights are assigned to informa-
ive synapses, which emerges through a manifold of learning
trategies. In this work, we chose Hebbian weight dynamics,
s on BrainScaleS-2 they allow a fully local implementation of
eight updates and, furthermore, can be extended to form more
dvanced learning rules (Frémaux & Gerstner, 2016; Neftci et al.,
014). Here, the temporal evolution of the synaptic weights wij,
hich is illustrated in Fig. 3, obeys the following equations:

∆wij = α · f (Si, Sj)− β · νiwij + γ · ηij , (1)

(Si, Sj) = min

[
fmax,

∑
k

exp

(
−

tki −maxl
[
t lj < tki

]
τSTDP

)]
. (2)

he update rule Eq. (1) consists of three terms. The first term
epresents an implementation of STDP and depends on the post-
nd presynaptic spiketrains Si and Sj, defined as vectors of or-
ered spike times tki and t lj . The STDP kernel is exponential and
ositive for causal presynaptic spikes and zero for anti-causal
nes, with a cutoff at a maximum value fmax Eq. (2). The second
erm implements homeostasis (by penalizing large postsynaptic
iring rates) and forgetting (as an exponential decay). This reg-
larizer encourages competition between the afferent synapses
f a neuron. The third term induces exploration by means of
uniformly drawn random variable ηij leading to an unbiased

andom walk, similar to the work by Kappel et al. (2015). On
rainScaleS-2, this stochastic component helps to overcome local
inima induced by analog fixed-pattern noise and integer arith-
etics. The three components are weighted with positive factors
, β , and γ , respectively.
All three contributions to the weight update rule can be

apped to specialized hardware components. The STDP-derived
erm is based on correlation traces. These observables are mea-
ured in analog synapse-local circuits and then digitized using the
ADC (Section 2.1).
As stated above, the correlation values are capped. This is

equired to reduce the imbalance introduced by fixed-pattern
eviations in the correlation measurement circuits’ sensitivity,
s some of these analog sensors might systematically detect
tronger correlation values than others. This can lead to an overly
trong synchronization of the respective receptor and label neu-
ons, in turn resulting in a self-amplifying potentiation of the
orresponding weight and a resulting dominance over the teacher
pike train. In principle, a decrease of α could dampen such feed-
ack, but the corresponding reduction of the exponential STDP
ernel can be difficult to reconcile with fixed-point calculations
f limited precision.
The homeostatic component requires access to the postsy-

aptic firing rates, which are read from spike counters via the
n-chip configuration bus. Stochasticity is provided by an xorshift
lgorithm (Marsaglia et al., 2003) implemented in software.5 The
ndividual contributions are processed and accumulated on the
mbedded processor: using the SIMD vector unit, it is able to
andle slices of 16 synapses in parallel.

5 Later versions of the system feature hardware acceleration for the
eneration of pseudo-random numbers.
 t

14
Fig. 4. Sparse network architecture and input encoding. (A) The two-layer
network consists of a group of receptors and a label population. One teacher
per label neuron ensures excitation of the correct labels during learning. The
inputs project onto the label layer with a potential all-to-all connectivity (gray),
but only a subset of synapses is realized (blue). (B) The receptors are uniformly
distributed on the two-dimensional feature space, which is spanned by the
petal widths and lengths of Iris flowers belonging to the three classes setosa,
versicolor, and virginica. A receptor’s activity is calculated from its Euclidean
distance to a data point according to a triangular kernel with radius λ. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

2.4. Classification task

We applied the presented plasticity mechanism including
structural reconfiguration to a two-layer network trained to per-
form a classification task. The network consisted of a group of
spike sources in a receptor layer and a set of label neurons. These
layers were set up such that every postsynaptic neuron could
potentially receive input from any presynaptic partner in the
receptor layer. Only a fixed fraction of these potential synapses
was expressed at each point in time; the others were dormant,
resulting in a sparse connectome. In addition to the feed-forward
connections, label neurons were stimulated by teacher spike
sources. These supervisory projections ensured excitation of a
label neuron when an input belonging to their respective class
was presented.

The network was trained on the Iris dataset (Fisher, 1936).
Schmuker et al. (2014) already trained an early predecessor of
the BrainScaleS-2 system on the same data, but used an off-chip
preprocessing scheme based on principal component analysis to
determine optimal receptor locations and static receptive fields.
Here, we reduced the four-dimensional dataset to only two di-
mensions by selecting petal widths and lengths, renormalized
to values between 0.2 and 0.8. The resulting two-dimensional
feature space is shown in Fig. 4B. On this plane, n virtual receptors
were placed at random locations drawn from a uniform distri-
bution. These receptor neurons emitted Poisson-distributed spike
trains with an instantaneous rate determined by their respective
Euclidean distances d to a presented data point. The firing rate
as calculated according to a triangular kernel νi(d) = ν̂ ·

max(0, 1 − d/λ), with ν̂ = 50 kHz. This corresponds to a bio-
logically plausible firing rate of 50Hz, when taking the system’s
speedup into account. The radius λ of the receptors was scaled
inversely with

√
n to ensure a reasonable coverage of the feature

pace.
To impose a certain level of sparsity, we used the following

rocedure. Receptors were randomly grouped into m disjoint
undles of size k and each bundle was injected into a single
ynapse row. Within a bundle, each receptor was assigned a
nique address. The sparsity of the connectome, defined as the
atio between the number of unrealized synapses and the number
f potential synapses, was thus set to 1 − 1/k = 1 − m/n.
his setup allowed two degrees of freedom in the control of
etwork sparsity (Fig. 7). Increasing the number of receptors n
or a fixed synapse count m increased the bundle size k and thus
he sparsity as well. On the other hand, for constant sparsity



S. Billaudelle, B. Cramer, M.A. Petrovici et al. Neural Networks 133 (2021) 11–20

s
F
l
w
t
a
w
a
r
w
a
r
t
s
A
t
‘
b
(
r

1
t
t
a

Fig. 5. Informative synapses emerge during training. (A) Exemplary evolution
of realized afferent weights of the ‘‘setosa’’ label neuron during the course of
a single experiment. The line color is determined by the average feature-space
distance between the respective receptor and all ‘‘setosa’’ data points. Synapses
that receive inputs from relevant receptors (i.e., those lying close to the features
that are relevant for their postsynaptic label neuron) are strengthened towards
values that lie above the pruning threshold θw . All other, less informative
ynapses remain below θw and are pruned at regular intervals of five epochs.
or each pruned synapse, a new one is initialized at winit , between the same
abel neuron and a previously unconnected receptor. (B) Distribution of synaptic
eights during the last 50 epochs over 20 randomly initialized runs. Note that
he histogram only takes into account realized synapses, which at all times
re only 18 out of 144 potential ones. (C) Exemplary evolution of all synaptic
eights between the receptor population and the ‘‘setosa’’ label neuron. At
ll times, only n/k = 6 synapses are realized. The transition from blue to
ed marks the pruning threshold θw . Note how gray/blue (subthreshold) and
hite (non-existent) states alternate, marking the pruning of weak synapses
nd re-initialization of new ones. One of these reassignments is highlighted and
eferenced to the corresponding threshold crossing in pane A. (D) Evolution of
he turnover rate (fraction of pruned synapses per epoch) for the 20 runs. The
olid line marks the mean and the gray area represent the 20 and 80 percentiles.
s time progresses, the turnover rate converges to approximately 20%, indicating
hat all relevant receptors (on average five) have been found. The remaining
‘free’’ synapses (on average one) keep switching between all other receptors,
ut are pruned regularly as they are not informative for the respective class.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Fig. 6. Self-organized formation of receptive fields. The probability of synapse
expression depends on the location of receptors in the feature space and the
class of label neurons. Each square is shaded according to the probability for a
label neuron to have formed a synapse with a receptor lying within that area
(lighter for higher probability); estimated from the state at the end of training in
100 experiments with random initial conditions. The size of the three emerging
clusters is determined by the receptor radius λ.

− 1/k, reducing the synapse count m incurred a reduction of
he receptor count n. Disjoint bundles do impose restrictions on
he realizable connectomes: First, it is not possible to project to
neuron from two presynaptic sources that both carry relevant
15
information but by chance reside on the same bundle. Second,
multapses, i.e., multiple projections from the same afferent to
a single postsynaptic neuron, cannot be realized. These con-
straints can be circumvented by choosing overlapping bundles or
injecting a single bundle into multiple synaptic rows.

The dataset, containing a total of 150 data points, was ran-
domly divided into 120 training and 30 test samples to allow
cross validation. Samples were presented to the network in ran-
dom order. For each presented data point, the network’s state
was determined by a winner-take-all mechanism implemented in
software, which compared the firing rates of the label neurons.
Synaptic weights were updated according to Eq. (1) after each
epoch. The pruning condition was evaluated regularly every five
epochs.

3. Results

In this section, we describe experimental results of learning on
the BrainScaleS-2 prototype using the plasticity rule and classifi-
cation task outlined above. We evaluated the network’s perfor-
mance under varied sparsity constraints and performed sweeps
on the hyperparameters to study the robustness of the learning
algorithm and demonstrate its efficient use of limited synaptic
resources. Moreover, we highlight the speed of our structural
plasticity algorithm, especially in conjunction with its implemen-
tation on the BrainScaleS-2 system.

3.1. Self-configuring receptive fields

Depending on the nature of the data to be learned, i.e., the
distribution of data points in the feature space, some receptors
can be more informative than others (Fig. 4B). Our learning rule
naturally selects the most informative receptors, thereby creating
a topological order of the label neurons’ receptive fields. This
clustering of receptors is driven by the synaptic weight evolution
as described by Eq. (1) (Fig. 3).

Fig. 5 shows this evolution during the course of an experi-
ment. Starting from their initial values, synapses that contributed
causally to the firing of their postsynaptic neurons were potenti-
ated. After escaping the pruning threshold, they continued evolv-
ing until reaching an equilibrium with the homeostatic force.
Weaker connections were regularly pruned and reassigned; the
common initialization value manifests itself in a strongly pro-
nounced peak.

The turnover rate, defined as the fraction of pruned synapses,
also reflects the formation of receptive fields. As the receptors
were randomly initialized at the beginning of the experiment,
they did not reflect the spatial distribution of the dataset. This
resulted in frequent pruning, indicated by a high turnover rate.
Over time, a set of stable synapses was formed and the turnover
rate gradually decreased.

The topology of the emergent connectome can be recon-
structed from the synaptic labels. By repeating the experiment
with varying seeds and therefore initial conditions, it is possible
to calculate a probability density for a synapse to be expressed
at a given point on the feature plane. This map closely resembles
the distribution of the presented data (Fig. 6): the receptive fields
of the respective label neurons cluster around the corresponding
samples. The radius of these clusters is determined by the spread
of the data as well as the support and shape of the receptors’
kernels.

3.2. Increased network performance with structural plasticity

During the course of the training phase, the network’s per-
formance was repeatedly evaluated by presenting the test data



S. Billaudelle, B. Cramer, M.A. Petrovici et al. Neural Networks 133 (2021) 11–20

o
o
A

t
c
t
r
c
2

F
m
I
k
i
t
n
e
n
h
i
c
p

s
n
s
i
a
m
t
t
o
w
b
n
l
t

i
s
h
o
o
c
l
s

u
e
t
d

Fig. 7. Structural plasticity improves learning in sparse networks. (A) For a constant indegree m of the label neurons (equivalent with the number of synapse rows
n the hardware), classification accuracy improves with larger k, as the neurons gain access to an increasing number of receptors n = km. (B) For a constant number
f receptors n, structural plasticity can compensate for increased sparsity (reduced indegree m induced by a larger bundle size k) up to a certain degree. (C) Panels
and B can be embedded into a more extensive sweep over the number of the indegree m and bundle size k.
s
s
H
s
m
m
a
s
c
n
w
i
t
p

p
i

o the receptor layer. In this phase, the network’s weights and
onnectome were frozen by disabling weight updates and struc-
ural modifications. To test the network’s ability to generalize and
educe the impact of specific positioning of receptors or initial
onditions, we trained and evaluated the network starting from
0 randomly drawn initial states.
The evolution of the network’s accuracy can be observed in

ig. 7A. Starting from approximately chance level, the perfor-
ance increased during training and converged to a stable value.

n this specific experiment, we swept the bundle size k while
eeping the number of utilized synapse rows m constant, result-
ng in a variable number of receptors n = k ·m. This corresponds
o a scenario where the limited afferent synaptic resources per
euron are fully utilized and structural plasticity is required to
xpand the number of virtual presynaptic partners. For k = 1 the
etwork was trained without structural reconfiguration and only
ad access to a small pool of receptors, resulting in a correspond-
ngly low performance. As more receptors became available, the
lassification accuracy increased as well, up to 92.3% for structural
lasticity with a bundle size of 8.
In a second sweep we kept the number of receptors n con-

tant and varied the bundle size k. This resulted in a variable
umber of realized synapses m and hence different levels of
parsity. The classification accuracy’s evolution for k ∈ {2, 4, 8}
s shown in Fig. 7B. The network achieved a performance of
pproximately 92% for all of the sparsity levels. In this experi-
ent, we showed that learning with structural plasticity allows

o reduce the utilization of synaptic resources while conserving
he overall network performance. These results demonstrate that
ur learning algorithm enables a parsimonious utilization of hard-
are resources. The resulting pool of ‘‘free’’ synapses can then
e used for other purposes, such as for the realization of deeper
etwork structures. For larger receptor pools, we also note that
earning converges more slowly, as the label neurons need more
ime to explore their respective receptive fields (Fig. 7A,B).

Both of the aforementioned experiments can be embedded
nto a more extensive sweep over receptor counts n and bundle
izes k. In Fig. 7C, the two experiments correspond to the two
ighlighted lines. Classification performance primarily depends
n the count of available receptors — and to a much lesser extent
n the amount of utilized hardware resources. For the employed
lassification task, only six synapses were sufficient to reach
evels of accuracy otherwise only tangible with more than 32
ynapses.
We established a baseline accuracy for this task by eval-

ating the network with artificially set up connectomes. For
ach bundle (k = 8, m = 6) and label neuron, we selected
he receptor with the highest mean firing rate for all training
ata of the respective class. Analyzing the resulting receptive
16
Fig. 8. Comparison of structural plasticity to a baseline estimate. Structural
plasticity yields an accuracy comparable to the one of a network obtained
by artificially choosing the most active receptors for each class. (A) A clear
correlation between the synapse expression probabilities of the trained and
the baseline networks can be observed. (B) The network was evaluated for the
same set of synapses, but with a variable weight scaling factor. In one case the
weights were configured homogeneously to a constant value, in the other they
were additionally scaled with the receptors’ mean activations. (C) Classification
performance for structural plasticity is on par with the respective maxima from
B, where the proportional scaling outperforms the constant one.

fields for multiple seeds and plotting the expression probabili-
ties against the ones obtained through structural plasticity (cf.
Fig. 6) shows a clear correlation (Fig. 8A). This indicates that
the presented structural plasticity algorithm indeed establishes
informative synapses. Due to the threshold-based pruning, which
is essential for convergence to a stable connectome, receptors
with the highest expression probabilities for the baseline selec-
tion were slightly underrepresented in the learnt structure. We
estimated the baseline performance by considering two meth-
ods of assigning synaptic weights: First, we applied the same,
constant weight value wij = s for all established synapses,
representing the case of pure structural plasticity and ignoring
any weight dynamics. Second, we chose the weights as wij =

· νj/maxj(νj), with the average receptor firing rate νj, demon-
trating the combined effects of structural reconfiguration and
ebbian learning. We evaluated both cases with a varied scaling
(Fig. 8B) and selected the respective maxima for the perfor-
ance comparison (Fig. 8C). Compared to these two baseline
easures, which relied on global knowledge of the whole dataset
nd all receptor activities, the connectome that emerged through
tructural plasticity, only based on local information, yielded a
omparable performance. For the two baseline results, a small but
oticeable increase in accuracy is observable in case of Hebbian
eight selection. It is noteworthy, that – despite this rather minor

nfluence on the overall classification accuracy – STDP constitutes
he driving force for the expression of meaningful synapses in the
resented implementation of structural plasticity.
The network’s performance depends on the selection of hy-

erparameters for the learning rule. Since the pruning condition
s based on the synaptic weights, the selection of the pruning



S. Billaudelle, B. Cramer, M.A. Petrovici et al. Neural Networks 133 (2021) 11–20

b
p
c
8
m
l
o
w

t
c
s
p
p
a
β

o
e
a

3

s
m
w
a
t
l
a
2
r
T
t

c
e
r
w
s
f
l
t

3

o
a
o
e
m

e
s
r

e
s
a
(

t
a
e
s
o
t
5
b
t
t
w
p

Fig. 9. Stability of network performance over a wide range of hyperparameters.
We varied the pruning threshold θw and the regularization strength β , which
oth shape the steady-state weight distribution. For different aspects of learning
erformance, broad plateaus with respect to variations of these hyperparameter
an be observed. Solid lines and shaded areas respectively denote mean and 20–
0 percentiles, measured over 20 randomly initialized experiments. The plateaus
ostly coincide for (A) classification accuracy after learning (average over the

ast 20 epochs), (B) variability of accuracy after learning (standard deviation
ver the last 20 epochs), and (C) number of epochs until an accuracy of 70%
as reached.

hreshold must take into account the distribution of learnt effica-
ies (Fig. 5). Thus, θw must be high enough to allow uninformative
ynapses to be pruned, but still low enough as to not affect
reviously found informative synapses. Fig. 9 displays different
erformance metrics as a function of the pruning threshold. These
nalyses are shown for a varied strength of the regularizing term
, as the weight distribution and scale depend on the balance
f the positive Hebbian and this negative force. All three metrics
xhibit broad plateaus of good performance, which coincide over
relatively wide range of θw.

.3. On-the-fly adaptation to switching tasks

As demonstrated, structural plasticity enables learning in
parse networks by exploring the input space and forming infor-
ative receptive fields. So far we have considered experiments
ith a randomly initialized connectome and most importantly
homogeneous weight distribution. In another experiment, we

ested the plasticity mechanism’s ability to cope with a previously
earned and therefore already structured weight distribution. We
chieved this by abruptly changing the task during training. After
00 epochs, the receptors were moved to new, random locations,
esulting in a misalignment of receptive fields and data points.
he plasticity rule was executed continuously, before and after
his task switch.

As shown in Fig. 10, the accuracy dropped to approximately
hance level as the receptors were shuffled. This decline, how-
ver, was directly followed by a rapid increase of the turnover
ate. The negative contribution of the regularization term out-
eighed the Hebbian forces, thereby resulting in decreasing
ynaptic efficacies. After a few epochs, most of the weights had
allen below θw and were eligible for pruning. This process al-
owed the network to successfully unlearn previous connections,
hus rekindling exploration of the input space.

.4. Fast and efficient hardware emulation

In our proposed implementation, structural reconfiguration
nly induces a small computational overhead. Synaptic pruning
nd reassignment is enabled by exploiting the synaptic filtering
f spike events by their source address. Since the connectome is
ssentially defined by the address labels stored in the synapses’
emory, it can also be reconfigured with local operations only.
The algorithm executed on the on-chip microprocessor can

ffectively be dissected into four steps (Alg. 1): accessing the
ynaptic weights, evaluation of the pruning condition, potential
eassignment of the synaptic label, and a final write access to
17
Fig. 10. Restoration of network performance after task switch. After training for
200 epochs, the receptor layer is randomly rearranged, leading to a mismatch in
receptive fields. Ongoing structural plasticity unlearns the previously established
connectome and quickly starts to again explore the input space. This process can
be observed in an elevated turnover rate after the task switch, similar to the
initial phase of the experiment.

the synapse SRAM. The exact time required for executing the
respective instructions depends on the neuromorphic system’s
architecture and the design of the plasticity processing unit. In
general, memory access and the generation of pseudo-random
numbers can be regarded as the most expensive operations. The
former primarily depends on the system’s design and can be opti-
mized for low access times. Random number generation can also
be sped up by implementing dedicated hardware accelerators.

Our implementation on BrainScaleS-2 is enabled by the PPU
and its tight coupling to the neuromorphic core. Access to the
synapse array as well as arithmetic operations are optimized by
a parallel processing scheme. Performing a structural plasticity
update on a single slice of 16 synapses takes approximately 110
clock cycles, which corresponds to 1.1µs at a PPU clock frequency
of 100MHz (Fig. 11). This amounts to about seven clock cycles,
or 69ns, per synapse. In comparison, the Hebbian term, which is
executed five times more often, requires approximately 3.8µs for
a slice or 240ns per synapse. The regularizer and random walk
take 69ns and 97ns per synapse, respectively. In our implemen-
tation, these terms were implemented separately and were not
particularly optimized for performance. Sharing memory accesses
or intermediate results between them would lead to an overall
speedup of the plasticity mechanism.

The time spent on the generation of pseudo-random numbers,
highlighted in Fig. 11, constitutes a significant portion for both the
random walk and the pruning term. On the full-size BrainScaleS-2
system, hardware accelerators allow to reduce this contribution
to a comparatively negligible 0.08 clock cycles per synapse4.

Hence, our implementation of structural plasticity is doubly
fficient. Not only can it effectively optimize the utilization of
ynaptic resources, but it can also achieve this at the cost of only
small overhead to the calculation of synaptic weight updates

Fig. 11).
The accelerated nature of the BrainScaleS-2 system also con-

ributes to a rapid evaluation of plasticity schemes in general —
nd structural reconfiguration in particular. Emulating a single
poch of 24 biological seconds required a total of 137ms on our
ystem. Excluding the overhead induced by on-the-fly generation
f input spike trains in Python, this number boils down to less
han 50ms, which corresponds to a speedup factor of about
00. As shown by Wunderlich et al. (2019), this overhead can
e dramatically reduced by porting the experiment control from
he host and FPGA to the PPU. This further allows to optimize
he system’s power consumption to below 60mW, with only a
eak dependence on the nature of ongoing network activity and
lasticity (Wunderlich et al., 2019).



S. Billaudelle, B. Cramer, M.A. Petrovici et al. Neural Networks 133 (2021) 11–20

r
i
o
t
r

e
i
c
S
e
w
w
w
t
t
c
i
m
a
f
b
d
f
t

4

m
t
t
s
m
d
p
w
f
s

n
e
2
o
f
w
c
o
n
c
w

i
C
e
d
s
m
n
c

Fig. 11. Efficient mixed-signal implementation of structural plasticity. (A) Du-
ation of a synapse update broken down into its four individual contributions,
ncluding structural reconfiguration. The hatched areas indicate the time spent
n pseudo-random number generation. (B) Contributions of the individual terms
o the overall update duration, taking into consideration that pruning and
eassignment are executed five times less often than synaptic weight updates.

BrainScaleS-2 achieves its speedup by exploiting the quick
mulation with above-threshold analog transistor circuits. The
ndividual parametrization of each circuit allows to dramati-
ally reduce fabrication-induced fixed-pattern variations (Aamir,
tradmann et al., 2018). We employed calibration routines to
quilibrate the behavior of the synaptic correlation sensors as
ell as the neuron circuits. To assess the remaining variations,
e investigated the transferability of the network’s topology and
eight information. For this purpose, we trained a population of
hree label neurons and then replicated the learnt connectome
o four other groups of neurons and their associated synapse
olumns. Since each of these instances of the network exhibited
ts own intrinsic circuit variations, this allowed us to infer a
easure of transferability of training result across systems. The
ccuracies acquired for these networks deviated by only 1.2%
rom the originally trained population. This shows that a cali-
rated system can be used for inference with weights learnt on a
ifferent setup. Nevertheless, learning can partially compensate
or non-ideal calibration data (Wunderlich et al., 2019), stressing
he value of on-chip training.

. Discussion

We have presented a fully local, on-chip structural plasticity
echanism together with an efficient implementation on a pro-

otype of the BrainScaleS-2 architecture. The algorithm allows
o train a network with a sparse connectome, thereby utilizing
ynaptic resources more efficiently. We showcased this imple-
entation in a supervised learning task with weight updates
riven by Hebbian potentiation. For this classification task, it was
ossible to drastically increase the sparsity of the connectome
ithout significant performance loss. Self-configuring receptive

ields led to near-perfect accuracy and a better utilization of
ynaptic resources without prior knowledge of the input data.
Structural plasticity has already been successfully applied to

etworks with various topologies and learning paradigms (Bellec
t al., 2017; Bogdan et al., 2018; Butz et al., 2009; George et al.,
017; Kappel et al., 2015). In addition to a more efficient handling
f synaptic resources, it is assumed to also improve network per-
ormance (Roy et al., 2014; Spiess et al., 2016) and, in conjunction
ith non-linear multi-compartmental neuron models, memory
apacity (Hussain & Basu, 2016; Poirazi & Mel, 2001). We expect
ur plasticity scheme to be applicable to many of these different
etwork topologies and learning rules: The weight dynamics
an be easily extended by additional terms, e.g. modulatory re-
ard signals, as they were used by Wunderlich et al. (2019).
18
Alternatively, the proposed implementation of pruning and re-
assignment could be combined with completely different weight
update mechanisms. This would allow to alleviate the ubiquitous
issue of limited fan-in for multi-layer networks, that have, on
their own, already been demonstrated on BrainScaleS (Kungl
et al., 2018; Schmitt et al., 2017). Furthermore, as the PPU is
freely programmable, the structural plasticity mechanism itself
can be extended by e.g. additional pruning criteria such as book-
keeping (Spiess et al., 2016), spatial information (Bogdan et al.,
2018), or silent synapses (Roy & Basu, 2016). However, all of
these additions should be considered regarding their impact on
the algorithm’s locality.

There already exist several implementations of structural plas-
ticity for various neuromorphic platforms. Most of them were
based on an on-the-fly adaptation of connectivity tables. Such
generally very flexible strategies have been successfully demon-
strated especially on digital systems (Bogdan et al., 2018; Yan
et al., 2019), where the event handling per se is already centered
around look-up tables. For such an approach, the ordering of
connectivity lists is important to minimize look-up latencies,
which introduces overhead for the removal and insertion of a
synapse (Liu et al., 2018). Related strategies were proposed also
for analog neuromorphic systems (Bhaduri et al., 2018; George
et al., 2017; Spiess et al., 2016). These implementations were
based on optimized look-up matrices, using a representation
comparable to our on-chip synapse matrix, which were stored
and evaluated on external FPGAs. In these cases, learning and
rewiring were also executed off-chip. In contrast, BrainScaleS-2
provides a local, in-synapse definition of the sparse connectome.
This allowed our efficient implementation of on-chip plasticity
and rewiring.

All of the named approaches have to allocate memory besides
the actual synaptic weights, as sparse matrices always require
the annotation of the placement of non-zero elements. However,
the additional increase in memory is outweighed by the overall
gains due to the smaller network graphs. External look-up tables
can often be stored in dynamic random-access memory (DRAM),
which reduces their spatial footprint compared to SRAM-based
implementations. The inherent access latencies can, however, be
detrimental, especially for accelerated neuromorphic systems.

We note that the accelerated nature of the BrainScaleS-2 sys-
tem is especially relevant in the context of modeling biological
rewiring processes. In vivo, structural changes to the connectome
typically take place on time scales of hours to days (Lamprecht &
LeDoux, 2004), which allows synapses to process large amounts
of information and evolve accordingly before being potentially
pruned. This throughput of information – essentially spikes – per
unit of time is directly contingent on the specific time constants
of neuro-synaptic dynamics. Consequently, the acceleration factor
of BrainScaleS-2 can also translate directly to a corresponding
speedup of structural plasticity.

Our implementation scales well with growing system sizes,
since it is fully based on synapse-local quantities. In particular,
it profits directly from the parallel handling of synaptic updates.
On large systems, this would especially benefit the more complex
network structures and associated larger synapse arrays required
when tackling more difficult tasks.

CRediT authorship contribution statement

Sebastian Billaudelle: Conceived the idea, designed,
mplemented, and executed the experiments. Benjamin Cramer:
onceived the idea, designed, implemented, and executed the
xperiments. Mihai A. Petrovici: Contributed to the experiment
esign, contributed the evaluation and interpretation of the re-
ults. Korbinian Schreiber: Peripheral hardware for the experi-
ent setup. Johannes Schemmel: Designer and architect of the
euromorphic platform, conceived and implemented the synapse
ircuits.



S. Billaudelle, B. Cramer, M.A. Petrovici et al. Neural Networks 133 (2021) 11–20

D

c
t

A

M
d

F
n
P
(
H
g
M

R

A

A

A

B

B

B

B

H

H

H

H

H

K

K

K

L

L

M
M

M

M

N

O

P

R

R

S

S

S

S

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The authors express their gratitude towards A. Baumbach, E.
üller, P. Spilger, and Y. Stradmann for their support and helpful
iscussions.
This work has received funding from the European Union Sixth

ramework Programme (FP6/2002-2006) under grant agreement
o. 15879 (FACETS), the European Union Seventh Framework
rogramme (FP7/2007-2013) under grant agreement no. 604102
HBP), 269921 (BrainScaleS) and 243914 (Brain-i-Nets) and the
orizon 2020 Framework Programme (H2020/2014-2020) under
rant agreement no. 720270 and 785907 (HBP), as well as the
anfred Stärk Foundation.

eferences

amir, S. A., Müller, P., Kiene, G., Kriener, L., Stradmann, Y., Grübl, A., Schem-
mel, J., & Meier, K. (2018). A mixed-signal structured adex neuron for
accelerated neuromorphic cores. IEEE Transactions on Biomedical Circuits and
Systems, 12(5), 1027–1037. http://dx.doi.org/10.1109/TBCAS.2018.2848203.

amir, S. A., Stradmann, Y., Müller, P., Pehle, C., Hartel, A., Grübl, A., Schemmel, J.,
& Meier, K. (2018). An accelerated lif neuronal network array for a large-
scale mixed-signal neuromorphic architecture. IEEE Transactions on Circuits
and Systems. I. Regular Papers, 65(12), 4299–4312. http://dx.doi.org/10.1109/
TCSI.2018.2840718.

kopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,
Imam, N., Nakamura, Y., Datta, P., Nam, G., Taba, B., Beakes, M., Brezzo, B.,
Kuang, J. B., Manohar, R., Risk, W. P., Jackson, B., & Modha, D. S. (2015).
Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable
neurosynaptic chip. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, [ISSN: 0278-0070] 34(10), 1537–1557. http://dx.doi.org/
10.1109/TCAD.2015.2474396.

ellec, G., Kappel, D., Maass, W., & Legenstein, R. (2017). Deep rewiring: Training
very sparse deep networks. arXiv preprint arXiv:1711.05136.

haduri, A., Banerjee, A., Roy, S., Kar, S., & Basu, A. (2018). Spiking neural
classifier with lumped dendritic nonlinearity and binary synapses: a current
mode vlsi implementation and analysis. Neural Computation, 30(3), 723–760.

Bhatt, D. H., Zhang, S., & Gan, W.-B. (2009). Dendritic spine dynamics. Annual
Review of Physiology, 71, 261–282.

Bogdan, P. A., Rowley, A. G., Rhodes, O., & Furber, S. B. (2018). Structural plasticity
on the spinnaker many-core neuromorphic system. Frontiers in Neuroscience,
12, 434.

ohnstingl, T., Scherr, F., Pehle, C., Meier, K., & Maass, W. (2019). Neuromorphic
hardware learns to learn. Frontiers in Neuroscience, 13.

utz, M., Woergoetter, F., & van Ooyen, A. (2009). Activity-dependent structural
plasticity. Brain Research Reviews, 60(2), 287–305.

Cramer, B., Stöckel, D., Kreft, M., Wibral, M., Schemmel, J., Meier, K., &
Priesemann, V. (2020). Control of criticality and computation in spiking
neuromorphic networks with plasticity. Nature Communications, 11(1), 1–11.

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., Dimou, G.,
Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C., Lines, A., Liu, R., Mathaikutty, D.,
McCoy, S., Paul, A., Tse, J., Venkataramanan, G., .... Wang, H. (2018). Loihi: A
neuromorphic manycore processor with on-chip learning. IEEE Micro, [ISSN:
0272-1732] 38(1), 82–99. http://dx.doi.org/10.1109/MM.2018.112130359.

Denil, M., Shakibi, B., Dinh, L., Ranzato, M., & De Freitas, N. (2013). Predicting
parameters in deep learning. In Advances in neural information processing
systems (pp. 2148–2156).

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7(2), 179–188.

Frémaux, N., & Gerstner, W. (2016). Neuromodulated spike-timing-dependent
plasticity, and theory of three-factor learning rules. Frontiers in Neural
Circuits, 9, 85.

Frenkel, C., Lefebvre, M., Legat, J.-D., & Bol, D. (2018). A 0.086-mm2 12.7-
pj/sop 64k-synapse 256-neuron online-learning digital spiking neuromorphic
processor in 28-nm cmos. IEEE Transactions on Biomedical Circuits and
Systems, 13(1), 145–158.

Friedmann, S., Schemmel, J., Grübl, A., Hartel, A., Hock, M., & Meier, K. (2017).
Demonstrating hybrid learning in a flexible neuromorphic hardware system.
IEEE Transactions on Biomedical Circuits and Systems, [ISSN: 1932-4545] 11(1),
128–142. http://dx.doi.org/10.1109/TBCAS.2016.2579164.
19
Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S.,
& Brown, A. D. (2013). Overview of the spinnaker system architecture.
IEEE Transactions on Computers, [ISSN: 0018-9340] 62(12), 2454–2467. http:
//dx.doi.org/10.1109/TC.2012.142.

George, R., Indiveri, G., & Vassanelli, S. (2017). Activity dependent structural plas-
ticity in neuromorphic systems. In Biomedical circuits and systems conference
(BioCAS), 2017 IEEE (pp. 1–4). IEEE.

Grutzendler, J., Kasthuri, N., & Gan, W.-B. (2002). Long-term dendritic spine
stability in the adult cortex. Nature, 420(6917), 812.

ock, M., Hartel, A., Schemmel, J., & Meier, K. (2013). An analog dynamic memory
array for neuromorphic hardware. In Circuit theory and design (ECCTD),
2013 European conference on (pp. 1–4). http://dx.doi.org/10.1109/ECCTD.2013.
6662229.

oltmaat, A., & Svoboda, K. (2009). Experience-dependent structural synaptic
plasticity in the mammalian brain. Nature Reviews Neuroscience, 10(9),
647–658.

oltmaat, A. J., Trachtenberg, J. T., Wilbrecht, L., Shepherd, G. M., Zhang, X.,
Knott, G. W., & Svoboda, K. (2005). Transient and persistent dendritic spines
in the neocortex in vivo. Neuron, 45(2), 279–291.

oltmaat, A., Wilbrecht, L., Knott, G. W., Welker, E., & Svoboda, K. (2006).
Experience-dependent and cell-type-specific spine growth in the neocortex.
Nature, 441(7096), 979.

ussain, S., & Basu, A. (2016). Multiclass classification by adaptive network of
dendritic neurons with binary synapses using structural plasticity. Frontiers
in Neuroscience, 10, 113.

appel, D., Habenschuss, S., Legenstein, R., & Maass, W. (2015). Synaptic
sampling: A bayesian approach to neural network plasticity and rewiring.
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.),
Advances in neural information processing systems, Vol. 28 (pp. 370–378).
Curran Associates, Inc.

noblauch, A., & Sommer, F. T. (2016). Structural plasticity, effectual connectivity,
and memory in cortex. Frontiers in Neuroanatomy, 10, 63.

ungl, A. F., Schmitt, S., Klähn, J., Müller, P., Baumbach, A., Dold, D., Kugele, A.,
Gürtler, N., Müller, E., & Koke, C. (2018). Generative models on accelerated
neuromorphic hardware. arXiv preprint arXiv:1807.02389.

amprecht, R., & LeDoux, J. (2004). Structural plasticity and memory. Nature
Reviews Neuroscience, 5(1), 45.

iu, C., Bellec, G., Vogginger, B., Kappel, D., Partzsch, J., Neumärker, F., Höpp-
ner, S., Maass, W., Furber, S. B., & Legenstein, R. (2018). Memory-efficient
deep learning on a spinnaker 2 prototype. Frontiers in Neuroscience, 12.

arsaglia, G. (2003). Xorshift rngs. Journal of Statistical Software, 8(14), 1–6.
atsuzaki, M., Ellis-Davies, G. C., Nemoto, T., Miyashita, Y., Iino, M., & Kasai, H.
(2001). Dendritic spine geometry is critical for ampa receptor expression in
hippocampal ca1 pyramidal neurons. Nature Neuroscience, 4(11), 1086.

oradi, S., Qiao, N., Stefanini, F., & Indiveri, G. (2018). A scalable multicore archi-
tecture with heterogeneous memory structures for dynamic neuromorphic
asynchronous processors (dynaps). IEEE Transactions on Biomedical Circuits
and Systems, 12(1), 106–122.

ostafa, H. (2017). Supervised learning based on temporal coding in spiking
neural networks. IEEE Transactions on Neural Networks and Learning Systems,
29(7), 3227–3235.

eftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., & Cauwenberghs, G. (2014).
Event-driven contrastive divergence for spiking neuromorphic systems.
Frontiers in Neuroscience, 7, 272.

ja, E. (1982). Simplified neuron model as a principal component analyzer.
Journal of Mathematical Biology, 15(3), 267–273.

oirazi, P., & Mel, B. W. (2001). Impact of active dendrites and structural
plasticity on the memory capacity of neural tissue. Neuron, 29(3), 779–796.

oy, S., Banerjee, A., & Basu, A. (2014). Liquid state machine with dendritically
enhanced readout for low-power, neuromorphic vlsi implementations. IEEE
Transactions on Biomedical Circuits and Systems, 8(5), 681–695.

oy, S., & Basu, A. (2016). An online unsupervised structural plasticity algorithm
for spiking neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 28(4), 900–910.

chemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., & Millner, S. (2010). A
wafer-scale neuromorphic hardware system for large-scale neural modeling.
In: Proceedings of the 2010 IEEE international symposium on circuits and
systems (ISCAS10) (pp. 1947–1950).

chemmel, J., Brüderle, D., Meier, K., & Ostendorf, B. (2007). Modeling synaptic
plasticity within networks of highly accelerated i amp;f neurons. In 2007
IEEE international symposium on circuits and systems (pp. 3367–3370). http:
//dx.doi.org/10.1109/ISCAS.2007.378289.

chmitt, S., Klähn, J., Bellec, G., Grübl, A., Güttler, M., Hartel, A., Hartmann, S.,
Husmann, D., Husmann, K., & Jeltsch, S. (2017). Neuromorphic hardware in
the loop: Training a deep spiking network on the brainscales wafer-scale
system. In 2017 international joint conference on neural networks (IJCNN)
(pp. 2227–2234). IEEE.

chmuker, M., Pfeil, T., & Nawrot, M. P. (2014). A neuromorphic network for
generic multivariate data classification. Proceedings of the National Academy
of Sciences, 111(6), 2081–2086.

http://dx.doi.org/10.1109/TBCAS.2018.2848203
http://dx.doi.org/10.1109/TCSI.2018.2840718
http://dx.doi.org/10.1109/TCSI.2018.2840718
http://dx.doi.org/10.1109/TCSI.2018.2840718
http://dx.doi.org/10.1109/TCAD.2015.2474396
http://dx.doi.org/10.1109/TCAD.2015.2474396
http://dx.doi.org/10.1109/TCAD.2015.2474396
http://arxiv.org/abs/1711.05136
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb6
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb6
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb6
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb7
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb7
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb7
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb7
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb7
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb8
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb8
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb8
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb9
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb9
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb9
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb10
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb10
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb10
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb10
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb10
http://dx.doi.org/10.1109/MM.2018.112130359
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb12
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb12
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb12
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb12
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb12
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb13
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb13
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb13
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb14
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb14
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb14
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb14
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb14
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb15
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb15
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb15
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb15
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb15
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb15
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb15
http://dx.doi.org/10.1109/TBCAS.2016.2579164
http://dx.doi.org/10.1109/TC.2012.142
http://dx.doi.org/10.1109/TC.2012.142
http://dx.doi.org/10.1109/TC.2012.142
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb18
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb18
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb18
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb18
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb18
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb19
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb19
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb19
http://dx.doi.org/10.1109/ECCTD.2013.6662229
http://dx.doi.org/10.1109/ECCTD.2013.6662229
http://dx.doi.org/10.1109/ECCTD.2013.6662229
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb21
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb21
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb21
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb21
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb21
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb23
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb23
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb23
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb23
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb23
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb24
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb24
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb24
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb24
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb24
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb25
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb25
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb25
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb25
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb25
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb25
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb25
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb25
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb25
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb26
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb26
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb26
http://arxiv.org/abs/1807.02389
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb28
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb28
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb28
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb29
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb29
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb29
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb29
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb29
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb30
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb31
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb31
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb31
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb31
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb31
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb35
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb35
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb35
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb36
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb36
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb36
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb37
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb37
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb37
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb37
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb37
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb38
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb38
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb38
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb38
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb38
http://dx.doi.org/10.1109/ISCAS.2007.378289
http://dx.doi.org/10.1109/ISCAS.2007.378289
http://dx.doi.org/10.1109/ISCAS.2007.378289
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb41
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb41
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb41
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb41
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb41
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb41
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb41
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb41
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb41
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb42
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb42
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb42
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb42
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb42


S. Billaudelle, B. Cramer, M.A. Petrovici et al. Neural Networks 133 (2021) 11–20

S

Z

Z

piess, R., George, R., Cook, M., & Diehl, P. U. (2016). Structural plasticity
denoises responses and improves learning speed. Frontiers in Computational
Neuroscience, 10, 93.

Thakur, C. S. T., Molin, J., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N.,
Schemmel, J., Wang, R. M., Chicca, E., & Olson Hasler, J. (2018). Large-scale
neuromorphic spiking array processors: A quest to mimic the brain. Frontiers
in Neuroscience, 12, 891.

Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes, J. R., Welker, E.,
& Svoboda, K. (2002). Long-term in vivo imaging of experience-dependent
synaptic plasticity in adult cortex. Nature, 420(6917), 788.

Urbanczik, R., & Senn, W. (2014). Learning by the dendritic prediction of somatic
spiking. Neuron, 81(3), 521–528.

Wen, W., Wu, C., Wang, Y., Chen, Y., & Li, H. (2016). Learning structured sparsity
in deep neural networks. In Advances in neural information processing systems
(pp. 2074–2082).
20
Wunderlich, T., Kungl, A. F., Müller, E., Hartel, A., Stradmann, Y., Aamir, S. A.,
Grübl, A., Heimbrecht, A., Schreiber, K., & Stöckel, D. (2019). Demonstrat-
ing advantages of neuromorphic computation: a pilot study. Frontiers in
Neuroscience, 13, 260.

Xu, T., Yu, X., Perlik, A. J., Tobin, W. F., Zweig, J. A., Tennant, K., Jones, T., &
Zuo, Y. (2009). Rapid formation and selective stabilization of synapses for
enduring motor memories. Nature, 462(7275), 915–919.

Yan, Y., Kappel, D., Neumärker, F., Partzsch, J., Vogginger, B., Höppner, S.,
Furber, S., Maass, W., Legenstein, R., & Mayr, C. (2019). Efficient reward-
based structural plasticity on a spinnaker 2 prototype. IEEE Transactions on
Biomedical Circuits and Systems, 13(3), 579–591.

enke, F., & Ganguli, S. (2018). Superspike: Supervised learning in multilayer
spiking neural networks. Neural Computation, 30(6), 1514–1541.

uo, Y., Lin, A., Chang, P., & Gan, W.-B. (2005). Development of long-term
dendritic spine stability in diverse regions of cerebral cortex. Neuron, 46(2),
181–189.

http://refhub.elsevier.com/S0893-6080(20)30355-5/sb43
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb43
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb43
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb43
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb43
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb44
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb44
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb44
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb44
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb44
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb44
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb44
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb45
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb45
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb45
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb45
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb45
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb46
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb46
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb46
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb47
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb47
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb47
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb47
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb47
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb48
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb48
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb48
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb48
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb48
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb48
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb48
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb49
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb49
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb49
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb49
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb49
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb50
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb50
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb50
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb50
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb50
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb50
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb50
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb51
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb51
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb51
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb52
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb52
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb52
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb52
http://refhub.elsevier.com/S0893-6080(20)30355-5/sb52

	Structural plasticity on an accelerated analog neuromorphic hardware system
	Introduction
	Methods
	BrainScaleS-2 architecture
	Pruning and reassignment of synapses
	Correlation-driven weight update algorithm
	Classification task

	Results
	Self-configuring receptive fields
	Increased network performance with structural plasticity
	On-the-fly adaptation to switching tasks
	Fast and efficient hardware emulation

	Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


