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 Abstract 

 This  review  synthesizes  advances  in  predictive  processing  within  the  sensory  cortex.  Predictive 
 processing  theorizes  that  the  brain  continuously  predicts  sensory  inputs,  refining  neuronal  responses  by 
 highlighting  prediction  errors.  We  identify  key  computational  primitives,  such  as  stimulus  adaptation,  dendritic 
 computation,  excitatory/inhibitory  balance  and  hierarchical  processing,  as  central  to  this  framework.  Our  review 
 highlights  convergences,  such  as  top-down  inputs  and  inhibitory  interneurons  shaping  mismatch  signals,  and 
 divergences,  including  species-specific  hierarchies  and  modality-dependent  layer  roles.  To  address  these 
 conflicts,  we  propose  experiments  in  mice  and  primates  using  in-vivo  two-photon  imaging  and 
 electrophysiological  recordings  to  test  whether  temporal,  motor,  and  omission  mismatch  stimuli  engage  shared 
 or  distinct  mechanisms.  The  resulting  dataset,  collected  and  shared  via  the  OpenScope  program,  will  enable 
 model  validation  and  community  analysis,  fostering  iterative  refinement  and  refutability  to  decode  the  neural 
 circuits of predictive processing. 

 Predictive processing; predictive coding; mismatch; error; cortical processing; sensory; oddball; error signal 

 Abstract  2 
 Glossary  3 
 Acronyms  6 
 Introduction  6 
 General outline  7 

 I. Diversity of error and mismatch types  8 
 II. Distributed error computation  13 
 III. A diversity of predictive responses in 
 single excitatory neurons  20 

 IV. Role of Excitatory/Inhibitory balance and 
 interneurons  31 
 V. Dendritic computations with apical 
 dendrites  39 
 VI. Synaptic plasticity and learning dynamics 
 45 
 VII: From single neuron activity to inter-areal 
 signal flow and whole-brain activity patterns 
 52 

 Review summary  61 

 2 



 Neural mechanisms of predictive processing 

 Experimental proposal  64 
 Background  64 
 Specific Aims  66 
 Proposed Experiment  66 
 Analysis Plan  72 

 Methods  79 
 Discussion  80 
 Conclusion  83 
 Supplementary Text 1: Dysfunction of predictive 
 signaling in neuropsychiatric disorders  84 
 Supplementary Text 2: Subcortical signaling of 
 reward prediction errors  88 
 Supplementary Text 3: Experimental power 
 analysis for oddball stimuli  91 
 References  94 

 Glossary 

 Predictive  Processing  theories  frequently  use 
 colloquial  terms,  such  as  “prediction”,  “belief”,  or 
 “learning”  as  specialized  jargon  with  narrow 
 definitions.  It  is  therefore  important  to  understand 
 how  these  terms  are  specifically  used  within  this 
 context.  We  define  the  following  terms,  based  on 
 common  definitions  in  the  predictive  processing 
 literature,  drawing  heavily  from  past  publications 
 (Jordan  and  Rumelhart,  1992;  Rao  and  Ballard, 
 1999)  .  All  definitions  are  self-contained  and  therefore 
 do  not  directly  reference  the  sources  they  are  based 
 upon. 

 Computation  :  The  process  by  which  neural  circuits 
 transform  and  integrate  sensory  inputs,  internal 
 states,  and  prior  knowledge  into  representations  and 
 predictions.  For  the  purpose  of  this  review,  we 
 conceptualize  sensory  inputs  as  teaching  signals 
 (see  definition  below),  internal  states  as  internal 
 models  (see  definition  below),  and  prior  knowledge 
 as  belief  (see  definition  below)  This  can  take  place 
 across  several  brain  areas  (  distributed  computation  ) 
 or within a single brain area  (local computation  ). 

 Predictive  processing:  Broad  family  of  theories 
 postulating  that  the  brain  uses  an  internal  model  of  its 
 environment  to  predict  a  set  of  ground  truth  inputs, 
 e.g.  incoming  sensory  inputs.  It  is  important  to  note 
 that  the  existing  literature  sometimes  uses  “predictive 
 coding”  and  “predictive  processing”  as  loose 
 synonyms.  Here,  predictive  processing  models 
 include predictive coding models. 

 Predictive  coding  (dendritic  and  cellular 
 predictive  coding):  For  this  review,  we  will  equate 
 predictive  coding  with  the  hierarchical  variant  of 
 predictive  coding.  In  hierarchical  predictive  coding, 
 information  is  assumed  to  flow  across  brain  regions 
 in  a  hierarchy  (e.g.,  from  primary  sensory  to 
 higher-order  sensory  to  associative/integrative  and 
 motor  brain  areas).  Each  level  in  the  hierarchy 
 receives  predictions  from  higher-level  areas  and 
 computes  prediction  errors  by  comparing  such 
 predictions  with  the  relevant  bottom-up  signal  to  that 
 area.  The  resulting  prediction  errors,  and/or  the 
 modulated  bottom-up  signal,  are  sent  to  higher  levels 
 in  the  hierarchy.  For  clarity,  we  will  introduce 
 alternative  variants  of  predictive  coding  using  specific 
 terms:  “dendritic”  and  “cellular”  variants  of  predictive 
 coding  refer  to  proposed  models  that  differentiate 
 where the error is computed. 

 Learning:  A  process  by  which  neural  networks  alter 
 their  structure  and  function  in  response  to 
 experience.  These  changes  can  occur  at  multiple 
 levels,  from  molecular  changes  to  adjustments  in 
 network  connectivity  or  synapses.  In  most  predictive 
 processing  models,  this  process  involves  adjusting 
 synaptic  weights  between  neurons  via  prediction 
 error minimization to update the internal model. 

 Habituation:  Period  of  time  during  which  an 
 experimental  subject  is  exposed  to  consistently 
 repeated  stimuli  or  constant  stimulus  patterns.  The 
 expected  outcome  is  an  updated  internal  model  that 
 predicts  the  continuation  of  the  stable  stimulus 
 statistics. 
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 Internal  representation:  The  neuronal  activity 
 pattern  that  reflects  the  inferred  state  of  the 
 organism’s  environment.  In  predictive  processing, 
 internal  representations  are  used  to  generate 
 predictions  and  are  continuously  updated  by 
 integrating prediction error signals. 

 Teaching  signal:  A  neuronal  signal  that  represents 
 the  "ground  truth"  (real-world  data)  that  should  be 
 matched  by  a  corresponding  prediction  signal  by 
 improving  the  internal  model  through  learning.  In 
 hierarchical  variants  of  predictive  processing,  the 
 teaching signal serves as the initial input to an area. 

 Prediction:  We  define  a  prediction  to  be  the  internal 
 model’s  estimate  of  the  teaching  signal.  More 
 generally,  predictions  are  neuronal  signals  produced 
 by  the  internal  model  through  the  transformation  of 
 internal  representations.  During  learning,  predictions 
 are  modified  via  updates  to  the  internal  model  in 
 or  der  to  better  match  t  heir  target  teaching  signal.  In 
 hierarchical  variants  of  predictive  processing, 
 predictions  correspond  to  the  top-down  inputs 
 neurons receive from higher levels in the hierarchy. 

 Prediction  error:  A  signal  that  represents  the 
 deviation  between  a  teaching  signal  and  a 
 corresponding  prediction.  The  prediction  error  signal 
 has  two  functions:  it  updates  the  corresponding 
 internal  representation  quickly  by  adjusting  neuronal 
 activity),  and  drives  slower  corrective  learning  in  the 
 internal  model  by  adjusting  the  synaptic  weights).  In 
 some  hierarchical  variants  of  predictive  processing, 
 this  error  signal  serves  as  bottom-up  input  to  higher 
 stages of processing. 

 Coding  space:  Abstract  multidimensional  space  in 
 which  neural  representations  or  signals  of  a  particular 
 type  are  organized  and  interpreted.  This  concept 
 describes  how  information  is  stored,  processed,  and 
 communicated  by  neural  populations,  in  particular  for 
 specific  types  of  neural  activity,  such  as  motor  or 
 sensory signals. 

 Internal  model:  An  internal  model  reflects  processes 
 within  the  brain  that  enable  it  to  simulate  or  predict 
 aspects  of  the  environment.  The  internal  model  maps 
 internal  representations,  patterns  of  neural  activity 
 that  encode  perceptions  of  the  environment,  from  the 
 coding  space  of  one  brain  area  to  that  of  another. 
 This  mapping  process  enables  the  brain  to  anticipate 
 sensory  inputs,  guide  motor  actions  to  achieve 
 desired  outcomes,  and  combine  sensory  information 
 to  interpret  the  external  environment.  Internal  models 
 are  shaped  and  adjusted  through  synaptic 
 connections  and  refined  by  experience-dependent 
 plasticity,  enhancing  accuracy  in  predicting  and 
 responding to changes in the environment. 

 Bottom-up  input.  Input  carried  by  projections  from 
 lower  to  higher  areas  in  a  hierarchical  processing 
 system,  e.g.,  input  from  Lateral  Geniculate  Nucleus 
 (LGN)  to  primary  visual  cortex  (V1),  or  V1  to 
 secondary visual cortex (V2), etc. 

 Top-down  input:  Input  carried  by  projections  from 
 higher  to  lower  areas  in  a  hierarchical  processing 
 system,  e.g.,  input  from  V2  to  V1,  or  Anterior 
 Cingulate Cortex (ACC) to V1, etc. 

 (Prediction)  error  neurons:  Neurons  postulated  to 
 encode  the  magnitude  of  a  prediction  error  with  their 
 firing  rate.  Given  a  sufficiently  high  baseline  activity, 
 positive  (Teaching  signal  >  Prediction)  and  negative 
 (Teaching  signal  <  Prediction)  prediction  errors  can 
 be  represented  within  the  same  neurons  by  an 
 increase  and  a  decrease  in  activity,  respectively.  If 
 neurons  are  constrained  by  low  baseline  firing  rates, 
 separate  neural  populations  may  be  required  to 
 represent  positive  and  negative  prediction  errors, 
 thus  each  can  only  report  errors  unidirectionally, 
 through an increase of activity (see next). 

 Positive  prediction  error  signals  or  neurons 
 increase  their  activity  when  the  magnitude  of  a 
 sensory  stimulus  is  larger  than  predicted  (Teaching 
 signal > Prediction). 
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 Negative  prediction  error  signals  or  neurons 
 increase  their  activity  relative  to  baseline  when  the 
 magnitude  of  a  sensory  stimulus  is  smaller  than 
 predicted (Teaching signal < Prediction). 

 Mismatch  stimulus  :  An  experimentally  induced 
 violation  of  a  learned  association  between  a  sensory 
 stimulus  and  a  predictor.  The  predictor  can  be  the 
 stimulus  history,  another  sensory  stimulus,  a  general 
 sensory  context  (e.g.,  spatial  location),  or  motor 
 output. 

 Oddball  or  deviant  stimulus:  A  specific  kind  of 
 mismatch  stimulus  that  interrupts  a  series  of  repeated 
 and  frequent  stimuli.  An  oddball  or  deviant  stimulus  is 
 not predicted by the stimulus history. 

 Belief:  Probabilistic  assumption  or  set  of 
 assumptions  about  the  environment,  based  on  an 
 internal model and current sensory input. 

 Bayesian  inference:  A  statistical  method  for 
 updating  the  estimated  probability  of  a  hypothesis 
 being  true  as  more  evidence  or  information  becomes 
 available.  Bayesian  inference  is  based  on  Bayes’ 
 theorem,  which  states  that:  P(A  |  B)  =  [P(B  |  A)  * 
 P(A)]  /  P(B),  where  P(A  |  B)  is  the  “posterior 
 probability”  (i.e.,  the  probability  of  A  given  B),  P(B  |  A) 
 is  the  likelihood  (i.e.,  the  probability  of  B  given  A), 
 P(A)  is  the  “prior  probability”  of  A  (i.e.,  the  frequency 
 of  past  events,  or  belief  thereof),  and  P(B)  is  the 
 “marginal  probability”  of  B  (i.e.,  the  total  probability  of 
 event  B,  considering  all  possible  outcomes).  Many 
 computational  models  of  predictive  processing  can 
 be interpreted as performing Bayesian inference. 

 Expectation:  Whole  system-level  estimate  of  a 
 teaching signal. 

 Adaptation:  Set  of  mechanisms  by  which  neurons 
 adjust  their  response  to  constant  stimulation  or  the 
 repetition of a single stimulus. 

 Precision:  In  the  context  of  predictive  processing, 
 precision  refers  to  the  relative  reliability  assigned  to 
 prediction  errors.  Several  models  implement 
 precision  weighting  via  a  multiplicative  gain  control 
 mechanism,  ensuring  that  updates  to  the  internal 
 model  are  mostly  driven  by  high  precision  prediction 
 errors. 

 Attention:  The  increased  allocation  of  neural 
 processing  resources  to  specific  sensory  inputs  or 
 internal  representations.  Attention  is  thought  to 
 enable  the  information  most  relevant  to  current  goals 
 or  tasks  to  be  prioritized.  In  predictive  processing, 
 attention  may  enhance  the  precision  of  prediction 
 errors, thereby influencing their impact on learning. 

 Corollary  discharge/Efference  copy  :  When 
 sending  a  motor  command  to  the  periphery,  motor 
 areas  also  send  an  efference  copy  of  the  motor 
 command  directly  to  sensory  areas.  This  efference 
 copy  is  transformed  by  the  internal  model  into 
 corollary  discharges  .  As  a  corollary  discharge  is  in 
 the  coding  space  of  the  sensory  area  receiving  the 
 signal,  it  can  be  directly  compared  to  the  actual 
 sensory  input  caused  by  the  movement.  Corollary 
 discharge  is  synonymous  with  “prediction”  in  a 
 motor-to-sensory  pathway.  Note  that  efference  copy 
 is  often  used  synonymously  with  corollary 
 discharge  .  However,  we  think  it  is  more  useful  to 
 distinguish  the  two  based  on  whether  the  signal  is  in 
 the  motor  coding  space  (efference  copy)  or  the 
 sensory coding space (corollary discharge). 

 Explaining  away  :  The  original  concept  of  "explaining 
 away"  in  causal  inference  describes  how  competing 
 explanations  for  observed  data  are  resolved.  When 
 multiple  possible  causes  are  considered,  identifying 
 the  most  likely  one  effectively  "explains  away"  less 
 probable  causes  by  reducing  their  relevance  or 
 influence.  In  predictive  coding,  however,  the  term  is 
 often  used  with  a  different  focus:  it  describes  how 
 prediction  error  is  minimized  when  sensory  input 
 aligns  with  a  prediction.  Here,  the  signal  no  longer 
 drives  updates  to  internal  models,  as  it  has  been 
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 "explained  away"  by  a  successful  prediction.  While 
 both  uses  involve  reducing  uncertainty,  the  predictive 
 coding  approach  emphasizes  error  minimization 
 through  matching  predictions  with  input,  whereas  the 
 original  concept  centers  on  the  competition  between 
 alternative explanations. 

 Acronyms 

 We  aimed  to  limit  our  use  of  acronyms.  However  the 
 following  are  commonly  used  in  the  predictive 
 processing literature and community. 

 EEG  Electroencephalography 
 MEG  Magnetoencephalography 
 fMRI  functional Magnetic Resonance Imaging 
 ECoG  - Electrocorticography 
 LFP  - Local Field Potential 
 MMN  - Mismatch Negativity 
 ACC  Anterior Cingulate Cortex 
 PFC  Prefrontal Cortex 
 LGN  Lateral Geniculate Nucleus 
 CA1  Cornu Ammonis 1 
 CA3  Cornu Ammonis 3 
 V1  Primary visual cortex 
 V2  Secondary visual cortex 
 V4  - Visual Area 4 
 LM  - Lateromedial Area 
 M1  - Primary Motor Cortex 
 M2  - Secondary Motor Cortex 
 RSP  - Retrosplenial Cortex 
 CCN  Cognitive Computational Neuroscience 
 DANDI  Distributed  Archives  for  Neurophysiology 
 Data Integration 
 NWB  Neurodata Without Border 
 P300  event-related  potential  component  that  peaked 
 around 300 ms after a stimulus is presented 
 L1  Layer 1 
 L2/3  Layer 2/3 
 L4  Layer 4 
 L5  Layer 5 
 L6  Layer 6 
 PYR  Pyramidal cell 

 IT  IntraTelencephalic neurons 
 PT  Pyramidal Tract neurons 
 PV  Parvalbumin 
 SOM  Somatostatin 
 VIP  Vasoactive Intestinal Peptide 
 DA  Dopaminergic neurons 
 NDNF  Neuron-Derived Neurotrophic Factor 
 LAMP5  Lysosomal-Associated Membrane Protein 5 
 GABA  Gamma-Aminobutyric Acid 
 E/I balance  - Excitation/Inhibition balance 
 LTP  Long-Term Potentiation 
 LTD  Long-Term Depression 
 BTSP  Behavioral Time Scale synaptic Plasticity 
 STDP  Spike-timing dependent plasticity 
 DSI  depolarization-induced suppression of inhibition 
 MDD  Major Depressive Disorder 
 ASD  Autism Spectrum Disorder 
 NHP  Non-Human Primate 
 BCI  Brain Computer Interface 
 RPE  Reward Prediction Error 
 TD learning  Temporal Difference learning 
 E-E  excitatory-to-excitatory 
 E-I  excitatory-to-inhibitory 
 PSTHs  peri-stimulus time histograms 
 PCA  principal components analysis 
 t-SNE  t-distributed stochastic neighbor embedding 

 Introduction 

 Predictive  coding  is  a  prominent  theory  within  a  larger 
 family  of  predictive  processing  models  of  the  brain. 
 These  theories  broadly  propose  that  the  brain  refers 
 to  a  model  of  the  world,  possibly  based  on  the 
 individual's  past  experiences  to  predict  incoming 
 sensory  signals.  Within  predictive  coding,  when  these 
 predictions  are  accurate,  the  brain  cancels  out  the 
 predicted  sensory  inputs,  allowing  it  to  direct  its 
 resources  on  processing  any  unexpected,  or 
 incorrectly  predicted  inputs,  known  as  prediction 
 errors  (Srinivasan  et  al.,  1982;  Rao  and  Ballard, 
 1999)  .  Alternatively,  neural  networks  can  detect  the 
 statistical  regularities  of  stimuli,  e.g.  sequence  of 
 visual  stimuli  or  places,  and  rapidly  learn  these 
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 sequences  so  as  to  guide  future  behaviors,  as  seen 
 in  several  computational  models  and  in  vivo 
 experiments  in  several  brain  areas  from  V1  to 
 hippocampus  (Mehta  NIPS  1997,  Neuroscientist 
 2001,  Hippocampus  2015).  Although  predictive 
 coding  has  garnered  significant  interest  over  the  past 
 two  decades,  at  the  cortical  level  the  precise 
 neuronal  layers,  subtypes,  or  sub-compartments  that 
 are  responsible  for  prediction  generation  and 
 prediction  error  calculation  are  still  under  active 
 investigation.  Researchers  are  working  to  identify  the 
 specific  circuits  and  mechanisms  involved,  aiming  to 
 pinpoint  how  neural  circuits  encode  and  process  key 
 elements  of  predictive  coding.  Recent  reviews  on 
 predictive  processing  in  the  cerebral  cortex 
 responsible  for  complex  functions  such  as  perception 
 and  decision-making,  have  highlighted  potential 
 mechanisms  and  circuits  involved  (Bastos  et  al., 
 2012;  Aitchison  and  Lengyel,  2017;  Keller  and 
 Mrsic-Flogel,  2018;  Walsh  et  al.,  2020;  Millidge  et  al., 
 2021;  Mikulasch  et  al.,  2023;  Phillips  et  al.,  2024; 
 George  et  al.,  2025)  .  These  mechanisms  describe 
 how  predictions  and  sensory  responses  can  be 
 encoded  and  compared  within  cortical  circuits.  While 
 cellular  theories  focus  on  the  existence  of  dedicated 
 error  neurons  (Rao  and  Ballard,  1999;  Keller  and 
 Mrsic-Flogel,  2018;  Hertäg  and  Sprekeler,  2020)  , 
 dendrite-based  theories  emphasize  the  role  of 
 sub-cellular  dendritic  compartments  in  pyramidal 
 neurons  as  potential  recipients  or  computational  loci 
 of  error  signals  (Urbanczik  and  Senn,  2014; 
 Sacramento  et  al.,  2018;  Payeur  et  al.,  2021; 
 Mikulasch et al., 2022b, 2023)  . 

 In  this  perspective,  our  goal  is  to  first  provide  an 
 overview  of  the  field  by  contrasting  the  existing 
 experimental  research  with  the  current  theoretical 
 literature,  with  a  particular  focus  on  computational 
 models  of  predictive  processing  in  the  sensory 
 domain  (we  especially  focus  on  sensory 
 representations,  as  opposed  to  action  and  reward 
 signaling).  Next,  we  propose  a  series  of  experiments 
 aimed  at  testing  different  predictive  processing 
 models  at  the  resolution  of  single  neurons.  These 

 experiments  leverage  either  in-vivo  two-photon 
 imaging  or  electrophysiological  recordings  in 
 head-restrained  mice,  with  a  subset  to  be  carried  out 
 through  the  OpenScope  program.  The  collected 
 datasets  will  be  made  available  to  the  broader 
 research  community  for  analysis  as  Neurodata 
 Without  Border  (NWB)  files  (Rübel  et  al.,  2022) 
 shared via the DANDI archive. 
 This  paper  originated  from  a  2024  CCN  workshop 
 and  was  developed  through  collaborative  community 
 efforts.  With  this  project,  we  aim  to  promote  a  closer 
 dialogue  between  experiments  and  theoretical 
 models  in  the  field.  Whenever  applicable,  we  cite 
 existing  reviews  to  broaden  our  support  from  the 
 literature.  Our  goal  is  to  discuss  models  in  practical 
 terms,  constrained  by  the  known  architecture  of  the 
 mammalian  cortex  and  informed  by  the  latest 
 experimental  findings  in  mice  and  other  species. 
 Within  the  framework  of  the  well-known  Marr  levels 
 (Marr,  2010)  ,  our  focus  is  on  level  3,  and  thus  on 
 understanding  how  a  potential  predictive  processing 
 algorithm  would  be  implemented  at  the  level  of 
 neuronal circuits. 

 General outline 

 A  core  tenet  of  predictive  processing  theories  is  the 
 existence  of  an  internal  model  of  the  world  shaped  by 
 the  weights  of  synaptic  cortical  connections  where 
 predictions  are  continuously  compared  against 
 sensory  inputs.  The  differences  resulting  from  this 
 comparison  are  known  as  prediction  errors.  In  the 
 past,  experimental  efforts  have  primarily  focused  on 
 measuring  such  prediction  errors,  as  these  are  one  of 
 the  key  signals  that  distinguish  predictive  processing 
 models  from  earlier  representational  variants  of 
 sensory  cortical  processing.  To  do  this,  research 
 laboratories  have  sought  to  generate  a  diversity  of 
 error  types  (see  Section  I  -  A  diversity  of  error  and 
 mismatch  types  ).  These  errors  could  be  the  result  of 
 either  local  computations  within  a  cortical  region  or 
 distributed  computations  (see  Section  II  - 
 Distributed  error  computation  )  across  distinct 
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 areas  (for  example,  resulting  from  the  interaction 
 between  higher-order  and  lower-order  cortical  areas). 
 Within  each  brain  area,  a  repertoire  of  neuronal 
 responses  emerge,  potentially  associated  with 
 prediction,  mismatch  stimuli,  precision  or  attention 
 signals  (see  Section  III  -  A  diversity  of  predictive 
 neuronal  responses  ).  Experimental  and  theoretical 
 groups  have  examined  the  roles  of  excitatory  and 
 inhibitory  sub-population  of  neurons  in  those 
 responses  (see  Section  IV  -  Role  of 
 Inhibitory/excitatory  balance  and  interneurons  ), 
 as  well  as  dendritic  compartments  (see  Section  V  - 
 Dendritic  computations  with  apical  dendrites  ).  To 
 update  predictions  and  reduce  prediction  errors,  it  is 
 assumed  that  synaptic  weights  are  modified  following 
 specific  plasticity  rules  (  Section  VI  -  Synaptic 
 plasticity  and  learning  rules  ).  Finally,  we  consider 
 how  the  transmission  of  prediction  error  and 
 predictions  and  their  ensuing  circuit  interactions 
 relate  to  network  dynamics/interactions  at  a  meso- 
 and  macro-scopic  scale,  e.g.  via  transients  and 
 oscillations  (  Section  VII  -  Linking  single  neuron 
 activity  with  meso-  and  macro-scopic  neural 
 dynamics  ). 

 In  the  next  seven  sections,  we  review  these  distinct 
 axes  from  the  largest  to  the  finest  scale,  with  a 
 stronger  focus  on  animal  studies  with  a  neuronal 
 resolution,  and  then  back  to  a  larger  scale  to 
 integrate these results with human studies. 
 Building  on  this  review,  we  next  outline  concrete, 
 detailed  experimental  proposals  designed  to  resolve 
 existing  conflicts  and  knowledge  gaps  in  predictive 
 processing  (see  Experimental  proposals  ).  These 
 future  studies  aim  to  bridge  theoretical  models  with 
 experimental  work,  leveraging  advanced 
 neurophysiological  techniques  and  computational 
 models  to  validate  key  hypotheses  and  refine  current 
 theories.  Finally,  we  discuss  potential  outcomes  of 
 those  experimental  projects  and  review  the  remaining 
 challenges (see  Discussion  ). 

 I. Diversity of error and mismatch 
 types 
 Predictive  processing  experiments  and  theories 
 largely  rely  on  constructing  internal  models  that 
 generate  predictions  of  sensory  inputs.  In 
 experiments,  such  predictions  are  typically 
 challenged  by  introducing  mismatch  stimuli.  Various 
 theories  and  models  have  used  such  experiments  to 
 investigate  potential  mechanisms  underlying 
 predictive  processing.  In  this  section,  we  review  the 
 different  types  of  mismatch  stimuli  employed  in 
 experiments  and  introduce  the  models  that 
 incorporated this diversity of mismatch stimuli. 

 1. Experimental evidence 
 Depending  on  the  type  of  prediction  that  is  violated,  a 
 variety  of  different  terms  have  been  used  to  describe 
 these  stimuli  (see  Figure  1  ),  including:  mismatches, 
 oddballs,  omissions,  unexpected  stimuli,  expectation 
 violations,  or  deviant  stimuli  (see  Glossary  and 
 Figure 1  ). 

 While  a  theoretical  study  can  model  “error”  signals 
 directly,  as  it  controls  the  underlying  principles  of  the 
 model,  in  experimental  studies,  the  underlying 
 principles  are  not  fully  known.  Hence,  one  cannot 
 determine  categorically  whether  a  response  is  an 
 “error”.  Thus,  it  has  been  the  practice  to  avoid 
 confounding  the  stimulus  name  (mismatch,  oddball, 
 etc.)  with  the  interpretation  (prediction  error).  In  this 
 perspective,  we  refer  to  “mismatches”  when 
 discussing  experimental  neuronal  responses  and 
 “prediction  errors”  when  discussing  their 
 interpretation in the theoretical literature. 

 We  should  recognize  that  the  characteristics  of 
 mismatch  stimuli  can  differ  considerably  from  one 
 prediction  error  type  to  another.  As  introduced  in  later 
 sections,  the  responses  they  elicit  may  therefore  be 
 supported  by  different  biological  mechanisms.  For 
 instance,  predictions  learned  for  short  temporal 
 sequences  might  be  achieved  using  information 
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 readily  available  in  a  single  neuron,  while  predictions 
 for  long  sequences  could  require  a  distributed 
 population of neurons. 

 For  this  reason,  it  is  helpful  to  group  different  types  of 
 mismatch  stimuli  based  on  core  commonalities  and 
 key differences. 

 Sensory mismatches 
 Pure  sensory  occlusions  or  sensory  mismatches  are 
 used  to  create  unexpected  stimuli.  For  example,  in 
 visual  experiments,  an  image  may  be  presented  with 
 a  missing  part,  or  part  of  it  may  be  changed  (see 
 Figure  1A  ).  Similarly,  local  image  features  can  be 
 designed  to  conflict  with  global  patterns  within  an 
 image  (Bair  et  al.,  2003;  Keller  et  al.,  2020b; 
 Kirchberger et al., 2023; Cuevas et al., 2024)  . 
 Although  neurons  in  the  visual  cortex  have  visual 
 receptive  fields  within  which  they  typically  respond  to 
 stimuli  (Hubel  and  Wiesel,  1962)  ,  their  activity  can 
 also  be  modulated  by  broader  contextual  information 
 outside  of  these  receptive  fields  (so-called 
 “extra-classical”  receptive  field  effects)  (Bolz  and 
 Gilbert,  1986)  .  These  response  modulations,  along 
 with  sensory  occlusions  or  mismatches,  have  been 
 cited  as  supporting  evidence  for  some  of  the  earliest 
 theoretical  studies  on  predictive  coding  (Rao  and 
 Ballard,  1999)  .  For  example,  surround-suppression 
 (and  enhancement)  experiments,  where  the  neural 
 response  to  a  center  grating  is  suppressed  (or 
 amplified)  when  surrounded  by  either  the  same  or  a 
 different  grating,  can  be  viewed  as  examples  of 
 sensory  mismatch  stimulus  studies  (Jones  et  al., 
 2001;  Bair  et  al.,  2003;  Keller  et  al.,  2020b)  (see 
 “relevant theoretical models” below for details). 

 Sensory-motor mismatches 
 Sensory-motor  mismatches  have  been  extensively 
 used  to  test  hypotheses  related  to  predictive 
 processing.  For  example,  in  visual  experiments,  the 
 movement  of  images  shown  on  a  screen  can  be 
 paired  to  the  animal’s  own  movement.  This  coupling 
 can  then  be  disrupted,  allowing  researchers  to  study 

 how  the  brain  responds  to  sensory-motor 
 mismatches (see  Figure 1D  ). 

 Keller  et  al.  used  a  simplified  virtual  reality 
 environment  where  the  visual  flow  of  a  stimulus  was 
 controlled  by  an  animal's  running  speed  (Keller  et  al., 
 2012)  .  Sensory-motor  mismatch  responses  are 
 induced  when  the  coupling  between  the  flow  of  the 
 visual  stimuli  and  the  animal’s  running  speed  is 
 transiently  disrupted.  This  visual-flow  feedback 
 paradigm  has  significantly  influenced  subsequent 
 research,  enhancing  our  understanding  of  the  visual 
 tuning  and  receptive  field  properties  of  neurons  that 
 encode  mismatch  signals  (Saleem  et  al.,  2013; 
 Zmarz  and  Keller,  2016;  Muzzu  and  Saleem,  2021)  , 
 and  facilitating  the  identification  of  transcriptionally 
 defined  subpopulations  of  neurons  encoding 
 prediction  error  responses  (O’Toole  et  al.,  2023)  . 
 Similar  stimuli  with  feedback  alterations  have  also 
 been  used  in  auditory  and  vocalization  studies 
 (Eliades  and  Wang,  2008;  Keller  and  Hahnloser, 
 2009;  Rummell  et  al.,  2016;  Audette  et  al.,  2022; 
 Audette  and  Schneider,  2023;  Morandell  et  al.,  2024)  , 
 reinforcing  the  idea  that  predictive  processing  plays  a 
 role in sensory processing across sensory modalities. 

 Sequential mismatches 
 Subjects  can  be  exposed  to  temporal  sequences  of 
 stimuli  to  establish  contextual  regularity  that  can  then 
 be  systematically  violated  to  evoke  mismatch 
 responses  (see  Figure  1B-C  ).  The  most  common 
 type  of  sequence  violation  in  the  literature  is  known 
 as  the  sensory  “oddball”  (see  Figure  1C  ).  In  this 
 paradigm,  a  single  stimulus  (“standard”  or 
 “redundant”)  is  repeatedly  presented  relatively  rapidly 
 (every  75ms  to  2000  ms),  but  interspersed  with  rare 
 “deviants”  or  “targets”  which  differ  in  specific 
 properties  from  the  redundant  stimulus  (e.g.,  visual 
 stimulus  orientation,  auditory  pitch,  etc).  These  basic 
 sequential  oddball  paradigms  were  first  developed  in 
 human  studies  in  the  1970s,  where 
 Electroencephalography  (EEG)  event  related 
 potentials  such  as  the  mismatch  negativity  (MMN)  or 

 9 

https://paperpile.com/c/io7Jhe/riSJp+aFYBE+2NfAV+5FFMT
https://paperpile.com/c/io7Jhe/riSJp+aFYBE+2NfAV+5FFMT
https://paperpile.com/c/io7Jhe/dIeNG
https://paperpile.com/c/io7Jhe/9b2QG
https://paperpile.com/c/io7Jhe/9b2QG
https://paperpile.com/c/io7Jhe/4oh6V
https://paperpile.com/c/io7Jhe/4oh6V
https://paperpile.com/c/io7Jhe/aFYBE+A6Qhe+riSJp
https://paperpile.com/c/io7Jhe/aFYBE+A6Qhe+riSJp
https://paperpile.com/c/io7Jhe/ib0oP
https://paperpile.com/c/io7Jhe/ib0oP
https://paperpile.com/c/io7Jhe/4KTGv+AW9mc+LzamA
https://paperpile.com/c/io7Jhe/4KTGv+AW9mc+LzamA
https://paperpile.com/c/io7Jhe/VycL4
https://paperpile.com/c/io7Jhe/NFA2b+fbmyC+SqWe2+KFHi2+QGCWU+ZVCtY
https://paperpile.com/c/io7Jhe/NFA2b+fbmyC+SqWe2+KFHi2+QGCWU+ZVCtY
https://paperpile.com/c/io7Jhe/NFA2b+fbmyC+SqWe2+KFHi2+QGCWU+ZVCtY


 Neural mechanisms of predictive processing 

 the  P300  have  been  identified  as  gross 
 neurophysiological  indices  of  prediction  errors  (see 
 Section  VII  ).  More  recently,  oddball  paradigms, 
 including  “visual  oddballs”,  have  been  adapted  to 
 rodent  studies  to  expand  our  understanding  of  the 
 mechanisms  that  generate  MMN  and  P300 
 responses  at  the  circuit  level  (Gavornik  and  Bear, 
 2014;  Hamm  and  Yuste,  2016;  Garrett  et  al.,  2020; 
 Hamm  et  al.,  2021a;  Price  et  al.,  2023;  Wyrick  et  al., 
 2023;  Gillon  et  al.,  2024)  .  Frequently,  sequences  of 
 visual  stimuli  such  as  gratings  or  oriented  patches 
 are  used  (Hamm  and  Yuste,  2016;  Homann  et  al., 
 2022;  Gillon  et  al.,  2024)  as  the  orientation  tuning  of 
 neurons  in  visual  cortex  is  well  characterized  (de 
 Vries  et  al.,  2020;  Muzzu  and  Saleem,  2021)  . 
 Together  with  similar  findings  in  auditory  cortex 
 (Parras  et  al.,  2017;  Auksztulewicz  et  al.,  2023)  and 
 multimodal  parietal  cortex  (Van  Derveer  et  al.,  2023)  , 
 this  body  of  work  shows  that  mismatch  and  oddball 
 signals  can  emerge  in  the  firing  of  individual  neurons 
 in  sensory  cortices  in  an  experience-dependent 
 manner,  even  when  mice  are  passively  experiencing 
 sensory stimulus sequences. 

 When  using  simple  oddball  paradigms,  and 
 especially  when  analyzing  single  neuron  responses, 
 careful  selection  of  the  comparison  condition  is 
 critical  to  ensuring  that  altered  responses  to  the 
 deviant  stimulus  are  correctly  interpreted.  Direct 
 comparisons  of  deviant  and  redundant  stimulus 
 responses  may  not  purely  reflect  bona-fide  prediction 
 errors,  but  may  instead  be  confounded  by 
 “stimulus-specific  adaptation”  and  other  forms  of 
 feed-forward  synaptic  depression  (Ross  and  Hamm, 
 2020;  Shiramatsu  and  Takahashi,  2021)  .  A  popular 
 way  to  avoid  this  pitfall  –  and  to  better  isolate  sensory 
 prediction  errors  from  simple  adaptation  –  is  the  use 
 of  “many  standards”  control  sequences.  In  these 
 control  sequences,  the  same  oddball  stimulus  (i.e.  an 
 oriented  grating)  is  presented  in  a  seemingly  random 
 pattern  (e.g.,  of  gratings  with  various  orientations) 
 where  it  is  neither  redundant  nor  contextually  deviant 
 (Harms  et  al.,  2014;  Wyrick  et  al.,  2023)  .  Comparing 
 responses  to  the  same  stimulus  when  it  is  rare  and 

 contextually  deviant  (i.e.,  in  the  oddball  sequence)  vs. 
 rare  but  not  contextually  deviant  (i.e.,  in  the  many 
 standards  control)  helps  to  isolate  prediction 
 error-like  responses  from  effects  of  alternative 
 processes such as stimulus-specific adaptation. 

 Oddballs  can  also  be  of  higher  order,  for  example 
 when  the  deviations  from  expectations  are  set  up 
 through  the  repetition  of  sequences  of  stimuli  (rather 
 than  the  repetition  of  a  single  stimulus).  For  example, 
 a  repeated  stimulus  sequence  A-A-A-B  can  randomly 
 and  rarely  be  replaced  with  A-A-A-A.  Higher-order 
 oddballs  of  this  kind  are  referred  to  as  “global” 
 oddballs  occurring  across  sequences,  whereas  the 
 term  “local”  oddballs  refers  to  deviations  occurring 
 within  a  given  sequence  (i.e.  the  Global/Local  Task), 
 originally  implemented  by  (Bekinschtein  et  al.,  2009)  . 
 Comparing  local  and  global  oddball  responses  allows 
 dissociating  the  effects  of  short-  and  long-term 
 stimulus expectation  (Westerberg et al., 2024a)  . 

 Omission oddballs 
 An  omission  paradigm  is  an  important  type  of  oddball 
 response  that  can  be  highly  informative  about  the 
 circuits  involved  in  predictive  processing.  This  type  of 
 mismatch  signal  occurs  when  an  expected  stimulus 
 within  a  sequence  is  omitted  (Wacongne  et  al.,  2011)  . 
 Neuronal  signatures  related  to  the  omission  are 
 interpreted  as  either  a  prediction  error  to  the  absence 
 of  a  predictable  stimulus  or  as  an  unfulfilled 
 prediction.  In  either  case,  the  potential  confound  of 
 stimulus  processing  and  stimulus  change  is  avoided, 
 which can be problematic in other paradigms. 
 Several  factors  have  to  be  taken  into  account  in  order 
 to  reliably  establish  the  genuine  presence  of  neuronal 
 coding  of  omission  responses.  One  is  the  difference 
 between  an  actual  omission-specific  response  and  a 
 response  due  to  the  lack  of  stimulus-dependent 
 bottom-up  inhibition.  This  is  because  some  neurons 
 in  the  sensory  cortex  can  be  inhibited  by  the 
 presence  of  a  stimulus  (Keller  et  al.,  2020a)  .  Thus, 
 the  lack  of  a  frequently  presented  stimulus  could 
 appear  as  an  increase  in  neuronal  response, 
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 interpreted  as  a  sequence-based  prediction  error, 
 although  it  might  be  generated  due  to  the  absence  of 
 any  stimulus  in  the  receptive  field.  For  example,  if  the 
 stimulus  A  suppresses  the  neural  activity  in  a  group 
 of  neurons,  if  a  repeated  stimulus  sequence  of 
 A-A-A-A  is  rarely  replaced  with  A-A-A-X  (X 
 represents  omission)  those  neurons  might  be 
 mistakenly  interpreted  as  “error”  or  “omission” 
 neurons.  Thus,  stimulus  type  and  position  of 
 omission  in  the  sequence  should  be  controlled  to 
 resolve such confounds. 

 In  sequence  based  tasks,  omission  responses  can  be 
 stimulus-specific,  position-specific  or  both.  A  stimulus 

 specific  omission  response  contains  significant 
 information  about  the  identity  of  the  omitted  stimuli.  A 
 position-specific  omission  response  carries  significant 
 information  about  the  position  of  the  omitted  stimuli  in 
 the  sequence.  Therefore,  stimulus-specific  omission 
 responses  could  predict  “what”  was  omitted  and 
 position-specific  responses  could  predict 
 “when/where”  an  omission  occurred.  The  main 
 advantage  of  studying  specific  omission  responses  is 
 that  with  the  lack  of  bottom-up  inputs  (Chien  et  al., 
 2019)  ,  the  neural  activity  could  only  be  due  to  the 
 prior  history,  and  not  just  a  response  to  a  change  in 
 the current stimuli. 
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 Mismatches during behavioral tasks 
 Active  tasks  in  which  the  expected  context  is  altered 
 are  used  to  increase  effect  sizes  and/or  increase  the 
 behavioral  relevance  of  unexpected  stimuli,  for 
 example,  in  mice  trained  to  navigate  an  environment 
 while  learning  a  reward  association  (Shuler  and  Bear, 
 2006;  Green  et  al.,  2023;  Furutachi  et  al.,  2024)  . 
 Alterations  of  the  now  familiar  environment  can  then 
 be  introduced  to  create  expectation  mismatches 
 (Fiser  et  al.,  2016;  Garner  and  Keller,  2022;  Furutachi 
 et  al.,  2024)  .  In  a  navigation  task,  temporally 
 structured  sequences  associated  with  specific 
 locations  are  used  to  probe  oddball  responses  via  the 
 occasional  replacement  of  an  expected  element  by 
 an  unexpected  one  (Furutachi  et  al.,  2024)  .  In  the 
 detection  of  change  tasks,  the  reward  can  be  made 
 to  coincide  with  the  sensory  mismatch  (Garrett  et  al., 
 2020)  . 

 Mismatch  responses  can  be  modulated  by  the 
 contextual  relevance  and  attention  given  to  the 
 sensory  features  causing  prediction  errors.  The 
 relation  between  attention  and  mismatch  signals 
 remains  complex  (for  review,  see  (de  Lange  et  al., 
 2018)  ),  with  some  work  suggesting  that  attention  can 
 even  counteract  predictive  suppression  (Kok  et  al., 
 2012)  .  It  is  certainly  clear  that  attention  is  not 
 necessary  for  mismatch  signals  to  emerge,  and  that 
 neural  mismatch  signals  can  be  observed  under 
 anesthesia  (e.g.  (Chao  et  al.,  2018)  ),  although  the 
 level  of  anesthesia  affects  the  cortical  spread  of 
 mismatch signals  (Nourski et al., 2018)  . 

 Several  studies  manipulated  attention  and  stimulus 
 predictability  independently  of  each  other  yielding 
 diverse  findings.  Some  of  these  find  that  attention 
 boosts  specifically  the  response  to  the  predictable 
 sensory  input,  rather  than  the  unpredicted  input. 
 Other  studies  find  either  no  interaction  or  gain 
 modulation  of  both  the  predicted  and  unpredicted 
 input  (Kok  et  al.,  2012;  Chennu  et  al.,  2013; 
 Auksztulewicz  and  Friston,  2015;  Smout  et  al.,  2019)  . 
 The  effect  of  attention  may  also  depend  on  the 

 processing  level,  as  some  studies  suggest  an 
 attention-enhanced  response  to  unpredicted  inputs  at 
 later  processing  levels  (Bekinschtein  et  al.,  2009; 
 Chennu et al., 2013; Kompus et al., 2020)  . 

 2.  Relevant  mechanisms  of  predictive 
 processing across mismatch types 
 The  terminology  and  conceptualization  of  error 
 signals  often  differ  between  experimental  and 
 theoretical  approaches.  Experimental  studies  are 
 conducted  with  a  variety  of  underlying  assumptions 
 while  theoretical  models  are  explicitly  designed  with 
 specific  mechanisms  in  mind.  This  leads  to  varied 
 conceptualizations  and  diverging  terminology  for 
 similar  ideas  across  each  domain.  For  example, 
 terms  like  “  world  model  ”  and  “  sensory  inputs  ”  used  by 
 experimental  groups,  may  correspond  closely  to 
 “  internal  model  ”  and  “  teaching  signal  ”  terms  used  by 
 computational  groups  and  grounded  in  theories  of 
 supervised  learning  (Jordan  and  Rumelhart,  1992)  . 
 To  promote  clearer  communication  between 
 experimentalists  and  theorists  ,  we  encourage  the 
 reader to refer to our  Glossary. 

 Do  different  error  types  engage  distinct  cortical 
 networks and mechanisms? 
 While  some  studies  have  examined  more  than  one 
 type  of  mismatch  stimulus  (Gillon  et  al.,  2024)  ,  a 
 systematic  comparison  of  oddballs,  sensory 
 mismatches  and  sensory-motor  mismatches  is  still 
 lacking.  However,  we  can  nonetheless  anticipate 
 potential  differences  by  analyzing  different 
 experimental  paradigms.  In  visual  experiments,  local 
 sensory  occlusions  or  sensory  mismatches  occur 
 within  a  single  presented  image.  To  detect  these 
 errors,  the  visual  cortex  must  rely  on  information  from 
 different  receptive  fields.  This  information  can  be 
 provided  by  local  projections  within  V1  or  by 
 immediate  downstream  areas,  such  as  area  LM  in 
 the  mouse  visual  cortex  (Marques  et  al.,  2018)  . 
 Responses  to  oddballs  in  stimulus  sequences  likely 
 depend  on  short-term  memory,  which  may  arise 
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 through  (1)  local  synaptic  adaptation  (Aitken  et  al., 
 2024)  ,  (2)  local  recurrence  within  the  visual  cortex 
 (Reinhold  et  al.,  2015)  or  (3)  modulatory  feedback 
 from  downstream  areas,  such  as  prefrontal  cortex 
 (Fiser  et  al.,  2016;  Bastos  et  al.,  2023)  or 
 higher-order  thalamic  nuclei  (Furutachi  et  al.,  2024)  . 
 In  contrast,  sensory-motor  mismatch  responses  may 
 result  from  the  integration  of  motor  cortex  activity  with 
 visual  input  from  LGN  (Leinweber  et  al.,  2017)  or  with 
 auditory  information  at  the  level  of  the  auditory  cortex 
 (Schneider  et  al.,  2018)  .  However,  sensory-motor 
 task  designs  vary  widely  and  differences  between 
 them  may  influence  their  neural  implementation. 
 Experiments  often  engage  a  combination  of  complex 
 motor  processes  such  as  locomotion,  specific  body 
 movements  like  forelimb  lever  presses,  continuous 
 sensory  cues  like  visual  flow,  or  discrete  sensory 
 events  like  pure  tone  presentations.  Each 
 combination  requires  the  brain  to  integrate 
 information  from  various  sources,  possibly  through 
 different  mechanisms.  Supporting  this,  active  tasks 
 have  recently  been  shown  to  engage  large, 
 brain-wide  networks  (Stringer  et  al.,  2019)  , 
 highlighting  the  need  for  caution  when  assigning  a 
 specific  role  to  a  particular  brain  area.  Moreover, 
 error  responses  observed  during  behavioral  tasks 
 may  be  influenced  by  neuromodulatory  inputs 
 (Collins  et  al.,  2023)  (see  Supplementary  Text  2  ), 
 especially  when  these  responses  are  tied  to  specific 
 behavioral events  (Ramadan et al., 2022)  . 

 In  the  next  six  sections,  we  review  potential  neuronal 
 mechanisms  underlying  neuronal  responses  to 
 mismatch  stimuli  from  the  larger  to  the  smaller  scale. 
 Each  section  was  written  to  be  independently 
 accessible.  At  the  end,  we  review  potential 
 opportunities for integration across mechanisms. 

 II. Distributed error computation 
 Experiments  and  theories  have  explored  predictive 
 processing  mechanisms  at  various  spatial  scales.  In 
 this  section,  we  review  experiments  and  models  that 
 examined  the  involvement  of  multiple  brain  areas  and 

 cortical  layers  in  predictive  processing  computations. 
 We  reserve  finer-resolution  mechanisms,  such  as  the 
 roles  of  individual  cell  types  and  dendrites,  for  later 
 sections. 

 1. Experimental evidence 

 Top-down inputs 
 For  early  on,  most  theoretical  proposals  for  predictive 
 coding  involved  distributed  computations  (see 
 Glossary)  of  error  signals  (Rao  and  Ballard,  1999)  . 
 Various  studies  have  explored  how  distributed 
 computations  might  shape  local  calculation  of  error 
 signals,  particularly  in  sensory-motor  tasks  or  tasks 
 involving  complex  sensory  stimuli,  which  likely  rely  on 
 a  hierarchical  feature  representation.  In  one 
 sequence-based  oddball  study,  when  mice  were 
 repeatedly  shown  sequences  of  gratings,  inhibiting 
 the  activity  in  the  PFC  decreased  the  oddball 
 response  in  V1,  suggesting  a  role  for  top-down  inputs 
 in  local  mismatch  computation  or  in  modulating 
 mismatch  signals  (Hamm  et  al.,  2021a)  .  More  recent 
 work  in  behaving  mice  has  similarly  demonstrated  a 
 role  of  thalamo-cortical  projections  from  the  pulvinar 
 in  generating  mismatch  responses  (Furutachi  et  al., 
 2024)  .  Here,  pulvinar  inputs  appeared  to  feed  back  a 
 mismatch  signal,  which  amplified  feed  forward 
 processing  in  V1.  Other  studies  found  stronger 
 encoding  of  expected  image  identities  in  higher-order 
 areas  such  as  the  retrosplenial  cortex  (RSP) 
 compared  to  V1  when  oddballs  replaced  images  in 
 sequences  (Wyrick  et  al.,  2023)  .  Together,  these 
 observations  highlight  the  role  of  higher-order  areas 
 and  feedback  (top  down)  connections  in  shaping 
 error  signaling  in  mouse  V1.  In  contrast,  Leinweber  et 
 al.  showed  that,  while  V1  receives  strong  axonal 
 inputs  from  motor  cortex  area  M2,  these  inputs 
 primarily  carry  motor  running  signals,  rather  than 
 mismatch  information  (Leinweber  et  al.,  2017)  .  This 
 suggests  that  some  aspects  of  the  sensory  mismatch 
 computation  may  occur  locally  within  V1.  Similarly, 
 Fiser  et  al.  showed  that  axons  from  ACC  to  V1  carry 
 stimulus  predictions  (Fiser  et  al.,  2016)  ,  a  finding  later 
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 confirmed  by  (Bastos  et  al.,  2023;  Ross  and  Hamm, 
 2024)  .  Taken  together,  the  experimental  observations 
 support  the  possibility  that  sensory-motor  mismatch 
 responses  and  sequential  oddballs  recruit  different 
 top-down computational networks. 
 Connectivity  data  across  species  consistently  support 
 the  existence  of  segregated  feedforward  and 
 feedback  pathways,  distinguished  by  their  cell  types 
 of  origin  and  laminar  termination  patterns 
 (Berezovskii  et  al.,  2011;  Markov  et  al.,  2014)  .  These 
 studies  reported  that  feedforward  neurons  rarely 
 have  a  feedback  collateral,  which  is  significant 
 considering  the  ubiquity  of  co-lateralization  of 
 inter-areal  cortico-cortical  neurons  (Kennedy  and 
 Bullier,  1985)  .  Feedforward  and  feedback 
 connections  are  therefore  distinct  and  this  distinction 
 forms  the  basis  of  anatomical  definitions  of  the 
 cortical  hierarchy  (Felleman  and  Van  Essen,  1991; 
 Markov  et  al.,  2013;  Harris  et  al.,  2019)  .  Yet,  it  is 
 important  to  address  the  nature  of  feedforward  (or 
 bottom-up)  and  feedback  (or  top-down)  connections 
 in greater detail. 

 First,  a  detailed  analysis  of  the  hierarchical 
 organization  of  visual  areas  in  the  mouse  supports  a 
 relatively  shallow  hierarchy  with  fewer  levels  as 
 compared  to  primates  (Felleman  and  Van  Essen, 
 1991;  Markov  et  al.,  2014;  Harris  et  al.,  2019;  Siegle 
 et  al.,  2021;  Gămănuţ  and  Shimaoka,  2022; 
 Burkhalter  et  al.,  2023;  Glatigny  et  al.,  2024)  .  For 
 example,  analyses  of  laminar  connectivity  patterns 
 show  that  the  cortical  hierarchy,  starting  from  V1, 
 covers  10  hierarchical  levels  in  macaque  (Felleman 
 and  Van  Essen,  1991;  Markov  et  al.,  2014;  Harris  et 
 al.,  2019;  Siegle  et  al.,  2021;  Gămănuţ  and 
 Shimaoka,  2022;  Burkhalter  et  al.,  2023)  but  only  1.5 
 levels  in  mouse  (Felleman  and  Van  Essen,  1991; 
 Markov  et  al.,  2014;  Harris  et  al.,  2019;  Siegle  et  al., 
 2021;  Gămănuţ  and  Shimaoka,  2022;  Burkhalter  et 
 al., 2023)  . 

 Second,  while  it  might  be  tempting  to  assert  that  one 
 type  of  connection  carries  predictions  and  the  other 
 prediction  errors,  it  is  not  a  necessary  conclusion.  For 

 example,  there  is  evidence  that  prediction  errors  are 
 fed  back  to  V1  (Furutachi  et  al.,  2024)  .  Indeed,  each 
 interareal  connection  comprises  multiple  components 
 originating  from  different  cell-type-  or  layer-specific 
 populations  of  neurons  in  the  source  area,  with 
 different  laminar  termination  patterns  in  the  target 
 area.  Having  two  components  per  interareal 
 connection  leads  to  the  conceptualization  of  dual 
 counterstream  architectures  (Markov  et  al.,  2013; 
 Vezoli  et  al.,  2021a)  ,  suggesting  that  discriminative 
 and  generative  predictive  coding  might  coexist  in  the 
 cortex.  In  addition,  the  recent  anatomical  mapping  of 
 axonal  projections  into  A1  or  V1  shows  that  axonal 
 afferents  from  LGN  are  not  restricted  to  layer  IV  but 
 terminate  across  all  layers,  although  with  significantly 
 less  density  (Zhuang  et  al.,  2019)  ;  (Chang  and 
 Kawai,  2018)  ;  (Douglas  and  Martin,  1991; 
 Constantinople  and  Bruno,  2013;  Crandall  et  al., 
 2017)  .  Nevertheless,  the  projection  into  L4  is  a 
 distinguishing  and  unique  feature  of  feedforward 
 projections  compared  to  feedback  (which  does  not 
 project  to  L4)  in  the  sensory  cortex,  thus  providing  a 
 solid  basis  for  constructing  a  cortical  hierarchy 
 (Felleman  and  Van  Essen,  1991;  Markov  et  al.,  2014; 
 Harris  et  al.,  2019;  Siegle  et  al.,  2021;  Gămănuţ  and 
 Shimaoka, 2022; Burkhalter et al., 2023)  . 

 Third,  it  is  important  to  note  that  there  is  no  strict 
 serial  hierarchical  organization,  even  though  such 
 organization  is  commonly  assumed  by  hierarchical 
 predictive  coding  models  (Rao  and  Ballard,  1999). 
 Rather,  there  are  many  connections  between  distant 
 hierarchical  levels  (Felleman  and  Van  Essen,  1991; 
 Markov  et  al.,  2014;  Harris  et  al.,  2019;  Siegle  et  al., 
 2021;  Gămănuţ  and  Shimaoka,  2022;  Burkhalter  et 
 al., 2023) 

 Global vs local oddballs 
 Studies  in  primates  and  humans  have  shown 
 inconsistent  results  of  global  oddball  encoding  (see 
 Section  I  ).  A  study  in  primates  and  humans  failed  to 
 identify  a  population  of  neurons  in  V1  and  V4 
 responding  to  temporal  mismatches.  In  this  study, 
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 early  and  late  temporal  oddballs  were  introduced  into 
 a  longer  sequence,  potentially  creating  “global” 
 oddball  responses  (Solomon  et  al.,  2021)  .  (see 
 earlier  paragraphs).  Other  studies  have  shown  that 
 while  population  average  does  not  show  a  robust 
 global  oddball  response,  population  decoding 
 methods  are  able  to  decode  the  global  oddball 
 condition  with  significantly  above  chance  accuracy  in 
 frontal  areas  including  prefrontal  cortex  and  frontal 
 eye  field  (Bellet  et  al.,  2024;  Xiong  et  al.,  2024)  .  This 
 suggests  that  mechanisms  beyond  simple  rate  or 
 magnitude  codes  are  used  within  populations  of 
 neurons  to  encode  complex  predictions  and 
 prediction  errors.  Two  recent  studies  in  mice  suggest 
 that  responses  in  the  early  visual  and  auditory 
 sensory  cortex  primarily  reflect  local  oddballs  (Jamali 
 et  al.,  2024;  Westerberg  et  al.,  2024a)  .  Extending  the 
 same  paradigm  to  primates,  revealed  that  global 
 oddball  responses  are  more  prominent  in  higher-level 
 cortical  areas,  and  most  pronounced  in  the  prefrontal 
 cortex  (Westerberg  et  al.,  2024a)  .  The  same  study 
 suggests  that  local  errors  can  largely  be  explained  by 
 low  level  mechanisms  such  as  short-term  adaptation 
 and  stimulus  history.  Hence,  actual  predictions  might 
 be  largely  restricted  to  non-sensory,  cognitive  areas 
 (Gabhart  et  al.,  2023)  .  However,  an  ECoG  study  in 
 primates  also  showed  global  oddball  responses 
 across  electrodes  placed  on  the  (mostly  mid-level) 
 sensory  cortex  in  at  least  one  subject  (Chao  et  al., 
 2018)  .  Moreover,  a  human  EEG/MEG  study  from  the 
 same  group  also  supports  a  more  widespread  cortical 
 distribution  of  global  oddball  responses  (Wacongne 
 et  al.,  2011)  .  These  apparent  contradictions  regarding 
 global  oddball  responses  in  the  early  visual  cortex 
 warrant  further  scrutiny.  One  possibility  is  that  the 
 divergence  rests  on  the  non-local  nature  of 
 slow-varying  extracellular  field  potentials  such  as 
 ECoG  and  EEG/MEG.  Another  possibility  is  that  the 
 extent  with  which  global  oddball  responses  are 
 prominent  in  the  sensory  cortex  depends  on  the 
 experimental context. 

 Cortical layers 
 Several  experimental  and  theoretical  studies  have 
 tried  to  assign  specific  or  canonical  roles  to  each 
 cortical  layer  (Plebe,  2018)  largely  based  on  the 
 stereotyped  anatomy  found  across  different  cortical 
 brain  areas  (Douglas  et  al.,  1989;  Barbas  and 
 Rempel-Clower,  1997;  Douglas  and  Martin,  2004, 
 2007;  Barbas  and  García-Cabezas,  2015;  Harris  and 
 Shepherd,  2015)  .  In  addition,  inhibitory  neurons 
 typically  have  stereotyped  distribution  profiles  that 
 are  largely  conserved  across  cortical  areas  (Tasic  et 
 al.,  2018;  Gouwens  et  al.,  2020;  Lichtenfeld  et  al., 
 2024)  .  In  the  mouse,  sensory-evoked  activity  profiles 
 across  cortical  layers  show  layer-dependent 
 organization:  Hamm  et  al.  found  a  higher  proportion 
 of  oddball  response  encoding  neurons  in  superficial 
 cortical  layers  while  responses  to  repeated  stimuli 
 significantly  decreased  across  all  layers  (Hamm  et 
 al.,  2021a)  .  This  result  was  later  confirmed  using 
 electrophysiological  recordings  which  differentiated 
 L1  from  L2/3  (Gallimore  et  al.,  2023)  .  Notably  they 
 reported  reduced  gamma  synchrony  between  L1  and 
 L2/3  during  deviant  stimuli,  indicating  potential 
 functional  differentiation  of  L1.  Similarly,  Jordan  & 
 Keller  used  intracellular  recordings  in  mouse  V1  to 
 study  how  visual  and  motor  inputs  contribute  to  the 
 generation  of  mismatch  responses  (Jordan  and 
 Keller,  2020)  .  While  L5  responded  to  the  mismatch 
 stimulus  with  primarily  hyperpolarizing  effects,  only 
 L2/3  exhibited  visuomotor  integration  properties 
 consistent  with  computing  a  visuomotor  error  directly. 
 Consistently,  ultra-high-field  fMRI  results  in  humans 
 showed  that  expected  events  could  be  decoded  with 
 similar  accuracy  across  cortical  laminae,  while 
 unexpected  events  could  only  be  decoded  in 
 superficial layers  (Thomas et al., 2024)  . 

 However,  Audette  et  al.  recorded  across  layers 
 during  an  audio-motor  expectation  task  and  found 
 abundant  error-like  signals  in  auditory  L2/3  and  L5 
 (Audette  et  al.,  2022)  .  A  key  question  that  remains 
 unanswered  is  whether  L5  is  actively  computing 
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 these  errors  or  dynamically  relaying  information  from 
 other regions. 

 In  all  of  these  studies  however,  there  were  no  sharp 
 boundaries  in  activity  profiles.  Notably,  cortical  layer 
 boundaries  are  more  loosely  defined  in  mice  (Harris 
 and  Shepherd,  2015)  ,  where  the  largest  amount  of 
 cell-type  specific  error  responses  have  been 
 recorded.  Further  specialization  may  be  more  evident 
 in  mammals  with  thicker  cortical  tissue  such  as 
 primates,  or  through  additional  measures  such  as 
 receptor  densities  such  as  5-HT  2  receptors  or  GABA 
 receptors  (Rapan  et  al.,  2021)  .  As  a  final  point  of 
 note,  the  concept  of  a  six-layered  cortex  is  largely 
 based  on  conventions  established  for  primary 
 sensory  areas  (Billings-Gagliardi  et  al.,  1974)  ,  and 
 may  not  be  as  well  substantiated  in  other  cortical 
 areas (Buel & Hilgetag, 2015). 

 2. Relevant theoretical models 
 Hierarchical  models,  including  predictive  coding 
 models  are  largely  based  on  features  of  non-human 
 primate  (NHP)  brains.  In  particular,  in  NHP  sensory 
 information  is  transmitted  through  sensory  areas  in  a 
 somewhat  sequential  manner  (Schmolesky  et  al., 
 1998)  ,  with  receptive  fields  becoming  larger  and 
 more  complex  as  they  progress  through  the  hierarchy 
 (Desimone  et  al.,  1985;  Kusmierek  and  Rauschecker, 
 2009)  .  Hence,  some  models  of  visual  processing 
 suggest  that  discrete  computational  steps  (layers  of 
 the  model)  correspond  to  sequential  sensory 
 processing  areas,  such  as  V1  and  V2,  followed  by  V4 
 and  eventually  IT  (Yamins  et  al.,  2014)  .  In  addition, 
 feedforward  and  feedback  projection  neurons  are 
 segregated  in  both  mice  and  macaques  (Berezovskii 
 et  al.,  2011;  Markov  et  al.,  2014)  ,  indicating  distinct 
 functional  roles  of  these  two  pathways.  However,  top 
 down  signals  from  higher  levels  of  the  cortical 
 hierarchy  can  impact  early  visual  cortex  during 
 processing  of  visual  activity  (Bullier,  2001)  ,  thereby 
 allowing  these  areas  to  evoke  non-sensory  activation 
 in  visual  cortex  that  modifies  and  augments  sensory 
 activation  (Mumford,  1992;  Roelfsema  and  de  Lange, 

 2016)  .  In  other  words,  feedback  projections  can  play 
 an  active  role  in  the  early  visual  cortex  rather  than 
 just  modifying  feedforward  signaling,  as  traditionally 
 assumed.  However,  there  seems  to  be  clear  species 
 differences  in  mammalian  cortical  hierarchization.  In 
 macaques,  the  interareal  connectivity  graph  density 
 is  66%  (i.e.  two  thirds  of  the  possible  interareal 
 connections  do  exist)  and  such  an  interaction  by 
 proxy  can  concern  many  areas  (Markov  et  al.,  2013)  . 
 However,  in  mice,  the  graph  density  is  nearly  100% 
 and  virtually  every  cortical  area  can  interact  with  each 
 other  (Horvát et al., 2016)  . 

 Rao  &  Ballard’s  predictive  coding  is  a  hierarchical 
 model  of  sensory  processing  (Rao  and  Ballard, 
 1999)  ,  where  each  level  encodes  increasingly 
 complex  features,  with  the  final  level  extracting  the 
 most  abstract  features  of  the  input  (Boutin  et  al., 
 2021)  .  In  classical  predictive  coding,  predictions  sent 
 backward  through  the  hierarchy  become  more 
 granular  as  they  approach  the  input  level.  This 
 hierarchy  generally  aligns  with  the  sensory 
 processing  regions  observed  in  the  brain.  Within 
 hierarchical  predictive  coding  models,  we  can 
 distinguish  between  "discriminative"  (Whittington  and 
 Bogacz,  2017,  2019;  Sacramento  et  al.,  2018)  and 
 "generative"  (Rao  and  Ballard,  1999;  Friston  and 
 Kiebel,  2009;  Mikulasch  et  al.,  2023;  Sennesh  et  al., 
 2024)  models.  In  generative  predictive  coding, 
 predictions  flow  down  the  hierarchy  and  prediction 
 errors  flow  up.  This  is  the  currently  dominating  model 
 in  cognitive  science  and  neuroscience.  In  contrast, 
 discriminative  predictive  coding  uses  a  reversed  flow 
 where  predictions  flow  up  and  prediction  errors  flow 
 down.  In  other  words,  generative  predictive  coding 
 aims  to  predict  the  bottom-up  input,  whereas 
 discriminative  predictive  coding  focuses  on  predicting 
 a  top-down  “label”.  Teufel  and  Fletcher  recently 
 argued  that  considering  both  top-down  and 
 bottom-up  forms  of  predictions  may  be  essential  for 
 advancing  predictive  processing  in  neuroscience 
 (Teufel  and  Fletcher,  2020)  .  Experimental  studies 
 might  have  to  account  for  the  possibility  of  such  an 

 16 

https://paperpile.com/c/io7Jhe/K1LDm
https://paperpile.com/c/io7Jhe/K1LDm
https://paperpile.com/c/io7Jhe/2dmcy
https://paperpile.com/c/io7Jhe/O1v52
https://paperpile.com/c/io7Jhe/TsbeL
https://paperpile.com/c/io7Jhe/TsbeL
https://paperpile.com/c/io7Jhe/uIvrd+2n8GZ
https://paperpile.com/c/io7Jhe/uIvrd+2n8GZ
https://paperpile.com/c/io7Jhe/BmnsR
https://paperpile.com/c/io7Jhe/nytoq+AHZ0q
https://paperpile.com/c/io7Jhe/nytoq+AHZ0q
https://paperpile.com/c/io7Jhe/dx7wQ
https://paperpile.com/c/io7Jhe/Zbh6M+SDbHI
https://paperpile.com/c/io7Jhe/Zbh6M+SDbHI
https://paperpile.com/c/io7Jhe/t8UKX
https://paperpile.com/c/io7Jhe/2W17u
https://paperpile.com/c/io7Jhe/4oh6V
https://paperpile.com/c/io7Jhe/4oh6V
https://paperpile.com/c/io7Jhe/PRgyA
https://paperpile.com/c/io7Jhe/PRgyA
https://paperpile.com/c/io7Jhe/LQ58o+CD2dc+iOL8m
https://paperpile.com/c/io7Jhe/LQ58o+CD2dc+iOL8m
https://paperpile.com/c/io7Jhe/4oh6V+r5s0U+Xotxt+7Nvc2
https://paperpile.com/c/io7Jhe/4oh6V+r5s0U+Xotxt+7Nvc2
https://paperpile.com/c/io7Jhe/4oh6V+r5s0U+Xotxt+7Nvc2
https://paperpile.com/c/io7Jhe/l44EB


 Neural mechanisms of predictive processing 

 alternative  signal  flow  as  it  could  significantly  impact 
 the interpretation of experimental results. 

 Early hierarchical models of cortical layers 
 Douglas  and  Martin  (2004)  synthesized  anatomical, 
 physiological,  and  computational  observations  to 
 propose  a  unified  model  of  “canonical”  cortical 
 processing,  highlighting  the  importance  of  recurrent 
 connectivity  and  the  hierarchical  organization  of 
 cortical  layers  (Douglas  and  Martin,  2004)  .  According 
 to  this  model,  sensory  or  feedforward  input  primarily 
 arrives  in  L4  from  the  thalamus  or  lower  cortical 
 areas,  which  then  strongly  projects  to  L2  and  L3. 
 These  upper  layers  provide  feedforward  input  to  L4  of 
 downstream  cortical  areas  and  also  send  projections 
 to  L5,  which  projects  to  other  cortical  areas  and  L6. 
 L6,  in  turn,  sends  projections  back  to  L2/3, 
 completing  the  so-called  Canonical  Cortical 
 Microcircuit. 

 Additionally,  local  recurrent  interactions  between 
 neurons  are  crucial,  with  ascending  input  targeting 
 both  pyramidal  neurons  and  interneurons  (Douglas 
 and  Martin,  1991)  .  Recurrent  connections  amplify  this 
 input,  generating  an  initial  wave  of  excitation  followed 
 by  a  longer  period  of  suppression  (Douglas  et  al., 
 1995;  Cossell  et  al.,  2015)  .  This  notion  of 
 amplification  via  recurrent  excitation  is  important 
 because  the  synaptic  projection  strengths  between 
 hierarchical  levels  are  notoriously  weak,  first  at  the 
 level  of  thalamic  input  to  the  cortex  and  then  between 
 successive  levels  (Markov  et  al.,  2011)  .  In  this 
 manner,  the  local  recurrent  connectivity  makes  up 
 over  80-90%  of  the  total  connectivity.  Connections 
 linking  different  levels  make  up  1  or  2%,  similar  to  the 
 LGN  input  to  area  V1.  Of  note,  quantitative  data 
 regarding  inter-laminar  synaptic  connectivity  in 
 mammalian cortex is limited  (Binzegger et al., 2004)  . 

 Douglas  and  Martin  also  proposed  a  functional 
 interpretation  of  the  circuit,  suggesting  that  L4 
 preprocesses  the  input,  neurons  in  L2/3  collaborate 
 to  explore  all  possible  interpretations  and  select  one 

 consistent  with  their  subcortical  inputs,  while  L5  uses 
 these  interpretations  to  produce  an  output  to  guide 
 actions.  Similar  proposals  have  also  been  made  by 
 others,  based  on  evolutionary  considerations 
 (Shepherd  and  Rowe,  2017)  .  While  these  recent 
 proposals  prioritize  pyramidal  neuron  types  over 
 cortical  layers,  insights  from  the  layer-based 
 perspective  remain  relevant  (Adesnik  and  Naka, 
 2018)  . 

 This  account  just  leaves  L1,  David  Hubel’s  “crowning 
 mystery”  (Hubel,  1982)  .  Traditionally  L1  has  been 
 viewed  as  a  major  target  of  top-down  projections 
 from  across  the  cortex  (reviewed  in  (Markov  and 
 Kennedy,  2013)  ).  This  view  point  is  largely  supported 
 by  electrophysiological  and  anatomical  findings  in 
 NHP  and  humans,  suggesting  that  L1  constitutes  a 
 major  convergence  site  for  signals  descending  the 
 cortical  hierarchy  (Cauller,  1995)  .  A  recent  structural 
 and  functional  study  suggests  that  mouse  L1 
 connectivity  is  more  mixed  than  earlier  work  in 
 primates  suggests  (Ledderose  et  al.,  2023)  ,  perhaps 
 echoing  the  ultra-dense  mouse  cortical  matrix 
 compared to macaque  (Gămănuţ et al., 2018)  . 

 Updated hierarchical models of cortical layers 
 Later  anatomical  findings  led  to  a  major  revision  of 
 the  Douglas  and  Martin  model,  stemming  from  the 
 discovery  that  top-down  feedback  pathways  have  a 
 dual  origin  (Markov  et  al.,  2014)  .  In  addition  to  the 
 classical  feedback  pathway  originating  from  L6  in  the 
 infragranular  layers,  a  second  feedback  pathway 
 stems  from  the  upper  part  of  L2/3  in  the 
 supragranular  layers.  The  two  pathways  differ  in  their 
 topological  aspects:  the  L2  feedback  pathway 
 projects  over  relatively  short  distances  and  tends  to 
 be  point-to-point,  this  contrasts  with  the  L6  pathway 
 which  is  more  long-distance  and  has  a  relatively 
 diffuse  topology  and  corresponds  in  this  sense  to  the 
 classically  described  feedback  pathways  (Rockland 
 and Pandya, 1979)  . 
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 Predictive coding models of cortical layers 
 Predictive  coding  has  been  used  as  a  framework  to 
 hypothesize  the  computations  of  each  cortical  layer 
 (Rao  and  Ballard,  1999;  Bastos  et  al.,  2012; 
 Mikulasch  et  al.,  2023;  Nejad  et  al.,  2024;  Wang  et 
 al.,  2024)  .  Earlier  work  (Bastos  et  al.,  2012)  proposed 
 that  prediction  signaling  is  mediated  by  descending 
 connections  from  deep  layers  (L5/6)  of  higher-order 
 regions  to  superficial  layers  (L1)  of  lower-order 
 regions.  These  predictions  were  compared  against 
 incoming  ascending  signals  (thalamic  inputs  or 
 prediction  errors  from  lower  cortical  regions)  arriving 
 at  Layer  4.  Signals  that  were  not  effectively 
 suppressed  by  descending  predictions  resulted  in 
 prediction  errors,  computed  in  superficial  (L2/3) 
 layers,  and  sent  back  up  the  hierarchy.  In  addition  to 
 laminar  specificity,  predictions  and  prediction  errors 
 were  also  proposed  to  be  mediated  by  oscillatory 
 activity  in  different  frequency  bands,  with  alpha/beta 
 associated  with  predictions  and  gamma  linked  to 
 prediction  errors  (Bastos  et  al.,  2020;  Vinck  et  al., 
 2024)  . 

 Because  feedback  pathways  strictly  avoid  L4  in 
 upstream  areas  (Markov  et  al.,  2014)  ,  the  question  of 
 where  exactly  feedback  and  feedforward  pathways 
 interact  needs  to  be  considered.  One  clue  may  be 
 that  the  projection  from  L6  to  L4  is  one  of  the 
 strongest  inter-laminar  pathways  in  the  visual  cortex 
 (Binzegger  et  al.,  2004)  .  Hence,  it  may  be  the  L6->L4 
 local  inter-laminar  connections  which  allows  relaying 
 feedback  signals  arriving  in  L6  to  reach  L4.  The 
 notion  that  the  major  site  of  feedback  and 
 feedforward  convergence  may  actually  be  in  L4 
 suggests  a  computational  role  for  this  layer  which  has 
 been  largely  ignored  and  in  this  respect  it  is  worth 
 mentioning  the  high-specificity  of  glutamatergic 
 cell-types  found  in  primate  L4  of  area  V1  (Jorstad  et 
 al.,  2023)  ,  Interestingly,  L6  to  L4  is  the  pathway  that 
 was  originally  proposed  for  feedback-feedback 
 convergence  by  Rao  and  Ballard  (Rao  and  Ballard, 
 1999)  . 

 Inspired  by  self-supervised  learning  algorithms, 
 (Nejad  et  al.,  2024)  proposed  another  model  in  which 
 L5  receives  direct  thalamic  input,  while  L2/3 
 generates  predictions  of  this  input.  The  temporal 
 offset  between  L5  and  L2/3  processing  is  crucial  for 
 L2/3's  predictive  function.  Specifically,  L2/3 
 processes  information  that  is  slightly  delayed  due  to 
 synaptic  transmission  from  L4,  creating  a  phase  lag 
 relative  to  the  more  immediate  thalamic  input  to  L5. 
 These  predictions  from  L2/3  are  then  sent  down  to  L5 
 via  L2/3  ->  L5  synapses,  where  they  are  compared 
 with  the  actual  input  to  compute  prediction  errors  in 
 L5.  This  model  aligns  with  observations  on  neuronal 
 sparsity  (Sakata  and  Harris,  2009)  and  error 
 responses  in  sensory  prediction  tasks  (Jordan  and 
 Keller, 2020)  . 

 In  (Mikulasch  et  al.,  2023)  a  model  called  the 
 “dendritic  hypothesis”  follows  the  ideas  of  Douglas 
 and  Martin.  In  this  model,  layer  2/3  (IT  neurons) 
 implements  a  sparse,  predictive  representation,  while 
 deeper  layers  likely  process  sensory  input  (L4)  and 
 compute  the  output  of  the  microcircuit  for  long-range 
 connections  and  motor  control  (L5/PT).  Similar  ideas 
 were  presented  in  (Hawkins  et  al.,  2009)  ,  where  a 
 hierarchical  network  learns  to  predict  longer  temporal 
 chunks  of  input  data.  In  this  framework,  predictions 
 are  thought  to  be  computed  in  layers  2/3,  which 
 implement  a  sparse,  predictive  and  context-sensitive 
 code,  while  deeper  layers  perform  other  functions 
 such  as  belief  calculation.  This  model  was  later 
 extended  (George  and  Hawkins,  2009;  Bennett, 
 2020; Wang et al., 2024)  . 

 One  important  aspect  of  the  cortical  hierarchy  that  is 
 largely  ignored  in  predictive  coding  models  is  the 
 highly  parallel  nature  of  hierarchical  pathways,  where 
 each  area  projects  in  a  distance  dependent  manner 
 to  many  if  not  all  upper  and  lower  stream  areas 
 (Vezoli  et  al.,  2023)  .  The  influence  of  interareal 
 distance  on  the  topology  of  feedforward  and 
 feedback  projections  has  led  to  the  idea  of  a  dual 
 counterstream  architecture  carrying  distinct  signals  in 
 upper  and  lower  layers  of  the  cortex  (Vezoli  et  al., 
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 2021a,  2023)  and  supported  by  recent  human 
 imaging  studies  suggesting  a  distinct  role  of  feedback 
 in L2 and L6  (Bergmann et al., 2024)  . 

 3.  Divergence  and  convergence  between 
 experiments and theories 
 To  a  first  approximation,  experimental  evidence 
 supports  the  idea  that  sensory  processing  involves 
 hierarchical  feature  representation,  aligning  with 
 predictive  coding  theories.  Studies  have 
 demonstrated  that  higher-order  brain  regions  are 
 more  involved  in  processing  complex  sensory  stimuli 
 and  errors,  consistent  with  hierarchical  models  of 
 sensory  processing.  For  instance,  the  RSP  shows 
 responses  to  oddball  sequences  that  differ  from 
 those  in  V1,  aligning  with  the  hierarchical  processing 
 theory  proposed  by  Rao  and  Ballard  (Wyrick  et  al., 
 2023)  . 

 Experimental  findings  indicate  that  top-down  inputs 
 play  a  significant  role  in  error  computation  and 
 modulation,  both  for  oddball  (Hamm  et  al.,  2021a) 
 and  sensory-motor  mismatches  (Jordan  and  Keller, 
 2020;  Audette  et  al.,  2022)  .  Inhibiting  PFC  activity 
 during  a  visual  oddball  paradigm  reduces  responses 
 to  the  mismatch  (Hamm  et  al.,  2021a)  ,  and  this  may 
 work  because  PFC  sends  the  necessary  predictive 
 information  to  V1  (Fiser  et  al.,  2016;  Bastos  et  al., 
 2023)  ,  rather  than  prediction  errors.  On  the  other 
 hand,  during  a  navigation  task,  higher  order 
 thalamo-cortical  projections  appear  to  send  prediction 
 errors  directly  to  V1  (Furutachi  et  al.,  2024)  ,  in 
 contrast  to  the  more  passive  feedback  role  of  PFC 
 (Ross and Hamm, 2024)  . 

 The  functional  differentiation  of  cortical  layers 
 observed  in  experiments  corresponds  with  some 
 aspects  of  theoretical  predictions.  For  example, 
 oddball  responses  are  enriched  in  superficial  layers 
 across  rodent  and  human  studies  (Jordan  and  Keller, 
 2020;  Gallimore  et  al.,  2023;  Thomas  et  al.,  2024) 
 supporting  models  that  propose  that  different  layers 
 compute  distinct  aspects  of  sensory  processing  and 

 prediction  errors  (Rao  and  Ballard,  1999;  Bastos  et 
 al.,  2012;  Nejad  et  al.,  2024;  Rao,  2024;  Wang  et  al., 
 2024)  .  These  findings,  however  consistent,  largely 
 apply  to  visual  cortex.  On  the  other  hand, 
 experiments  in  mouse  auditory  cortex  have  also 
 shown  auditory  mismatch  responses  in  both  L2/3  and 
 L5  (Audette  et  al.,  2022;  Audette  and  Schneider, 
 2023)  .  Likewise,  somatosensory  mismatch  (i.e., 
 whisker  stimulation)  may  be  enriched  in  L4  and  L6  of 
 the  barrel  cortex  in  mice  (Musall  et  al.,  2017;  English 
 et  al.,  2023)  .  Thus,  while  specific  prediction  errors 
 may,  indeed,  show  laminar  specificity,  the  exact 
 pattern may differ across modalities. 

 While  hierarchical  models  like  predictive  coding 
 assume  a  complex,  multi-level  hierarchy  in  sensory 
 processing,  experimental  evidence  suggests  a 
 shallower  hierarchy  in  rodents  compared  to  primates 
 (Felleman  and  Van  Essen,  1991;  Harris  et  al.,  2019; 
 Siegle  et  al.,  2021)  .  This  discrepancy  indicates  that 
 highly  hierarchical  models  may  not  fully  capture  the 
 sensory  processing  dynamics  in  rodents,  highlighting 
 a  potential  limitation  of  these  theories  when  applied 
 across  species.  Comparative  studies  across  multiple 
 species,  such  as  in  (Westerberg  et  al.,  2024a)  ,  thus 
 seem  particularly  valuable  for  contrasting  results  in 
 rodents  and  primate  data,  providing  deeper  insights 
 into species-specific aspects of sensory processing. 

 Anatomical  studies  in  both  cats  and  rats  reveal  that 
 thalamic  inputs  can  bypass  traditional  hierarchical 
 pathways,  directly  activating  deep  cortical  layers 
 (Douglas  and  Martin,  1991;  Constantinople  and 
 Bruno,  2013)  .  This  finding  challenges  the  classical 
 bottom-up  and  top-down  pathway  definitions. 
 Recently,  it  has  even  been  proposed  that  the  cortex 
 is  composed  of  two  processing  sheets  with 
 complementary  roles  (George  et  al.,  2020;  Keller  and 
 Sterzer, 2024)  . 

 Our  ability  to  monitor  neuronal  activity  across 
 all  cortical  layers  is  nascent  but  expanding  quickly 
 and  we  anticipate  significant  progress  in  the  coming 
 years.  Future  experiments  should  leverage  recent 
 technical  advancements  to  refine  our  understanding 

 19 

https://paperpile.com/c/io7Jhe/PpAov+lyVyr
https://paperpile.com/c/io7Jhe/qGB0b
https://paperpile.com/c/io7Jhe/krtV1
https://paperpile.com/c/io7Jhe/krtV1
https://paperpile.com/c/io7Jhe/FUGiM
https://paperpile.com/c/io7Jhe/4rG0T+QGCWU
https://paperpile.com/c/io7Jhe/4rG0T+QGCWU
https://paperpile.com/c/io7Jhe/FUGiM
https://paperpile.com/c/io7Jhe/nt7Qh+UhHrA
https://paperpile.com/c/io7Jhe/nt7Qh+UhHrA
https://paperpile.com/c/io7Jhe/6XIVW
https://paperpile.com/c/io7Jhe/Gi8eJ
https://paperpile.com/c/io7Jhe/4rG0T+HLOw7+47oNN
https://paperpile.com/c/io7Jhe/4rG0T+HLOw7+47oNN
https://paperpile.com/c/io7Jhe/4oh6V+kkbBC+APVRJ+hi0iX+KUyuM
https://paperpile.com/c/io7Jhe/4oh6V+kkbBC+APVRJ+hi0iX+KUyuM
https://paperpile.com/c/io7Jhe/4oh6V+kkbBC+APVRJ+hi0iX+KUyuM
https://paperpile.com/c/io7Jhe/QGCWU+KFHi2
https://paperpile.com/c/io7Jhe/QGCWU+KFHi2
https://paperpile.com/c/io7Jhe/o3F52+oBeXZ
https://paperpile.com/c/io7Jhe/o3F52+oBeXZ
https://paperpile.com/c/io7Jhe/qy5kw+4Usmc+MddZZ
https://paperpile.com/c/io7Jhe/qy5kw+4Usmc+MddZZ
https://paperpile.com/c/io7Jhe/mtxW1
https://paperpile.com/c/io7Jhe/GDU2W+jceJI
https://paperpile.com/c/io7Jhe/GDU2W+jceJI
https://paperpile.com/c/io7Jhe/HblZN+3GVYP
https://paperpile.com/c/io7Jhe/HblZN+3GVYP


 Neural mechanisms of predictive processing 

 of  computations  across  cortical  layers  during 
 mismatch experiments  (Weisenburger et al., 2019)  . 

 The  role  of  corollary  discharge  remains  less  explored 
 in  predictive  processing  models  compared  to 
 experimental  research.  Recent  experimental 
 evidence  supports  brain-wide  behavioral  modulation 
 of  cortical  networks  (Steinmetz  et  al.,  2019)  ,  which 
 challenges  some  aspects  of  hierarchical  predictive 
 coding  and  the  concept  of  “explaining  away”. 
 However,  it  also  suggests  that  distinct  computations 
 may  occur  across  successive  areas.  It  is  likely  that 
 multiple  computations  occur  within  a  single  cortical 
 column,  involving  a  mix  of  local  and  global  activity 
 modes.  For  instance,  recent  experiments  revealed 
 varying  decoding  accuracy  across  layers  for  three 
 distinct  properties  within  a  stimulus  set.  (Tovar  et  al., 
 2020)  .  Modeling  work  should  integrate  this  possibility 
 to align with cortical recordings. 

 III. A diversity of predictive 
 responses in single excitatory 
 neurons 
 Predictive  processing  theories  involve  diverse 
 responses  across  a  large  network  of  individual 
 neurons.  Specifically,  predictive  responses  at  the 
 single  neuron  level  involve  anticipatory  activity  to 
 forthcoming  stimuli,  suppressed  or  augmented 
 responses  to  predicted  stimuli,  and  augmented, 
 suppressed,  or  otherwise  altered  responses  to 
 unpredicted  stimuli.  For  example,  in  a  visuomotor 
 task,  a  moving  visual  stimulus  can  either  match  or 
 differ  from  an  animal's  current  locomotion.  Neuronal 
 responses  in  the  cortex  are  modulated  positively  or 
 negatively  based  on  whether  the  stimulus  speed 
 exceeds  or  falls  short  of  the  expected  motion  (e.g., 
 when  the  stimulus  moves  faster  or  slower  than  the 
 animal's  movement).  Additionally,  unsigned 
 prediction  errors  can  signal  surprise  or  uncertainty, 
 regardless  of  the  stimulus  valence  or  content.  In  this 
 section,  we  first  review  experiments  that  have 
 documented  predictive  modulation  of  excitatory 

 neurons  in  the  cortex.  We  consider  the  diversity  of 
 responses  that  have  been  observed  in  excitatory 
 neurons  in  the  cerebral  cortex  and  the  predictive 
 processing  theories  explaining  these  observations. 
 We  then  examine  models  proposing  mechanisms  by 
 which these diversity of responses emerge. 

 In  the  next  section  (  Section  IV  ),  we  consider  the 
 diversity  of  responses  and  roles  that  have  been 
 identified  for  specific  subtypes  of  inhibitory 
 interneurons  in  the  cortex  and  then  relate  these 
 properties  to  their  potential  roles  in  the  circuit  overall 
 in relation to predictive processing. 

 1. Experimental evidence 

 The abiding relevance of the neuron doctrine 
 A  core  principle  of  modern  neuroscience  is  the 
 "neuron  doctrine,"  which  states  that  neurons  are  the 
 basic  structural  and  functional  units  of  the  nervous 
 system.  The  neuron  doctrine  has  its  roots  in  Cajal’s 
 original  discovery  of  neurons  as  individual  cells 
 (Jones,  1994,  1999)  ,  and  the  subsequent 
 characterization  of  their  neurophysiological 
 properties.  Early  studies  began  with  the  in  situ 
 characterization  of  the  biophysics  underlying  action 
 potentials,  and  later  expanded  to  the  characterization 
 of  neuronal  responses  in  vivo  ,  culminating  in  a  series 
 of  discoveries  concerning  the  visual  system, 
 specifically  how  individual  neurons  in  the  visual 
 cortex  process  information  and  respond  to  specific 
 features  like  edges,  orientation,  and  movement 
 (Hubel  and  Wiesel,  1962,  1965)  .  It  is  worth  noting 
 that,  due  to  technical  limitations  at  the  time,  these 
 studies  were  primarily  conducted  one  neuron  at  a 
 time. 

 Early  findings  showed  that  individual  cortical  neurons 
 are  highly  selective,  or  "tuned,"  to  specific  stimuli.. 
 However,  theoreticians  even  at  the  time  recognized 
 that  the  brain  likely  functions  through  the  activity  of 
 large  populations  of  neurons  rather  than  relying 
 solely  on  single  neurons  (e.g.,  (Bullock,  1959; 
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 Shepherd,  1972;  Singer  et  al.,  1997;  Bullock  et  al., 
 2005;  Guillery,  2005,  2007)  ).  Nevertheless,  the 
 inability  to  study  large-scale  population  activity  at  the 
 time  meant  that  much  of  the  theoretical  focus 
 remained  on  the  role  of  single  neurons.  Accordingly, 
 the  neuron  doctrine  evolved  into  the  concept  of 
 neurons  as  “feature  detectors”  (Barlow,  1972;  Parker 
 and  Newsome,  1998)  ,  also  known  as  the  “Barlow 
 doctrine”.  This  concept  suggests  that  individual 
 neurons  serve  a  fixed,  singular  function,  similar  to 
 individual workers at a factory line. 

 The  introduction  of  electrode  arrays  capable  of 
 measuring  the  simultaneous  activity  of  hundreds,  or 
 even  thousands  of  neurons  in  vivo  ,  has  shifted  the 
 theoretical  focus  towards  understanding  the  function 
 of  neuronal  collectives,  also  referred  to  as  population 
 activity.  This  trend  has  led  to  an  increased  scrutiny  of 
 the  neuron  doctrine  (Yuste,  2015;  Eichenbaum,  2018; 
 Ebitz  and  Hayden,  2021)  .  Discoveries  such  as 
 context-dependent  changes  in  neuronal  tuning 
 (Gilbert  and  Wiesel,  1990;  Maier  et  al.,  2007;  Rigotti 
 et  al.,  2013;  Franke  et  al.,  2022;  Goldin  et  al.,  2022; 
 McFadyen  et  al.,  2022;  Popovkina  and  Pasupathy, 
 2022;  Russell  et  al.,  2024)  ,  representational  drift 
 (Deitch  et  al.,  2021;  Marks  and  Goard,  2021; 
 Schoonover  et  al.,  2021)  and  multiplexing  (Jun  et  al., 
 2022;  She  et  al.,  2024)  challenge  the  traditional 
 notion that neurons have a fixed, hardwired role. 

 Major subtypes of excitatory neurons 
 This  flexibility  notwithstanding,  that  neurons  retain 
 some  category-specific  role  –  e.g.  roles  for  local 
 interneurons  or  IT  projecting  pyramidal  cells  –  seems 
 plausible.  Of  course,  excitatory  and  inhibitory 
 neurons  almost  certainly  play  specific  roles  in  brain 
 circuits  and  computation:  a  point  that  is  obvious  from 
 not  only  their  postsynaptic  actions  but  also  by  their 
 morphologies  and  axonal  projection  patterns.  But 
 whether  subtypes  within  these  larger  categories  have 
 circumscribed  functions  in  relation  to  broader 
 cognitive  and  perceptual  outputs  of  the  brain  is  less 
 obvious.  The  emergence  of  transgenic  and  viral 

 approaches  to  target  and  precision  optical  or  novel 
 pharmacological  approaches  record  or  manipulate 
 molecularly-defined  cell  types  techniques  of  the  past 
 three  decades  have  confirmed  that  specific  neuronal 
 subtypes  are  linked  to  particular  functions,  even 
 within  a  given  sensory  cortical  brain  area  (e.g.,  (Fu  et 
 al.,  2014;  Kepecs  and  Fishell,  2014;  Pakan  et  al., 
 2016; Dipoppa et al., 2018; Ferguson et al., 2023)  ). 

 Excitatory  neurons,  primarily  glutamatergic  neurons, 
 can  be  classified  into  four  major  subtypes  based  on 
 their  laminar  distribution,  projections,  and 
 morphologies  (or  more  specifically,  their  inputs, 
 outputs,  and  internal  structure;  (Adesnik  and  Naka, 
 2018)  ).  Spiny  stellate  cells  are  predominantly  located 
 in  layer  4,  where  they  receive  bottom-up  input, 
 typically  from  the  thalamus,  and  project  locally, 
 mostly  to  neurons  in  layer  2/3.  Intratelencephalic  (IT) 
 neurons  are  distributed  across  layers  2/3,  5,  and  6 
 and  project  to  other  regions  of  the  neocortex  and  the 
 broader  telencephalon.  Evidence  suggests  that 
 subpopulations  of  IT  neurons  may  project  either 
 upward  or  downward  within  the  cortical  hierarchy– 
 but  rarely  both  –  a  distinction  that  carries  significant 
 implications  for  theories  of  predictive  processing. 
 Pyramidal  tract  (PT)  neurons,  primarily  found  in  layer 
 5,  project  largely  to  the  brainstem  and  spinal  cord, 
 while  also  sending  collaterals  to  the  neocortex, 
 thalamus,  and  striatum.  These  collaterals  may  serve 
 as  substrates  for  corollary  discharge  or  efference 
 copies  of  motor  output.  Both  IT  and  PT  neurons  are 
 classified  as  pyramidal  cells  (PYRs)  due  to  their 
 triangular  soma  and  prominent  apical  dendrites. 
 Cortico-thalamic  neurons,  primarily  located  in  layer  6, 
 project  directly  to  the  thalamus,  where  they  exert 
 modulatory  effects  via  mGluRs  (Murray  Sherman  and 
 Guillery,  2001;  Liu  et  al.,  2015)  .  They  often  send 
 collaterals  to  the  thalamic  reticular  formation  and 
 layer  4  cells  within  the  same  cortical  column.  In 
 intracortical  recording  studies,  the  explicit 
 identification  of  excitatory  neuron  subtypes  is  typically 
 absent.  However,  the  laminar  location  of  recorded 
 neurons  often  provides  indirect  insights  into  their 
 subtype, as well as their principal inputs and outputs. 
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 These  findings  have  influenced  the  study  of 
 predictive  processing.  Specifically,  it  raises  the 
 question:  are  distinct  subpopulations  of  neurons 
 responsible  for  specific  computational  steps  in 
 predictive  processing,  such  as  predicting  sensory 
 inputs,  or  calculating  the  discrepancy  between 
 sensory data and expectations? 

 Neuronal responses to sequential mismatches 
 In  standard  visual  oddball  paradigms  using  oriented 
 grating  stimuli,  excitatory  neurons  in  the  visual  cortex 
 exhibit  the  most  pronounced  prediction  error-like 
 responses  compared  to  inhibitory  interneurons. 
 (Hamm  et  al.,  2021a)  conservatively  estimated  that 
 approximately  11%  of  excitatory  neurons  in  layer  2/3, 
 among  those  responsive  to  a  given  stimulus 
 orientation,  show  clear  mismatch  responses.  In 
 contrast,  the  percentage  of  mismatch-response 
 neurons  falls  below  chance  levels  in  layers  4  and  5  - 
 a  finding  corroborated  using  other  types  of  mismatch 
 features  such  as  spatial  frequency  in  V1  (Pak  et  al., 
 2021)  .  (Bastos  et  al.,  2023)  demonstrated  that  these 
 prediction  error  responses  are  strongest  in  neurons 
 specifically  tuned  to  the  orientation  of  the  oddball 
 stimulus  but  are  also  observed  in  neurons  with  limited 
 or  off  target  orientation  selectivity,  albeit  to  a  much 
 smaller  degree.  This  suggests  that  prediction  error 
 responses  in  the  oddball  paradigm  involve  a  gain 
 modulation  mechanism.  This  is  further  supported  by 
 observations  of  gain  modulation  in  stimulus  selective 
 PYRs  in  layer  2/3  of  V1  during  a  navigation  oddball 
 paradigm,  in  which  stimuli  were  sequentially 
 presented  along  a  linear  corridor  (Furutachi  et  al, 
 2024).  Garret  et  al  (2023)  also  found  that  excitatory 
 neurons  in  superficial  layers  V1  demonstrated  the 
 largest  responses  to  novel  stimuli  (see  also: 
 (Westerberg  et  al.,  2024a)  ),  but  absent  responses  to 
 stimulus  omissions,  in  mice  trained  in  a  visual  oddball 
 detection  task.  These  observations  provide  further 
 support  for  a  gain  enhancement  mechanism  through 
 the  interaction  of  expectation  with  feed-forward  input, 
 as  the  absence  of  feed-forward  input  on  an  omission 

 trial  did  not  signal  a  prediction  error  in  excitatory 
 neurons.  Accordingly,  it  is  not  clear  whether 
 excitatory  neurons  in  V1  exhibit  negative  prediction 
 errors  during  sequential  oddball  paradigms.  In  higher 
 visual  areas  in  parietal  cortex  of  the  ferret,  a 
 sequential  oddball  paradigm  elicited  prediction  error 
 responses  consisting  of  increased  responses  in 
 excitatory  neurons  that  were  selective  for  the  deviant 
 features  and  decreased  –  or  silenced  –  responses  in 
 excitatory  neurons  that  were  selective  for  opposite 
 features  (Zhou  et  al.,  2020)  .  This  is  again  consistent 
 with  a  gain  modulation  mechanism,  but  also  suggests 
 divisive  normalization  and/or  lateral  inhibition  are 
 present as well. 

 In  the  auditory  domain,  systematic  comparisons  of 
 prediction  error  responses  across  layers  and 
 subtypes  of  PYRs  to  sequential  oddballs  are  absent, 
 but  i)  direct  recordings  of  layer  2/3  excitatory  neurons 
 in  the  mouse  confirm  the  presence  of  such  responses 
 (Chen  et  al.,  2015)  ,  and  ii)  recordings  in  A1  of 
 non-human  primates  also  suggest  a  subgranular 
 enrichment  based  on  current  source  density  profiles 
 (Lakatos  et  al.,  2020)  .  While  this  indicates  some  level 
 of  error  selectivity  within  the  excitatory  neuronal 
 population,  detailed  investigations  into  the  specific 
 excitatory  neuron  types  (PT  vs  IT,  for  example) 
 involved  in  these  error  responses  have  not  yet  been 
 conducted.  Recent  work  in  rat  auditory  cortex 
 identified  clear  prediction  error  response  to  omitted 
 auditory  stimuli  (Lao-Rodríguez  et  al.,  2023)  .  These 
 responses  were  robust  across  multiple  auditory 
 cortical  regions  and  present  in  awake  and 
 anesthetized  states.  However,  such  omission 
 responses  were  only  present  when  very  short 
 (125ms)  interstimulus  intervals  were  used,  and 
 omission-responsive  neurons  responded  also  to 
 frequency  deviants  as  well.  Thus,  whether  pure 
 negative  prediction  error  neurons  are  present  in 
 auditory cortex is unclear. 

 Divergence  from  this  laminar  pattern  of  enhanced 
 prediction  error  responses  in  layer  2/3  has  been 
 found  in  other  modalities.  In  a  sequential  oddball 
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 paradigm  using  whisker  stimulation  and  recording  in 
 the  barrel  cortex  of  mice,  (Musall  et  al.,  2017)  found 
 that  prediction  error-like  responses  were  only  present 
 in  granular  input  layers,  emerging  later  (200ms)  after 
 the  initial  stimulus  evoked  responses.  Later,  the  same 
 group  identified  similar  Bayesian  surprise  responses 
 in  layer  6  (English  et  al.,  2023)  .  Although  cell-type 
 (excitatory  vs  inhibitory)  was  not  analysed,  this 
 pattern  suggests  that  somatosensory  mismatch 
 responses diverge from visual responses. 

 One  possibility  for  this  observation  is  that  layer  2/3 
 computes  the  prediction  error  when  the  competing 
 features  are  represented  locally,  while  other  layers 
 may  exhibit  the  response  when  it  is  computed 
 elsewhere  and  fed-back,  forward,  or  laterally  in  the 
 cortical  hierarchy.  In  the  visual  mismatch  studies 
 cited  above,  the  standard  (predictable)  stimulus 
 features  and  the  oddball  (deviant)  stimulus  features 
 were  encoded  within  the  same  column  of  cortex 
 (orientation  or  spatial  frequency,  in  the  mouse),  while 
 in  the  somatosensory  mismatch  studies,  the  standard 
 and  the  deviant  stimuli  were  distinct  whiskers,  which 
 are  encoded  by  distinct  barrels  in  spatially  separated 
 columns  of  the  cortex.  Such  differences  may  suggest 
 that  the  layer-specific  computation  of  prediction 
 errors  may  depend  on  whether  sensory  features  are 
 encoded  within  a  single  cortical  column  or  across 
 spatially  distributed  columns,  and  invites  further 
 investigation. 

 Sensory-motor mismatches neuronal responses 
 Locomotion,  vocalizations,  and  other  forms  of  motor 
 outputs  lead  to  predictable  sensory  inputs  which  the 
 brain  processes  differently  than  sensory  inputs 
 arising  from  other  sources  –  an  observation  well 
 explained  in  a  predictive  coding  framework.  In 
 systematic  study  of  these  phenomena,  such  as  in 
 sensory-motor  mismatch  experiments,  both  positive 
 and  negative  prediction  errors  can  be  triggered  by 
 dissociating  sensory  feedback  from  the  animal's 
 actions  or  by  omitting  sensory  feedback  during  an 
 animal’s  action.  For  example,  (Jordan  and  Keller, 

 2020)  used  the  locomotion-based  sensory-motor 
 mismatch  approach  to  probe  the  presence  of  both 
 positive  and  negative  mismatch  responses  in 
 neurons  in  V1  of  mice  .  Intracellular  recordings 
 revealed  distinct  groups  of  excitatory  neurons  that 
 responded  oppositely  to  the  same  mismatch  event, 
 with  some  neurons  depolarizing  and  others 
 hyperpolarizing  in  response  to  sensory-motor 
 mismatches.  These  responses  formed  a  continuous 
 distribution  and  were  linked  to  the  neurons'  intrinsic 
 electrophysiological  properties,  suggesting  that 
 neuron  type  characteristics  may  underlie  positive  and 
 negative  prediction  error  signals.  Additionally,  (Fiser 
 et  al.,  2016)  demonstrated  that,  with  experience, 
 some  layer  2/3  neurons  become  predictive  by 
 responding  in  anticipation  of  an  expected  visual 
 stimulus.  When  these  expected  stimuli  were  omitted, 
 neuronal  activity  increased,  particularly  during  trials 
 that  had  previously  exhibited  strong  predictive 
 activity.  This  highlights  the  dynamic  plasticity  of 
 neuronal populations in encoding predictive signals. 

 (Audette  et  al.,  2022)  used  an  alternative 
 sensory-motor  mismatch  paradigm  where  forelimb 
 lever-pressing  triggered  a  brief  sound  event  at  a  fixed 
 position  in  the  movement.  The  consistent  timing  of 
 sensory  feedback  during  a  single  limb  movement 
 allowed  for  the  analysis  of  extracellular  neural  activity 
 in  anticipation  of  the  expected  sound.  A  population  of 
 auditory  cortex  neurons  across  all  layers  signaled 
 both  the  timing  and  identity  of  the  anticipated  sensory 
 event  (Audette  et  al.,  2022;  Zhou  and  Schneider, 
 2024)  .  Altering  the  frequency  of  the  sound  revealed 
 mismatch  neurons,  including  a  large  population  of 
 neurons  that  did  not  respond  to  sounds  in  any  other 
 condition,  including  passive  listening.  In  the  auditory 
 cortex,  movement,  prediction  and  mismatch  neurons 
 were  largely  carried  by  distinct  neural  populations, 
 suggesting  that  predictive  computations  may  be 
 performed  by  specific,  identifiable  cell  types  (Audette 
 et al., 2022; Audette and Schneider, 2023)  . 

 A  separate  group  studying  predictive  suppression  of 
 self-generated  responses  in  the  auditory  cortex  of 
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 mice  found  that  excitatory  neurons  across  all  layers 
 of  A1  display  this  attenuation,  with  deep  layers  5/6 
 exhibiting  the  strongest  suppression.  Interestingly, 
 this  corollary  discharge  (see  Glossary  )  was  largely 
 disrupted  in  a  mouse  model  of  schizophrenia 
 (df16A+/-  mice),  consistent  with  some  models  of 
 altered  predictive  processing  in  psychosis  (  (Rummell 
 et al., 2023)  ; see  Supplementary Text 1  ). 

 Advances  in  single-cell  transcriptomics  have  enabled 
 a  comprehensive  classification  of  cortical  cell  types 
 by  analyzing  gene  expression  profiles  at  the  cellular 
 level  (Jorstad  et  al.,  2023;  Yao  et  al.,  2023)  .  These 
 distinct  cell  types  can  now  be  experimentally  targeted 
 and  appear  to  support  specific  subcircuits  and 
 dynamics  (e.g.  (Mohan  et  al.,  2023;  Musall  et  al., 
 2023)  .  O’Toole  et  al.  combined  photoconvertible 
 markers  with  transcriptional  profiling  to  identify  and 
 functionally  characterize  the  cell  types  responsible  for 
 encoding  positive  and  negative  prediction  errors 
 during  sensory-motor  mismatches  (O’Toole  et  al., 
 2023)  .  Their  results  suggest  that  sub-populations  of 
 layer  2/3  excitatory  neurons  may  encode  positive 
 (Rrad  expressing)  vs  negative  prediction  errors 
 (Adamts2  expressing)  in  a  locomotive  task.  Whether 
 this  distinction  holds  true  for  other  cortical  regions 
 and other mismatch types remains to be determined. 

 Spatial integration and mismatch 
 In  the  visual  system,  the  “classical  receptive  field”  of 
 a  neuron  is  defined  as  a  limited  portion  of  the  visual 
 field  that  must  be  stimulated  in  order  to  modulate  a 
 neuron’s  response.  However,  top-down  connections 
 from  higher  levels  of  the  cortical  hierarchy,  originating 
 from  neurons  with  much  larger  receptive  fields,  can 
 influence  the  responses  of  target  neurons  at  lower 
 levels  (see  Section  II  ,  (Salin  et  al.,  1992)  .  Under 
 certain  conditions,  these  top-down  signals  can  cause 
 neurons  to  respond  to  stimuli  outside  their  classical 
 receptive fields  (Vezoli et al., 2023)  . 

 This  phenomenon  led  to  the  concept  of  an 
 "extra-classical  receptive  field”,  which  extends 

 beyond  the  classical  receptive  field.  One  well-studied 
 example  of  an  extra-classical  receptive  field  effect  is 
 end-stopping,  or  surround  suppression,  in  the  visual 
 cortex.  This  occurs  when  a  stimulus  extends  beyond 
 the  boundaries  of  the  classical  receptive  field,  often 
 resulting  in  a  reduced  neuronal  response  (Hubel  and 
 Wiesel,  1965)  ,  (Xing  and  Heeger,  2001;  Fu  et  al., 
 2024)  .  This  modulation  highlights  the  influence  of 
 contextual information on visual processing. 

 A  recent  occlusion  study  found  that  layer  2/3 
 pyramidal  neurons  selective  for  an  occluded  region  of 
 an  image  encoded  image-specific  information  in  their 
 responses.  This  suggests  that  these  neurons  signal 
 the  absence  of  predicted  visual  stimuli, 
 corresponding  to  positive  prediction  errors  (Seignette 
 et  al.,  2024)  .  The  same  study  identified  another 
 population  of  layer  2/3  pyramidal  neurons  that 
 responded  to  the  presence  of  unpredicted  visual 
 stimuli,  signaling  negative  prediction  errors. 
 Interestingly,  the  study  also  showed  that  layer  5 
 pyramidal  neurons  could  be  divided  into 
 subpopulations  that  preferred  either  contextual 
 (predictive)  input  or  sensory  input.  This  division 
 suggests  that  these  neurons  may  also  encode 
 prediction  errors.  However,  their  responses  were 
 more  complex  and  varied  depending  on  the  task 
 engagement  of  the  animal,  highlighting  a  dynamic 
 aspect  of  their  role  in  processing  prediction  errors. 
 Thus,  consistent  with  studies  employing  sequential 
 oddballs  and  sensorimotor  mismatches,  it  appears 
 that  layer  2/3  excitatory  neurons  may  exhibit  the  most 
 reliable  positive  and  negative  prediction  errors  –  at 
 least in visual cortex. 

 Precision signals 
 In  hierarchical  predictive  coding  ,  representations  of 
 sensory  causes  are  updated  through  the 
 precision-weighting  of  bottom-up  prediction  errors 
 and  top-down  predictions  (Rao  and  Ballard,  1999; 
 Bastos  et  al.,  2012)  .  Precision,  defined  as  the  inverse 
 of  the  variance,  determines  the  relative  reliance  on 
 sensory  bottom-up  inputs  versus  top-down 

 24 

https://paperpile.com/c/io7Jhe/Cbx7A
https://paperpile.com/c/io7Jhe/Cbx7A
https://paperpile.com/c/io7Jhe/ufUVN+LIH9s
https://paperpile.com/c/io7Jhe/wbTc2+OZeB8
https://paperpile.com/c/io7Jhe/wbTc2+OZeB8
https://paperpile.com/c/io7Jhe/VycL4
https://paperpile.com/c/io7Jhe/VycL4
https://paperpile.com/c/io7Jhe/l0Pot
https://paperpile.com/c/io7Jhe/PpAov
https://paperpile.com/c/io7Jhe/5hnp1
https://paperpile.com/c/io7Jhe/5hnp1
https://paperpile.com/c/io7Jhe/U3GDS+nN2uz
https://paperpile.com/c/io7Jhe/U3GDS+nN2uz
https://paperpile.com/c/io7Jhe/1Ut3a
https://paperpile.com/c/io7Jhe/1Ut3a
https://paperpile.com/c/io7Jhe/4oh6V+kkbBC
https://paperpile.com/c/io7Jhe/4oh6V+kkbBC


 Neural mechanisms of predictive processing 

 predictions.  When  sensory  input  is  noisier  or  more 
 unreliable,  top-down  predictions,  based  on  prior 
 knowledge,  dominate  (Huang  and  Rao,  2011)  .  For 
 instance,  when  walking  through  a  dark  room,  prior 
 knowledge  and  predictions  from  other  sensory 
 modalities  guide  perceptual  inferences  about  object 
 shapes  and  surfaces  influencing  representations  in 
 the visual cortex. 

 Precision  is  not  only  influenced  by  the  signal-to-noise 
 ratio  of  the  sensory  input  but  also  by  internal  and 
 behavioral  states.  For  example,  attention  can 
 enhance  sensory  weighting  through  mechanisms 
 such  as  gain  modulation,  neural  synchronization,  or 
 reduced  neural  variability  (Mitchell  et  al.,  2007,  2009; 
 Cohen  and  Maunsell,  2009;  Harris  and  Thiele,  2011; 
 Denfield  et  al.,  2018;  Thiele  and  Bellgrove,  2018)  . 
 Similarly,  arousal  can  increase  the  reliability  and 
 signal-to-noise  ratio  of  sensory  responses  (Harris  and 
 Thiele, 2011; McGinley et al., 2015)  . 

 Although  experimental  data  is  not  typically  interpreted 
 or  reported  in  relation  to  precision  signals  in  the 
 literature,  there  is  some  evidence  that  prediction 
 errors  lead  to  increased  precision  in  sensory  regions 
 when  considered  through  this  lens.  For  instance, 
 (Zhou  et  al.,  2020)  ,  recording  in  higher  visual  areas  in 
 parietal  cortex  of  the  ferret,  demonstrated  that  visual 
 oddballs  evoke  increased  responses  in  excitatory 
 neurons  coding  for  the  deviant  features  and 
 decreased  responses  –  or  suppressed  activity  –  in 
 excitatory  neurons  coding  for  opposite  features  from 
 the  deviant  (relative  to  a  many  standards  control).  As 
 discussed  above,  others  have  shown  that  prediction 
 errors  in  mouse  visual  cortex  primarily  involve 
 augmented  responses  across  neural  populations  that 
 depend  on  the  feature  selectivity  each  neuron  in 
 relation  to  the  deviant  stimulus–  an  effect  which 
 would  amount  to  increased  precision  (Audette  and 
 Schneider, 2023; Furutachi et al., 2024)  . 

 On  the  prediction  end,  (Bastos  et  al.,  2023)  examined 
 the  spatiotemporal  pattern  of  top-down  inputs  to 
 visual  cortex  from  prefrontal  cortex  and  showed  that 

 during  highly  predictable  sequences  (a  visual 
 oddball),  the  spatial  standard  deviation  of  activity 
 across  the  population  of  axons  in  was  higher  than  in 
 a  less  predictable  sequence  (many  standards 
 control).  Specifically,  during  the  less  predictable 
 sequence,  the  distribution  of  activity  across  the 
 population  of  PFC  axons  was  more  gaussian,  while, 
 during  the  predictable  sequence,  the  distribution 
 showed  more  high  and  more  low  activity  axons. 
 Further,  the  stimulus  could  be  decoded  from  the 
 spatiotemporal  pattern  of  axonal  activity  better  during 
 the  predictable  oddball  sequence  than  during  the 
 less-predictable  control.  Although  authors  did  not 
 interpret  this  in  terms  of  precision,  it  is  consistent  with 
 this aspect of the predictive coding model. 

 2. Relevant theoretical models 

 Emergence of error neurons 
 From  the  theoretical  perspective,  positive  and 
 negative  error  neurons  offer  a  potential  solution  to  a 
 biological  plausibility  issue  in  many  predictive  coding 
 models.  Artificial  neural  networks  often  contain  units 
 with  synaptic  weights  that  can  be  both  positive  and 
 negative,  allowing  them  to  switch  between  being 
 inhibitory  and  excitatory  functions  (Ackley  et  al., 
 1985; Rumelhart et al., 1986)  . This allows a single 
 error  unit  to  either  encode  a  negative  or  a  positive 
 error,  depending  on  the  input.  However,  according  to 
 Dale’s  principle  (Eccles  et  al.,  1954)  ,  this  is  generally 
 not  biologically  plausible  as  synapses  are  typically 
 either  excitatory  or  inhibitory  and  cannot  switch 
 between  these  states  based  on  the  input.  Early 
 theorists  modeling  predictive  coding  speculated  that  if 
 their  models  respected  Dale’s  law,  they  would  likely 
 need  to  include  distinct  positive  and  negative  error 
 neurons  to  encode  both  types  of  errors  (Rao  and 
 Ballard, 1999)  . 

 Models of pure sensory errors 
 Given  the  early  availability  of  single-cell  recordings  in 
 the  visual  system,  some  of  the  first  models  focused 
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 on  the  so-called  “extra-classical”  receptive  field 
 effects  as  a  testing  ground  for  model  validation 
 (Allman  et  al.,  1985)  .  Predictive  coding  was  initially 
 used  to  explain  surround  suppression  via  predictive 
 inhibition  in  the  retina  (Srinivasan  et  al.,  1982)  and 
 later  extended  to  cortex  (Rao  and  Ballard,  1999)  .  Rao 
 and  Ballard  (see  Figure  2A  )  proposed  that  cortex 
 performs  hierarchical  Bayesian  inference  by 
 integrating  bottom-up  sensory  information  with 
 top-down  priors  through  local  feedback  loops 
 between  areas,  a  concept  also  suggested  by  others 
 (Lee  and  Mumford,  2003)  .  In  their  model, 
 “end-stopping”  occurs  in  specialized  error  neurons 
 that  compare  inputs  with  top-down  prior  expectations, 
 describing  this  phenomenon  as  a  hierarchical 
 computation. 

 Alternatively,  normalization  mechanisms  and 
 figure-ground  segmentation  propose  that  mismatch 
 responses  organize  and  prioritize  sensory  information 
 according  to  context.  Predictive  and  sparse  coding 
 models,  along  with  conceptually  closely  related 
 normalization  models  (Lian  and  Burkitt,  2024)  ,  have 
 highlighted  the  role  of  lateral  competition  as  a 
 potential  origin  of  extra-classical  receptive  field 
 effects  in  cortex  (Lee  et  al.,  2006;  Carandini  and 
 Heeger,  2011;  Spratling,  2011;  Zhu  and  Rozell,  2013; 
 Boutin  et  al.,  2021)  .  This  type  of  computation  referred 
 to  as  a  “explaining  away”  (see  Glossary  )  through 
 lateral  inhibition  1  in  cortical  circuits.  As  a  bar  stimulus 
 becomes  longer,  neurons  with  receptive  fields  near 
 the  end  of  the  bar  take  over  and  “explain  away”  the 

 1  Note  that  explaining  away  has  been 
 connected  to  two  different  network  motifs:  One, 
 top-down  inhibition,  as  in  the  cellular  hypothesis,  in 
 which  bottom-up  input  that  has  been  explained  away 
 is  canceled  out  (Clark,  2013)  .  Or  two,  lateral  inhibition 
 between  neurons  (or  cortical  areas)  that  provide 
 competing  explanations  for  the  same  inputs 
 (Moreno-Bote  and  Drugowitsch,  2015)  ,  as  in  the 
 dendritic  hypothesis  (Mikulasch  et  al.,  2023)  .  The 
 latter  motif  is  also  used  in  sparse  coding  models, 
 where  it  improves  the  coding  efficiency  of  the  neural 
 network. 

 stimulus.  This  process  inhibits  neurons  with  more 
 central  receptive  fields  whose  activity  is  considered 
 redundant. 

 Overall,  extra-classical  receptive  fields  align  with 
 different  versions  of  predictive  processing.  Some 
 models  rely  on  dedicated  error  neurons  (  Figure 
 2A-B  ,  cellular  hypothesis  as  in  (Bastos  et  al.,  2012; 
 Keller  and  Mrsic-Flogel,  2018)  ,  while  others 
 emphasize  the  role  of  lateral  inhibition  (  Figure  2C  , 
 dendritic hypothesis as in  (Mikulasch et al., 2023)  . 

 Unlike  models  that  explicitly  represent  prediction 
 errors  through  dedicated  neurons,  Nejad  et  al.  take  a 
 distinct  approach  rooted  in  deep  learning 
 frameworks.  In  their  neocortical  circuit  model,  L2/3 
 output  learns  to  predict  current  sensory  input  in  L5  by 
 integrating  past  sensory  information,  relayed  through 
 L4,  with  contextual  top-down  input.  The  network 
 training  relies  on  a  self-supervised  cost  function, 
 optimizing  synaptic  weights  through  backpropagation 
 and  gradient  descent.  In  this  setup,  mismatch  errors 
 in  L2/3  and  L5  were  defined  as  the  derivatives  of  the 
 self-supervised  loss  function  with  respect  to  neuronal 
 activity  in  each  layer.  Thus,  their  model  does  not  rely 
 on  specific  "prediction  error  neurons”;  instead,  error 
 signals  are  represented  in  the  gradients,  indicating 
 how  each  neuron’s  activity  should  adjust  to  reduce 
 prediction  errors.  Although  this  gradient-based 
 method  differs  from  conventional  models  that 
 simulate  prediction  errors  directly  in  neuron  activity, 
 the  authors  propose  that  these  gradient-based  error 
 signals  could  be  implemented  biologically  through  a 
 multiplexing  framework,  where  error  signals  from  L5 
 are  kept  separate  from  inference  signals  and 
 propagate  to  L2/3  as  burst-like  events  (Payeur  et  al., 
 2021;  Greedy  et  al.,  2022;  Friedenberger  et  al., 
 2023)  . 

 Models of temporal sensory errors 
 Early  theoretical  models  of  predictive  coding  did  not 
 incorporate  a  temporal  component  (Rao  and  Ballard, 
 1999;  Bogacz,  2017)  .  Models  extending  the 
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 predictive  coding  framework  to  the  temporal  domain 
 emerged  later  (Friston  et  al.,  2008)  .  The  effects 
 reported  in  earlier  experimental  designs  using  the 
 oddball  paradigm  may  be  explained  by  simpler 
 mechanisms  such  as  adaptation,  without  requiring 
 top-down  inputs  (May,  2021)  .  Later  experiments 
 demonstrated  that  more  complex  predictive  models 
 are  necessary  to  account  for  sequential  mismatch 
 responses  (Hamm  and  Yuste,  2016)  .  Indeed,  when 
 (Lieder  et  al.,  2013)  used  EEG  responses  to 
 MMN-inducing  stimuli  to  compare  the  plausibility  of 
 mathematical  models  based  on  Bayesian  inference 
 with  traditional  adaptation-based  models,  they  found 
 that  models  incorporating  explicit  prediction  errors 
 better explained their recordings. 

 Many  other  models  have  been  proposed  to  explain 
 sequence-based  oddball  responses  (Wacongne  et 
 al.,  2012;  Chien  et  al.,  2019;  Auksztulewicz  et  al., 
 2023;  Awwad  et  al.,  2023;  Lao-Rodríguez  et  al., 
 2023)  .  For  instance  Wacongne  et  al.  modeled 
 sequential  mismatch  responses  using  a  network  of 
 prediction  and  prediction  error  neurons.  By  being 
 trained  to  predict  stimuli  over  time  using  a 
 spike-timing-dependent  plasticity  rule  and  input  from 
 a  memory  module,  prediction  neurons  were  able  to 
 internalize  stimulus  statistics  allowing  them  to 
 anticipate  future  inputs  based  on  past  patterns 
 (Wacongne et al., 2012)  . 

 For  tasks  with  temporal  dynamics,  models  with  leaky 
 integrate  and  fire  neurons  have  shown  that  network 
 properties  such  as  excitatory/inhibitory  (E/I)  balance 
 and  predictive  coding  responses  in  individual  neurons 
 emerge  when  efficient  coding  constraints  are  applied 
 (Boerlin  et  al.,  2013;  Denève  and  Machens,  2016; 
 Brendel  et  al.,  2020)  .  Some  models  implementing  E/I 
 balance  generate  mismatch  responses  when  shifts 
 occur  in  input  stimulus  distributions  (Hertäg  and 
 Clopath,  2022)  .  (Millidge  et  al.,  2024)  demonstrated 
 how  local  Hebbian  plasticity  can  enable  predictive 
 coding  networks  to  learn  temporal  relationships. 
 Similarly,  (Jiang  and  Rao,  2024)  proposed  a  network 
 that  learns  hierarchical  temporal  features,  with 

 deeper  layers  reflecting  relationships  with 
 increasingly complex and longer timescales. 

 Predictive  models  that  process  sensory  information  in 
 real-time  must  also  overcome  processing  delays  to 
 accurately  predict  sensory  inputs  based  on  past 
 events.  Such  models  are  taught  to  prospectively 
 estimate  errors,  thereby  allowing  the  network  to 
 anticipatively  adjust  its  activity  and  correct  for 
 potential  future  discrepancies.  (Hogendoorn  and 
 Burkitt,  2019;  Ellenberger  et  al.,  2024;  Senn  et  al., 
 2024)  ,  Nejad  et  al.  proposed  a  computational  model 
 of  a  cortical  column  that  processes  both  sequential 
 and  sensory-motor  mismatches  using  a  similar  delay 
 mechanism.  Their  model  suggests  that  cortical  layer 
 L2/3  neurons  learn  to  generate  predictions  of 
 incoming  sensory  stimuli  by  comparing  past  sensory 
 inputs,  relayed  via  L4,  with  current  thalamic  inputs 
 arriving at L5  (Nejad et al., 2024)  . 

 Chien  et  al.  hypothesized  that  cortical 
 deviance-related  activities  are  primarily  generated 
 locally  through  reciprocally  connected  neural  circuits 
 (Chien  et  al.,  2019)  .  To  explore  this,  Chien  et  al. 
 proposed  a  network  model  based  on  reciprocally 
 coupled  neural  masses,  with  a  focus  on 
 excitatory-inhibitory  wiring  patterns  within  the  cortex. 
 This  model  successfully  reproduced  properties  of 
 cortical  deviance-related  responses,  including  On/Off 
 responses,  omission  responses  and  MMNs. 
 However,  since  this  network  model  consisted  of  rate 
 coded  neuronal  populations  with  synaptic  plasticity, 
 Chien  et  al.  did  not  assume  a  dedicated  subset  of 
 neurons  to  error  processing.  Instead,  their 
 simulations  suggest  that  the  recurrent  wiring  patterns 
 in  the  cortex  provide  a  suitable  environment  for 
 mismatch oriented calculations. 

 Other  models  that  do  not  rely  on  dedicated  error 
 neurons  have  also  been  proposed.  For  example,  it 
 has  been  argued  that  sequential  mismatch  responses 
 could  be  explained  by  changes  in  posterior  variance 
 due  to  neural  sampling  (Lee  and  Mumford,  2003; 
 Aitchison  and  Lengyel,  2017)  ,  bottom-up  attention  to 
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 surprising  stimuli  (Aitchison  and  Lengyel,  2017; 
 Westerberg  et  al.,  2023)  ,  adaptive  neural  codes 
 (Młynarski  and  Hermundstad,  2018)  ,  or  updates  to 
 internal  representations  (Hawkins  and  Ahmad,  2016; 
 van  Driel  et  al.,  2023)  .  It  is  worth  noting  that  many  of 
 these  ideas  also  depend  on  computing  prediction 
 errors,  which  influence  how  sensory  inputs  are 
 processed.  For  example,  estimating  the  variance  of 
 the  posterior  for  neural  sampling  requires  computing 
 squared  prediction  errors.  However,  unlike  cellular 
 predictive  coding  models,  these  computations  could 
 be  performed  in  a  less  specific  manner,  such  as  by 
 cortical  interneurons  (Garrett  et  al.,  2020;  Bastos  et 
 al.,  2023;  Furutachi  et  al.,  2024;  Ross  and  Hamm, 
 2024)  and  could  differ  depending  on  the  complexity 
 of  the  predictive  sequence  (Westerberg  et  al., 
 2024a)  .  This  is  covered  more  extensively  in  section 
 IV  . 

 Model of sensory-motor errors 
 Models  of  sensory-motor  mismatch  responses 
 typically  rely  on  error-computing  neurons.  In  these 
 models,  the  sensory  effects  of  self-generated 
 movements  are  computed  as  corollary  discharges 
 which  cancel  out  the  effects  of  these  movements  on 
 sensory  representations  (Jordan  and  Rumelhart, 
 1992;  Wolpert  and  Miall,  1996)  .  This  mechanism  is 
 believed  to  enhance  the  system's  ability  to  isolate 
 external  factors  that  are  not  the  result  of  its  own 
 actions.  In  Bayesian  theory,  this  can  be  understood 
 as  a  form  of  explaining  away  through  the  use  of  the 
 internal  model  (Moreno-Bote  and  Drugowitsch,  2015; 
 Mikulasch  et  al.,  2022a)  .  If  multiple  cortical  areas 
 jointly  represent  or  “explain”  sensory  input  (e.g., 
 externally  generated  input  in  visual  areas  and 
 self-generated  input  in  motor  areas),  predictive 
 coding  suggests  that  these  areas  should  actively 
 subtract  corollary  discharge  from  the  input  they  send 
 to  other  areas.  This  would  result  in  visual  neurons 
 encoding  only  to  external  motion,  consistent  with  the 
 “dendritic  hypothesis”  of  predictive  coding  (Mikulasch 
 et al., 2023)  . 

 A  microcircuit  implementation  of  explaining  away  that 
 involves  distinct  types  of  inhibitory  neurons  has  been 
 proposed  by  (Hertäg  and  Sprekeler,  2020)  .  These 
 models,  involving  the  balance  between  excitatory  and 
 inhibitory  neurons  are  discussed  in  more  details  in 
 Section IV  . 

 Models of omission errors 
 Omitted-stimulus  responses  in  the  sensory  cortex 
 might  arise  due  to  the  lack  of  suppression  from  the 
 bottom-up  input,  causing  disinhibited  neuronal  activity 
 in  the  sensory  cortex.  Thus,  omission  of  a  frequent 
 bottom-up  input  results  in  an  absence  of  inhibition 
 (disinhibition)  elevating  the  omission-time  response 
 compared  to  the  neural  activity  immediately  prior  to 
 the  omission.  In  the  network  model  of  (Chien  et  al., 
 2019)  simulations  showed  that  disinhibition  played  an 
 important  role  in  the  generation  of  On/Off  responses. 
 On  responses  arose  from  a  transient  disinhibition 
 prior  to  the  network  achieving  a  steady  state,  while 
 Off  responses  were  linked  to  release  from  prolonged 
 disinhibition.  Their  simulations  also  suggest  that 
 cortical  omitted-stimulus  responses  and  MMN  are 
 fundamentally  similar,  as  both  reflect  expectation 
 violations,  such  as  the  timing,  location,  or  identity  of 
 stimuli. 

 Models of precision signals 
 In  hierarchical  predictive  coding,  precision  is  often 
 modeled  as  a  multiplicative  modulation  of  prediction 
 error  signals,  although  different  implementations 
 exist:  (1)  Gain  modulation  :  precision  may  be 
 implemented  as  gain-modulation  of  the  firing  rate  of 
 prediction  error  responses  (Ferguson  and  Cardin, 
 2020;  Wilmes  et  al.,  2023;  Granier  et  al.,  2024)  .  In 
 this  case,  the  magnitude  of  the  prediction  error 
 responses  becomes  ambiguous,  as  it  reflects  both 
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 the  precision  and  the  magnitude  of  the  prediction 
 error.  (2)  Variability  modulation  :  alternatively, 
 precision  may  affect  the  variability  of  neural 
 responses  or  membrane  potential,  rather  than 
 altering  the  magnitude  of  responses  (von  Hünerbein 
 et  al.,  2024)  .  Precision  could  be  multiplexed  within 
 the  feedback  itself,  encoded  in  the  variability  of 
 prediction  error  unit  firing  rates,  making  every 
 prediction  error  inherently  precision-weighted  (Orbán 
 et  al.,  2016)  .  (3)  Synaptic  modulation  :  precision 
 could  also  be  implemented  by  modulating  synaptic 
 weights  onto  downstream  neurons,  originating  either 
 from  prediction-error  units  or  the  representation 
 neurons  themselves  (Hertäg  et  al.,  2023)  .  Flexible 
 modulation  of  these  weights,  depending  on 

 behavioral  context,  may  involve  neuromodulatory 
 pathways  to  the  cortex  such  as  dopaminergic  and 
 cholinergic  connections  (Yu  and  Dayan,  2005;  Thiele 
 and  Bellgrove,  2018;  Shine  et  al.,  2021;  Mei  et  al., 
 2022;  Collins  et  al.,  2023;  Jordan  and  Keller,  2023; 
 Pérez-González  et  al.,  2024)  .  (4)  Neural 
 synchronization  :  another  potential  mechanism 
 involves  changes  in  the  synchronization  of  neural 
 responses  (Fries  et  al.,  2001;  Bastos  et  al.,  2015b)  , 
 influencing  information  transmission  independently  of 
 firing rates. 

 Specific  neuronal  populations  or  pathways  may 
 implement  a  precision-weighting  through 
 mechanisms  (1-4).   If  precision  signals  are  conveyed 
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 through  cortical  feedback,  a  multiplexing  mechanism 
 may  be  required  to  separate  precision  signals  from 
 prediction  signals.  It  has  been  proposed  that 
 precision-related  feedback  travels  via  short-range  L2 
 pathways,  while  prediction  feedback  uses  L6 
 pathways  (Vezoli  et  al.,  2021a)  .  Specific  populations 
 of  GABAergic  interneurons  may  also  play  a  role  in 
 encoding  precision  (Hertäg  et  al.,  2023;  Wilmes  et  al., 
 2023;  Granier  et  al.,  2024)  .  Notably,  (Granier  et  al., 
 2024)  propose  that  higher-level  areas  send  precision 
 estimates  (or  “confidence”  signals)  alongside  the 
 more  classical  predictions,  and  propose  a  role  for 
 disinhibitory  circuits  in  mediating  the  entailed 
 top-down  gain  modulation.  Their  theory  predicts  the 
 existence  of  cortical  second-order  errors,  comparing 
 precision  estimates  with  actual  performance. 
 Precision  information  may  also  be  routed  through 
 apical  dendrites,  as  discussed  later  in  Section  V  , 
 shaping  the  gain  of  pyramidal  neuron  responses 
 (Shipp, 2016)  . 

 Precision vs attention 
 (Friston,  2009)  argues  that  ''attention  is  simply  the 
 process  of  optimizing  precision  during  hierarchical 
 inference”.  However,  as  reported  by  (Bowman  et  al., 
 2013)  ,  event-related  potentials  for  repeated  stimuli 
 are  enhanced  when  subjects  are  asked  to  attend  to 
 them.  If  attention  is  precision,  these  repeated  stimuli 
 should  be  fully  predicted  and  thus  produce  a  null 
 precision-weighted  prediction  error.  Furthermore,  if 
 precision-weighting  serves  to  weight  errors  to  adjust 
 further  predictions,  then  these  large  event-related 
 potentials  from  fully  predicted  input  should  not  update 
 an  internal  model.  This  attention-based  mechanism, 
 which  increases  event-related  potentials  but  does  not 
 provide  a  precision-weighted  update  to  future 
 predictions,  makes  the  relationship  between  attention 
 and precision less straightforward. 

 3.  Divergence  and  convergence  between 
 experiments and theories 
 One  of  the  central  challenges  in  predictive  coding  is 
 identifying  the  dynamic  interaction  between  sensory 
 afferents,  error  neurons,  and  internal  predictions. 
 While  prominent  predictive  processing  models 
 include  an  explicit  role  for  positive  and  negative  error 
 neurons  to  differentially  signal  whether  inputs  are 
 larger  or  smaller  than  expected,  there  is  no 
 consensus  that  this  is  a  theoretical  requirement  and 
 experimental  evidence  clarifying  this  issue  remains 
 complexly  ambiguous.  Studies  of  sensory-motor 
 mismatch  responses  demonstrate  a  clear  distinction 
 between  positive  and  negative  error  neurons  (Jordan 
 and  Keller,  2020)  ,  signalling  when  the  motion 
 information  is  more  than  or  less  than  the  animal’s 
 current  velocity.  In  experiments  with  omissions  (e.g., 
 a  portion  of  a  screen  turning  gray  or  the  absence  of  a 
 recurring  stimulus),  negative  errors  are  typically 
 defined  as  predicting  a  stimulus  while  it  is  actually 
 absent,  while  positive  errors  involve  predicting  its 
 absence  when  it  is  actually  present.  In  behavioral 
 paradigms  involving  predictions  across  multiple 
 variables  or  dimensions,  defining  a  'positive'  or 
 'negative'  mismatch  response  can  be  more 
 challenging. 

 In  sequential  oddball  paradigms,  experiments 
 suggest  that  prediction  errors  to  oddball  stimuli  reflect 
 positive  gain  modulation  in  neurons  selective  for  the 
 unexpected  stimulus  (Bastos  et  al.,  2023;  Furutachi 
 et  al.,  2024)  –  a  finding  which  seems  difficult  to 
 reconcile  with  the  notion  of  dedicated  positive 
 prediction  error  neurons,  although  some  work 
 suggests  that  sensory  cortical  neurons  can  exhibit 
 selectivity  both  for  errors  and  stimulus  features 
 (Hamm  et  al.,  2021a;  Audette  and  Schneider,  2023)  . 
 An  omission  oddball  paradigm  enables  the 
 assessment  of  negative  error  neurons,  but  studies  in 
 auditory  and  visual  cortex  evince  limited  or  absent 
 responses  to  stimulus  omissions  among  excitatory 
 neurons  (Garrett  et  al.,  2023;  Lao-Rodríguez  et  al., 
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 2023)  ;  but  see  section  IV  for  a  discussion  of 
 omission responses in inhibitory interneurons. 

 The  idea  that  stimulus  size,  actualized  by  the  spike 
 rate  of  individual  neurons,  results  in  neural  activity 
 that  can  be  precisely  compared  against  predicted 
 values  does  not  easily  apply  to  primary  sensory 
 areas  where  normalization  (a  “canonical  cortical 
 function”)  and  localized  feature  extraction 
 mechanisms  quickly  discard  information  about 
 absolute  stimulus  intensity  levels.  Also  prediction 
 errors  in  visual  cortex  have  been  shown  in  multiple 
 studies  to  boost  representation  of  the  unexpected 
 stimulus  features  (Bastos  et  al.,  2023;  Furutachi  et 
 al.,  2024;  Ross  and  Hamm,  2024)  or  to  signal 
 broader  contextual  information  (Hamm  et  al.,  2021a; 
 Audette  and  Schneider,  2023;  Najafi  et  al.,  2024)  , 
 rather  than  a  difference  between  current  and 
 expected  inputs.  These  and  other  issues  (e.g., 
 defining  'size'  in  the  auditory  system,  applying 
 intuitions  from  rate-based  models  to  spiking 
 networks,  etc.)  make  it  challenging  to  relate  external 
 sensory  inputs  to  the  activity  of  individual  neurons  in 
 experiments  and  models.  Future  work  should  aim  to 
 quantify  intermediate  representations  from  the 
 earliest  stages  of  sensory  pathways  (e.g.,  from  the 
 retina to the visual cortex). 

 The  advances  in  the  targeting  of  specific  neuron 
 types  experimentally  offer  a  valuable  basis  for 
 refining  predictive  processing  theories.  These  models 
 can  now  start  to  reflect  the  circuit  implementation 
 more  closely  by  incorporating  the  latest  experimental 
 insights.  For  example,  building  on  recent  work 
 (O’Toole  et  al.,  2023)  ,  one  could  propose  that 
 predictive  processing  is  predominantly  carried  out 
 within  specific  cortical  layers,  such  as  Layer  2/3 
 where  different  subtypes  of  pyramidal  neurons  (e.g., 
 Rrad+,  Adamts2+,  and  Agmat+  neurons)  may  play 
 distinct  roles  in  encoding  positive  errors,  negative 
 errors,  and  predictions,  respectively.  To  bridge 
 experiment  and  modeling  work,  it  will  be  necessary  to 
 extend  the  classical  predictive  coding  framework  to 
 include  more  complex  interactions  between  different 

 neuronal  populations.  This  could  involve 
 incorporating  additional  factors  such  as 
 neuromodulatory  influences,  the  role  of  cortical 
 feedback  pathways,  and  the  impact  of  behavioral 
 state  on  the  precision  of  error  signals.  For  instance, 
 precision  signals,  reflecting  the  certainty  of 
 predictions,  might  be  routed  through  specific  layers 
 and  circuits.  For  example,  the  concept  of 
 "second-order  errors,"  as  suggested  by  (Granier  et 
 al.,  2024)  ,  introduces  the  idea  that  cortical  areas  not 
 only  predict  sensory  inputs  but  also  estimate  the 
 precision or confidence of these predictions. 

 IV.  Role  of  Excitatory/Inhibitory 
 balance and interneurons 
 The  interplay  between  excitatory  and  inhibitory 
 neurons  has  been  proposed  as  a  key  mechanism 
 through  which  predictive  processing  emerges.  In  this 
 section,  we  review  experimental  evidence  and  related 
 models  that  explore  how  excitatory  and  inhibitory 
 subpopulations  might  collaborate  in  predictive 
 processing.  Here,  we  focus  on  cellular-level 
 mechanisms,  reserving  the  contributions  of  these 
 subpopulations  to  dendritic  processing  for  the  next 
 section. 

 1. Experimental evidence 
 In  the  framework  of  predictive  processing, 
 understanding  the  roles  of  different  interneuron  types 
 is  essential  to  delineating  how  bottom-up  and 
 top-down  inputs  are  processed  and  integrated  within 
 cortical  circuits.  Importantly,  the  connectivity  between 
 pyramidal  neurons,  PV,  VIP,  SOM,  and  other 
 interneuron  subtypes  is  sufficiently  stereotyped  to 
 facilitate  investigation  (  Figure  3  ).  The  dense  local 
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 connectivity  and  responsiveness  of  PV  neurons  to 
 sensory-driven  input  position  them  well  for  facilitating 
 the  rapid  processing  of  feed-forward,  bottom-up 
 signals.  In  contrast,  VIP  and  NDNF  interneurons  are 
 targeted  heavily  by  projections  from  other  cortical 
 regions  and  deeper  cortical  layers,  especially  in 
 higher-order  areas  (Wall  et  al.,  2016;  Huang  et  al., 
 2024b)  ,  making  them  well-suited  to  modulating 

 cortical  circuits  based  on  contextual  and  predictive 
 information.  This  connectivity  supports  their  role  in 
 adjusting  cortical  processing  in  accordance  with 
 predictive  signals,  facilitating  the  brain's  integration  of 
 expectations  with  sensory  input.  VIP  interneurons 
 preferentially  suppress  SOM  neurons,  thereby 
 disinhibiting  pyramidal  neurons  and  enhancing 
 selectivity  for  expected  stimuli  (Pfeffer  et  al.,  2013;  Pi 
 et  al.,  2013;  Karnani  et  al.,  2014;  Wall  et  al.,  2016; 
 Huang  et  al.,  2024b)  .  SOM  interneurons,  on  the  other 
 hand,  are  distinct  in  their  connectivity  and  are 
 well-positioned  to  integrate  lateral  inputs,  such  as 
 those  required  for  surround-suppression  effects  in 
 visual  stimuli  (Adesnik  et  al.,  2012;  Urban-Ciecko  and 
 Barth,  2016)  .  They  are  also  dendrite-targeting,  further 
 supporting  a  role  in  modulating  excitatory  neuron 
 activity. 

 PV neurons 
 Parvalbumin-expressing  (PV)  interneurons  in  the 
 cortex  may  play  a  key  role  in  predictive  processing 
 through  their  regulation  of  specific  aspects  of  neural 
 processing.  By  scaling  the  response  amplitude  of 
 pyramidal  neurons,  PV  neurons  can  amplify  or 
 reduce  the  activity  of  nearby  pyramidal  cells  (Atallah 
 et  al.,  2012)  .  They  have  been  shown  to  be  central  in 
 shaping  the  precision  of  stimulus  tuning  in  pyramidal 
 neurons  (Lee  et  al.,  2012)  .  PV-positive,  fast-spiking 
 basket  cells,  specifically,  are  involved  in  controlling 
 cortical  E/I  balance  via  fast  inhibition  of  cell  bodies 
 and  basal  dendrites  (Ferguson  and  Gao,  2018)  .  A 
 prominent  feature  of  this  inhibition  is  that  it  is 
 feature-specific,  i.e.,  basket  cells  implement  inhibition 
 between  neurons  that  receive  similar  feed-forward 
 inputs  (Chettih  and  Harvey,  2019;  Najafi  et  al.,  2020; 
 Znamenskiy  et  al.,  2024)  .  This  suggests  that  PV 
 neurons  could  not  only  be  used  to  maintain  cortical 
 E/I  balance  on  fast  timescales  (Moore  et  al.,  2018)  , 
 but  also  to  precisely  cancel  inputs  predictable  from 
 ongoing  neural  activity,  as  suggested  by  predictive 
 coding  models  (Uran  et  al.,  2022)  .  However,  in  a 
 study  by  Westerberg  et  al.,  PV  neurons  were  more 
 responsive  to  oddball  stimuli  than  to  expected  stimuli 
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 (Westerberg  et  al.,  2024a)  .  Alternatively,  PV  neurons 
 could  contribute  to  the  weighting  of  prediction  errors 
 based  on  their  salience  and  reliability,  or  to  amplifying 
 relevant  sensory  inputs  while  suppressing  distractors. 
 Through  this  modulation,  PV  neurons  may  also 
 enable  differentiation  of  positive  and  negative 
 prediction  errors,  adjusting  the  response  amplitudes 
 of  excitatory  neurons  based  on  the  reliability  of 
 predictions  (Womelsdorf et al., 2014)  . 

 VIP and SOM neurons 
 Many  studies  support  potential  roles  for  VIP  and 
 SOM  neurons  in  predictive  processing.  These  roles 
 range  from  generating  prediction  errors  during 
 unexpected  stimuli  (i.e.,  via  disinhibition),  mediating 
 predictive  suppression  leading  up  to  expected  stimuli, 
 supporting  paradigm-relevant  feature  selectivity  (e.g., 
 orientation  preference)  within  local  populations,  or 
 even  conveying  non-stimulus-specific  attention 
 signals  linked  to  changes  an  animal's  internal  state, 
 like  its  level  of  arousal.  Given  that  VIP  neurons  are 
 known  to  disinhibit  pyramidal  neurons  via  SOM 
 neurons,  these  two  interneuron  populations  have 
 often  been  thought  to  play  complementary  roles  in 
 predictive  processing.  However,  the  research  points 
 to  a  more  nuanced  picture,  in  which  the  roles  of  these 
 inhibitory  neurons  may  be  both  context,  task  and 
 subpopulation-specific. 

 VIP  and  SOM  responses  to  surround  suppression 
 stimuli 

 As  described  in  Section  III,  surround  suppression  is  a 
 phenomenon  in  visual  processing  whereby  neurons 
 show  a  reduced  response  to  stimuli  extending 
 beyond  their  receptive  field.  Interneurons  are  thought 
 to  play  a  crucial  role  in  surround  suppression  in  V1  by 
 modulating  E/I  balance.  Accordingly,  SOM 
 interneurons  in  the  superficial  layers  of  the  mouse 
 V1,  excited  by  horizontal  cortical  axons,  have  been 
 observed  to  contribute  to  surround  suppression, 
 increasing  their  response  as  a  stimulus  grows  in  size 
 (Adesnik  et  al.,  2012).  This  finding  is  broadly 
 consistent  with  a  role  for  SOM  neurons  in  inhibiting 

 pyramidal  neuron  responses  to  expected  stimuli. 
 Learning  has  also  been  shown  to  increase  selectivity 
 for  specific  stimuli  in  subsets  of  PV  and  SOM 
 neurons.  Notably,  this  is  not  the  case  for  VIP 
 neurons,  further  supporting  potentially  distinct  roles 
 for  these  cell  types  in  learning  and  memory 
 processes  (Khan et al., 2018)  . 

 VIP and SOM responses to repeated stimulus 
 sequences 

 SOM  neurons  have  also  been  shown  to  decrease 
 their  activity  in  response  to  stimulus  repetition,  while 
 VIP  neurons  increase  their  activity,  see  Figure  4 
 (Heintz  et  al.,  2022;  Bastos  et  al.,  2023)  .  This  finding 
 appears  to  contradict  a  simple  role  for  SOM  neurons 
 in  inhibiting  responses  to  expected  stimuli,  but 
 corroborate  the  idea  that  VIP  and  SOM  neurons  play 
 complementary  roles.  However,  adding  more 
 complexity  to  the  picture,  the  responses  of  SOM  and 
 VIP  neurons  are  not  opposite  for  novel  stimuli 
 compared  to  familiar  ones.  SOM  neurons  instead 
 display  control-level  (  (Heintz  et  al.,  2022;  Bastos  et 
 al.,  2023)  )  and  even  decreased  responses  (Kato  et 
 al.,  2015;  Natan  et  al.,  2015,  2017;  Hayden  et  al., 
 2021)  to  novel  stimuli.  In  contrast,  Westerberg  et  al. 
 found  that  SOM  neurons  showed  enhanced 
 responses  to  oddball  stimuli  (Westerberg  et  al., 
 2024a)  .  VIP  neurons  present  a  similarly  complex 
 picture.  In  a  passive  oddball  paradigm,  they  appear 
 to  show  decreased  responses  to  novel  stimuli 
 compared  to  familiar  stimuli  (  (Heintz  et  al.,  2022; 
 Bastos  et  al.,  2023)  ).  In  contrast,  in  a  rewarded  task 
 with  image  sequences,  VIP  neurons  respond  more 
 strongly  to  novel  than  to  familiar  stimuli.  In  fact,  VIP 
 neurons  develop  ramping  responses  in  anticipation  of 
 expected  stimuli  which  continue  to  increase  when  the 
 stimulus  is  omitted,  but  are  dampened  if  the  stimulus 
 does  appear  as  expected  (Garrett  et  al.,  2020,  2023)  . 
 Notably,  Najafi  et  al.  showed  that  during  these 
 omissions,  VIP  neurons  encode  not  stimulus 
 predictions,  but  rather  task-independent  information 
 shared  with  other  brain  areas  (Najafi  et  al.,  2024)  . 
 Whether  there  is  a  relationship  between  enhanced 
 responses  of  VIP  neurons  to  novel  stimulus 
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 sequences  and  their  apparent  role  in  transmitting 
 contextual  information  during  familiar  stimulus 
 sequences is unclear. 

 Opto  and  chemogenetically  suppressing  SOM 
 responses  (Hamm  and  Yuste,  2016)  ;  (Heintz  et  al., 
 2022;  Bastos  et  al.,  2023)  in  visual  cortex  has  also 
 been  shown  to  reduce  visual  oddball  responses, 
 instead  of  enhancing  them.  Together  with  the 
 evidence  cited  above,  this  strongly  suggests  that  the 
 role  of  SOM  neurons  is  not  simply  to  cancel  out 
 expected  inputs  to  excitatory  neurons  (Heintz  et  al., 
 2022;  Bastos  et  al.,  2023;  Gabhart  et  al.,  2023; 
 Westerberg  et  al.,  2024a)  .  In  VIP  neurons,  the  same 
 effect  is  also  observed  whether  their  activity  is 
 enhanced  or  suppressed,  pointing  to  a  potential  role 
 in  tuning  local  V1  circuit  excitability  for  optimal 
 detection  of  oddballs  (  (Heintz  et  al.,  2022;  Bastos  et 
 al., 2023)  ). 

 VIP and SOM responses to sensory-motor 
 mismatches 

 Attinger  et  al.  combined  two-photon  imaging  and 
 optogenetic  manipulation  to  examine  how  VIP 
 neurons  regulate  SOM  inhibition  of  pyramidal 
 neurons  during  sensory-motor  mismatches  in  primary 
 visual  cortex  (Attinger  et  al.,  2017)  .  Mice  were  trained 
 in  either  a  closed-loop  condition,  where  visual 
 feedback  was  tied  to  an  animal’s  movements  (i.e., 
 visual  flow  match  running  speed)  or  an  open-loop 
 condition  where  the  two  were  decoupled.  Halting 
 visual  flow  in  these  conditions  created  both 
 visuomotor  and  purely  visual  mismatches  in  both 
 conditions.  Excitatory  neurons  in  closed-loop  reared 
 mice  showed  enhanced  responses  only  to 
 visuomotor  mismatches,  and  not  motor-driven  halts, 
 while  those  in  open-loop  reared  mice  responded  to 
 both  visuomotor  and  purely  visual  mismatches. 
 These  mismatch  responses  appeared  to  be  inherited 
 from  concurrent  decreases  in  SOM  input.  However, 
 VIP  neurons,  which  generally  inhibit  SOM  neurons, 
 showed  enhanced  responses  only  in  response  to 
 visuomotor  mismatches,  and  thus  could  not  explain 
 enhanced  responses  to  purely  visual  mismatches. 

 This  suggests  that  VIP  neurons  in  primary  sensory 
 areas  are  specifically  involved  in  integrating 
 predictive  motor  information  and  is  consistent  with 
 Najafi  et  al.’s  finding  that  VIP  neurons  integrate 
 information  from  other  brain  areas  during  familiar 
 stimulus sequence presentations  (Najafi et al., 2024)  . 

 VIP and SOM neurons during navigation tasks 

 Lastly,  it  should  be  noted  that  the  involvement  of 
 these  interneuron  subtypes  extends  also  to  more 
 complex  tasks.  VIP  neurons,  along  with  pulvinar 
 inputs,  are  involved  in  generating  mismatch 
 responses  in  visual  navigation  tasks  (Furutachi  et  al., 
 2024)  .  In  a  foraging  task,  SOM  neurons  have  been 
 found  to  fire  in  synchrony  during  course  corrections, 
 pointing  to  a  role  in  adaptive  motor  control  (Green  et 
 al., 2023)  . 

 Altogether,  although  it  is  clear  that  VIP  and  SOM 
 neurons  are  involved  in  generating  prediction  errors, 
 their  exact  roles  remain  unclear.  It  is  possible  that 
 their  roles  are  very  sensitive  to  the  exact  parameters 
 of  the  task  and  stimuli  being  tested.  This  is 
 corroborated,  for  example,  by  the  fact  that  their 
 response  patterns  are  so  different  for  novel  vs 
 oddball  stimuli,  and  for  familiar  vs  repeated.  The 
 apparent  contradictions  in  their  responses  might  also 
 be  explained  by  the  cortical  network  entering  different 
 context  or  task-specific  regimes  if  these  differ  in  how 
 they  recruit  the  VIP  and  SOM  neuron  populations. 
 Previous  research  has  shown  how  this  type  of 
 canonical  circuit  can  move  between  such  regimes, 
 swinging  between  a  disinhibitory  and  an  inhibitory 
 mode  (Tsodyks  et  al.,  1997;  Garcia  Del  Molino  et  al., 
 2017;  Miller  and  Palmigiano,  2020;  Beerendonk  et 
 al.,  2024)  .  Lastly,  individual  neuron  responses  are  far 
 more  variable  than  the  average  patterns  observed  for 
 each  cell  type  population  (Heintz  et  al.,  2022;  Bastos 
 et  al.,  2023)  ,  suggesting  that  the  appropriate  level  of 
 analysis  may  be  more  granular  than  major  inhibitory 
 cell  classes.  Overall,  more  research  is  required  to 
 clarify  the  roles  of  SOM  and  VIP  neurons  in  predictive 
 processing,  and  the  contextual  and  circuit  factors  that 
 shape these roles. 
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 Layer 1 interneurons 
 Layer  1  is  distinct  from  other  cortical  layers  as  it  lacks 
 excitatory  cell  bodies,  and  is  primarily  composed  of 
 L1  interneurons,  apical  dendrites  from  pyramidal 
 neurons  located  outside  L1,  and  dendrites  from  other 
 inhibitory  interneurons.  L1  interneurons  are  therefore 
 well  positioned  to  have  a  broad  influence  on 
 feedback  inputs  as  they  primarily  target  the 
 superficial  dendrites  of  pyramidal  neurons  (Huang  et 
 al.,  2024a)  .  Interneurons  in  L1,  which  provide 
 prolonged  inhibition  to  local  dendrites,  can  be  labeled 
 using  either  LAMP5  or  NDNF  (Neuron-Derived 
 Neurotrophic  Factor)  promoter  genes  (Tasic  et  al., 
 2018;  Huang  et  al.,  2024a)  .  Huang  et  al. 
 characterized  running  modulation  and  responses  to 
 visual  gratings  in  LAMP5  interneurons  of  L1  (Huang 
 et  al.,  2024a)  .  In  addition  to  being  modulated  by 
 behavioral  state,  activity  in  LAMP5  interneurons  state 
 increased  at  lower  contrast  and  following  grating 
 omissions,  consistent  with  a  role  in  top-down 
 regulation. 

 NDNF  interneurons,  for  their  part,  receive  a  wide 
 array  of  cortical  and  subcortical  inputs,  suggesting  a 
 role  in  broadly  integrating  top-down  inputs.  Evidence 
 to  date  also  points  to  a  delicate  interplay  between 
 NDNF  and  SOM  neurons.  Whole-cell  patch  clamp 
 recordings  from  NDNF  interneurons  in  mouse 
 auditory  cortex  slices  has  established  that  they  can 
 influence  cortical  processing  by  modulating  incoming 
 SOM  synapses  through  GABAergic  volume 
 transmission  (Naumann  et  al.,  2024)  .  In  return,  during 
 exposure  to  auditory  stimuli,  NDNF  interneuron 
 activity  is  inhibited  by  SOM  inputs  in  proportion  to 
 stimulus intensity. 

 Although  both  SOM  AND  NDNF  interneurons  target 
 apical  dendrites,  during  fear  conditioning,  the 
 inhibition  provided  by  NDNF  interneurons  in  the 
 auditory  cortex  lasts  4-5  times  longer  than  that  of 
 SOM  neurons  (Abs  et  al.,  2018)  .  NDNF  responses 
 also  increase  after  fear  conditioning,  unlike  those  of 
 SOM  neurons.  This  suggests  that  NDNF  neurons, 

 receiving  top-down  inputs,  may  compete  with  SOM 
 neurons  to  regulate  apical  dendrites.  Cohen-Kashi 
 Malina  et  al.  showed  that  L1  NDNF  neurons  not  only 
 inhibit  apical  dendrites  (Cohen-Kashi  Malina  et  al., 
 2021)  ,  but  also  disinhibit  L2/3  pyramidal  cell  bodies 
 by  selectively  inhibiting  a  subpopulation  of  PV 
 neurons,  thus  controlling  the  ability  of  bottom-up 
 inputs  to  shape  pyramidal  neuron  activity.  Together, 
 these  findings  point  to  a  role  for  L1  interneurons  in 
 shaping  pyramidal  neuron  activity,  through  selective 
 inhibition  or  disinhibition  of  localized  synaptic  inputs. 
 The  interplay  between  L1  feedback,  SOM  neurons, 
 and  bottom-up  signals  could  be  an  important  control 
 point to shape learning  (Doron et al., 2020)  . 

 2. Relevant theoretical models 
 Models  often  do  not  include  distinct  excitatory  and 
 inhibitory  populations.  This  is  particularly  the  case  for 
 deep  learning  models  in  which  the  sign  of  each 
 synaptic  weight  is  typically  determined  through 
 learning.  Such  networks  are  incongruent  with  Dale’s 
 law  according  to  which  a  neuron  can  have  inhibitory 
 (negative)  or  excitatory  (positive)  output  synapses, 
 but  not  both.  In  order  to  better  study  the  role  of 
 inhibitory  neurons  in  the  brain  and  improve  the 
 biological  plausibility  of  networks,  models  have  been 
 developed  that  do  conform  to  Dale’s  law,  with 
 explicitly defined excitatory and inhibitory neurons. 

 (E/I) balance 
 Predictive  processing  models  that  adhere  to  Dale’s 
 Law  generally  incorporate  inhibitory  inputs,  at  a 
 minimum,  to  maintain  excitation/inhibition  (E/I) 
 balance.  Much  of  the  early  theoretical  literature  on  E/I 
 balance  focused  on  why  neural  activity  in  cortex 
 resides  in  the  asynchronous  irregular  state  (Renart  et 
 al.,  2010)  ,  where  neural  firing,  even  of  nearby 
 neurons,  often  shows  very  low  correlations.  These 
 network  models  showed  that  an  asynchronous  state 
 is  reached  when  the  strengths  of  recurrent  excitatory 
 and  inhibitory  connections  between  neurons  are  of 
 similar  magnitude  and  are  loosely  balanced  (van 
 Vreeswijk  and  Sompolinsky,  1998;  Brunel,  2000)  . 
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 Research  into  balance  mechanisms  revealed  even 
 further  that  if  inhibitory  connections  can  learn  to 
 precisely  balance  feed-forward  inputs  at  the  single 
 neuron  level,  this  enhances  the  efficiency  of  encoding 
 in  the  feedforward  input  stream  (Denève  and 
 Machens,  2016)  .  The  underlying  principle  is  that, 
 when  a  neuron  encodes  a  specific  part  of  the  input 
 stream,  lateral  inhibition  removes  this  information 
 from  the  inputs  to  all  other  neurons  in  the  population. 
 As  a  result,  only  the  unencoded  input  (i.e., 
 unpredicted)  remains  to  drive  network  activity.  This, 
 in  turn,  decorrelates  neural  spiking  and  promotes 
 efficient  coding  (Vinck  and  Bosman,  2016)  .  This 
 decorrelating  balance  is  typically  thought  to  be 
 mediated  by  PV  interneurons,  which  provide  fast, 
 strong  lateral  inhibition,  primarily  targeting  basal 
 dendrites and cell bodies. 

 PV  interneurons  are  central  for  cortical  gamma 
 oscillations  (Cardin  et  al.,  2009)  ,  often  modeled  by 
 Pyramidal  Interneuron  Network  Gamma  (PING) 
 networks.  In  these  models,  when  a  network  is 
 balanced,  it  shows  efficient  coding,  reduced  firing 
 rates  and  stable  gamma  oscillations  (Traub  et  al., 
 1997;  Jadi  and  Sejnowski,  2014)  .  Theoretical  work 
 further  suggests  that  gamma  oscillations  may  reflect 
 optimal  sensory  processing  and  arise  naturally  in  E/I 
 balanced  networks  built  with  transmission  delays 
 (Chalk  et  al.,  2016;  Echeveste  et  al.,  2020)  .  However, 
 an  alternative  theoretical  perspective  is  that 
 gamma-band  oscillations  increase  with  predictions 
 errors,  e.g.  due  to  increased  firing  rates  and 
 metabolic  demands  (Bastos  et  al.,  2012)  . 
 Experimental  results  are  inconsistent  when  it  comes 
 to  the  relationship  between  stimulus  predictability  and 
 the  power  and  synchronization  of  gamma-band 
 oscillations (see  Section VII  ). 

 From  (E/I)  balance  to  error  neurons:  role  of  VIP, 
 SOM and PV neurons 
 Some  models  explicitly  incorporate  the  in  vivo 
 connectivity  patterns  observed  in  the  sensory  cortex 
 between  PV,  SOM,  VIP  and  pyramidal  neurons  (see 

 e.g.  Figure  3  ).  Hertäg  et  al.  investigated  how  this 
 canonical  interneuron  motif  can  give  rise  to  excitatory 
 neurons  that  exhibit  response  patterns  characteristic 
 of  negative  prediction  error  or  positive  prediction  error 
 neurons.  In  their  model,  excitatory  neurons  are 
 modeled  with  an  apical  dendrite  compartment, 
 specifically  targeted  by  SOM  interneurons.  They 
 demonstrate  that  excitatory  neurons  develop  positive 
 and  negative  error  responses  when 
 compartment-specific  E/I  balance  is  established  in 
 their  inputs  (Hertäg  and  Sprekeler,  2020;  Hertäg  and 
 Clopath,  2022)  .  This  E/I  balance  is  achieved  through 
 a  combination  of  excitatory,  inhibitory,  disinhibitory, 
 and  dis-disinhibitory  pathways  with  balanced  pathway 
 strengths (see  Figure 5  ). 

 In  these  circuits,  few  constraints  on  the  interneuron 
 inputs  are  required  to  ensure  that  prediction  error 
 neurons  can  emerge.  However,  the  distribution  of 
 sensory  inputs  and  their  predictions  does  bias  the 
 ratio  of  negative  to  positive  prediction  error  neurons 
 that  develop  during  learning.  Specifically,  when  PV 
 and  SOM  neurons  are  predominantly  driven  by 
 feedforward  sensory  input,  excitatory  neurons  are 
 more  likely  to  develop  into  negative  prediction  error 
 neurons.  Conversely,  when  VIP  neurons  are 
 predominantly  targeted  by  feedforward  input, 
 excitatory  neurons  are  more  likely  to  exhibit  response 
 patterns  aligned  with  those  of  positive  prediction  error 
 neurons. 

 E/I  balance  can  also  be  achieved  through  inhibitory 
 plasticity  (Vogels  et  al.,  2011)  .  In  this  type  of  network, 
 the  emergence  of  negative  prediction  error  and 
 positive  prediction  error  neurons  also  results  naturally 
 from  the  network's  efforts  to  establish  an  E/I  balance 
 that  generalizes  to  all  regularly  encountered  inputs. 
 The  type  of  stimuli  encountered  during  learning, 
 whether  predicted  or  unpredicted,  can  also  influence 
 and  bias  the  ratio  of  negative  prediction  error  and 
 positive  prediction  error  neurons  (Hertäg  and 
 Sprekeler,  2020;  Hertäg  and  Clopath,  2022)  .  Notably, 
 positive  and  negative  prediction  error  neurons  can 
 also  emerge  in  a  recurrent  network  from  brief 
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 disruptions  of  E/I  balance  (Asabuki  et  al.,  2023) 
 without  the  need  to  incorporate  a  dendritic 
 compartment. 

 E/I  balance  may  also  be  maintained  across  longer 
 time  windows,  with  deviations  from  the  balance 
 generating  fluctuating  dynamics  and  rhythmic  activity. 
 Recent  work  by  Lee  and  colleagues  shows  that 
 balance-based  interactions  between  separate 
 subnetworks  of  excitatory  and  inhibitory  neurons  can 
 lead  to  the  emergence  of  rhythmic  fluctuations,  and 
 the  preservation  of  balanced  and  stable  neural 
 representations  over  longer  time  scales  (Lee  et  al., 
 2024)  .  Such  rhythmic  fluctuations  may 

 mechanistically  underlie  gamma  oscillations 
 observed  in  cortex  (Spyropoulos  et  al.,  2022)  ,  and 
 could  be  involved  in  frequency-dependent 
 hierarchical  communications  conveying  bottom-up 
 prediction  errors  and  top-down  signals,  as  described 
 in  Section  VII  (Bastos  et  al.,  2015a;  Mejias  et  al., 
 2016)  . 

 Separately,  to  reconcile  the  role  of  predictions  in 
 learning  and  recall,  Barron  et  al.  proposed  a 
 conceptual  model  in  which  different  inhibitory 
 subtypes  enable  top-down  predictions  to  either  inhibit 
 or  modulate  the  responses  of  pyramidal  neurons, 
 depending  on  their  precision  (  (Barron  et  al.,  2020)  ). 
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 Specifically,  the  model  suggests  that  SOM 
 interneurons  channel  the  direct  suppressive  effect  of 
 predictions  required  to  generate  prediction  error 
 signals.  In  contrast,  VIP-mediated  disinhibition 
 enables  predictions  to  precisely  modulate  neural 
 responses  for  memory  recall.  Relatedly,  divisive 
 inhibition  by  PV  neurons  has  been  suggested  to 
 enable  the  modulation  of  prediction  errors  based  on 
 prediction uncertainty  (Wilmes et al., 2023)  . 

 Contribution of NDNF inhibitory neurons 
 In  a  recent  model  (Naumann  et  al.,  2024)  ,  extending 
 the  interneuron  circuit  described  above  to  include 
 NDNF  interneurons,  revealing  the  effects  of 
 competition  between  SOM-  and  NDNF-mediated 
 dendritic  inhibition  on  pyramidal  neuron  activity.  By 
 operating  over  longer  timescales  than  SOM 
 interneurons  (Abs  et  al.,  2018)  ,  NDNF  interneurons 
 can  shift  dendritic  inhibition  from  fast  to  slow 
 timescales,  modulating  information  flow  in  pyramidal 
 neurons.  In  this  model,  NDNF  neurons  are 
 hypothesized  to  release  ambient  GABA  into  L1. 
 Being  confined  to  the  superficial  layers  while  sparing 
 deeper  cortical  layers,  this  inhibition  primarily 
 activates  slow  GABA(B)  receptors  at  SOM  output 
 synapses  in  L1.  As  a  result,  NDNF  interneurons  are 
 able  to  counterbalance  the  inhibition  they  receive 
 from  SOM  interneurons,  resulting  in  a  form  of  mutual 
 inhibition  that  amplifies  weak  signals  to  NDNF 
 interneurons.  This  model  suggests  that  NDNF 
 interneurons,  with  their  unique  properties,  could  be 
 ideally  positioned  to  influence  the  relative  balance  of 
 bottom-up  and  top-down  inputs  to  excitatory 
 pyramidal neurons. 

 3.  Divergence  and  convergence  between 
 experiments and theories 
 Experimental  findings  and  models  converge  on  the 
 idea  that  different  inhibitory  interneurons  (e.g.,  PV, 
 SOM,  VIP,  and  NDNF)  have  distinct  roles  in 
 processing  feed-forward  and  feedback  inputs.  PV 
 neurons  are  consistently  associated  with  maintaining 

 E/I  balance  and  encoding  feed-forward  inputs,  while 
 VIP  and  NDNF  neurons  are  more  involved  in 
 integrating top-down feedback. 

 Experimental  evidence  also  consistently  supports  the 
 involvement  of  VIP  and  SOM  neurons  in  encoding 
 prediction  errors.  Numerous  studies  have  shown  that 
 these  neurons  distinguish  between  predictable  or 
 familiar  and  novel  stimuli,  and  that  suppressing  their 
 activity  affects  prediction  error  signaling.  This  aligns 
 with  theoretical  models  suggesting  roles  for  them  in 
 predictive  processing  and  error  signaling.  The 
 disinhibitory  effect  of  VIP  neurons  on  pyramidal 
 neurons,  which  enhances  sensory  processing  during 
 mismatches,  also  supports  models  proposing  that 
 inhibitory  subtypes  modulate  predictive  processing 
 through  complex  inhibitory  circuits.  In  addition,  recent 
 work  established  that  activity  in  VIP  interneurons  is 
 essential  for  the  computation  of  cognitive  prediction 
 errors  in  the  ACC  in  a  task-switching  paradigm  (Cole 
 et al., 2024)  . 

 However,  there  are  conflicting  reports  on  the  activity 
 patterns  of  SOM  neurons  in  response  to  predicted 
 versus  novel  stimuli.  Some  studies  show  decreased 
 activity  in  response  to  predicted  stimuli,  while  others 
 report  reduced  spiking  in  response  to  novelty.  This 
 discrepancy  suggests  the  existence  of  different  SOM 
 neuron  subtypes  with  distinct  roles,  which  current 
 models  may  not  fully  capture.  Similar  discrepancies 
 in  reports  exist  for  VIP  neurons,  with  a  potential  link 
 to  their  role  in  integrating  motor  inputs.  Future  models 
 could  investigate  potentially  distinct  roles  for 
 subpopulations  of  SOM  and  VIP  neurons  to  account 
 for  their  divergent  roles  in  encoding  novelty  and 
 prediction  errors.  It  is  also  possible  that  the 
 predictability  of  a  stimulus  based  on  local  features 
 plays  a  significant  role  in  shaping  SOM  neuron 
 responses.  For  instance,  for  homogeneous  stimuli 
 like  grating  patterns,  local  visual  receptive  fields  can 
 reliably  be  used  to  predict  distant  receptive  fields. 
 This  predictability  is  much  lower  for  natural  images 
 due  to  their  complex  structure.  This  difference  in 
 stimulus  predictability  may  help  explain  the  distinct 
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 roles  of  SOM  neurons  observed,  with  grating  stimuli 
 providing  higher  baseline  predictability  and  potentially 
 eliciting  different  network  responses  compared  to 
 natural images  (Uran et al., 2022)  . 

 The  temporal  dynamics  of  E/I  balance  and  the 
 specific  roles  of  different  inhibitory  neurons  in 
 balancing  feed-forward  versus  recurrent  inputs  also 
 remain  areas  of  divergence.  Experimental  studies 
 show  variability  in  how  rapidly  different  interneurons 
 (e.g.,  PV  versus  SOM  neurons)  achieve  balance. 
 Incorporating  the  variability  in  the  temporal  dynamics 
 of  E/I  balance  maintained  by  different  interneurons 
 could  significantly  affect  the  dynamics  observed  in 
 models of neural processing. 

 The  role  of  NDNF  interneurons  in  predictive 
 processing  is  still  poorly  understood,  with 
 experimental  evidence  suggesting  an  involvement  in 
 long-lasting  inhibition  and  top-down  input  integration. 
 In  terms  of  their  potential  role  in  predictive  coding, 
 theoretical  models  are  ahead  of  experimental 
 findings.  Experiments  measuring  NDNF  responses  to 
 mismatch  stimuli  are  needed  to  better  refine  and 
 constrain these models. 

 Each  interneuron  type  likely  cannot  be  studied  in 
 isolation  as  they  are  part  of  a  highly  integrated 
 network.  Given  how  heavily  interconnected  PV,  VIP 
 and  SOM  neurons  are,  it  is  unlikely  that  they  perform 
 neatly  independent  functions.  Instead,  they  likely 
 implement  their  computations  cooperatively.  To  allow 
 our  understanding  of  this  intricate  network  to 
 converge,  a  close  collaboration  between  experiments 
 and theory is needed. 

 V.  Dendritic  computations  with  apical 
 dendrites 
 Dendrites  are  complex  neuronal  compartments  that 
 greatly  expand  the  computational  repertoire  of 
 individual  neurons.  Some  predictive  processing 
 theories  have  postulated  specific  roles  to  dendrites. 
 In  this  section,  we  review  experimental  evidence  and 

 related  models  that  examine  how  dendrites,  and  in 
 particular  the  apical  dendrites  of  pyramidal  neurons, 
 contribute to predictive processing. 

 1. Experimental evidence 

 Properties of apical dendrites 
 How  a  neuron  integrates  the  inputs  it  receives  is 
 heavily  influenced  by  its  dendritic  structure. 
 Pyramidal  neurons  are  notable  for  having  two  distinct 
 sets  of  dendrites:  basal  and  apical  dendrites. 
 Whereas  the  basal  dendrites  of  pyramidal  neurons 
 extend  out  from  the  cell  body,  the  apical  dendrites  are 
 connected  via  the  apical  trunk,  a  thicker  dendrite 
 which  extends  toward  the  pia  and  branches  into  distal 
 dendrites  to  form  the  apical  tuft  (Larkman,  1991)  .  In 
 the  cortex,  the  apical  tuft  of  L2/3  and  L5  neurons 
 extends  into  L1  where  it  is  innervated  by  feedback 
 connections  from  other  cortical  regions  (Schuman  et 
 al., 2021; Young et al., 2021)  . 

 Research  into  the  electrophysiological  properties  of 
 pyramidal  neurons  has  shown  high 
 compartmentalization  of  activity  in  the  apical  tuft 
 dendrites,  particularly  in  L5  pyramidal  neurons 
 (Larkum  et  al.,  2022)  .  However,  the  presence  of 
 voltage-gated  ion  channels  in  the  apical  trunk 
 enables  strong  depolarizing  events  such  as  dendritic 
 spikes  to  be  triggered.  Experiments  have  also  shown 
 that  strong  depolarization  events  localized  to  the  cell 
 body,  like  action  potentials,  can  backpropagate  up 
 the  apical  trunk.  When  these  backpropagating  action 
 potentials  are  coordinated  with  activity  in  the  apical 
 tuft,  they  can  generate  long-lasting  depolarization 
 events  known  as  dendritic  plateau  potentials  (Larkum 
 et  al.,  1999;  Antic  et  al.,  2010;  Hay  et  al.,  2016)  . 
 These  nonlinear  events  involving  the  apical  tuft  have 
 been  proposed  to  allow  pyramidal  neurons  to  perform 
 complex  computations,  such  as  detection  of 
 coinciding  inputs,  multiplexing  (Hay  et  al.,  2016; 
 Naud  and  Sprekeler,  2018)  and  functioning  as  XOR 
 gates  (Gidon  et  al.,  2020)  .  Notably,  dendritic  plateau 
 potentials  can  induce  long-term  synaptic  changes, 
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 supporting  a  role  in  learning-related  plasticity 
 (Holthoff  et  al.,  2004;  Sjöström  and  Häusser,  2006; 
 Hardie  and  Spruston,  2009;  Gambino  et  al.,  2014; 
 Cichon  and  Gan,  2015;  Mateos-Aparicio  and 
 Rodríguez-Moreno,  2019)  .  In  fact,  as  discussed  in 
 Section  VI  ,  the  bursts  of  action  potentials  at  the  cell 
 body  that  accompany  dendritic  plateau  potentials 
 have  been  shown  to  produce  large  synaptic  changes 
 at  the  basal  dendrites,  potentially  enabling  rapid  new 
 learning  (  (Gordon  et  al.,  2006;  Bittner  et  al.,  2017; 
 Schiller et al., 2018)  (Caya-Bissonnette et al., 2023)  . 

 There  is  some  evidence  that  apical  dendrite  activity  is 
 highly  coupled  to  cell  body  activity,  even  outside  of 
 large  plateau  events  (Beaulieu-Laroche  et  al.,  2019; 

 Francioni  et  al.,  2019)  .  However,  the  level  of  coupling 
 observed  drops  off  heavily  as  distance  and  branching 
 complexity  increase,  supporting  the  conception  of 
 apical  dendrites  as  a  computationally  distinct 
 compartment  in  pyramidal  neurons  (Hill  et  al.,  2013; 
 Francioni  et  al.,  2019;  Kerlin  et  al.,  2019;  Landau  et 
 al.,  2022)  .  In  addition,  distal  dendrites  generate  about 
 ten  times  as  many  sodium  spikes  as  the  soma, 
 further  indicating  that  local  computations  within  the 
 dendrite  are  likely  largely  decoupled  from  the  somatic 
 spiking  (Moore  et  al.,  2017)  .  Overall,  it  is  important  to 
 note  that  dendritic  events  are  diverse  and  that  their 
 characteristics  vary  across  cell  types,  likely  conferring 
 distinct  processing  properties  to  the  dendrites  of 
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 different  neurons  (see  (Larkum  et  al.,  2022)  ,  for  a 
 review). 

 Predictive inputs to apical dendrites 
 Supporting  the  role  of  apical  dendrites  in  error 
 computation,  axons  carrying  motor  and  predictive 
 visual  signals  to  V1  specifically  target  distal  apical 
 dendrites  in  L1  (Leinweber  et  al.,  2017)  .  Similarly, 
 axons  from  the  prefrontal  cortex  to  L1  of  V1  carry 
 stimulus-specific  predictions  in  mice  trained  to  expect 
 specific  image  sequences  (Fiser  et  al.,  2016)  .  In  a 
 multisensory  task  where  an  auditory  cue  predicted  a 
 visual  stimulus,  it  was  shown  that  axons  arriving  in  L1 
 of  V1  from  the  auditory  cortex  increasingly  encoded 
 information  about  the  cued  visual  stimulus  across 
 learning.  Conversely,  V1  responses  measured  at  the 
 cell  bodies  of  L2/3  neurons  showed  increased 
 stimulus-specific  suppression  across  learning 
 (Garner  and  Keller,  2022)  .  Importantly,  optogenetic 
 silencing  of  these  incoming  axons  reinstated 
 responses  to  the  cued  visual  stimuli,  indicating  a  role 
 for  top-down  projections  to  dendrites  in  predictive 
 suppression.  In  contrast,  a  study  in  parietal  cortex 
 found  that  movement  was  encoded  anticipatorily  in 
 cell  bodies,  but  not  in  putative  apical  dendrites 
 (Moore et al., 2017)  . 

 Stimulus responses in apical dendrites 
 Task-relevant  stimulus  selectivity  increases  in  the  L5 
 tuft  dendrites  of  the  barrel  cortex  when  mice  are 
 trained  on  a  discrimination  task,  but  not  when  they 
 are  merely  exposed  to  the  stimuli  (Benezra  et  al., 
 2024)  .  This  increase  in  selectivity  persists  after 
 training,  pointing  to  a  role  for  apical  dendrites  in 
 learning  to  encode  task-relevant  stimuli  in  primary 
 sensory  cortices.  Gillon  et  al.  studied  how  apical 
 dendrites  responded  to  unexpected  stimuli  by 
 presenting  mice  with  repeating  image  sequences, 
 featuring  occasional  oddballs  (Gillon  et  al.,  2024)  . 
 They  measured  calcium  activity  over  several  days  in 
 the  cell  bodies  or  apical  dendrites  of  L2/3  and  L5 
 pyramidal  neurons.  Consistent  with  previous  studies, 
 they  found  L2/3  and  L5  neurons  that  responded 

 selectively  to  the  oddball  stimulus  (around  20-30%,  in 
 the  first  session).  With  experience,  oddball  selectivity 
 decreased  across  cell  bodies  but  increased  across 
 dendrites.  Notably,  the  least  selective  dendrites  in  the 
 first  session  tended  to  show  the  greatest  increase  in 
 selectivity  by  the  second  session.  Gillon  et  al.  also 
 studied  responses  to  a  passively  viewed  visual  flow 
 stimulus  and  found  that  a  different  oddball  response 
 pattern  emerged.  Oddball  responses  were  primarily 
 found  in  L2/3  neurons,  consistent  with  previous 
 findings  that  neurons  sensitive  to  visuomotor 
 disruptions  are  scarcer  in  L5  than  in  L2/3  (Jordan  and 
 Keller,  2020)  .  Unlike  for  the  image  sequence 
 oddballs,  visual  flow  oddball  responses  increased 
 across  sessions  not  only  across  L2/3  cell  bodies  but 
 also  across  L2/3  apical  dendrites.  Together,  these 
 results  indicate  that  apical  dendrites  can  develop 
 oddball  responses  with  experience  either  in 
 coordination  with  or  independently  of  the  cell  body 
 population,  depending  on  the  type  of  stimulus  being 
 presented. 

 Error encoding in apical dendrites 
 Francioni  et  al.  used  a  brain-computer  interface  (BCI) 
 paradigm  to  probe  the  role  of  apical  dendrites  in  error 
 signaling  (Francioni  et  al.,  2023)  .  In  their  experiment, 
 the  orientation  of  a  visually  displayed  grating  was 
 controlled  by  the  activity  of  eight  neurons  in  the 
 retrosplenial  cortex.  With  training,  mice  learned  to 
 shape  the  activity  of  these  retrosplenial  cortex 
 neurons  to  rotate  the  grating  toward  a  rewarded 
 target  orientation.  Simultaneous  calcium  recordings 
 near  the  apical  tuft  revealed  the  presence  of 
 neuron-specific  error-like  responses  in  the  apical 
 dendrites.  Specifically,  apical  dendrites  responded 
 differently  to  failed  versus  successful  trials,  and  their 
 responses  also  differed  based  on  whether  a  neuron’s 
 BCI  role  was  to  push  the  grating  clockwise  or 
 counterclockwise. 

 2. Relevant theoretical models 
 In  computational  neuroscience  modeling,  including 
 deep  learning,  neurons  are  often  approximated  as 
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 single  integration  site  units  without  dendrites,  in 
 which  inputs  from  all  synapses  are  typically 
 integrated  linearly,  as  if  all  arriving  at  a  single 
 location.  In  contrast,  in  studies  looking  at  the  role  of 
 apical  dendrites  in  predictive  coding,  the  apical  tuft  is 
 typically  modeled  as  a  separate  compartment  that  is 
 nonlinearly  connected  to  a  basal  compartment. 
 Notably,  the  basal  compartment  often  comprises  both 
 the  cell  body  and  the  basal  dendrites,  but  it  can  also 
 be  divided  into  two  separate  compartments.  In  these 
 models,  and  based  on  experimental  evidence  (Harris 
 and  Mrsic-Flogel,  2013)  ,  the  basal  compartment 
 typically  receives  feedforward  inputs,  while  the  apical 
 compartment  is  targeted  by  feedback  inputs  from 
 higher-order areas. 

 Initial models integrating apical dendritic 
 compartments 
 Early  models  of  apical  dendrites  explored  various 
 computations  they  might  perform  (Poirazi  and 
 Papoutsi,  2020)  .  For  example,  apical  dendrites  could 
 enable  neurons  to  solve  nonlinear  classification  tasks 
 like  the  XOR  operation  (Körding  and  König,  2001; 
 Payeur  et  al.,  2021)  or  solve  nonlinear  classification 
 tasks  typically  performed  by  deep  neural  networks 
 (Bicknell  and  Häusser,  2021)  .  Pyramidal  neurons  with 
 apical  dendrites  have  also  been  proposed  to 
 multiplex  and  demultiplex  incoming  information  with 
 bursts  and  single  action  potentials  potentially  carrying 
 different  types  of  information  (Naud  and  Sprekeler, 
 2018)  .  Additionally,  apical  dendrites  may  play  a  role 
 in  higher  cognitive  functions  such  as  attention 
 (LaBerge,  2005)  and  conscious  information 
 processing  (Spratling,  2002)  .  Notably,  however,  the 
 apical  dendrites  of  L2/3  and  L5  neurons  differ 
 morphologically,  endowing  them  with  different 
 properties  (Larkum  et  al.,  2007)  .  Designing  models 
 that  incorporate  cell-type  specific  properties  might 
 reveal  different  functions  for  apical  dendrites  across 
 layers. 

 Predictive coding in apical dendrites 
 In  the  context  of  predictive  coding,  the  observation 
 that  apical  dendrites  are  primarily  targeted  by 
 top-down  connections  of  higher-level  areas  (Harris 
 and  Mrsic-Flogel,  2013)  suggests  they  might  receive 
 top-down  predictions  or  related  signals.  Although 
 models  of  predictive  processing  can  readily  be  built 
 without  dendrite-like  compartments  (Rao  and  Ballard, 
 1999)  ,  introducing  these  compartments  can  help 
 address  important  biological  plausibility  limitations. 
 For  example,  apical  dendrites  could  regulate  the  gain 
 of  pyramidal  neuron  activity  based  on  the  precision  of 
 feedback  predictions,  as  described  in  Section  III 
 (Shipp,  2016)  .  General  support  for  this  idea  comes 
 from  the  involvement  of  L1  in  such  diverse  processes 
 as  attention  and  arousal  (Schuman  et  al.,  2021)  . 
 Alternatively,  in  Hertäg  et  al.’s  circuitry  model 
 described  in  Section  IV  ,  which  incorporates  PV,  VIP 
 and  SOM  neurons,  and  an  apical  dendrite 
 compartment,  the  latter  receives  predictive  inputs, 
 while  stimulus  input  is  targeted  to  the  cell  body  and 
 basal  dendrite  compartment  (Hertäg  and  Clopath, 
 2022)  .  As  described  above,  the  network  is  trained, 
 through  inhibitory  plasticity,  to  achieve  E/I  balance  in 
 each  compartment,  and  excess  activity  emerges  in 
 the  dendrites  or  cell  body  during  prediction  errors 
 (Figure  5).  In  this  model,  the  apical  dendrite 
 compartment  become  sites  of  prediction  error 
 computation,  comparing  (excitatory)  top-down 
 predictions  with  (inhibitory)  sensory  signals, 
 transformed  by  the  interneuron  network.  Notably,  in 
 this  model,  the  basal  dendrite  and  cell  body 
 compartment  is  also  a  locus  of  prediction  error 
 calculation,  but  for  the  (excitatory)  bottom-up  sensory 
 signals (  Figure 5  ). 

 In  contrast  to  the  idea  of  error  computation,  some 
 models  focus  on  the  ability  of  basal  (bottom-up)  and 
 apical  (top-down)  input  to  cooperatively  induce  large, 
 extended  neural  events,  as  described  above  (Anon, 
 2024)  .  Since  these  large  events  only  occur  when 
 both  input  streams  match,  they  may  be  used  for 
 coincidence  detection  (Hay  et  al.,  2016)  .  Another 
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 hypothesis  is  that,  with  experience,  apical  dendrites 
 learn  to  predict  spiking  at  the  cell  body.  This  type  of 
 model,  a  dendritic  predictive  coding  model,  has  been 
 shown  to  learn  simple  supervised  tasks  using  only 
 local  voltage-dependent  plasticity  rules  (Urbanczik 
 and  Senn,  2014)  (  Figure  6  ).  This  type  of  model  has 
 also  shown  promise  in  associative  memory  formation, 
 reinforcement  learning,  and  temporal  prediction  tasks 
 (Brea  et  al.,  2016)  .  In  the  context  of  hierarchical 
 predictive  coding,  dendritic  predictive  coding  may 
 explain  how  neurons  are  able  to  align  the  predictive 
 inputs  received  at  their  apical  dendrites  with  the 
 stimulus  selective  inputs  received  at  their  basal 
 dendrites,  such  that  the  predictive  signals  can 
 effectively  be  used  as  priors  over  the  sensory  signals 
 (Mikulasch  et  al.,  2023)  .  Notably,  if  lateral  inhibition  is 
 added  between  neurons,  this  type  of  model  can  also 
 develop  a  form  of  biased  competition  (Spratling, 
 2008)  which  ensures  that  different  neurons  end  up 
 encode different stimulus characteristics. 

 Other  work  has  shown  that  learning  with  predictive 
 apical  dendrites  in  a  deep  network  can  reproduce  key 
 features  of  predictive  processing,  like  the  emergence 
 of  neurons  that  preferentially  respond  to  expected  or 
 unexpected  stimuli  (Zhang  and  Bohte,  2024)  .  This 
 model  differs  from  the  previous  examples  as  it  is 
 trained  using  energy  optimization  on  a  classification 
 task,  instead  of  an  explicit  predictive  coding  objective. 
 A  secondary  somatodendritic  mismatch  loss  is 
 included,  but  unlike  the  previously  discussed  models, 
 it  is  not  the  primary  goal.  Nonetheless,  this  work 
 further  illustrates  the  potential  role  of  apical  dendrites 
 in predictive learning. 

 As  the  next  section  shows,  efforts  to  scale 
 biologically  plausible  learning  to  deeper  networks 
 with  apical  dendrites  have  largely  focused  on  a 
 different  class  of  models,  which  we  call  dendritic  error 
 backpropagation  models.  With  these  models,  the 
 broad  aim  is  to  reproduce  backpropagation-like 
 learning with local learning rules (  Figure 6  ). 

 Apical dendrites and backpropagation 
 The  backpropagation  algorithm  (i.e.,  in  which  errors 
 are  propagated  backward  through  a  network  via  the 
 chain  rule)  used  in  deep  learning  has  proven  to  be 
 one  of  the  most  effective  ways  to  train  a  neural 
 network  to  perform  complex  tasks,  like  matching 
 complex  natural  images  to  specific  object  classes 
 (supervised  learning),  seeking  out  rewards 
 (reinforcement  learning)  or  uncovering  hidden 
 structure  in  data  (unsupervised  learning).  However, 
 as  a  model  for  learning  in  the  brain  it  faces  numerous 
 bioplausibility  challenges.  In  particular,  the 
 backpropagation  algorithm  requires  information  that 
 is  spatially  nonlocal  (e.g.,  encoded  by  synaptically 
 distant  neurons)  and  collected  at  different  timepoints 
 to  be  accurately  distributed  to  all  neurons  in  the 
 network  (Lillicrap et al., 2020)  . 
 The  idea  that  apical  dendrites  might  be  key  to 
 addressing  this  problem  has  gained  a  lot  of  traction  in 
 the  past  decade.  As  mentioned  above,  Urbanczik  and 
 Senn  demonstrated  how  learning  in  apical  dendrites 
 could  help  align  prediction  and  stimulus  streams 
 during  network  training  (  (Urbanczik  and  Senn,  2014)  . 
 Building  on  this  work,  a  class  of  dendritic  error 
 backpropagation  models  has  emerged  in  which  the 
 express  aim  is  to  use  apical  dendrite  compartments, 
 and  other  biologically-inspired  structures,  to 
 approximate  backpropagation  learning  in  the  hopes 
 of  explaining  how  the  brain  is  able  to  learn  to  perform 
 highly complex tasks. 

 Like  those  described  in  the  previous  section,  these 
 models  leverage  predictive  coding-like  dynamics 
 combined  with  Hebbian  plasticity,  and  the  idea  that 
 top-down  connections  primarily  target  apical 
 dendrites  (Millidge  et  al.,  2022;  Song  et  al.,  2024)  . 
 However,  in  contrast  to  dendritic  predictive  coding 
 models,  errors  between  sensory  inputs  and 
 predictions  are  computed  in  the  apical  compartment, 
 but  then  transmitted  back  to  the  cell  body 
 compartment where they drive learning (  Figure 6  ). 
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 The  first  dendritic  error  backpropagation  models 
 showed  how  a  network  of  two-compartment  spiking 
 neurons  trained  with  a  local  learning  rule  could  learn 
 to  approximate  backpropagation  in  a  handwritten  digit 
 classification  task  (Sacramento  et  al., 
 2018)  (Guerguiev  et  al.,  2017)  ;  (Sacramento  et  al., 
 2018)  .  The  Burstprop  model  (Payeur  et  al.,  2021) 
 extends  this  model  by  incorporating  additional 
 biological  observations:  the  distinct  role  of  single 
 spike  and  bursting  events,  the  role  of  distal  apical 
 dendrites  in  generating  bursts  (Larkum  et  al.,  2009) 
 and  the  ability  of  connection-specific  short-term 
 synaptic  plasticity  (STP)  to  multiplex  these  signals 
 through  burst-dependent  plasticity  (Friedenberger  et 
 al.,  2023)  .  This  allows  neurons  to  separately  transmit 
 stimulus  and  error-related  information,  and  learn 
 continuously.  However,  as  with  Guerguiev  et  al.’s 
 model,  during  training,  the  response  to  every  input 
 must  go  through  two  consecutive  phases,  impairing 
 the  model’s  biologically  plausible.  The  first  phase  is 
 needed  to  calculate  baseline  burst  rates  induced  by 
 the  input,  while  the  second  phase  reveals  how  the 
 burst  rate  changes  based  on  errors  received  from  the 
 top  brain  area.  The  difference  between  these  two 
 burst  rates  is  fed  to  the  learning  rule,  which 
 approximates  rate-dependent  long-term  synaptic 
 plasticity as observed by  (Sjöström et al., 2001)  . 

 Independently  of  Burstprop,  Sacramento  et  al. 
 showed  how  inhibition  targeted  to  apical  dendrites 
 not  only  allows  a  network  to  learn  continuously  in 
 time,  but  also  removed  the  need  for  two  phases 
 (Sacramento  et  al.,  2018)  .  Lastly,  Greedy  et  al.’s 
 Bursting  cortico-cortical  Networks  (BurstCCN)  brings 
 together  features  of  both  the  Sacramento  et  al.  model 
 and  the  Burstprop  model  (Sacramento  et  al.  and 
 Burstprop),  improving  both  biological  plausibility  and 
 performance  (Greedy  et  al.,  2022)  .  As  in  Sacramento 
 et  al.’s  model,  the  inclusion  of  dendrite-targeting 
 interneurons  circumvents  the  need  for  multiple 
 phases,  and,  as  with  Burstprop,  connection-specific 
 STP  and  burst-dependent  plasticity  enable 
 continuous  learning  through  multiplexing.  Notably, 
 BurstCCN  predicts  a  key  role  for  inhibitory 

 interneurons  in  learning:  specifically,  that  short-term 
 synaptic  facilitation  at  synapses  of  SOM  interneurons 
 is  critical  to  reliably  decoding  burst  events  and 
 thereby  propagating  accurate  prediction  errors  across 
 the cortex. 

 When  designing  biologically  plausible  algorithms  to 
 approximate  backpropagation,  it  is  challenging  to 
 ensure  they  can  generalize  to  multi-layer  networks, 
 which  are  needed  for  more  complex  tasks  (Richards 
 and  Lillicrap,  2019)  .  Greedy  et  al.  show  in  image 
 classification  tasks  that,  compared  to  previous 
 models,  learning  with  BurstCCN  across  multiple 
 layers  is  better  aligned  to  backpropagation. 
 Nonetheless,  more  work  is  needed  to  enable 
 dendritic  error  backpropagation  models  to  approach 
 the  performance  of  backpropagation  on  complex 
 learning tasks. 

 In  summary,  a  variety  of  models  have  been 
 developed  to  leverage  the  potential  computational 
 power  of  apical  dendrites.  These  can  be  broadly 
 categorized  into  two  categories:  dendritic  predictive 
 coding  models  and  dendritic  error  backpropagation 
 models  (see  Figure  6  ).  In  addition  to  requiring 
 different  synaptic  plasticity  rules,  a  core  difference 
 between  these  classes  of  models  is  where  the  error 
 is  computed.  In  the  former,  errors  are  computed  at 
 the  cell  body,  whereas  the  latter  presents  a  sort  of 
 ‘inverted’  predictive  coding  in  which  errors  are 
 computed  at  the  apical  dendrite  (Whittington  and 
 Bogacz, 2019)  . 

 3,  Divergence  and  convergence  between 
 experiments and theories 
 Experimental  findings  and  theoretical  models 
 increasingly  support  the  idea  that  apical  dendrites 
 play  a  crucial  role  in  complex  neural  computations 
 and  learning  processes.  Both  suggest  that  apical 
 dendrites  integrate  feedback  inputs  and  contribute  to 
 the  generation  of  nonlinear  events  such  as  dendritic 
 spikes  and  plateau  potentials,  which  may  be 
 essential  for  functions  like  predictive  coding  and  error 
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 computation.  For  instance,  the  experimental  evidence 
 shows  that  task-relevant  selectivity  can  emerge  in 
 apical  dendrites  during  learning  tasks  (Francioni  et 
 al.,  2023;  Benezra  et  al.,  2024)  or  through  passive 
 viewing  (Gillon  et  al.,  2024)  ,  and  suggests  that  apical 
 dendrites  may  encode  neuron-specific  error  signals 
 (Francioni  et  al.,  2023)  .  Similarly,  models 
 incorporating  apical  dendrites  have  been  shown  to 
 enable  biologically  plausible  networks  to  perform 
 more  complex  learning  tasks  (Guerguiev  et  al.,  2017; 
 Sacramento et al., 2018; Greedy et al., 2022)  . 

 Despite  these  convergences,  significant  gaps  remain 
 between  experimental  observations  and  theoretical 
 models  particularly  regarding  the  site  of  error 
 computation.  Specifically,  although  this  information 
 could  significantly  help  narrow  down  the  space  of 
 biologically  plausible  dendritic  networks,  it  remains 
 unknown  whether  or  not  prediction  errors  are 
 encoded  in  apical  dendrites.  In  addition,  while  models 
 like  Burstprop  (Payeur  et  al.,  2021)  and  BurstCCN 
 (Greedy  et  al.,  2022)  assume  that  burst  activity  and 
 apical  dendritic  potentials  constitute  key  learning 
 signals,  direct  experimental  evidence  linking  these 
 predictions  to  observable  learning  processes  remains 
 limited. 

 Lastly,  dendritic  arbors  are  highly  complex  and 
 compartmentalized  (Larkum  et  al.,  2022)  .  Theoretical 
 models  built  using  only  two  or  three-compartment 
 neurons  are  thus  very  likely  to  heavily  oversimplify 
 and  underestimate  the  complex  computations 
 dendrites  can  engage  in.  A  better  understanding  of 
 activity  at  the  sub-dendritic  level  during  predictive 
 processing  is  needed  to  further  illuminate  the 
 computational  advantages  these  complex  structures 
 offer. 

 VI.  Synaptic  plasticity  and  learning 
 dynamics 
 Predictive  responses  result  from  dynamic  learning 
 processes  occurring  between  neurons.  In  this 
 section,  we  review  experimental  and  theoretical 

 literature  exploring  various  learning  rules  underlying 
 predictive  processing.  Rather  than  covering  the 
 extensive  literature  on  synaptic  learning,  we  focus 
 specifically  on  studies  relevant  to  predictive 
 processing. 

 1. Experimental evidence 
 In  general,  predictive  coding  models  are  too  detailed 
 and  context-dependent  to  be  genetically  encoded. 
 Therefore,  these  models  must  be  acquired  through 
 experience-dependent  processes.  Although  many 
 mechanisms  can  alter  cellular  excitability,  changes  in 
 synaptic  weights  have  traditionally  been  the  main 
 focus  for  learning.  The  literature  on  synaptic  plasticity 
 is  vast,  revealing  a  wide  variety  of  synaptic  plasticity 
 rules  across  neuronal  cell  types  and  sub-neuronal 
 compartments. 

 Results  from  in  vivo  chronic  recordings  across 
 days 
 Various  experiments  have  shown  that  predictive 
 spatiotemporal  representations  can  form  over  days. 
 In  V1,  passive  multi  day  exposure  to  a  sequence  of 
 gratings  causes  sequence-evoked  LFP  potentiation 
 that  decreases  when  the  same  images  are  shown 
 with  an  unexpected  order  (Gavornik  and  Bear,  2014)  . 
 The  potentiation  was  highly  specific  for  the  timing  of 
 stimulus  presentation  (see  Figure  7  ),  with  small 
 changes  in  element  duration  causing  evoked 
 response  magnitudes  to  drop  significantly,  and 
 evoked-like  responses  appearing  when  an  expected, 
 but  omitted,  element  transition  would  have  occurred. 
 The  same  paradigm  also  revealed  sequence-specific 
 latency  shifts  occurring  in  ACC  in  parallel  with 
 changes  in  V1  (Sidorov  et  al.,  2020)  .  Subsequent 
 work  recording  single  unit  activity 
 electrophysiologically  (Price  et  al.,  2023)  or  via 
 calcium  imaging  (Knudstrup  et  al.,  2024)  confirmed 
 that  cells  at  the  layer  4/5  border  and  in  superficial 
 layers  are  significantly  modulated  by  learned 
 expectations  about  when  a  stimulus  will  occur.  These 
 multi-day  experiments  differ  from  in-session  oddball 

 45 

https://paperpile.com/c/io7Jhe/vwiVj+sjqjh
https://paperpile.com/c/io7Jhe/vwiVj+sjqjh
https://paperpile.com/c/io7Jhe/KCadD
https://paperpile.com/c/io7Jhe/sjqjh
https://paperpile.com/c/io7Jhe/bwdPD+iOL8m+uUHld
https://paperpile.com/c/io7Jhe/bwdPD+iOL8m+uUHld
https://paperpile.com/c/io7Jhe/mbYpT
https://paperpile.com/c/io7Jhe/uUHld
https://paperpile.com/c/io7Jhe/vlnde
https://paperpile.com/c/io7Jhe/FWR0X
https://paperpile.com/c/io7Jhe/xybHJ
https://paperpile.com/c/io7Jhe/ybc2G
https://paperpile.com/c/io7Jhe/lEHzi


 Neural mechanisms of predictive processing 

 responses  which  are  insensitive  to  the  relative  timing 
 of sequential expectations  (Knudstrup et al., 2024)  . 

 (Fiser  et  al.,  2016)  trained  mice  to  run  down  a  virtual 
 corridor  for  a  reward  at  the  end  while  a  sequence  of 
 two  images  ABAB  was  presented  on  the  walls  of  the 
 corridor.  Over  4  days  of  training,  a  subset  of  neurons 
 developed  responses  that  predicted  the  occurrence 
 of  an  image  and  occurred  at  or  before  the  image  was 
 presented,  while  most  other  neurons  responded  with 
 a  typical  latency.  Supporting  the  idea  of  predictions 
 being  fed  back  down  the  cortical  hierarchy,  predictive 
 responses  also  emerged  in  axons  from  the  anterior 
 cingulate  cortex  (ACC)  measured  in  V1.  In  addition, 
 the  omission  of  an  expected  grating  evoked  a  strong 
 response  in  a  small  subset  of  V1  neurons.  Similarly, 
 (Leinweber  et  al.,  2017)  trained  mice  on  a  ball  in  a 
 virtual  reality  environment  to  associate  wide-field 
 image  motion,  resulting  from  their  own  movement  on 
 the  ball,  that  was  in  the  opposite  direction  as  would 

 occur  in  real  life.  Training  lasted  until  mice  reached  a 
 criterion  performance  in  running  down  the  virtual 
 corridor,  taking  up  to  10  days.  Before  training,  activity 
 of  ACC  axons  in  V1  correlated  more  with  ipsiversive 
 turns  (which  cause  higher  velocity  optic  flow)  than 
 contraversive,  but  after  training,  the  correlation 
 reversed  its  direction,  corresponding  to  a  bias  in  the 
 ipsiversive  direction  for  the  new  trained  visual 
 experience. 

 As  described  in  Section  V  ,  (Gillon  et  al.,  2024) 
 passively  exposed  mice  to  oddball  sequences.  Over 
 three  days  of  testing,  they  found  that  the  oddball 
 response  to  Gabor  spatial  images  increased  in  L2/3 
 and  L5  dendrites  and  decreased  in  L5  somas.  For 
 visual  flow  reversals,  they  found  increased  oddball 
 responses  in  L2/3  somas  and  dendrites  along  with 
 relatively  little  change  in  L5  neurons.  Together,  these 
 results  demonstrated  significant  changes  in  oddball 
 responses  across  multiple  days,  although  some  cell 
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 types  and  compartments  showed  increases  while 
 others showed decreases. 

 While  multi-day  predictive  coding  seems  to  be  based 
 on  consolidated  synaptic  plasticity,  and  have  been 
 tied  to  M2  muscarinic  acetylcholine  receptors  (Sarkar 
 et  al.,  2024)  ,  it  has  been  proposed  that  visual  oddball 
 deviants  characterized  using  calcium  imaging  are  a 
 consequence  of  relatively  simple  and  ubiquitous 
 adaptation  mechanisms  (Homann  et  al.,  2022)  . 
 Evoked  potentials  measured  in  the  LFP,  however, 
 have  recently  been  shown  to  scale  inversely  with 
 predictability  in  a  manner  inconsistent  with  a  simple 
 adaptation  model  (see  Figure  7  ).  While  these  accord 
 with  some  computational  models  that  anticipate 
 response  scaling  based  on  event  probability,  it  is  not 
 clear  how  to  resolve  the  apparent  contradictions 
 between  calcium  imaging  and  LFP  based  studies.  It 
 is  important  to  note  that  the  LFP  reflects  incoming 
 synaptic  currents  rather  than  local  neural  spiking 
 (Einevoll et al., 2013)  . 

 Experimentally  observed  synaptic  plasticity 
 mechanisms. 
 Given  the  observed  fact  that  predictive  neural 
 responses  can  be  learned,  what  are  some  of  the 
 synaptic  plasticity  rules  that  may  account  for  them? 
 Spike-timing  plasticity  was  first  reported  in  excitatory 
 synapses  in  1989  (Markram  et  al.,  1997;  Bi  and  Poo, 
 1998)  .  After  an  explosion  of  research  in  the  1990s 
 and  2000s,  the  literature  has  stabilized  with  a  set  of 
 major  review  articles  that  are  still  current  (Abbott  and 
 Nelson,  2000;  Caporale  and  Dan,  2008;  Feldman, 
 2012)  that  describe  a  variety  of  timing  windows  for 
 LTP  and  LTD,  depending  on  cell  type,  brain  area,  and 
 species.  In  general,  these  rules  involve  potentiation 
 for  pre-post  spike  pairs  within  a  ~10  ms  causal 
 temporal  order  (pre  before  post),  and  depression  for 
 spike  pairs  in  an  acausal  order  (post  before  pre)  in 
 time  windows  varying  from  10  ms  up  to  100  ms  or 
 more.  This  rule  is  ideal  for  learning  temporal 
 sequences  of  neural  activity  and  thus  contributing  to 
 predictive processing. 

 E-to-I  synapses  exhibit  potentiation  in  almost  all 
 cases  and  mostly  require  spike  pairing  with  a  causal 
 order  (Bannon  et  al.,  2020)  .  These  rules  have  been 
 observed  to  differ  across  types  of  inhibitory  neurons, 
 including  fast-spiking  (FS),  low-threshold  spiking 
 (LTS),  and  SOM  neurons  (Bannon  et  al.,  2020)  . 
 These  forms  of  plasticity  are  also  effectively 
 anti-Hebbian,  as  they  strengthen  disynaptic  inhibitory 
 feedback. 

 The  classic  long-term  plasticity  of  I-to-E  synapses 
 involves  potentiation  for  pre-  and  postsynaptic  spikes 
 paired  within  ±20  ms  with  no  requirement  of  a  causal 
 temporal  order  (Woodin  et  al.,  2003)  .  Spikes  paired 
 at  longer  time  intervals  (±50  ms)  instead  trigger 
 depression.  This  potentiation  of  inhibitory  synapses  is 
 effectively  anti-Hebbian,  creating  a  form  of  negative 
 feedback  loop  (Kilman  et  al.,  2002;  Woodin  et  al., 
 2003;  Hartmann  et  al.,  2008)  .  This  plasticity  rule  is 
 well-known  for  its  role  in  establishing  E/I  balance  in 
 the  neocortex  (Hartmann  et  al.,  2008;  Vogels  et  al., 
 2011)  .  This  E/I  balance  may  also  implement  the 
 learning  and  cancellation  of  temporally  precise 
 predictions  (Herstel and Wierenga, 2021)  . 

 Subsequent  experiments  show  great  diversity  of 
 timing  rules  for  I-to-E  plasticity  (Hennequin  et  al., 
 2017;  Capogna  et  al.,  2021)  (Zappacosta  et  al., 
 2018)  (Abbott  and  Nelson,  2000)  ,  such  that 
 experiments  do  not  currently  provide  strong 
 constraints  on  the  assumptions  that  go  into  models  of 
 predictive  processing.  However,  one  important  detail 
 that  is  not  typically  incorporated  into  models  of  E/I 
 balance  is  that  plasticity  in  I-to-E  synapses  appears 
 to  require  activation  of  nearby  E-to-E  synapses.  This 
 potentially  changes  the  stability  properties  of  the 
 plasticity rules. 

 Behavioral Time Scale Synaptic Plasticity 
 A  specific  form  of  synaptic  plasticity  called  Behavioral 
 Time  Scale  Synaptic  Plasticity  (BTSP)  could  play  a 
 role  in  predictive  processing.  BTSP  was  first 
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 observed  at  CA3  inputs  to  the  basal  dendrites  of 
 pyramidal  neurons  of  hippocampal  area  CA1  in  vivo 
 within  a  handful  of  trials  (Gordon  et  al.,  2006;  Bittner 
 et  al.,  2017;  Schiller  et  al.,  2018;  Milstein  et  al.,  2021; 
 Grienberger  and  Magee,  2022;  Caya-Bissonnette  et 
 al.,  2023;  Fan  et  al.,  2023)  .  BTSP  appears  to  occur 
 when  coincident  activation  of  the  apical  dendrite  tuft 
 and  the  cell  body  gives  rise  to  plateau  potentials  in 
 the  dendrites  and  bursting  at  the  cell  body. 
 Characterized  as  a  short-term  non-Hebbian  plasticity 
 mechanism,  BTSP  is  distinct  from  LTP,  LTD  or  STDP, 
 as  presynaptic  activity  alters  synaptic  efficacies  over 
 hundreds  to  thousands  of  milliseconds.  Specifically, 
 unlike  STDP,  this  type  of  plasticity  enables 
 presynaptic  inputs  that  may  be  behaviourally 
 relevant,  but  are  neither  directly  causal  nor  very  close 
 in  time  to  postsynaptic  activation  to  be  potentiated. 
 Strikingly,  the  magnitude  of  the  synaptic  potentiation 
 is  quite  large,  sufficient  for  one  or  few-shot  learning 
 (  (Gordon  et  al.,  2006;  Bittner  et  al.,  2017;  Schiller  et 
 al.,  2018;  Milstein  et  al.,  2021;  Grienberger  and 
 Magee,  2022;  Caya-Bissonnette  et  al.,  2023;  Fan  et 
 al.,  2023)  ).  A  BTSP-based  learning  rule  appears  ideal 
 therefore  to  enable  rapid  learning  of  more  temporally 
 distant  associations,  potentially  enabling  predictions 
 over longer time spans  (Hamid et al., 2021)  . 

 It  should  be  noted  that  plasticity  rules  observed  on 
 distal  or  apical  dendrites  can  differ  significantly  in 
 their  strength  and  time  window  compared  to  the 
 proximal  dendrites  or  cell  body  (Gordon  et  al.,  2006; 
 Bittner  et  al.,  2017;  Schiller  et  al.,  2018)  .  In  fact, 
 detailed  biophysical  computational  models  showed 
 that  the  same  stimulus  frequency  that  induces 
 synaptic  potentiation  at  the  proximal  dendrite  would 
 induce  synaptic  depotentiation  at  the  distal  dendrites, 
 largely  due  to  the  dendritic  distance-dependent 
 attenuation  of  the  back-propagating  action  potential 
 (Kumar  and  Mehta,  2011)  .  These  findings  seem  to 
 reinforce  the  intertwined  relationship  between  the 
 temporally-relevant  BTSP  rules  discussed  above 
 (Gordon  et  al.,  2006;  Bittner  et  al.,  2017;  Schiller  et 
 al.,  2018)  and  the  spatially-relevant  dendritic 
 specialization. 

 Depolarization-induced suppression of inhibition 
 Another  prominent  form  of  plasticity  that  is  not 
 typically  included  in  predictive  processing  models  is 
 depolarization-induced  suppression  of  inhibition  (DSI) 
 (Kullmann  et  al.,  2012;  Barberis,  2020)  .  DSI  is  a 
 short-term  plasticity  mechanism  that  involves 
 disinhibition  driven  by  a  reduction  of  GABA  release. 
 In  DSI,  endocannabinoids  bind  to  presynaptic  EBC 
 receptors  (Kano  et  al.,  2009)  .  This  retrograde 
 message  gives  rise  to  a  net  enhancement  of 
 synapses  on  a  time  scale  of  ~60  seconds.  This 
 subset  of  enhanced  synapses  can  serve  as  a  “trail  of 
 breadcrumbs”  to  bias  a  neural  network  towards 
 reactivating  previous  patterns  of  activity  (Pang  and 
 Fairhall,  2019)  .  Such  a  mechanism  may  be  important 
 for  within-session  phenomena  like  the  oddball 
 response  and  may  be  involved  in  multi-day  plasticity 
 experiments. 

 Investigations  of  prediction-error  related  plasticity 
 using BCI paradigms 
 Brain-Computer  Interface  (BCI)  paradigms  have 
 provided  a  unique  avenue  to  study  “covert"  learning. 
 In  BCIs,  action  potentials  from  individual  neurons 
 (invasive),  local  field  potentials  (invasive)  or  EEG 
 signals  (non-invasive)  are  decoded  in  real-time  to 
 directly  control  a  disembodied  agent  within  the  task 
 space  (Oweiss  and  Badreldin,  2015)  .  Beyond  control 
 in  the  task  space,  the  decoded  control  signal  can  also 
 directly  stimulate  other  neurons  to  achieve  a 
 desirable  functional  outcome.  For  example,  they  can 
 induce  Hebbian-like  plasticity  between  ‘trigger’  and 
 ‘target’  neurons  (Packer  et  al.,  2015;  Zhang  et  al., 
 2018)  or  between  spatially/functionally  distinct  brain 
 areas  (Jackson et al., 2006)  . 

 BCI  learning  tasks  demonstrate  rapid  internal  model 
 formation  within  a  few  trials  (Badreldin  et  al.,  2013; 
 Clancy  et  al.,  2014;  Oweiss  and  Badreldin,  2015; 
 Balasubramanian  et  al.,  2017;  Vaidya  et  al.,  2018)  . 
 Additionally,  BCI  paradigms  also  allow  for  the 
 systematic  manipulation  of  the  internal  model  by 
 altering  the  decoder  coefficients  and  observing  how 
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 the  neural  population  changes  its  dynamics  in 
 response. 

 These  features  allow  the  prediction  error  to  be  rapidly 
 and  precisely  measured,  and  demonstrate  the  power 
 of  the  paradigm  for  studying  mechanisms  of  learning 
 and  adaptation.  Recent  work  suggested  that  BCI 
 learning  could  be  supported  by  BTSP  within  a  few 
 trials  (Chueh  et  al.,  2025)  .  Future  work  could  use  BCI 
 to  study  how  prediction  error  representation  within 
 dendritic  compartments  and  functional  connectivity 
 between  neurons  co-evolve  together  as  a  function  of 
 task learning. 

 2. Relevant theoretical models 
 In  most  predictive  coding  theories,  predictions  must 
 be  learned  through  plasticity  mechanisms  in  the 
 brain.  However,  in  the  classical  theory  of  predictive 
 coding  (Rao  and  Ballard,  1999)  ,  these  rules  are 
 rather  abstract  and  do  not  explicitly  address  how 
 synaptic  plasticity  mechanisms  contribute  to 
 prediction  formation.  This  highlights  a  significant 
 challenge  in  bridging  theoretical  and  biological 
 mechanisms. 

 Learning  in  predictive  coding  is  through  to  rely  on 
 Hebbian  plasticity  rules,  but  involves  several 
 problematic  assumptions.  First,  this  learning 
 algorithm  assumes  that  feedforward  and  feedback 
 weights  are  symmetric,  which  is  also  called  the 
 “weight  transport  problem”  (Lillicrap  et  al.,  2020)  .  This 
 pre-established  perfect  weight  symmetry  is 
 implausible,  but  it  has  been  shown  that  through  an 
 additional  weight  decay  term,  weights  can  be  aligned 
 sufficiently  to  enable  learning  without  symmetry 
 (Alonso  and  Neftci,  2021)  .  Second,  the  Hebbian 
 learning  rule  relies  on  positive  and  negative  error 
 neuron  activity,  which,  as  discussed  before  (ses 
 Section  III  ),  is  incompatible  with  spiking  neural 
 activity.  One  possibility  is  to  encode  errors  in 
 deviations  with  respect  to  a  baseline  firing  rate 
 (Alonso  and  Neftci,  2021)  ,  but  this  is  impractical 
 considering  the  low  firing  rates  in  cortex.  A  more 

 widely  accepted  alternative  separates  errors  into 
 positive  and  negative  contributions,  which  may  arise 
 from  inhibitory  connections  that  learn  an  E/I  balance 
 on  pyramidal  neurons  with  Hebbian-like  plasticity 
 (Hertäg  and  Clopath,  2022)  .  On  the  other  hand,  using 
 separate  error  neurons  transforms  the  Hebbian 
 learning  rule  for  synapses  targeting  prediction 
 neurons  into  a  non-local  learning  rule  that  requires 
 both  the  negative  and  positive  contribution  to  update 
 single  synapses.  Thus,  how  the  full  learning  algorithm 
 of  predictive  processing  can  be  mapped  to  synaptic 
 plasticity is still an important question. 

 Learning  in  dendritic  predictive  coding  has  been 
 proposed  to  proceed  in  two  different  ways  (Mikulasch 
 et  al.,  2023)  .  Apical  dendrites  might  compute  the 
 error  by  comparing  predictive  input  to  activity  at  the 
 cell  body.  In  this  case,  the  apical  potential  should 
 ideally  be  predictive  of  spiking  at  the  cell  body 
 (Urbanczik  and  Senn,  2014)  .  This  idea  leads  to  a 
 voltage-dependent  plasticity  (VDP)  rule  of  apical 
 targeting  synapses  that  combines  postsynaptic 
 spiking  and  the  apical  potential.  On  the  other  hand, 
 basal  dendrites  might  compute  the  error  by  balancing 
 bottom-up  (excitatory)  input  with  lateral  (inhibitory) 
 connections,  learned  via  VDP  (Denève  and  Machens, 
 2016;  Mikulasch  et  al.,  2021)  .  To  learn  feed-forward 
 weights  to  basal  dendrites,  the  balanced  membrane 
 potentials  can  be  exploited  by  another  VDP  rule 
 combining  postsynaptic  spiking  and  the  dendritic 
 potential  (Mikulasch  et  al.,  2021)  .  This  learning 
 algorithm  also  suffers  from  the  weight  transport 
 problem,  which  here  has  a  similar  solution  as  for 
 cellular  predictive  coding.  Another  possibility  is  to 
 learn  feed-forward  weights  with  Hebbian-like 
 plasticity  (Brendel  et  al.,  2020)  ,  which  however  might 
 result  in  faulty  learning  with  inhibitory  delays 
 (Mikulasch  et  al.,  2021)  .  Still,  there  are  open 
 questions  about  how  these  models  relate  to  plasticity 
 in  the  cortex.  Especially,  while  there  has  been  some 
 progress  (Brendel  et  al.,  2020)  ,  these  models  often 
 do  not  respect  Dale’s  law,  and  plasticity  rules  for 
 bottom-up  and  top-down  inhibitory  connections  have 
 yet to be proposed. 
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 The  plasticity  rules  we  discussed  so  far  describe 
 plasticity  of  bottom-up  and  top-down  connections  in 
 the  microcircuit  (or  lateral  inhibitory  connections 
 supporting  their  computations),  which  are  based  on 
 the  ideas  of  early  work  on  predictive  coding  (Rao  and 
 Ballard,  1999)  .  In  addition  to  this,  predictions  could 
 also  be  generated  as  sequences  within  neural 
 populations.  Proposed  plasticity  rules  that  could 
 enable  this  are  based  on  Hebbian-like  plasticity 
 (STDP)  (Kappel  et  al.,  2014;  Bouhadjar  et  al.,  2022)  , 
 VDP  as  proposed  for  apical  dendrites  (Brea  et  al., 
 2016;  Millidge  et  al.,  2024)  ,  error  neurons  (Millidge  et 
 al.,  2024)  ,  or  more  complex  gradient-based  learning 
 rules  (Bellec  et  al.,  2020;  Saponati  and  Vinck,  2023)  . 
 Many  of  these  concepts  for  within-level  learning  are 
 thus  similar  to  what  has  been  proposed  for 
 between-level learning. 

 3.  Divergence  and  convergence  between 
 experiments and theories 
 Given  the  diversity  of  cell  types  and  synaptic 
 plasticity  rules,  it  is  unlikely  that  the  core 
 computations  underlying  predictive  processing  are 
 entirely  determined  by  a  single  cell  type  or  plasticity 
 rule.  However,  it  may  still  be  the  case  that  particular 
 cell  types  and  plasticity  rules  make  stronger  or 
 conceptually  more  significant  contributions.  In  this 
 light,  we  here  contrast  two  broad  categories  of 
 mechanisms. 

 The  first  category  consists  of  mechanisms  driven 
 primarily  by  plasticity  in  inhibitory  pathways.  This 
 approach  is  consistent  with  the  predominant 
 predictive  coding  concept  of  subtracting  predictable 
 information  from  the  raw  bottom-up  sensory  data.  For 
 the  cortex  to  learn  these  subtractions,  it  must 
 strengthen  specific  I-to-E  synapses  that  represent 
 predictable  information  and/or  modify  other  synapses 
 to  amplify  the  activity  of  specific  inhibitory  neurons.  In 
 both  cases,  this  plasticity  must  selectively  shape  the 
 subtraction  of  accurately  predicted  information  from 
 the pyramidal neurons encoding that information. 

 The  second  category  involves  mechanisms  primarily 
 driven  by  plasticity  within  excitatory  pathways.  This 
 hypothesis  is  motivated  by  the  biophysical  evidence 
 showing  that  the  E-to-E  synapses,  particularly  those 
 on  the  spines  of  pyramidal  neurons,  have  significant 
 potential  for  learning  and  encoding  specific 
 prediction.  In  particular,  many  E-to-E  synapses  are 
 known  to  exhibit  spike-timing-dependent  plasticity 
 (STDP),  which  strengthens  synapses  between 
 neurons  activated  in  a  causal  temporal  order 
 (Markram  et  al.,  1997,  2011;  Caporale  and  Dan, 
 2008;  Feldman,  2012)  .  This  causal  plasticity  has 
 been  shown  in  models  to  enhance  predictable 
 information  (Masquelier  et  al.,  2009;  Saponati  and 
 Vinck,  2023)  and  has  been  implicated  in  experiments 
 involving  similar  computations  (Mehta  et  al.,  2000b; 
 Yao  and  Dan,  2001;  Yao  et  al.,  2004;  Saponati  and 
 Vinck,  2023)  .  Predictive  processing  implemented  in  a 
 single  neuron  leads  to  STDP-like  kernels  and  efficient 
 encoding  and  anticipation  of  temporal  sequences 
 (Saponati  and  Vinck,  2023)  .  Of  course,  if  plasticity  in 
 excitatory  synapses  plays  a  primary  role,  then 
 plasticity  in  inhibitory  pathways  must  still  be  involved. 
 This  is  because  the  neocortex  must  maintain  a 
 proper  balance  between  excitation  and  inhibition. 
 Thus,  if  specific  excitatory  pathways  are  potentiated 
 due  to  temporal  correlations  in  the  input  to  a  local 
 circuit,  then  inhibitory  pathways  will  tend  to  be 
 strengthened  to  maintain  E/I  balance  (Vogels  et  al., 
 2011;  Yang  and  Sun,  2018;  Zhou  and  Yu,  2018)  . 
 While  this  homeostatic  inhibitory  plasticity  may  play  a 
 strong  role  in  shaping  neural  activity,  it  could  be 
 conceptually  “secondary”  or  “reactive”  and  may 
 exhibit  less  specificity  than  plasticity  in  excitatory 
 pathways.  Inhibitory  pathways  may  also  be 
 strengthened  for  other  purposes,  such  as  learning 
 multiple  temporal  sequences  in  different  pyramidal 
 ensembles  (Masquelier  et  al.,  2009)  .  Arguably,  this 
 kind  of  inhibitory  plasticity  might  not  be  viewed  as 
 secondary  to  excitatory  plasticity  but  instead  as 
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 equally  important  in  allowing  for  multiple  temporal 
 sequences to be learned. 

 As  reviewed  earlier,  LTP,  LTD,  STDP,  BTSP,  and  DSI 
 plasticity  rules  are  well-supported  by  substantial 
 experimental  literature.  However,  the  detailed 
 mathematical  form  and  parameters  of  these  learning 
 rules  vary  widely  in  this  literature.  Thus,  translating 
 these  learning  rules  into  integrated  predictive  coding 
 models  at  the  level  of  individual  neurons  or  small 
 neuronal  networks  remains  an  area  of  active 

 research.  There  is  notably  a  lack  of  clear  principles 
 on  how  these  learning  rules  interact  with  the  diverse 
 mechanisms discussed in  Sections II  ,  III  ,  IV  , and  V  . 

 A  key  barrier  may  be  the  insufficient  data  on  the 
 neuronal  distribution  of  individual  ion  channels,  as 
 well  as  limited  insights  into  simultaneous  spine, 
 dendritic,  and  somatic  activity.  Recent  advances  in 
 electron  microscopy  connectivity  mapping  offer  hope 
 that  the  necessary  anatomical  data  will  provide 
 critical  information  on  connectivity.  However,  these 
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 datasets  will  not  address  ion  channel  distributions. 
 Both  in  vitro  and  in  vivo  studies  are  urgently  needed 
 to  better  constrain  existing  models  and  bridge  these 
 knowledge gaps. 

 VII: From single neuron activity to 
 inter-areal signal flow and 
 whole-brain activity patterns 
 The  oddball  sequence  paradigm  originated  in  human 
 research,  where  it  has  been  widely  used  for  almost 
 fifty  years  to  study  brain  responses  to  unexpected  or 
 deviant  stimuli  (Squires  et  al.,  1975)  .  While 
 experiments  in  mammalian  model  organisms  allow 
 for  the  systematic  study  of  neural  activity  at  a 
 single-cell  level,  techniques  like 
 Electroencephalograph  (EEG)  and 
 magnetoencephalography  (MEG)  in  humans  have 
 enabled  researchers  to  capture  large-scale  neural 
 changes  in  response  to  deviant  stimuli.  The  study  of 
 ERP  phenomena  like  the  MMN  and  P300  responses 
 remains  prominent  in  both  basic  and  clinical 
 neuroscience,  providing  a  noninvasive  way  to 
 investigate  human  cognition  and  a  reliable  marker  of 
 neurological  conditions  like  schizophrenia  (Avissar  et 
 al.,  2018;  Mazer  et  al.,  2024)  .  In  addition  to  these 
 EEG  and  MEG  studies,  a  large  body  of  work  in 
 humans  has  used  either  ECoG  or  fMRI  signals  to 
 study  predictive  coding,  often  using  visual  or  auditory 
 oddball  (e.g.  (Thomas  et  al.,  2024)  ).  While  these 
 signals  offer  better  spatial  resolution  than  EEG  and 
 MEG,  they  still  fall  short  of  single  neuron  resolution. 
 While  ECoG  and  higher  field  fMRI  may  reflect  the 
 local  spiking  activity  in  a  given  region,  they  also 
 integrate  this  activity  with  incoming  synaptic  inputs, 
 creating  a  combined  signal  (Logothetis  et  al.,  2001)  , 
 (Schneider  et  al.,  2021)  .  Relating  findings  at  the  level 
 of  single  neurons  in  animal  models  to  meso-  and 
 macroscopic  signals  in  humans  is  therefore 
 challenging  and  requires  modeling  approaches,  such 
 as dynamic causal modeling. 

 Studies  using  techniques  with  high  temporal 
 resolution  (ECoG,  EEG,  MEG)  often  focus  on  either 
 oscillatory  activity  or  event-related  potentials. 
 Oscillatory  activity  is  divided  into  multiple  spectral 
 bands,  which  are  each  associated  with  characteristic 
 circuit  motifs  and  spatial  scales  (Womelsdorf  et  al., 
 2014)  ,  (Buzsáki  and  Draguhn,  2004)  .  A  central 
 question  is  whether  the  emergence  of  distinct 
 rhythms  can  be  explained  as  consequences  from  the 
 recurrent  dynamics  implementing  predictive  coding, 
 and  whether  distinct  rhythms  play  specific  functional 
 roles  in  predictive  processing.  As  oscillations  often 
 alternate  in  time  with  aperiodic  transients,  which  are 
 reflected  in  evoked  potentials,  another  important 
 question  is  the  distinct  contribution  of  these  transients 
 vs.  oscillations.  Several  theories,  reviewed  in  more 
 detail  below,  have  proposed  functions  for  specific 
 dynamics,  e.g.  transient  or  oscillatory  dynamics,  in 
 predictive  processing  (Bastos  et  al.,  2012)  ,  (Singer, 
 2021)  ,  (Vinck et al., 2024)  . 

 1. Experimental Evidence 

 Narrow-band  gamma  oscillations  vs.  broadband 
 fluctuations 

 There  are  conflicting  results  and  interpretations 
 concerning  gamma-band  (30-80Hz)  oscillations, 
 which  result  from  balanced  interactions  between 
 excitatory  and  inhibitory  neurons  in  the  local 
 microcircuit  (Cardin  et  al.,  2009)  .  In 
 LFP/EEG/MEG/ECoG  studies  it  is  crucial  to 
 distinguish  between  broadband  fluctuations,  which 
 reflect  enhanced  spiking  and/or  synaptic  activity,  and 
 narrow-band  gamma  oscillations  which  reflect 
 synchronized  activity  in  the  30-80Hz  range. 
 High-frequency  gamma  power  is  a  common  marker 
 of  firing  rates  used  in  human  ECoG  studies  (Miller, 
 2019)  ).  In  the  early  visual  system,  temporal  (stimulus 
 repetition  vs.  novel  stimuli)  and  spatial  stimulus 
 predictability  (spatially  homogeneous  stimuli) 
 promote  increased  narrow-band  gamma  activity  (e.g. 
 (Peter  et  al.,  2019)  ;  (Vinck  and  Bosman,  2016)  ; 
 (Shirhatti  et  al.,  2022)  ;  (Uran  et  al.,  2022)  ;  (Peter  et 
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 al.,  2021)  )  that  shows  an  opposite  correlation  to 
 broadband  fluctuations  and  spiking  rates.  (Uran  et  al., 
 2022)  showed  that  gamma  tracks  predictability  for 
 natural  images  in  a  monotonic  manner,  and 
 specifically  reflects  low-level  visual  predictability 
 consistent  with  the  dendritic  predictive  coding 
 hypothesis  (Vinck  et  al.,  2024)  (see  Section  V,  and 
 Relevant  Theoretical  Models,  Section  VII).  However, 
 other  studies  have  found  enhanced  gamma-band 
 power  for  sensory  (sequential)  mismatches  (e.g. 
 (Bastos  et  al.,  2020)  ,  (Arnal  et  al.,  2011)  ,  (Chao  et  al., 
 2018)  ,  (Xiong et al., 2024)  ,  (Gallimore et al., 2023)  . 

 One  possible  explanation  for  these  contrasting 
 findings  on  gamma-band  power  and  oscillations  is 
 that  there  is  a  difference  in  the  correlates  of 
 gamma-band  activity  across  cortical  areas  or  sensory 
 modalities,  or  types  of  sensory  mismatches  (e.g. 
 spatial  vs.  sequential,  see  Section  I).  It  has  also  been 
 proposed  that  these  different  findings  on 
 gamma-power  reflect  the  distinction  between 
 narrow-band  gamma  oscillations  vs.  broadband 
 fluctuations.  Analyses  indicate  that  in  the  auditory 
 system,  increases  in  gamma-power  reflect 
 broadband  rather  than  narrow-band  gamma 
 fluctuations  (Canales-Johnson  et  al.,  2021)  .  To 
 understand  these  differences  in  the  literature, 
 decomposition  techniques  (Canales-Johnson  et  al., 
 2021)  ,  (Gelens  et  al.,  2024)  on  LFP  signals  as  well  as 
 spike-spike  and  spike-LFP  measures  (Ray  and 
 Maunsell,  2011)  are  critical  to  distinguish 
 narrow-band  gamma  oscillations  from  broadband 
 fluctuations. 

 Alpha/beta activity, and its relation with gamma 
 Several  studies  have  observed  that  alpha/beta 
 (10-30Hz)  activity  is  suppressed  with  sensory 
 mismatches  e.g.  (Jiang  et  al.,  2022)  ;  (Chao  et  al., 
 2018)  ;  (Bastos  et  al.,  2020)  (but  see  (Todorovic  and 
 de  Lange,  2012)  ;  (Nougaret  et  al.,  2024)  One 
 interpretation  is  that  these  findings  support  the 
 theoretical  model  that  alpha/beta  oscillations  are 
 involved  in  the  feedback  transmission  of  sensory 
 predictions  (Arnal  and  Giraud,  2012)  ;  (Bastos  et  al., 

 2012)  ,  (see  Relevant  Theoretical  Models  below).).  An 
 alternative  interpretation  is  that  the  suppression  of 
 alpha/beta  sensory  mismatches  reflects  a  negative 
 prediction  error  or  results  as  a  consequence  of 
 increases  in  firing  rates  (Chao  et  al.,  2018)  ;  (Vinck  et 
 al.,  2024)  ,  noting  that  the  suppression  of  alpha/beta 
 with  increased  cortical  activation  is  a  phenomenon 
 that  occurs  under  many  behavioral  conditions  (e.g. 
 (Miller  et  al.,  2012)  ;  (Weisz  et  al.,  2020)  ; 
 (Canales-Johnson  et  al.,  2020a)  ;  (Jensen  and 
 Mazaheri,  2010)  (but  see  (Richter  et  al.,  2019)  .  A 
 general  problem  is  that  it  is  difficult  to  make 
 inferences  about  prediction  signals  based  on  the 
 observation  of  sensory  mismatch  signals,  rather  than 
 sensory  prediction  signals  directly  (Vinck  et  al., 
 2024)  ;  (Chao  et  al.,  2018)  ,  which  applies  to  firing  rate 
 correlates as well (see Section III-IV). 

 Several  studies  have  observed  an  anti-correlation 
 between  alpha/beta  and  gamma  power  with  sensory 
 mismatches  (Bastos  et  al.,  2020)  ;  (Xiong  et  al., 
 2024)  ;  (Chao  et  al.,  2018;  Lundqvist  et  al.,  2020) 
 which  may  suggest  a  causal  relation  between  these 
 two  variables:  Either  alpha/beta  suppression  causing 
 enhanced  gamma  power  in  lower  hierarchical  levels 
 (Bastos  et  al.,  2020)  (“predictive  routing”),  or 
 enhanced  gamma  power  in  lower  hierarchical  levels 
 leading  to  alpha/beta  suppression  in  higher 
 hierarchical  levels  (Chao  et  al.,  2018)  .  It  is  also 
 possible  changes  in  both  frequency  bands  are  driven 
 by  a  third  factor  (e.g.  attention).  However  some 
 studies  find  positive  correlations  between 
 narrow-band  gamma  oscillations  and  beta  power 
 (Richter  et  al.,  2017)  ;  (Richter  et  al.,  2019)  . 
 Furthermore,  as  reviewed  above,  several  studies 
 suggest  narrow-band  gamma  oscillations  are 
 decreased  for  temporal  and  spatial  sensory 
 mismatches  in  the  visual  system.  One  factor  that  has 
 been  proposed  to  explain  these  discrepancies  is  the 
 distinction  between  narrow-band  gamma  oscillations 
 and broadband fluctuations  (Vinck et al., 2024)  . 

 Causal  studies  are  also  crucial  to  test  for  relations 
 between  oscillatory  phenomena  in  different  frequency 
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 bands.  A  recent  study  used  propofol  to  induce 
 loss-of-consciousness  in  macaque  monkeys. 
 Propofol  has  been  shown  to  reduce  alpha/beta 
 power,  and  spiking  activity  throughout  cortex,  with  the 
 reduction  in  spiking  being  more  pronounced  in  frontal 
 areas  (Bastos  et  al.,  2021)  Counterintuitively,  during 
 an  auditory  oddball  paradigm, 
 sensory-mismatch-related  gamma-frequency  power 
 and  late-period  (after  100ms  post-oddball)  spiking 
 responses  were  enhanced  (Xiong  et  al.,  2024)  The 
 interpretation  put  forward  by  (Xiong  et  al.,  2024)  )  is 
 that  propofol  induces  a  loss  of  inhibitory  control 
 mediated  by  top-down  alpha/beta  oscillations  on 
 sensory  responses  in  lower  hierarchical  levels 
 (Bastos  et  al.,  2020)  (consistent  with  predictive 
 routing,  see  Relevant  Theoretical  Models  below).  In 
 predictive  coding  terms,  propofol  would  reduce 
 predictive  inhibition  via  alpha/beta  oscillations, 
 leading  to  increased  prediction  errors  indexed  by 
 gamma  power  (i.e.  assuming  propofol  does  not  affect 
 gamma  power  via  other  pathways).  Future  work 
 should  perform  more  specific  causal  manipulations 
 that  act  to  increase  or  decrease  alpha/beta  and 
 gamma  to  test  their  specific  roles  and  their 
 corresponding circuits to predictive processing. 

 Functional connectivity studies. 

 Several  studies  have  suggested  stronger  feedforward 
 than  feedback  Granger-causal  influences  between 
 LFP  signals  in  the  gamma-frequency  range  in  visual 
 cortex  (Bosman  et  al.,  2012;  van  Kerkoerle  et  al., 
 2014;  Bastos  et  al.,  2015a)  .  Another  study  linked 
 sensory  mismatch  signals  with  feedforward 
 gamma-band  synchronization  (Bastos  et  al.,  2020)  ; 
 see  Relevant  Theoretical  Models  below).  The 
 interpretation  of  these  correlations  at  the  level  of 
 neural  signaling  remains  debated.  One  interpretation 
 is  that  gamma-band  synchronization  provides  an 
 effective  mechanism  for  feedforward  communication, 
 based  on  the  idea  that  synchronization  leads  to 
 effective  summation  of  excitatory  synaptic  potentials 
 (Fries,  2015)  .  Another  interpretation  is  that  the 
 feedforward  gamma  influences  reflect  a  prevalence 

 of  high-frequency  gamma  power  in  early  visual  areas, 
 consistent  with  a  model  in  which  the  influences  of 
 gamma  on  postsynaptic  target  areas  may  remain 
 largely  subthreshold  (Schneider  et  al.,  2021)  , 
 (Buzsáki  and  Schomburg,  2015)  .  Recent  empirical 
 studies  suggest  that  gamma  is  particularly  effective  in 
 driving  fast-spiking  interneurons  rather  than 
 excitatory  neurons  in  downstream  areas  (Buzsáki 
 and  Schomburg,  2015;  Schneider  et  al.,  2023; 
 Spyropoulos  et  al.,  2024)  ,  suggesting  an  alternative 
 interpretation  that  gamma  could  dampen  the 
 transmission  of  predicted  sensory  information,  rather 
 than  enhance  the  transmission  of  unpredicted 
 sensory  information  (Vinck  et  al.,  2024)  (see 
 Relevant Theoretical Models). 

 Studies  have  also  shown  a  stronger  association  of 
 alpha/beta  frequencies  with  Granger-causal  feedback 
 than  feedforward  influences  in  visual  cortex  (van 
 Kerkoerle  et  al.,  2014;  Bastos  et  al.,  2015a; 
 Michalareas  et  al.,  2016)  ,  auditory  (Fontolan  et  al., 
 2014)  and  olfactory  systems  (Martin  and  Ravel,  2014; 
 David  et  al.,  2015)  ,  which  may  suggest  that  these 
 frequencies  subserve  the  communication  of  sensory 
 predictions  (see  Relevant  Theoretical  Models  below). 
 A  possible  mechanism  underlying  these  Granger 
 causality  findings  is  that  alpha/beta  signaling  is 
 particularly  effective  in  driving  e.g.  apical  dendrites  or 
 specific  interneurons  with  slower  kinetics  (SOM 
 interneurons,  (Chen  et  al.,  2017)  .  Another 
 interpretation  is  that  the  relation  between  alpha/beta 
 and  feedback  influences  mainly  reflects  the 
 distribution  of  power  across  cortical  hierarchy,  and 
 that  beta  may  also  be  associated  with  feedforward 
 influences  from  intermediate  hierarchical  to  higher 
 hierarchical  levels  (Brovelli  et  al.,  2004;  Salazar  et  al., 
 2012; Vinck et al., 2024)  . 

 Causal  approaches  have  begun  to  elucidate  whether 
 distinct  frequency  bands  are  specifically  involved  in 
 feedforward  or  feedback  transmission.  (van  Kerkoerle 
 et  al.,  2014)  show  that  electric  stimulation  (pulsed,  at 
 200Hz)  of  V1  leads  to  enhanced  approx.  60Hz 
 gamma  activity  in  area  V4,  while  stimulation  of  V4 
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 (pulsed,  at  200  Hz)  leads  to  increased  alpha/beta 
 activity  in  V1.  This  finding  points  to  an  association  of 
 gamma  with  feedforward  transmission  and  alpha/beta 
 with  feedback  transmission,  although  it  remains  to  be 
 established  whether  e.g.  enhanced  gamma  in  V4  due 
 to  V1  microstimulation  results  from  local  mechanisms 
 in  V4  or  propagation  of  V1  gamma.  Veniero  et  al. 
 apply  TMS  in  Frontal  Eye  Fields  and  find  evidence  for 
 a  beta  reset  in  occipital  areas,  supporting  an 
 association  of  beta  oscillations  with  feedback 
 processing  (Veniero  et  al.,  2021)  .  Another  causal 
 approach  is  to  directly  stimulate  the  feedforward  or 
 feedback  pathway  rhythmically  and  test  for  the 
 differences  in  inter-areal  propagation  across  different 
 frequencies.  For  example  (Schneider  et  al.,  2023)  ) 
 (see  also  (Soula  et  al.,  2023)  )  find  that  lower 
 frequency  inputs  into  V1  propagate  effectively  across 
 layers  and  both  excitatory  and  inhibitory  neurons 
 while  high  frequencies  predominantly  drive 
 fast-spiking  interneurons  in  the  input  layer  4,  without 
 propagation to layer 2/3. 

 In  general,  the  interpretation  of  connectivity  findings 
 at  the  LFP  level  is  complicated  because  of  the 
 influence  of  afferent  synaptic  inputs  on  LFP  signals 
 (Logothetis  et  al.,  2001;  Buzsáki  and  Schomburg, 
 2015;  Pesaran  et  al.,  2018;  Schneider  et  al.,  2021)  . 
 and  further  studies  are  required  linking  LFP 
 connectivity  with  measurements  of  cell-type-specific 
 spiking  activity.  There  is  ongoing  debate  about  the 
 question  whether  inter-areal  coherence  is  a 
 mechanism  for  communication  (CTC)  or  whether 
 coherence  is  a  consequence  of  communication 
 (CTCOM)  (Schneider  et  al.,  2021)  ;  (Fries,  2015; 
 Pesaran  et  al.,  2018)  ,  and  the  extent  to  which 
 coherence  can  be  explained  by  connectivity  and 
 power,  or  synchronization  mechanisms  (Schneider  et 
 al.,  2021;  Vezoli  et  al.,  2021b)  .  Regardless  of  the 
 functional  and  mechanistic  interpretations  of 
 connectivity  measures  like  coherence  and 
 Granger-causality,  they  show  very  robust  correlations 
 with  anatomical  measures  of  connection  strength  and 
 hierarchical  distance  (Bastos  et  al.,  2015b)  ;  (Vezoli  et 
 al., 2021a)  ;  (Vezoli et al., 2021b)  . 

 Distribution  of  rhythms  and  mismatch/prediction 
 signals across layers 

 There  is  ongoing  debate  about  the  distribution  of 
 rhythms  across  cortical  layers.  This  point  is  highly 
 relevant  for  predictive  coding  because  theories 
 propose  canonical  functions  for  specific  frequency 
 bands  in  predictive  processing,  and  have  associated 
 them  with  specific  laminar  compartments  from  which 
 either  feedforward  (primarily  superficial  L3)  or 
 feedback  projections  (primarily  deep  L6)  originate 
 (Bastos et al., 2012)  . 

 A  number  of  studies  have  concluded  that  gamma 
 oscillations  are  stronger  in  superficial  layers,  while 
 alpha/beta  oscillations  are  stronger  in  deep  layers 
 (see  (Bollimunta  et  al.,  2008;  Buffalo  et  al.,  2011; 
 Mendoza-Halliday  et  al.,  2024)  .  However  other 
 studies  reported  contradicting  evidence  with  e.g. 
 stronger  alpha  power  in  superficial  layers  and 
 prominent  gamma-band  oscillations  in  deep  layers 
 (e.g.  see  (Haegens  et  al.,  2015;  Halgren  et  al.,  2019; 
 Gieselmann  and  Thiele,  2022)  and  there  is  ongoing 
 debate  about  this  point  (Vinck  et  al.,  2023;  Mackey  et 
 al.,  2024;  Mendoza-Halliday  et  al.,  2024)  that 
 revolves  in  part  around  various  technical  issues 
 concerning  LFP  signals  such  as  references,  using 
 unipolar  vs.  bipolar  /current  source  density  signals, 
 and  the  link  of  LFP  signals  to  unit  activity.  An 
 additional  level  of  uncertainty  (which  holds  true  for 
 many  spiking  recordings  as  well)  relates  to  the  spatial 
 density  of  the  recordings  made,  with  an  inter-contact 
 spacing  often  not  reaching  sub-layer  resolution. 
 There  is  a  critical  need  for  high-resolution  laminar 
 recordings  due  to  the  dual  counterstream  architecture 
 showing  that  L2  is  a  feedback  layer  and  L3  a 
 feedforward  layer  (Markov  et  al.,  2014;  Vezoli  et  al., 
 2021a)  .  Hence,  the  notion  of  a  ‘superficial’  laminar 
 compartment  can  easily  mix-up  feedforward  and 
 feedback  layers  (e.g.  (Barzegaran  and  Plomp,  2022)  . 
 Computational  modeling  studies  (e.g.,  (Lee  et  al., 
 2013)  will  also  contribute  greatly  to  our  understanding 
 of  how  layer  specific  cell  types  (Glatigny  et  al.,  2024; 
 Lichtenfeld  et  al.,  2024)  ,  along  with  their  circuitry  and 
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 connectivity  (Campagnola  et  al.,  2022)  contributes  to 
 the formation of layer-specific oscillations. 

 The  idea  that  different  layers  subserve  distinct 
 functional  roles  is  further  supported  by  recent  human 
 laminar  fMRI  studies  suggesting  that  feedback  to 
 different  laminar  compartments  contributes  to  distinct 
 top-down  generative  processes  (Muckli  et  al.,  2015; 
 Kok  et  al.,  2016;  Bergmann  et  al.,  2024)  .  Further 
 translational  efforts  are  needed  to  make  the  link 
 between  whole-brain  laminar  human  studies 
 exploiting  perceptual  reports  and  in-depth  animal 
 investigations  across  layers  using  similar  paradigms 
 (see Experimental proposals). 

 Distribution of rhythms across areas 

 Hierarchical  processing  may  be  strongly  influenced 
 and  constrained  by  the  distribution  of  cortical  rhythms 
 across  areas:  Some  studies  and  theories  suggest 
 that  rhythms  are  canonical  parts  of  cortical 
 microcircuits  across  the  hierarchy  (Fries,  2009,  2015; 
 Bastos  et  al.,  2015a;  Barzegaran  and  Plomp,  2022)  , 
 (Mendoza-Halliday  et  al.,  2024)  .  An  alternative  view 
 is  that  the  main  axis  of  diversity  in  rhythms  is  not 
 between  cortical  layers  but  rather  between  cortical 
 areas  (Vinck  et  al.,  2023,  2024)  .  Since  there  are 
 major  hierarchical  gradients  in  excitatory  recurrent 
 connectivity  and  PV/SOM  ratios,  it  is  plausible  that 
 the  characteristic  frequencies  of  networks  vary 
 across  the  hierarchy  (Wang,  2020)  .  For  example 
 (Vezoli  et  al.,  2021a)  and  (Hoffman  et  al.,  2024)  find 
 evidence  for  frequency-specific  networks  and  a  high 
 degree  of  diversity  in  rhythmic  dynamics  across  the 
 cortical  sheet,  where  distinct  rhythms  are  mainly 
 expressed  in  specific  networks  (e.g.  gamma 
 oscillations  in  early  visual  cortex,  (Hoffman  et  al., 
 2024)  ,  although  there  are  significant  functional 
 connectivity  links  between  these  modules  (Vezoli  et 
 al.,  2021b)  .  It  remains  to  be  further  tested  to  what 
 extent  cortical  gradients  or  a  cortical  hierarchy  of 
 timescales  explains  this  diversity  (see  Relevant 
 Theoretical  Models).  It  has  also  been  proposed  that 
 the  smaller  receptive  field  sizes  in  early  visual  areas 

 lead  to  increased  redundancy  and  predictability  of 
 sensory  inputs  across  space,  thereby  promoting 
 gamma  oscillations  associated  with  E/I  balance 
 (Vinck  and  Bosman,  2016)  (see  Relevant  Theoretical 
 Models) 

 Nonetheless,  the  diversity  in  dynamics  needs  to  be 
 addressed  by  theories  that  propose  general  functions 
 for  rhythms  in  cortical  computation.  While 
 communication  between  areas  sharing  similar 
 rhythms  may  depend  on  coupling  between 
 oscillations  at  the  same  frequency  (Fries,  2015)  , 
 evidence  also  points  toward  cross-frequency  coupling 
 (Bonnefond  et  al.,  2017;  Bastos  et  al.,  2018;  Márton 
 et  al.,  2019;  Esghaei  et  al.,  2022)  .  Other  perspectives 
 emphasize  the  non-linear  nature  and 
 high-dimensional  nature  of  neural  communication 
 (Singer,  2021;  Vinck  et  al.,  2023)  which  may  require 
 broadband  communication  rather  than  narrow-band 
 phenomena  (see  Relevant  Theoretical  Models).  Such 
 non-linear,  broadband  communication  causes 
 interactions  across  frequency  bands  rather  than 
 interactions  within  the  same  frequency  band,  as  is 
 the  case  with  linear  signal  transfer  (Vinck  et  al., 
 2023)  .  For  instance,  recent  work  suggests  that 
 non-linear  rather  than  linear  (e.g.  WPLI,  Granger 
 causality)  connectivity  measures  capture  differences 
 in  sensory  inference  during  ambiguous  perception 
 (Canales-Johnson  et  al.,  2020b,  2023)  ,  and  that 
 relations  between  sensory  mismatch  signals  across 
 the  cortical  hierarchy  are  information-synergistic 
 (Gelens  et  al.,  2024)  .  Computational  models  suggest 
 such  synergistic  relations  between  distributed  error 
 signals  can  result  from  non-linear  recurrent  dynamics 
 between nodes  (Gelens et al., 2024)  . 

 Transients vs. oscillations 

 Event-related  potentials  are  an  effective  way  to 
 measure  transient,  non-oscillatory  activity.  Increases 
 in  ERP  amplitude  for  sensory  mismatches  have  been 
 shown  in  a  large  number  of  studies  across  species 
 (e.g.  (Todorovic  and  de  Lange,  2012;  Parras  et  al., 
 2017;  Blenkmann  et  al.,  2019;  Gelens  et  al.,  2024)  . 
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 Neural mechanisms of predictive processing 

 These  increases  ERP  amplitudes  are  usually 
 distinguished  into  different  components,  including  the 
 leading  to  the  discovery  of  several  error-like 
 responses,  including  the  mismatch  negativity  (MMN; 
 peaking  150-250 ms  post-  stimulus  onset;  (Ford  et 
 al.,  1976;  Näätänen  et  al.,  1978)  );  the  P300a, 
 (250-350 ms)  and  the  P300b  (350-500 ms)  (Chennu 
 and  Bekinschtein,  2012)  .  Notably,  these  potentials, 
 while  influenced  by  attention,  are  often  found  and 
 studied  without  participants  being  engaged  in  an 
 active  task  (Chennu  and  Bekinschtein,  2012)  .  The 
 MMN  was  proposed  to  reflect  an  early  “perceptual 
 prediction  error”  (Friston,  2005)  ,  while  the  P300a  is 
 associated  with  attention  orienting  and  the  P300b, 
 with  context-updating  and  memory  processing 
 (Polich,  2007)  .  Some  links  have  been  made  between 
 attention-dependent  ERP  signals  noninvasively 
 recorded  in  humans  and  their  neurobiological 
 sources.  For  example,  the  EEG  event-related 
 potential  known  as  Selection  Negativity,  which  is 
 evoked  by  mismatch  stimuli  in  both  human  and 
 nonhuman  primates,  has  been  associated  with 
 increased  activation  in  sensory  cortical  areas  when 
 attention  is  focused  on  the  stimuli  (Mehta  et  al., 
 2000a)  . 

 Empirical  evidence  suggests  that  sensory  inference 
 is  rapid  and  occurs  already  at  relatively  early 
 latencies  (around  120-150ms,  for  review  see  (DiCarlo 
 et  al.,  2012)  .  Such  rapid  sensory  inference  is 
 compatible  with  the  emergence  of  mismatch  signals 
 at  relatively  early  latencies  (e.g.  (Parras  et  al.,  2017) 
 but  poses  challenges  to  the  idea  that  oscillatory 
 phenomena  contribute  to  sensory  inference  via 
 signaling  predictions  or  prediction  errors.  The  reason 
 is  that  rhythms  tend  to  be  disrupted  by  transient 
 activation  of  networks.  Some  studies  suggest 
 rhythms  emerge  at  longer  latencies  after  100ms  in 
 the  early  visual  cortex,  well  after  the  initial 
 feedforward  sweep  (Gieselmann  and  Thiele,  2008)  . 
 Furthermore,  processing  via  rhythms  requires 
 integration  of  multiple  cycles,  which  is  especially  a 
 problem  for  proposals  that  e.g.  alpha  oscillations 
 contribute  to  sensory  inference  (Vinck  et  al.,  2024)  . 

 However,  an  alternative  perspective  is  that 
 rhythmicity  may  already  be  expressed  in 
 stimulus-locked,  evoked  synchronization,  or  a 
 phase-reset  of  ongoing  oscillations.  A  more  precise 
 characterization  of  the  temporal  evolution  of  neural 
 dynamics  across  cortical  areas  is  required  to 
 elucidate these issues. 

 2. Relevant theoretical models 

 There  have  been  several  theoretical  models 
 proposed  linking  oscillations  and  transients  to 
 predictive processing. 

 Gamma  prediction  error,  alpha/beta  prediction 
 model 

 (Arnal  and  Giraud,  2012)  and  (Bastos  et  al.,  2012)  ) 
 have  proposed  that  the  feedforward  propagation  of 
 prediction  errors  depends  on  gamma-frequency 
 oscillations  in  superficial  layers  of  cortex  while 
 predictions  rely  on  oscillations  at  alpha/beta 
 frequencies.  This  dual-frequency  model  relates  to 
 theoretical  results  for  predictive  coding  models  by 
 (Friston  and  Kiebel,  2009)  that  predictions  should  be 
 encoded  at  longer  time  scales  than  prediction  errors. 
 According  to  the  (Chao  et  al.,  2018)  model,  updating 
 of  the  internal  model  due  to  a  sensory  prediction  error 
 thus  leads  to  a  disruption  of  alpha/beta  power  in 
 higher  hierarchical  levels.  (Bastos  et  al.,  2020) 
 propose  that  this  disruption  of  alpha/beta  beta  power 
 then  leads  to  an  increase  of  gamma-power  in  lower 
 hierarchical levels. 

 Dual roles for transients and oscillations 

 (Vinck  et  al.,  2023)  and  (Vinck  et  al.,  2024)  proposed 
 that  sensory  prediction  errors  lead  to  sensory 
 inference  via  transient  activations  that  increase 
 energy  in  a  broad  frequency  range,  and  lead  to  signal 
 propagation  across  cortical  areas  via  non-linear, 
 recurrent  dynamics.  In  this  model,  it  is  proposed  that 
 oscillations  rather  play  a  complementary  role  by 
 stabilizing  neural  representations  and  to  facilitate 
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 Neural mechanisms of predictive processing 

 plasticity  processes  in  the  later  phases  of  sensory 
 processing  (Vinck et al., 2023, 2024)  . 

 Gamma  oscillations  as  a  consequence  of 
 stimulus predictability and efficient coding 

 As  reviewed  in  Section  V,  narrow-band  gamma 
 oscillations  were  proposed  to  systematically  increase 
 with  the  spatiotemporal  predictability  of  sensory 
 inputs  in  a  local  cortical  region  (Vinck  and  Bosman, 
 2016;  Singer,  2021)  .  A  mechanistic  explanation  is 
 that  when  sensory  inputs  match  the  predictions,  there 
 is  an  increase  in  E/I  balance  promoting  the 
 emergence  of  gamma  oscillations,  while  leading  to 
 sparse  coding  (Mikulasch  et  al.,  2023;  Vinck  et  al., 
 2024)  .  The  recruitment  of  somatostatin  interneurons 
 by  horizontal  or  top-down  predictions  may  also  play 
 an  important  role  (Börgers  et  al.,  2008;  Jadi  and 
 Sejnowski,  2014;  Veit  et  al.,  2017)  .  Theoretical  work 
 further  suggests  that  gamma  oscillations  reflect 
 optimal  sensory  processing  and  arise  in  E/I  balanced 
 networks  with  transmission  delays  (Chalk  et  al., 
 2016; Echeveste et al., 2020)  . 

 Oscillations and hierarchical time scales 

 A  systematic  increase  in  time-scales  across  the 
 cortical  hierarchy  may  reflect  predictive  coding  in  an 
 hierarchical  system,  as  the  formation  of  predictions 
 requires  integration  on  longer  time  scales.  Such 
 increases  in  time-scales  have  been  observed  across 
 macaque  and  human  cortex  (Murray  et  al.,  2014; 
 Gao  et  al.,  2020)  and  may  be  linked  to  various 
 hierarchical  gradients  as  well  as  emergent  dynamics 
 due  to  inter-areal  interactions  (Chaudhuri  et  al.,  2015; 
 Gao  et  al.,  2020)  .  Such  increased  time-scales  from 
 tens  of  milliseconds  to  hundreds  of  milliseconds  may 
 be  paralleled  in  differences  in  oscillatory  behavior 
 from  gamma  to  beta  to  theta  frequencies  across  the 
 cortical  hierarchy  (Vinck  et  al.,  2023)  ,  but  see 
 (Hoffman  et  al.,  2024)  .  In  this  perspective,  beta 
 oscillations  may  reflect  processing  at  intermediate 
 levels  of  the  hierarchy,  and  could  therefore  reflect 
 both  bottom-up  processing  to  higher  hierarchical 

 levels  and  top-down  processing  to  lower  hierarchical 
 levels. 

 Prospective coding via theta sequences 

 Predictive  processing  has  also  been  linked  to 
 sequential  firing  at  theta  frequencies  in  the 
 hippocampus.  Here  firing  at  different  phases  of  the 
 theta  cycle  reflects  either  encoding  of  the  animal’s 
 future  or  past  spatial  location  (Dragoi  and  Buzsáki, 
 2006)  .  As  prospective  neural  coding  may  more 
 generally  rely  on  sequences  that  compress 
 predictions  of  the  future  in  the  sequential  activations 
 of  a  neural  ensemble,  such  sequences  may  be 
 orchestrated  by  oscillations,  either  theta  frequencies 
 in  ACC/hippocampus  (Dragoi  and  Buzsáki,  2006; 
 Womelsdorf  et  al.,  2010)  or  gamma  frequencies  in 
 visual  cortex  (Vinck  et  al.,  2010)  .  Such  prospective 
 coding  of  the  future  via  temporal  sequences  however 
 needs  to  be  distinguished  from  hierarchical  predictive 
 coding models. 

 Traveling waves in hierarchical predictive coding 

 A  recent  computational  model  suggests  that 
 oscillatory  traveling  waves,  spanning  multiple  cortical 
 nodes,  at  alpha-band  frequencies  naturally  emerge  in 
 an  hierarchically  organized  network  performing 
 predictive  coding,  due  to  the  negative  feedback  loops 
 that  exist  between  nodes  (Alamia  and  VanRullen, 
 2019)  .  This  theory  predicts  forward  traveling  waves 
 when  sensory  evidence  dominates  inference,  and 
 backward  traveling  waves  when  priors  dominate 
 inference  (Alamia  and  VanRullen,  2019)  .  Such 
 traveling  wave  phenomena  may  provide  a 
 mechanism  for  system  bifurcations  leading  to 
 effective  feedforward  or  feedback  propagation  of 
 information  (Alamia and VanRullen, 2019)  . 

 3.  Divergence  and  convergence  between 
 experiments and theories 
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 Neural mechanisms of predictive processing 

 The  idea  that  aperiodic  transients,  which  convey 
 energy  in  a  broad  frequency  range  and  can  be 
 accessed  via  event  related  potentials,  play  an 
 important  role  in  sensory  inference  by  updating  the 
 internal  model  based  on  novel  sensory  evidence 
 appears  consistent  with  the  empirical  evidence 
 above.  Whether  these  transients  convey  information 
 via  firing  rate  codes  or  temporal  sequences  remains 
 a  topic  of  debate  however,  with  recent  work 
 suggesting  encoding  of  sensory  information  via 
 temporal  sequences  during  transients 
 (Sotomayor-Gómez  et  al.,  2023;  Yiling  et  al.,  2023; 
 Xie  et  al.,  2024)  .  In  this  context  it  is  interesting  to 
 note  that  predictive  coding  is  formulated  in  terms  of 
 rate  coding,  but  does  not  offer  a  formalism  for 
 computation  via  sequences  where  information  is 
 carried  by  the  relative  timing  of  spikes  between 
 neurons.  The  theory  of  prospective  coding  via  theta 
 sequences  poses  a  challenge  to  the  rate  coding 
 dogma  of  predictive  coding  theory  (Dragoi  and 
 Buzsáki,  2006)  .  Furthermore  it  is  unclear  to  what 
 extent  oscillations  play  a  complementary  role  to 
 transients  in  predictive  coding.  Future  work  carefully 
 dissecting  transient  and  rhythmic  activity  is  necessary 
 to answer this question. 

 The  synergistic  nature  of  transients  across  the 
 cortical  hierarchy  may  indicate  a  distributed, 
 synergistic  encoding  of  prediction  errors  rather  than 
 independent  computation  of  prediction  errors  at  each 
 level  (Gelens  et  al.,  2024)  .  This  requires  the 
 consideration  of  non-linear,  recurrent  interactions  in 
 predictive  coding  models.  In  general,  it  is  an  open 
 question  whether  sensory  predictions  and  error 
 signals  are  encoded  in  a  localized  or  rather 
 distributed manner. 

 There  are  contradicting  theories  concerning 
 gamma-band  oscillations  and  there  is  empirical 
 evidence  supporting  different  theoretical  frameworks. 
 As  discussed  above,  a  central  issue  is  the  distinction 
 between  broadband  and  narrow-band  gamma 
 oscillations,  which  requires  better  quantification  in 
 studies  and  more  consistent  terminology.  In  addition, 

 the  terminology  concerning  oscillations  can  be 
 refined,  as  oscillations  can  refer  to  limit  cycle 
 behavior  as  well  as  quasi-oscillations  /  damped 
 harmonic  oscillations  that  have  entirely  different 
 characteristics  and  computational  consequences.  For 
 example,  computational  models  suggest  that  efficient 
 coding  may  be  facilitated  by  stochastic 
 quasi-oscillations,  consistent  with  the  stochastic 
 nature  of  oscillations  in  vivo  (Burns  et  al.,  2011; 
 Spyropoulos  et  al.,  2022)  ,  but  not  by  limit  cycle 
 oscillations  (Chalk  et  al.,  2016)  .  Hence  theories  and 
 empirical  studies  would  profit  from  more  precise 
 terminology  and  quantification  concerning 
 quasi-oscillations,  limit  cycle  oscillations  and 
 broadband fluctuations. 

 In  light  of  the  empirical  evidence  reviewed  above,  it 
 remains  an  open  question  whether  alpha/beta 
 oscillations  are  characteristic  for  specific  hierarchical 
 levels,  or  whether  they  play  a  more  specific  role  in 
 feedback  processing.  Large-scale  recordings  across 
 multiple  laminar  compartments  and  areas  are 
 required  to  better  characterize  the  distribution  of 
 rhythms  across  areas  and  the  functional  influences 
 between  areas  in  different  behavioral  states,  as  well 
 as  the  relation  of  rhythms  to  cortical  gradients. 
 Because  rhythms  depend  strongly  on  behavioral 
 state  and  conditions  (Steriade  et  al.,  1993;  McGinley 
 et  al.,  2015)  ,  and  because  this  dependence  may  be 
 area-specific,  it  is  difficult  to  generalize  from  a  “static 
 snapshot”  of  the  distribution  of  rhythms  across  the 
 cortex  based  on  one  behavioral  condition.  For 
 example,  during  sleep  or  quiescence,  low-frequency 
 rhythms  may  be  a  characteristic  feature  of  early 
 sensory  areas,  while  low-frequency  rhythms  may  be 
 a  signature  of  active  processing  in  higher  cortical 
 areas  (e.g.  during  cognitive  control)  (Lacaux  et  al., 
 2024)  .  Thus,  the  same  frequency  (e.g.,  theta  or 
 alpha)  can  be  associated  with  higher  or  lower  areas 
 depending  on  task  demands  and  alertness  levels 
 (Vinck et al., 2023; Lacaux et al., 2024)  . 

 Whether  alpha/beta  oscillations  have  a  suppressive 
 influence  on  downstream  targets  requires  more  work, 
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 by  examining  the  specific  consequences  of  these 
 oscillations  on  the  firing  of  different  cell  types  and 
 specific  neural  compartments.  Furthermore,  there  are 
 contradicting  experimental  findings  and  theoretical 
 proposals  concerning  e.g.  the  role  of  beta  (cf. 
 (Richter  et  al.,  2017;  Bastos  et  al.,  2020)  that  remain 
 to  be  understood.  A  challenge  for  computational 
 models  would  be  to  understand  if  such  a  mechanism 
 of  suppression  via  alpha/beta  network  oscillations 
 can  account  for  the  specific  computations  implied  in 
 predictive  coding.  Furthermore,  the  influence  of 
 top-down  feedback  on  lower  hierarchical  levels  is  not 
 strictly  suppressive  in  predictive  coding  models.  In 
 fact,  top-down  feedback  has  excitatory  effects  on 
 pyramidal  neurons  and  apical  error  signals  in 
 dendritic  predictive  coding  theories  reviewed  above 
 (see  Section  V).  Top-down  feedback  has  mixed 
 effects  in  classic,  cellular  predictive  coding  theories 
 (see  Section  III-V).  For  instance,  the  effect  of 
 top-down  feedback  on  positive  error  units  in  lower 
 hierarchical  units  is  subtractive  while  the  effect  on  the 
 representations  and  negative  error  units  ends  up 
 being excitatory. 

 Theta  oscillations  may  be  a  signature  of  processing 
 in  the  highest  hierarchical  levels  like  hippocampus 
 and  ACC  (Dragoi  and  Buzsáki,  2006;  Womelsdorf  et 
 al.,  2010;  Murray  et  al.,  2014;  Gao  et  al.,  2020;  Vinck 
 et  al.,  2023)  and  theta  has  been  proposed  to 
 orchestrate  top-down  feedback  across  distributed 
 cortical  areas,  e.g.  via  theta-specific  resonances  and 
 theta-to-gamma  cross-frequency  coupling  (for  review 
 see,  (Sirota  et  al.,  2008;  Womelsdorf  et  al.,  2010; 
 Liebe  et  al.,  2012;  Vinck  et  al.,  2023)  .  This  may 
 suggest  that  predictions  of  the  future  may  be 
 broadcasted  across  the  cortex  via  theta  sequences. 
 However  a  study  on  macaque  visual  cortex  finds  that 
 theta  frequencies  are  more  strongly  associated  with 
 feedforward  than  feedback  influences  (Bastos  et  al., 
 2015a)  ,  and  theta  frequencies  may  be  associated 
 with  various  forms  of  rhythmic  sampling  of  the 
 environment  like  eye  movements,  whisking  and 
 respiration  that  modulate  sensory  responses, 
 complicating  the  relation  between  theta  frequencies 

 and  top-down  processing  (Berg  and  Kleinfeld,  2003; 
 Schroeder et al., 2010; Bosman et al., 2012)  . 

 To  conclude,  as  is  the  case  for  spike  rate  coding,  the 
 empirical  evidence  is  multi-interpretable  and  there 
 are  different  and  sometimes  competing  theoretical 
 models  interpreting  the  same  empirical  data.  The 
 understanding  of  the  role  of  oscillations  in  predictive 
 coding  faces  several  specific  challenges:  (1)  The  lack 
 of  specific  and  frequency-band-limited  causal 
 manipulations  of  oscillatory  phenomena.  (2)  The 
 indirect,  hybrid  and  meso/macroscopic  nature  of 
 LFP/EEG/MEG  signals  that  are  often  used  to  quantify 
 oscillations.  These  require  careful  inference  (Pesaran 
 et  al.,  2018)  :  e.g.  decomposition  of  local  and  afferent 
 synaptic  inputs,  mitigation  of  volume  conduction,  and 
 separation  of  broadband  vs.  narrow-band 
 phenomena.  Ideally,  inferences  about  oscillations  are 
 based  on  spike-spike  and  spike-field  analyses.  (3) 
 The  fact  that  cause  and  consequence  are  difficult  to 
 separate  in  recurrent  systems:  Changes  in 
 oscillations  and  synchronization  may  be  both  a 
 consequence  or  a  cause  of  changes  in  neural  firing 
 rates.  (4)  The  fact  that  oscillations  at  specific 
 frequencies,  in  contrast  to  spike  rates,  may  be 
 present  only  in  some  brain  areas  and  only  under 
 some  conditions  (Hermes  et  al.,  2015;  Hoffman  et  al., 
 2024)  .  Experimenters  may  optimize  their  experiments 
 in  order  to  boost  oscillations  (e.g.  using  artificial 
 grating  stimuli  in  the  visual  cortex),  leading  to 
 generalization  problems  (Hermes  et  al.,  2015,  2019)  . 
 (5)  While  predictive  coding  models  are  typically 
 based  on  spike  rate  coding,  there  is  a  limited 
 computational  understanding  of  the  role  that 
 oscillatory  phenomena  could  play  in  computational 
 predictive  processing  models.  A  promising 
 computational  approach  that  may  be  specifically 
 applied  to  predictive  processing  is  to  endow  recurrent 
 neural  networks  with  (e.g.  Kuramoto  or  damped 
 harmonic)  oscillatory  neural  units  and  compare  their 
 performance  to  recurrent  networks  with 
 non-oscillatory  units.  Such  an  approach  applied  to 
 sound  and  image  classification  suggests  that  adding 
 oscillatory  properties  to  recurrent  networks  can  boost 
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 computational  performance,  by  facilitating  integration 
 over  time  and  mitigating  the  classic  vanish/exploding 
 gradient  problem  (Rusch  et  al.,  2022;  Piantadosi  et 
 al., 2024)  . 

 Review summary 

 Overall,  our  review  highlights  the  considerable 
 interest  that  the  field  of  predictive  processing  has 
 garnered  in  recent  decades.  This  underscores  that 
 predictive  processing  is  a  powerful  framework  for 
 studying  brain  function,  as  it  translates  concepts  from 
 self-supervised  learning  and  statistics  into  the  tasks 
 the brain must solve in real-life conditions. 

 We  identified  several  major  research  areas. 
 Predictive  processing  studies  have  typically 
 examined  mechanisms  spanning  from  single-cell 
 computations  to  networks  within  individual  brain 
 areas.  Models  and  experiments  have  proposed 
 numerous  frameworks  to  organize  these  networks 
 across  multiple brain regions  (See  Figure 8  ). 

 In  the  context  of  making  predictions,  we  noted  six 
 important  computational  primitives  that  have  been 
 uncovered: 

 1.  Stimulus  adaptation  mechanisms  enable 
 individual  neurons  to  reduce  or  alter  their 
 response to highly recurring stimuli. 

 2.  Dendritic  computation  has  gained  interest  in 
 modeling  studies  but  remains  an  emerging 
 area experimentally. 

 3.  Cell-type  specific  computation  —particularly 
 explored  with  transcriptomics—continues  to 
 be  examined  in  great  details  experimentally, 
 though  theoretical  work  is  nascent,  except  for 
 some  notable  models  involving  inhibitory 
 neurons. 

 4.  Recurrence  among  pyramidal  neurons  has 
 gained  significant  attention,  both 
 experimentally  and  in  machine  learning 
 contexts. 

 5.  Excitatory/inhibitory  (E/I)  balance  offers  a 
 compelling  framework  for  creating  a 
 competitive  representational  learning 
 environment  between  excitatory  and  inhibitory 
 neurons. 

 6.  Hierarchical  processing  across  brain  areas 
 was  an  early  focus  of  predictive  processing 
 research,  and  most  experimental  studies  to 
 date  reveal  that  the  relationships  between 
 brain  areas  are  more  complex  than  initially 
 proposed. 

 Projects  submitted  in  recent  years  to  the  OpenScope 
 program  generally  fall  within  these  categories, 
 reflecting  the  current  distribution  of  interests  in  the 
 predictive  processing  community  (see  Figure  9  ). 
 However,  we  have  identified  several  critical  areas 
 that  remain  under-explored,  potentially  slowing 
 progress. 

 Theoretical  models  of  predictive  processing  often 
 assume  a  uniform  set  of  mechanisms  across 
 different  sensory  modalities  and  cortical  stages, 
 which  may  not  fully  capture  the  diversity  observed  in 
 experimental  settings  or  distinct  cortical  properties. 
 Experiments  that  shift  and  ideally  quantify  the  relative 
 contributions  of  adaptation,  local,  and  global 
 computations  are  needed.  Realistic  models  with 
 access  to  simulated  ground  truth  (Galván  Fraile  et  al., 
 2024)  could  be  used  to  validate  metrics  that  quantify 
 the  contribution  of  cell-level  adaptation  versus 
 network  effects  on  predictive  suppression  and  error 
 signals.  Together,  these  metrics  and  experiments 
 would  enable  the  community  to  directly  compare  the 
 roles  of  these  different  computations  in  different  error 
 types,  and  provide  a  clear  set  of  targets  against 
 which to test models of predictive processing. 

 It  is  important  to  note  that  many  other  computational 
 goals,  beyond  predictive  processing,  such  as 
 normalization,  figure-ground  segregation,  and 
 salience  detection,  may  provide  alternative 
 explanations  of  mismatch  responses  (Schwartz  and 
 Simoncelli,  2001;  Li,  2002;  Kirchberger  et  al.,  2023; 
 Cuevas  et  al.,  2024)  .  In  this  context,  error  and 
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 mismatch  signals  might  be  better  understood  simply 
 as  computational  primitives  allowing  the  cortex  to 
 perform  these  computations.  For  example,  one  goal 
 of  salience  is  to  move  the  fovea  to  relevant  locations, 
 which  could  be  partly  supported  by  mismatch 
 responses.  Similarly,  figure-ground  segmentation, 
 important  for  scene  segmentation  and  object 
 recognition,  could  also  be  initially  supported  by 
 mismatch  responses  (Poort  et  al.,  2016)  . 
 Interestingly,  the  differential  modulation  of  inhibitory 
 cell  types,  with  enhanced  VIP  (Vasoactive  Intestinal 
 Polypeptide)  and  suppressed  SOM  (somatostatin 
 expressing)  responses,  has  been  shown  to  support 
 figure-ground  modulation  (Kirchberger  et  al.,  2021)  . 
 Moreover,  this  is  governed  by  top-down  activation  as 

 optogenetic  silencing  of  feedback  connections 
 eliminates  the  figure-ground  modulation,  similar  to 
 what  is  observed  during  sequential  oddball 
 paradigms  (Hamm et al., 2021a; Bastos et al., 2023)  . 

 In  addition,  while  predictive  processing  models  have 
 evolved  to  incorporate  temporal  predictions, 
 integrating  these  models  with  experimental  findings 
 remains  challenging.  These  challenges  arise  in  part 
 due  to  the  highly  complex  temporal  dynamics  of 
 neural  signals,  influenced  by  diverse  neural 
 integration  properties,  variable  transmission  delays, 
 and  perhaps  most  importantly  the  highly  recurrent 
 nature  of  cortical  circuits.  Experiments  that  present 
 temporal  sequences  over  varying  time  scales,  from 
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 milliseconds  to  seconds,  make  it  challenging  to 
 accurately  capture  temporal  structure  in  predictive 
 coding models. 

 Neurons  and  networks  appear  to  involve  diverse 
 mechanisms  to  make  predictions.  Even  at  the  level  of 
 primary  sensory  cortices,  different  modalities  may 
 engage  divergent  mechanisms  for  predictive 
 processing.  Integrative  studies  that  examine  multiple 
 mechanisms,  regions,  and  modalities  simultaneously 
 are  scarce.  Addressing  this  gap  could  be  an 
 important  step  for  the  field  in  the  coming  years.  The 
 explanatory  power  of  the  current  data  is  limited  due 
 to  the  number  of  conditions  tested,  as  well  as  the 
 number  of  cell  types  and  brain  areas  simultaneously 
 recorded.  Studies  tend  to  rely  on  the  existing 
 literature  to  choose  the  most  promising  targets  to 

 record  from  in  a  given  task.  This,  in  turn,  can 
 reinforce  biases  in  our  understanding  of  the 
 differences  and  similarities  between  the  mechanisms 
 that  underlie  neural  responses  to  various  mismatch 
 types. 

 While  predictive  coding  was  proposed  as  a  general 
 framework,  the  community  has  yet  to  demonstrate 
 that  a  single  algorithm  can  account  for  all  mismatch 
 responses  recorded,  or  to  identify  ways  in  which 
 different  types  of  mismatch  stimuli  engage  different 
 mechanisms  in  the  brain.  We  propose  that  future 
 experiments  characterize  error  signals  generated  by 
 a  wide  range  of  mismatch  stimuli,  with  consistent 
 temporal  and  spatial  structures.  This  approach  would 
 enable  both  experimentalists  and  theorists  to  test 
 whether  predictive  processing  in  the  brain  relies  on 
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 canonical  computations  or  identify  how  these 
 computations  vary  depending  on  the  stimulus 
 properties. 

 Experimental proposal 

 Based  on  the  previously  introduced  literature 
 background,  we  propose  the  following  experiments. 
 These  aim  to  resolve  existing  divergences  between 
 the  experimental  and  theoretical  domains  in  the  field 
 and  deepen  our  understanding  of  the  mechanisms 
 underlying predictive processing. 

 Foundational  dataset  for  fitting  predictive 
 processing models across error types. 

 Background 
 In  Section  I  ,  we  reviewed  a  broad  range  of  mismatch 
 stimuli  used  to  investigate  the  possible  mechanisms 
 underlying  predictive  processing.  In  Sections  II  ,  IV  , 
 and  V  ,  we  examined  evidence  supporting  these 
 proposed  mechanisms,  which  include  E/I  balance, 
 dendritic  processing,  and  hierarchical  computation. 
 Our  review  suggests  that  different  types  of  mismatch 
 stimuli  may  recruit  distinct  sets  of  computational 
 capabilities. 

 The  cellular  substrates  of  prediction  errors  differ 
 across  paradigms.  In  multiple  visual  oddball 
 paradigms,  prediction  errors  are  mostly  limited  to 
 layer  2/3  pyramidal  neurons  (Jordan  and  Keller, 
 2020;  Hamm  et  al.,  2021a;  Pak  et  al.,  2021; 
 Gallimore  et  al.,  2023)  .  However,  in  auditory 
 sensorimotor  paradigms  using  pitch  deviants, 
 mismatch  responses  are  present  in  layer  5  and  layer 
 2/3  (Lakatos  et  al.,  2020;  Audette  and  Schneider, 
 2023;  Obara  et  al.,  2023;  Xiong  et  al.,  2024)  .  In 
 somatosensory  oddball  paradigms,  prediction  errors 
 have  been  identified  across  multiple  layers,  including 
 layers  4  and  6  of  the  barrel  cortex  (Musall  et  al., 
 2017)  and  layer  2/3  (Han  and  Helmchen,  2024)  .  One 
 possibility  is  that  whether  the  conflicting  features  (of 

 the  deviant  vs  the  predicted  stimulus)  are 
 represented  locally  (e.g.  orientations  within  mouse 
 V1)  or  in  distinct  cortical  areas  (e.g.  pitches  or 
 whisker  stimulations)  could  determine  the  nature  of 
 the  computation  and  thereby  affect  the 
 spatiotemporal properties of the prediction error. 

 The  neuronal  pathways  underlying  prediction  differ 
 for  visuomotor,  sequential  and  spatial  mismatches. 
 For  instance,  a  study  on  visuomotor  mismatch 
 responses  found  opposing  influences  of  visual  and 
 motor  inputs  on  the  activity  of  individual  L2/3  V1 
 neurons  (Jordan  and  Keller,  2020)  .  In  contrast,  a 
 study  of  navigational  mismatch  responses  found 
 enhanced  visual  input  driven  by  pulvinar  inputs  onto 
 inhibitory  populations  (Furutachi  et  al.,  2024)  .  In 
 addition,  sensory  occlusions  in  visual  experiments 
 may  engage  local  projections  within  V1  or  its 
 immediate  downstream  areas  (Cuevas  et  al.,  2024)  , 
 while  oddball  sequences  could  involve  mechanisms 
 like  adaptation  (Aitken  et  al.,  2024)  ,  feedback  from 
 higher  cortical  areas  (Hamm  et  al.,  2021a;  Obara  et 
 al.,  2023)  and  interactions  among  local  inhibitory 
 interneurons  (Hamm  and  Yuste,  2016;  Bastos  et  al., 
 2023; Najafi et al., 2024)  . 

 It  is  possible  that  different  mechanisms  are 
 engaged  in  passive  vs  active  contexts.  Experimental 
 work  on  motor  corollary  discharges  —  notably  from 
 Georg  Keller’s  lab  (Keller  et  al.,  2012)  and  David 
 Schneider’s  laboratory  (Audette  et  al.,  2022)  –  has 
 identified  many  neurons  whose  activity  is  suppressed 
 in  "expected"  conditions.  These  studies  point  to  a 
 critical  role  for  top-down  inputs  from  frontal  and  motor 
 areas  in  shaping  predictions.  In  contrast,  studies 
 examining  neural  activity  in  response  to  passive 
 exposure  to  temporal  sequences  of  stimuli  have 
 shown  more  modest  suppress  i  on  (Hamm  et  al., 
 2021a;  Homann  et  al.,  2022;  Price  et  al.,  2023;  Gillon 
 et  al.,  2024;  Westerberg  et  al.,  2024b)  ,  typically  only 
 affecting  around  10%  or  less  (Hamm  et  al.,  2021a; 
 Homann  et  al.,  2022;  Price  et  al.,  2023;  Gillon  et  al., 
 2024)  ) of the recorded neurons. 

 64 

https://paperpile.com/c/io7Jhe/4rG0T+FUGiM+HLOw7+lhCfp
https://paperpile.com/c/io7Jhe/4rG0T+FUGiM+HLOw7+lhCfp
https://paperpile.com/c/io7Jhe/4rG0T+FUGiM+HLOw7+lhCfp
https://paperpile.com/c/io7Jhe/KFHi2+4tHOM+U1lxC+bYL6T
https://paperpile.com/c/io7Jhe/KFHi2+4tHOM+U1lxC+bYL6T
https://paperpile.com/c/io7Jhe/oBeXZ
https://paperpile.com/c/io7Jhe/oBeXZ
https://paperpile.com/c/io7Jhe/TcYOG
https://paperpile.com/c/io7Jhe/4rG0T
https://paperpile.com/c/io7Jhe/6XIVW
https://paperpile.com/c/io7Jhe/5FFMT
https://paperpile.com/c/io7Jhe/f7zZb
https://paperpile.com/c/io7Jhe/FUGiM+4tHOM
https://paperpile.com/c/io7Jhe/FUGiM+4tHOM
https://paperpile.com/c/io7Jhe/nt7Qh+IWA8s+A8qaJ
https://paperpile.com/c/io7Jhe/nt7Qh+IWA8s+A8qaJ
https://paperpile.com/c/io7Jhe/ib0oP
https://paperpile.com/c/io7Jhe/QGCWU
https://paperpile.com/c/io7Jhe/KCadD+ybc2G+z7YfF+FUGiM+39049
https://paperpile.com/c/io7Jhe/KCadD+ybc2G+z7YfF+FUGiM+39049
https://paperpile.com/c/io7Jhe/KCadD+ybc2G+z7YfF+FUGiM+39049
https://paperpile.com/c/io7Jhe/KCadD+ybc2G+z7YfF+FUGiM
https://paperpile.com/c/io7Jhe/KCadD+ybc2G+z7YfF+FUGiM
https://paperpile.com/c/io7Jhe/KCadD+ybc2G+z7YfF+FUGiM


 Neural mechanisms of predictive processing 

 Neurons  have  access  to  a  wide  range  of  biophysical 
 mechanisms  to  form  predictions  and  compute 
 prediction  errors.  These  mechanisms  operate  at 
 different  scales  and  likely  interact  in  complex  ways 
 rather  than  acting  in  isolation.  (1)  Stimulus  adaptation 
 mechanisms  allow  individual  neurons  to  adjust  their 
 responses  to  recurring  stimuli,  potentially  enhancing 
 their  sensitivity  to  different  or  changing  inputs.  (2) 
 Dendritic  computation  enables  integration  of  multiple 
 inputs  within  a  neuron,  potentially  supporting  the 
 calculation  of  prediction  errors  in  a  shared 
 post-synaptic  compartment.  (3)  Cell-type  specific 
 computation,  particularly  involving  inhibitory  neurons, 
 has  been  highlighted  in  models  where  distinct 
 neuronal  subtypes  contribute  uniquely  to  predictive 
 tasks.  (4)  Recurrence  among  pyramidal  neurons, 
 combined  with  mechanisms  such  as 
 spike-timing-dependent  plasticity,  allows  groups  of 
 neurons  to  generate  and  refine  specific  temporal 
 sequences  of  activity  (Saponati  and  Vinck,  2023)  .  (5) 
 Excitatory/inhibitory  (E/I)  balance,  often  mediated  by 
 diverse  inhibitory  subtypes,  provides  a  framework  for 
 making  complex  predictions,  especially  when 
 integrated  with  top-down  signals  (Hertäg  and 
 Sprekeler,  2020)  .  Finally,  (6)  hierarchical  processing 
 across  brain  areas  can  enable  sophisticated, 
 multi-modal  predictive  capabilities  (Leinweber  et  al., 
 2017; Hamm et al., 2021b)  . 

 These  mechanisms  have  been  extensively  studied 
 both  experimentally  and  theoretically  in  the  context  of 
 predictive  processing,  but  their  interactions  remain 
 poorly  understood.  Specifically  predictive 
 mechanisms  may  not  simply  sum  their  effects  but 
 may  also  cooperate  and  compete  depending  on  task 
 demands  and  neural  constraints.  For  example, 
 temporal  predictions  during  sequential  oddball 
 protocols  involve  not  only  local  adaptation  (Knudstrup 
 et  al.,  2024)  ,  but  also  the  integration  of  top-down 
 inputs  from  higher  cortical  areas  (Hamm  et  al., 
 2021a)  .  These  overlapping  influences  make  it  difficult 
 to  isolate  the  contributions  of  each  mechanism, 
 complicating  data  interpretation.  As  a  result,  many 
 experimental  mismatch  protocols  now  include 

 carefully  controlled  conditions  to  account  for  these 
 combined  effects  to  ensure  that  the  observed 
 responses  can  be  more  accurately  attributed  to 
 specific  underlying  predictive  processes.  Real-world 
 stimuli  likely  engage  multiple,  if  not  all,  of  these 
 prediction  mechanisms  simultaneously,  but  whether 
 and  how  they  work  together  synergistically  remains 
 unclear.  Gaining  a  deeper  understanding  of  this 
 integration  could  help  resolve  some  of  the 
 discrepancies  observed  across  experimental  studies, 
 as  highlighted  in  our  section  outlining  divergent 
 results and interpretations. 

 We  propose  to  design  a  set  of  different  types  of 
 mismatch  stimuli,  and  to  record  neural  responses 
 across  the  full  set  through  several  recording  sessions 
 in  the  same  animals.  Using  this  foundational  dataset, 
 we  aim  to  train  and  validate  predictive  processing 
 models  that  integrate  and  combine  mechanisms 
 operating  at  different  scales.  To  maximize  the 
 applicability  of  this  dataset,  we  propose  to  collect,  in 
 different  animals,  Neuropixels  and  two-photon 
 imaging  datasets.  We  hypothesize  that  adaptation, 
 recurrence,  top-down  inputs,  and  E/I  balance, 
 although  likely  continuously  engaged,  show  varying 
 contributions  depending  on  the  nature  and  difficulty  of 
 the  prediction  task.  By  systematically  varying 
 mismatch  protocols,  we  aim  to  investigate  how 
 neurons  dynamically  employ  these  predictive 
 mechanisms.  Here,  we  define  the  prediction  set  as 
 the  stimulus  or  set  of  stimuli  expected  in  a  given 
 paradigm  based  on  prior  presentations,  spatial 
 continuity, or behavioral state and locomotion. 

 Recent  work  in  both  anatomy  and  neurophysiology 
 points  to  important  differences  in  the  visual  sensory 
 hierarchies  of  mice  and  monkeys  (Glatigny  et  al., 
 2024)  .  What  this  work  shows  is  that  compared  to 
 mice,  monkeys  have  a  much  steeper  visual  cortex 
 gradient  that  scales  the  hierarchy  and  potentially 
 allows  for  multiple  levels  of  signal  processing  prior  to 
 sensory  information  (or  putative  prediction  errors) 
 reaching  the  prefrontal  cortex.  Therefore,  it  is  likely 
 that  prediction  error  computations  may  be  partially 
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 evolutionarily  distinct  and  partially  conserved  in 
 rodents  compared  to  primates.  As  a  result,  it  is  critical 
 to  investigate  similar  tasks  in  both  species  to  better 
 appreciate  the  mapping  from  mouse  to  primate 
 circuits  involved  in  predictive  processing.  Importantly, 
 it  was  recently  demonstrated  that  some  forms  of 
 predictive  processing  emerge  very  late  in  hierarchical 
 processing,  such  as  area  AM  in  mice  (near  the  top  of 
 the  visual  cortical  hierarchy)  and  area  FEF/PFC  of 
 monkeys  (Westerberg  et  al.,  2024a)  .  This 
 underscores  the  need  to  record  from  higher-order 
 cortical  areas,  in  addition  to  the  visual  cortex,  to 
 determine  whether  certain  predictions  arise  early  or 
 late in processing. 

 We  anticipate  that  the  modeling  community  will 
 leverage  these  datasets  to  quantitatively  compare 
 models  in  terms  of  their  ability  to  account  for  the 
 different  patterns  of  neuronal  activity  observed  across 
 different experiments. 

 Specific Aims 

 The  Specific  Aim  of  this  proposal  is  to  elucidate  the 
 potential  relationship  between  four  most  commonly 
 studied  mismatch  stimuli  and  their  associated  error 
 signals,  as  well  as  different  neuronal  implementations 
 of predictive processing. 

 Hypothesis-Driven Framework 

 We hypothesize that… 

 H0  :  mechanisms  of  predictive  processing 
 fundamentally  differ  depending  on  predictive  set  and 
 prediction  error  types,  and  recruit  different  neuronal 
 mechanisms. 

 Alternatively, we hypothesize that… 

 H1  :  a  unified  predictive  processing  mechanism  drives 
 all mismatch processing in the mammalian cortex. 

 To  determine  which  of  these  two  alternative 
 hypotheses  is  correct,  we  propose  to  experimentally 
 examine  three  major  types  of  mismatch  stimuli  that 
 have  dominated  the  literature:  temporal,  motor,  and 
 omission.  Further,  we  will  examine  two  types  of 
 prediction  sets  :  spatiotemporal  (passive)  and 
 sensorimotor  (active).  Importantly,  in  all  experiments, 
 the  region  recorded  (V1)  will  include  spatially 
 intermixed  neurons  selective  for  features  of  both  the 
 expected  stimulus  and  the  mismatch  stimuli.  For 
 example,  orientation  and  direction  tuning  are  spatially 
 mixed  in  V1,  and  the  standard  oddball  paradigms 
 (Zhou  et  al.,  2020;  Hamm  et  al.,  2021a;  Pak  et  al., 
 2021;  Homann  et  al.,  2022)  and  sensorimotor 
 mismatch  paradigms  (Jordan  and  Keller,  2020) 
 involve  predicted  stimuli  and  mismatch  stimuli  that 
 differ  in  orientation  or  direction.  Significance  and 
 Innovation: 

 We  will  collect  the  first  comprehensive  set  of 
 neuronal  data  enabling  direct  comparison  across 
 different  mismatch  error  signals.  Additionally,  our 
 methodology  will  be  designed  to  integrate  two-photon 
 imaging  and  electrophysiological  recordings, 
 leveraging the strengths of both techniques. 

 Resolving  these  alternative  hypotheses  will  mark 
 major  progress  for  the  field,  unifying  conflicting 
 findings  and  clarifying  how  differences  in 
 experimental  design  shape  interpretations  of 
 predictive processing. 

 Additionally,  the  resulting  dataset  will  be  a  pivotal 
 resource  for  validating  mechanistic  computational 
 models  across  multiple  mismatch  types,  advancing 
 our  understanding  of  predictive  processing  in  the 
 brain. 

 Proposed Experiment 

 1.  Stimulus set design 
 Our  stimulus  set  will  be  designed  to  contain  a  few 
 validated  mismatch  stimuli  (see  Figure  10  ).  Particular 
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 attention  will  be  given  to  the  experimental  design  to 
 allow fitting models of: 

 ■  Synaptic adaptation 
 ■  Positive and negative errors 
 ■  Short-term  memory  that  could  emerge 

 through local recurrence. 
 ■  E/I balance 

 Since,  we  aim  to  bridge  various  visual  stimuli  designs 
 piloted,  analyzed,  and  deployed  over  the  last 
 decades,  we  will  use  sequences  of  drifting  gratings. 
 We  will  present  five  types  of  oddballs:  a  drifting 
 grating  halt,  two  alternative  drifting  orientations,an 
 omission  and  temporal  jittered  oddballs.  All  oddballs 

 will  be  introduced  in  four  different  session  contexts: 
 standard  mismatch,  sensory-motor  mismatch, 
 sequential  mismatch  and  temporal  jitter  mismatch. 
 These  contexts  will  be  separated  based  on  the 
 session  and  habituation  design.  Individual  animals 
 will  experience  all  4  contexts  in  different  orders.  Two 
 cohorts  of  separate  animals  will  be  recorded  with 
 Neuropixels  probes  and  multi-area  two-photon 
 imaging. 

 Session  1  –  Standard  mismatch:  Animals  will  be 
 habituated  to  a  series  of  drifting  gratings  of  the  same 
 orientation.  Various  mismatch  stimuli  will  be 
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 introduced  randomly:  differing  orientations, 
 omissions, and spatial oddballs. 

 Session  2  –  sensorimotor  mismatch  :  Animals  will  be 
 habituated  to  a  closed-loop  visuo-motor  running  disk 
 where  the  rotation  of  the  disk  will  directly  control 
 visual  flow  on  a  screen  in  front  of  the  mouse.  On 
 recording  days,  the  same  mismatch  stimuli  as  in 
 Session 1 will be introduced. 

 Session  3  –  sequence  mismatch:  Animals  will  be 
 habituated  to  rapid  sequences  of  4  stimuli.  The  same 
 sequences  will  repeat,  once  per  second,  for  37 
 minutes.  The  same  mismatch  stimuli  as  in  Session  1 
 will  be  introduced  in  the  third  position  in  the  sequence 
 order, once every 11 seconds, on average. 

 Session  4  –  Temporal  Mismatch,  Duration:  Animals 
 will  be  exposed  to  a  sequence  of  drifting  gratings  of 
 the  same  orientation.  To  introduce  duration 
 mismatches,  some  gratings  will  have  durations  that 
 are  either  shorter  or  longer  than  expected.  The 
 session  will  consist  of  two  alternating  trial  blocks: 
 fixed  and  jittered.  In  the  fixed  block,  grating  durations 
 will  remain  constant  across  all  trials.  In  the  jittered 
 block,  grating  durations  will  be  drawn  from  a  normal 
 distribution  with  a  large  standard  deviation, 
 introducing  variability  in  timing.  Each  block  will 
 include  duration  mismatches  once  every  11  seconds, 
 on average. 

 By  shifting  the  expected  temporal  structure  within  the 
 standard  oddball  paradigm  varying  stimulus  duration, 
 we  aim  to  investigate  how  neurons  encode  and 
 resolve  prediction  errors  related  to  stimulus  duration, 
 potentially  engaging  temporal  mechanisms  distinct 
 from  those  involved  in  stimulus  feature-based 
 mismatches. 

 All  feature-based  sessions  (Session  1  to  3)  will 
 experience  4  temporally  based  oddballs  with  equal 
 frequencies:  two  alternative  drifting  grating 
 orientation,  one  drifting  grating  halt  and  one 
 omission.  These  4  oddballs  will  last  275  ms,  will  be 
 shuffled  and  occur  randomly,  on  average  every  11 
 seconds  throughout  the  37  min  long  block.  All 
 sessions will experience 4 shared controls blocks: 

 ●  Randomized  drifting  gratings  presented  at  16 
 orientations  with  gray  periods  in  between. 
 Each  orientation  will  occur  once  every  11 
 seconds  to  match  the  occurrence  of 
 mismatches in the first experimental block. 

 ●  Randomized  drifting  gratings  presented  at  16 
 orientations  without  gray  period  in  between. 
 Each  orientation  will  occur  once  every  11 
 seconds  to  match  the  occurrence  of 
 mismatches  in  the  first  experimental  block. 
 Open-loop  replay  of  a  closed-loop 
 sensory-motor  block  with  all  oddball  types 
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 pre-recorded  but  uncoupled  to  the  movement 
 of animals. 

 ●  Randomized  temporal  jittered  presentation  of 
 drifting  gratings.  Each  jittered  stimulus  will 
 occur  every  11  seconds  to  match  the 
 occurrence  of  jittered  mismatch  in  the 
 experimental block. 

 2.  Recording techniques 

 In  sections  I  to  VI,  we  discussed  how  neuronal 
 responses to the types of mismatches included for 
 Session  1  to  4  could  be  supported  by  a  variety  of 
 mechanisms  including  adaptation,  recurrence 
 between  pyramidal  cells  and  E/I  balance.  To 
 properly  evaluate  the  relative  contribution  of  these 
 mechanisms,  it  is  critical  to  measure  the  activity  of 
 the  excitatory  and  inhibitory  neuron  populations  in  all 
 cohorts.  Two-photon  calcium  imaging  offers  ideal 
 access  to  different  classes  of  inhibitory  neurons  in 
 dense  networks  but  lacks  the  high  temporal 
 resolution  needed  to  resolve  individual  spikes  and 
 event  timing.  Complementary  Neuropixels 
 recordings  will  address  this  limitation,  capturing 
 spike  timing  with  high  spatial  and  temporal 
 resolution  for  the  same  stimuli.  Combining  these  two 
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 Transgenic mice  Stimulus cohort  Minimum 
 number of mice 

 Areas recorded 

 Pan-excitatory 
 GCAMP line 

 2P Cohort 1  3  V1 + LM. 4 
 planes in each. 
 Layer I, Layer 
 II/III, Layer 4, 
 Layer 5 

 Pan-inhibitory 
 GCAMP line 

 2P Cohort 1  3  V1 + LM. 4 
 planes in each. 
 Layer I, Layer 
 II/III, Layer 4, 
 Layer 5 

 Pan-excitatory 
 GCAMP line 

 2P Cohort 2  3  V1 + LM. 4 
 planes in each. 
 Layer I, Layer 
 II/III, Layer 4, 
 Layer 5 

 Pan-inhibitory 
 GCAMP line 

 2P Cohort 2  3  V1 + LM. 4 
 planes in each. 
 Layer I, Layer 
 II/III, Layer 4, 
 Layer 5 

 SST-optotagging  Neuropixel Cohort 
 1 

 5  V1 
 LM 
 M1 
 M2, 
 PL/IL/ACA 
 RL+LGN 

 SST-optotagging  Neuropixel Cohort 
 2 

 5  V1 
 LM 
 M1 
 M2, 
 PL/IL/ACA 
 RL+LGN 

 Table 1  -  Mice recorded for Project 1 by the OpenScope 
 program.  See  Figure 12  for Neuropixels geometry. 
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 techniques  will  provide  a  richer,  multi-dimensional 
 dataset,  enhancing  both  data  analysis  and  modeling. 
 Primates  will  only  be  recorded  with 
 electrophysiological  probes  due  to  technical 
 limitations  in  the  ability  to  record  neural  activity  using 
 two-photon imaging in this species 
 Given  our  goal  to  build  integrated  models,  we  aim  to 
 record  as  many  neurons  as  possible  within  relevant 
 cortical  networks.  Based  on  our  previous  review,  V1 
 is  consistently  engaged  by  the  stimuli  presented 
 across  all  cohorts  in  mice.  We  also  propose  to  record 
 from  LM  and  a  set  of  distributed  areas  using  both 
 techniques  (see  Table  1  and  Figure  12  for  mice). 
 Primates  will  be  recorded  from  V1/V2/V3/MT/MST 
 and  prefrontal  cortex.  This  approach  will  allow  for  a 
 comprehensive  comparison  of  predictive  processing 
 across species and cortical areas. 

 For  two-photon  imaging,  we  will  use  pan-inhibitory 
 and  pan-excitatory  lines  to  record  from  the  majority  of 
 neuron  types  across  cortical  layers.  For  the 
 Neuropixels  recordings,  we  propose  to  insert  probes 
 in  V1  and  LM  as  well  as  motor  areas,  prefrontal 
 cortex and LGN. 

 3.  Recording sessions 
 Recording  sessions  will  be  organized  across  4 
 cohorts,  two  using  two-photon  imaging  and  two 
 entirely  separate  cohorts  of  mice  using  neuropixel 
 probes  (see  Figure  11  ).  Each  recording  session  will 
 be  one  of  four  different  stimuli  designs  (see  Figure 
 10  ).  Each  mouse  brain  will  be  chronically  recorded 
 across  either  8  sessions  (two-photon  imaging)  or  4 
 sessions  (neuropixel  recording).  Each  session  will 
 present  habituated  stimuli,  as  well  as  blocks  of  stimuli 
 containing  oddballs  and  control  blocks.  Session  type 
 1  to  3  will  differ  only  in  their  sensory  context  but  will 
 share  oddball  types  and  control  blocks.  In  addition, 
 session  4  will  introduce  jittered  oddballs  instead  of 
 feature  oddballs.  Individual  animals  will  experience  all 
 4  contexts  in  different  orders  across  2  cohorts  for 
 each  data  modality.  Each  stimulus  session  will  be 
 implemented  in  Bonsai  and  immediately  open  source 

 (  https://github.com/AllenNeuralDynamics/openscope- 
 community-predictive-processing  ). 

 4.  Multi-lab collaboration 
 In  addition  to  recordings  performed  by  the 
 OpenScope  program,  we  propose  a  multi-lab 
 collaboration  where  individual  labs  will  share 
 sub-components  of  the  stimulus  sets  but  have  the 
 flexibility  to  vary  the  targeting  of  brain  areas  and  their 
 recording  methods.  Those  complementary  datasets 
 are  listed  on  Table  2  .  This  approach  will  expand  the 
 coverage  of  neuronal  activity  across  different 
 experimental  conditions.  The  following  are  currently 
 planned: 

 Bastos lab : Primate data recordings 
 Following  on  the  cross-species  considerations 
 discussed  in  section  2  and  in  the  background,  we 
 propose  to  run  the  same  studies  in  parallel  in  mice 
 along  with  collaborating  institutions  that  will  provide 
 the  non-human  primate  data  (as  in  (Westerberg  et 
 al.,  2024a)  ,  see  Table  2  ).  For  a  better  quality  in  visual 
 tasks  (both  passive  and  active),  we  use  eye-tracking 
 systems  to  ensure  they  are  paying  attention  and 
 control  eye  movements.  For  the  visual  flow 
 experiments  in  monkeys,  we  propose  to  have 
 monkeys  control  their  movement  using  eye-tracking 
 while  being  head-fixed  (headposted)  for  habituation, 
 training  and  invasive  recordings  (INTAN 
 electrophysiology  interface  and  diagnostic  biochips 
 deep  laminar  electrodes).  Other  than  that,  the 
 methodology  and  data  analysis  between  primates 
 and  mice  will  be  as  similar  as  possible,  including  use 
 of  optogenetics  to  identify  pan-inhibitory  interneurons 
 (Dimidschstein et al., 2016)  . 

 Najafi  lab  and  Ruediger  lab:  Temporal  jittered 
 data  recordings  across  inhibitory  cell  types  and 
 visual areas. 

 The  temporal  mismatch  condition  will  be  extended 
 with  more  variation  of  the  oddball  conditions.  These 
 variations will allow us to assess how neurons 
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 encode  and  resolve  timing  prediction  errors  within  a 
 stimulus  sequence,  distinguishing  between  local 
 adaptation,  recurrent  processing,  and  hierarchical 
 feedback  contributions.  Importantly,  this  data  will 
 complement  the  observations  of  feature-based 
 mismatch  responses  (in  particular  session  3), 
 enabling  a  direct  comparison  between  feature-based 
 mismatch  responses  and  temporal  mismatch 
 responses.  Understanding  these  distinctions  is 
 crucial,  as  it  provides  insight  into  how  the  brain 
 integrates  different  types  of  prediction  errors  to 
 optimize  perception  and  behavior  in  dynamic 
 environments. 

 Animals  will  be  exposed  to  a  sequence  of  drifting 
 gratings  of  the  same  orientation.  To  introduce  interval 
 mismatches,  the  inter-stimulus  intervals  (ISIs) 
 between  some  gratings  will  be  either  shorter  or 
 longer  than  expected.  The  session  will  consist  of  two 
 alternating  trial  blocks:  fixed  and  jittered.  In  the  fixed 
 block,  ISIs  will  remain  constant  across  all  trials.  In  the 
 jittered  block,  ISIs  will  be  drawn  from  a  normal 
 distribution  with  a  large  standard  deviation, 
 introducing  variability  in  timing.  Each  block  will 
 include  15%  interval  mismatches  once  every  11 
 seconds, on average. 

 Podgorski  lab:  Dendritic  recording  with  voltage 
 imaging 
 A  subset  of  laboratories  will  record  dendritic  activity 
 using  voltage  imaging  in  individual  excitatory  neurons 
 (see  Table  2  ).  It  is  important  to  note  that  the  current 
 scale  of  voltage  imaging  is  more  amenable  to  single 
 session  recordings.  In  addition,  these  experiments 
 should  be  designed  to  cover  mismatch  learning  from 
 start  to  finish.  Remarkably,  standard  oddballs 
 (  Session  1  )  have  been  shown  to  trigger  very  fast 
 learning  (Hamm  et  al.,  2021b;  Bastos  et  al.,  2023)  . 
 We  will  therefore  leverage  Session  1  design  in  those 
 experiments.  We  expect  dendritic  data  to  be  highly 
 valuable  toward  a  more  detailed  investigation  of 
 within-neuron  mechanisms.  For  example,  the 
 contribution  of  adaptation-like  models  could  be  better 
 uncovered  with  fast  dynamics  recordings  across  the 
 dendritic  tree.  This  is  because  individual  button  and 
 dendritic  branch  dynamics  are  more  directly 
 available.  In  addition,  voltage  imaging  across  the 
 dendritic  tree  of  a  single  pyramidal  cell  will  uncover 
 the  impact  of  inhibitory  input.  SOM  and  PV  cells  have 
 drastically  different  projection  target  geometry  onto 
 pyramidal  cells.  We  therefore  aim  to  better  define  the 
 contribution of both adaptation and inhibitory activity. 

 71 

 Table 2 - Complementary datasets proposed to be collected by collaborating laboratories 
 Laboratory  Animal details  Technique  Stimulus  Areas recorded  Details on neuronal recordings 

 Allen 
 Institute 

 OpenScop 
 e program 

 Mice  Multi-plane two-photon + 
 Neuropixels 

 Cohort 1 + 2  V1, LM, M1, M2, Prefrontal 
 cortex, LGN 

 See table 1 

 Najafi lab  Mice  Single plane two-photon 
 imaging 

 Temporal jitter 
 context 

 Prefrontal and Premotor 
 cortices, likely some 

 sub-cortical areas too 
 Podgorski 

 lab 
 Mice  SLAP2 voltage imaging  Session 1: Standard 

 oddballs session 
 V1  Single pyramidal cell imaging (somas + 

 dendrites) 
 Ruediger 

 lab 
 Mice  Neuropixel recordings  Temporal jitter 

 context 
 To be determined 

 Bastos lab  Primates  Diagnostic Biochips (128 
 channels per probe) 

 recordings 

 Session 1,2,3,4  V1, V2, V3, MT/MST and 
 prefrontal cortex 

 As described in Westerberg et al., 2024 

 Oweiss lab  Mice  Two-photon 
 optogenetics+voltage 

 imaging 

 Standard oddballs 
 session 

 BCI control 

 V1  Single pyramidal cell (somas + dendrites) 
 Small ensembles (BCI) 

https://paperpile.com/c/io7Jhe/sblHz+nt7Qh
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 Oweiss  lab:  Calcium  and  voltage  imaging  with 
 BCI and optogenetics 
 In  addition  to  the  standard  mismatch  condition 
 (  Session  1  ),  the  sensorimotor  mismatch  condition  2 
 will  be  extended  to  randomly  decouple  the  visual  flow 
 from  the  running  disk  rotation  within  single  trials  (see 
 Table  2  ).  When  decoupled,  the  visual  flow  will  be 
 modulated  using  the  decoded  Ca  2+  activity  of  a 
 ‘rewarded’  neural  population,  selected  by  the 
 experimenter  in  real  time  in  a  BCI  paradigm.  In  this 
 setting,  we  seek  to  investigate  how  the  nervous 
 system  could  adapt  to—and  possibly  predict  – 
 unexpected  perturbation  in  sensory  feedback  online. 
 We  expect  that  ‘within-movement’  feedback 
 corrections  will  gradually  improve  over  trials,  despite 
 the  unexpected  dynamics  associated  with  the 
 random  perturbations.  Both  Ca  2+  and  voltage  imaging 
 data  will  provide  valuable  insights  into  how  both 
 supra  and  subthreshold  membrane  dynamics  mirror 
 these  effects,  both  within  and  across  neuron 
 mechanisms  and  across  multiple  timescales. 
 Furthermore,  it  will  provide  critical  data  to  assess  the 
 extent  to  which  recurrent  excitation  and/or  feedback 
 inhibition  at  the  circuit  level  could  be  shaping  these 
 response  dynamics  without  being  confounded  by 
 overt  movement-related  neural  dynamics.  Finally,  it 
 will  be  the  first  to  assess  the  impact  of 
 neuromodulatory  reward  signals  (e.g.  dopamine)  on 
 shaping  predictive  processing  at  the  dendritic, 
 somatic and population levels  (Chueh et al., 2025)  . 

 Analysis Plan 

 Our  review  in  Sections  II  to  VI  highlighted  the 
 presence  of  mismatch  responses  throughout  the 
 cortical  network,  spanning  multiple  areas  and  cellular 
 populations,  including  excitatory  neurons  and 
 inhibitory  subtypes.  These  responses  involve 
 dynamic  contributions  from  both  dendritic  and 
 somatic  compartments.  Consequently,  our  analysis 
 must  disentangle  these  relative  contributions  within  a 
 tightly  integrated  network,  across  multiple  types  of 
 mismatches. 

 A  key  assumption  in  our  analysis  is  that  different 
 types  of  mismatches  may  recruit  distinct  relative 
 contributions  from  computational  primitives  (see 
 Review  Summary  ).  To  test  this  assumption,  we  must 
 measure  the  precise  dynamic  properties  of  individual 
 compartments  across  neuronal  types,  areas  and 
 layers.  Our  goal  is  to  compare  the  relative  timing  and 
 strength  of  predictive  responses,  complemented  by 
 decoding  analyses  to  extract  instantaneous 
 prediction  strengths  emerging  across  the  network. 
 Neuropixels  recordings  will  enable  decoding  with 
 millisecond  precision,  such  that  the  first  occurrences 
 of  mismatch  encoding  across  circuit  components 
 (brain  regions,  cortical  layers,  neuronal  subtypes,  and 
 neuronal  compartments)  can  be  identified,  while 
 imaging  experiments  will  provide  denser  recordings 
 to  measure  the  broader  impact  of  these  predictions 
 on the overall network. 

 Modeling  these  responses  will  be  a  key 
 integrative  effort,  facilitating  the  unification  of 
 multi-modal  and  multi-species  datasets.  First, 
 analytical  metrics  derived  from  real  physiological  data 
 can  be  designed  and  iteratively  refined  using 
 simulated  neuronal  activity  from  cortical  models, 
 where  the  ground  truth  is  known.  Second,  modeling 
 will  enable  the  multi-modal  integration  of  these 
 datasets  by  leveraging  the  relative  strengths  of 
 various  techniques  to  constrain  model  parameters. 
 Simulated  models  will  vary  in  complexity  to  evaluate 
 our  ability  to  disentangle  mechanisms  such  as 
 adaptation,  E/I  balance,  and  other  underlying 
 processes. 

 The  analysis  can  be  organized  to  address  three  main 
 scientific  hypotheses:  I)  whether  mismatch  responses 
 are  “additive”,  “subtractive”,  or  “multiplicative”  in 
 nature;  II)  whether  mismatch  responses  contain 
 detailed,  temporally  specific  predictions  or 
 expectations  about  the  stimulus  ensemble;  III) 
 whether  there  exists  a  common  neural  mechanism 
 underlying  different  kinds  of  mismatch  responses. 
 Here,  we  provide  further  details  about  the  data 
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 analysis  and  hypothesis  testing  that  this  experiment 
 makes possible. 

 Throughout  all  hypotheses,  we  will  leverage  a  shared 
 set  of  metrics  computed  on  all  datasets  (see  Figure 
 13  ).  Encoding  metrics  should  include  measures 
 used  to  evaluate  deterministic  models,  like  linear  and 
 logistic  regressions,  such  as  accuracy,  mean  square 
 error,  and  the  coefficient  of  determination  R2,  or  for 
 probabilistic  models  such  as  generalized  linear 
 models  (GLMs).  Decoding  metrics  should  include 
 measures  from  pattern  clustering  and/or 
 classification,  for  e.g.,  Mahalanobis  distance, 
 confusion  matrix  (categorical  variables)  or  F1  score, 
 mutual  information,  or  bit  rate/latency  (for  BCIs).  In 
 addition,  analysis  of  response  distribution  across 
 anatomical  location  and  cell  types  will  be  used  to  test 
 all hypotheses. 

 I.  What  kind  of  information  is  encoded  by 
 mismatch responses? 

 A.  Multiplicative  novelty:  Stimulus-specific 
 enhancement for novel / unpredicted stimuli 

 B.  Additive  novelty:  A  generalized  “alert”  signal  that 
 encodes novelty per se 

 C.  Subtractive  novelty:  The  difference  between  the 
 expected vs. actual stimulus 

 D.  No  effect:  In  particular,  this  empirical  outcome 
 could  constitute  a  form  of  rejection  of  the  hypothesis 
 that  predictive  computation  was  involved  in  the 
 experimental conditions tested 

 Analysis  #1:  For  each  neuron  and  each 
 mismatch  stimulus,  construct  either  the 
 event-triggered  average  (ETA;  for  Ca  ++  imaging 
 data)  or  peri-stimulus  time  histogram  (PSTH;  for 
 Neuropixel data): 

 ●  Significant  mismatch  responses  will  be 
 determined  in  each  neuron  by  comparing 
 activity  evoked  by  a  given  mismatch  stimulus 
 to  that  same  stimulus  when  it  appears  during 

 the  appropriate  control  setting.  For  session  1, 
 this  will  be  a  comparison  to  the  spaced 
 randomized  control.  For  session  2,  this  will  be 
 a  comparison  to  the  open  loop  pre-recorded 
 sequence.  For  session  3,  this  will  be  a 
 comparison  to  the  contiguous  randomized 
 sequence  control.  For  session  4,  this  will  be 
 the  response  to  a  time  interval  presented  as 
 an  oddball  to  the  same  time  interval  in 
 random order. 

 ●  The  significance  of  mismatch  responses  will 
 be  rigorously  tested  using  bootstrap 
 resampling,  to  avoid  making  the  assumption 
 of  normal  statistics  for  each  neuron  (which  is 
 often  a  poor  assumption).  Neurons  with 
 p < 0.01  will  be  considered  “mismatch” 
 neurons. 

 ●  Assuming  that  mismatches  occur  at  random 
 times  on  an  interval  [ITI  min  ,  ITI  max  ],  then  the 
 ETA  from  t = –ITI  min  to  t = 0  serves  as  a 
 baseline response. 

 ●  Absolute  response  measure  :  integrated 
 neural  activity  over  a  time  window  shifted  by  a 
 standard latency (~50-100 ms). 

 ●  Relative  response  measure:  integrated  neural 
 activity  minus  baseline  activity  (use  a  longer 
 time  window  for  baseline  for  better  SNR,  but 
 then  scale  the  integral  to  compare  to  the 
 activity at t > 0). 

 Analysis  #2:  Compare  the  mismatch  response 
 in the novel vs. control conditions: 

 A.  Make  a  scatter  plot  of  responses  in  the  two 
 conditions  and  carry  out  a  linear  fit.  Here  are  possible 
 interpretations  of  this  analysis,  keeping  in  mind  that 
 the  data  may  exhibit  combinations  of  these 
 outcomes: 

 ●  multiplicative  novelty  coding  =  slope  of  linear 
 fit > 1 

 ●  additive novelty coding = offset of linear fit > 0 
 ●  subtractive  novelty  coding  =  slope  of  linear  fit 

 is  not  statistically  different  from  zero  (or 
 extensive deviation for a subset of neurons) 
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 ●  no effect = neurons on the identity line 

 Analysis  #3:  Compare  responses  to  different 
 mismatch  stimuli  in  the  novel  condition  (for 
 Sessions 1 and 2): 

 ●  Calculate  the  relative  response  to  the  four 
 different mismatch stimuli 

 ●  If  neurons  encode  subtractive  novelty,  then 
 the following will be true: 

 i. R(downward, 90° shift) > R(45° shift), 
 because this is a bigger change in orientation 

 ii.  R(halt)  <  R(90°)  and  R(45°),  because  the 
 halt involves a smaller change in velocity 

 ●  Other  possibilities:  i)  make  some  index  that 
 captures  this  relationship  for  individual 
 neurons,  ii)  calculate  the  fraction  of  neurons 
 fulfilling  these  conditions  and  compare  them 
 to  a  shuffle  test,  iii)  assess  the  effects  of 
 depth  and  subregion  on  fraction  of  neurons 
 showing  mismatch  responses,  and  compare 
 between types (different sessions). 

 Analysis  #4:  Calculate  decoding  performance  / 
 information  encoded  for  mismatch  stimuli  and 
 novelty  per se  : 

 ●  What  fraction  of  neurons  encode  significant 
 info about novelty per se? 

 ○  a  large  fraction  indicates  a  major, 
 distributed encoding of novelty per se 

 ●  What  fraction  of  neurons  encode  significant 
 info about individual mismatch stimuli? 

 ○  a  large  fraction  indicates  a  major, 
 distributed  encoding  of  the  identity  of 
 novel stimuli 

 ●  Calculate  decoding  performance  vs.  N 
 neurons, extrapolate to large N: 

 ○  extrapolation  →  ~1  indicates  strong 
 encoding  (expected  for  individual 
 stimuli, but unclear for novelty  per se  ) 

 ●  Compare  decoding  performance  of  novelty 
 per se  vs. performance for individual stimuli: 

 ○  similar  performance  indicates  a  strong 
 encoding of novelty  per se 

 ○  lower  performance  for  novelty 
 indicates  a  weak  or  secondary 
 encoding of novelty 

 ●  Scatter  plot  of  info  encoded  for  novelty  vs. 
 individual stimuli: 
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 ○  high  correlation  indicates  a  joint 
 encoding  of  novelty  and  stimulus 
 identity 

 ○  low  correlation  indicates  a  separate 
 encoding  of  novelty  and  stimulus 
 identity. 

 II.  Distinguish  between  two  categories  of 
 prediction made by neurons: 
 A.  Detailed  predictions  about  the  identity  of  the 
 upcoming stimulus 

 B.  Deviation  of  stimulus  probability  from  the  expected 
 stimulus  ensemble  ,  often  described  in  the  literature 
 as  “adaptation”.  This  empirical  outcome  could  be 
 interpreted  as  a  form  of  refutation  of  the  hypothesis 
 that  predictive  computation  was  involved  in  the 
 experimental conditions tested. 

 Analysis  #1:  Compare  the  response  to  the 
 same  mismatch  stimulus  in  all  three  conditions 
 for the sensorimotor mismatch (session 2): 

 ●  Is  the  mismatch  response  >  for  closed  loop 
 vs. open loop 

 ○  YES  indicates  that  the  neuron 
 encodes  a  detailed  prediction  (as  only 
 the  closed  loop  condition  allows  a 
 detailed prediction) 

 ●  Is  the  mismatch  response  >  control  vs.  open 
 loop 

 ○  YES  indicates  that  the  neuron 
 encodes  deviation  from  the  expected 
 ensemble  (as  a  blank  is  differs  more 
 from  the  mismatch  grating  than  the 
 vertically  oriented  grating  present  in 
 the closed loop condition) 

 Analysis  #2:  Calculate  decoding  performance  / 
 info  encoded  for  individual  mismatch  stimuli  vs. 
 for novelty  per se  . 

 ●  Use  population  decoder  to  identify  the 
 occurrence  of  an  individual  mismatch  stimulus 

 (target)  versus  all  the  other  neural  activity; 
 start  with  a  linear  decoder  (support  vector 
 machine): 

 ○  this  quantifies  the  fidelity  for  encoding 
 the  identity  of  each  of  4  mismatch 
 stimuli 

 ●  In  a  complementary  fashion,  calculate  the 
 mutual  information  each  neuron  represents 
 about  an  individual  mismatch  stimulus  versus 
 all other neural activity 

 ●  Similarly,  calculate  decoding  performance  and 
 information  for  a  comparison  of  neural  activity 
 during  any  mismatch  stimulus  vs  all  other 
 neural activity; 

 ○  this  quantifies  the  fidelity  for  encoding 
 stimulus novelty  per se 

 ●  If  significantly  more  information  is  encoded  in 
 the closed loop condition vs. open loop 

 ○  YES  indicates  encodes  of  a  detailed 
 prediction 

 ●  If  significantly  more  information  is  encoded  in 
 the control condition vs. open loop 

 ○  YES  indicates  encoding  of  a  deviation 
 from the expected ensemble 

 Analysis  #3:  Emergence  of  Prediction  Signals  in 
 Single Neurons and Neural Populations 

 When  new,  arbitrary  correlations  are  created  by  the 
 experimenter,  the  brain  must,  in  principle,  learn  these 
 new  correlations.  This  can  be  demonstrated  by 
 showing  several  kinds  of  changes  in  neural 
 responses  to  the  same  stimuli  over  time.  These 
 changes  may  occur  within  a  single  recording  session, 
 which  is  often  interpreted  as  a  form  of  adaptation,  or 
 across  recording  sessions,  which  is  typically 
 interpreted as learning. 

 Key Hypothesis Tests: 

 ●  Predictive  coding  vs.  static  tuning:  Do 
 individual  neurons  or  neural  populations  show 
 changes  in  their  response  to  the  same  oddball 
 stimuli? 
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 ○  YES  indicates  evidence  of  predictive 
 computation 

 ○  NO  indicates  evidence  of  static  or 
 previously learned tuning to stimuli 

 ●  “Predictive”  Activity:  Do  neurons  or 
 populations  of  neurons  exhibit  activity  that 
 systematically  depends  on  what  the  upcoming 
 stimulus  is  (as  can  be  demonstrated  by 
 changing stimulus contingencies)? 

 ○  YES  suggests  that  the  neural  activity 
 was  in  part  encoding  the  identity  of  the 
 upcoming stimulus 

 ○  NO  indicates  that  the  neural  activity 
 encodes  the  identity  of  the  current 
 stimulus 

 ●  “Pattern  completion”  activity:  Do  neurons  or 
 populations  of  neurons  exhibit  activity  during 
 stimulus  omission  that  depends  systematically 
 on the preceding stimulus? 

 ○  YES  indicates  a  form  of  predictive 
 computation,  in  which  predictions  are 
 embodied,  in  part,  by  specific  neural 
 activity  driven  by  events  that  predict 
 an  upcoming  stimulus  (rather  than  by 
 the stimulus itself) 

 ○  NO  indicates  that  a  response  to  the 
 omission itself 

 ●  Latent  component  dynamics:  Do  identified 
 latent  variables  exhibit  systematic  changes 
 over trials?  

 ○  YES  indicates  evidence  of  predictive 
 computation  revealed  only  at  the 
 population level 

 ●  Neural  dimensionality  reduction:  Does  the 
 manifold  structure  of  mismatch  responses 
 shift  toward  a  more  compact, 
 lower-dimensional  space  with  repeated 
 exposure? 

 ○  YES  indicates  a  structure  of  predictive 
 computation  that  is  consistent  with 
 theories  about  efficient  coding  and/or 
 maximization of coding capacity 

 ●  Conjunctive  vs.  disentangled  representation: 
 Does  the  visualized  geometric  structure  of 

 population  activity  embedded  in  a  3D  space; 
 e.g.  using  unsupervised  UMAP  (Uniform 
 Manifold  Approximation  and  Projection),  show 
 distinct,  possibly  orthogonal,  trajectories  that 
 could  reveal  disentangled  coding  schemes  for 
 different  signals  (e.g.  for  stimulus  evoked 
 responses vs. prediction errors)? 

 ○  YES  indicates  that  the  population 
 neural  code  can  simultaneously 
 represent  information  about  the 
 stimulus  as  well  as  its  predictive 
 context 

 Single  Neuron  Analysis:  Determine  whether 
 individual  neurons  exhibit  changes  in  their  responses 
 with  repeated  oddball  presentations,  indicative  of 
 learning.  

 ●  Trial-by-Trial  Response  Analysis:  Measure  the 
 amplitude  and  timing  of  neuronal  responses 
 to each oddball stimulus across trials.  

 ●  Model  Fitting:  Apply  exponential  or  linear 
 decay  models  to  these  responses  to  measure 
 trends over time. 

 ●  Statistical  Validation:  Use  bootstrap 
 resampling  to  evaluate  the  significance  of 
 observed changes. 

 ●  Time  Points  for  Analysis:  Pre-Oddball 
 Baseline  Period:  A  period  before  the  oddball 
 onset  (e.g.,  -200  ms  to  stimulus  onset  at  0 
 ms)  to  establish  baseline  activity  levels.  
 Oddball  Response  Window:  A  post  stimulus 
 onset  interval  (e.g.,  0  to  300  ms)  capturing  the 
 immediate  neuronal  response  to  the  oddball 
 stimulus.  

 Population  Latent  Analysis:  Identify  latent  patterns 
 within  neural  populations  that  correspond  to 
 predictions and prediction error signals. 

 ●  Tensor  Component  Analysis  (TCA): 
 Decompose  multi-dimensional  neural  data  to 
 uncover  components  with  trial-dependent 
 dynamics.  
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 ●  Time  Points  for  Analysis:  Pre-Oddball 
 Baseline:  A  period  before  oddball  onset  (e.g., 
 -200  ms  to  stimulus  onset  at  0  ms)  to 
 establish  baseline  population  activity  levels.  
 Oddball  Response  Window:  The  duration  of 
 the  oddball  stimulus  presentation  (e.g.,  0  to 
 300  ms)  capturing  immediate  population 
 responses  to  the  oddball  stimulus.  
 Post-Oddball  Period:  A  post  stimulus  offset 
 interval  (e.g.,  300  ms  to  600  ms)  to  monitor 
 any  sustained  or  delayed  responses.  
 Inter-Trial  Intervals:  Periods  between  oddball 
 trials  to  evaluate  baseline  stability  and 
 potential anticipatory activity.  

 Cross-Day  Analysis:  Monitor  the  activity  of  individual 
 neurons  or  neural  populations  over  time  to  identify 
 changes  in  prediction  error  signaling  and  learning 
 processes. 

 III.  Mismatch  responses  across  different 
 types of predictions 

 These  experiments  test  mismatch  responses 
 resulting  from  different  kinds  of  predictions:  i) 
 repetition  vs.  oddball  (session  1),  sensorimotor 
 mismatch  (session  2),  and  temporal  sequence 
 prediction  (session  3  and  4).  Are  there  different  circuit 
 mechanisms for these four kinds of prediction? 

 In  particular,  sensorimotor  prediction  requires  a 
 corollary  discharge  of  the  motor  command,  so  it 
 requires  feedback  from  outside  V1.  While  there  is 
 evidence  for  feedback  from  higher-level  cortex  for 
 oddball  responses,  reduced  oddball  responses  seem 
 to  remain  after  blocking  this  feedback.  Temporal 
 sequence  prediction  could,  in  principle,  be  carried  out 
 by  recurrent  neural  circuits  within  V1,  but  it  is  likely 
 that  feedback  from  higher  cortex  could  enhance  or 
 extend these predictions. 

 Importantly,  if  the  outlined  paradigms  show  the  same 
 essential  distribution  of  feature-based  mismatch 
 responses  across  areas  and  layers,  then  this  would 

 argue  against  the  hypothesis  for  distinct 
 mechanisms. 

 Analysis  #1:  Map  the  locations  of  neurons 
 showing  significant  mismatch  responses  using 
 two-photon imaging and neuropixels recordings. 

 ●  For  spatial  analyses,  we  will  focus  on  the 
 firing  rate  (using  a  deconvolution  approach  for 
 Ca  ++  imaging)  averaged  over  all  timepoints 
 (e.g.  0  to  275 ms)  for  each  trial.  For  each 
 cohort,  we  will  map  the  density  of  mismatch 
 neurons  as  a  function  of  region,  layer,  and 
 cell-type.  We  will  compare  the  percentage  of 
 mismatch  responses  (over  all  responsive 
 neurons;  each  mouse  as  one  observation) 
 using  a  mixed  ANOVA  with  paradigm 
 (paradigm  1,  2,  or  3)  as  a  between  subjects 
 variable  and  region  and  layer  as  within 
 subjects  variables.  Sex  and  mouse  age  will  be 
 covariates.  We  will  carry  out  a  separate 
 analysis  for  each  method  (two-photon  vs 
 neuropixel)  and  cell-type  (two-photon  imaging 
 of PYRs and interneurons subtypes). 

 ●  Using  PSTHs,  compute  the  variability 
 (standard  deviation)  of  spike  times  relative  to 
 stimulus  onset,  as  well  as  peak  latency; 
 compare  to  different  models  and  across 
 experimental conditions. 

 ●  Use  dimensionality  reduction  techniques 
 (principal  components  analysis  (PCA), 
 t-distributed  stochastic  neighbor  embedding 
 (t-SNE),  UMAP,  etc  .)  to  visualize  population 
 activity  across  units  and  identify  functional 
 clusters. 

 ●  Characterize  how  different  coding  subspaces 
 are  oriented  relative  to  each  other  in  neural 
 state  space  by  computing  the  joint  angles 
 (Rule et al., 2020)  . 

 ●  Another  approach  would  be  to  examine  how 
 much  the  coding  direction  of  one  variable 
 aligns with the direction of another variable. 
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 Analysis  #2:  Compare  responses  for  the  *same* 
 neurons  between  sensorimotor  (session  2)  and 
 temporal sequence (session 3) mismatches. 

 ●  Is  the  mismatch  response  stronger  for 
 sensorimotor  than  temporal  sequence 
 prediction? 

 ○  YES  suggests  different  neural  circuits 
 for these two kinds of prediction 

 ○  NO  suggests  common  circuitry  may 
 explain data 

 ●  Make  a  scatter  plot  of  mismatch  response  in 
 sensorimotor  vs.  temporal  sequence 
 prediction 

 ○  data  scattering  all  over  the  plane 
 suggests  different  neural  circuits  for 
 these two kinds of prediction 

 ○  data  falling  near  a  line  suggests  that 
 additional  circuitry  for  sensorimotor 
 prediction “feeds into” common circuits 

 ●  Are  there  more  examples  of  ‘pure  mismatch 
 responses’  (i.e.  no  baseline  activity)  in 
 sensorimotor prediction vs. others 

 ○  YES  suggests  different  neural  circuits 
 for these different kinds of prediction 

 Analysis  #3:  Compare  responses  for  the  *same* 
 neurons  between  the  oddball  (session  1)  and 
 sequence (session 3) mismatches. 

 ●  For  comparing  magnitudes  of  mismatch 
 responses,  the  average  firing  rate  for  each 
 neuron  showing  a  significant  mismatch 
 response  will  be  averaged  over  trials,  and 
 then  layers  and  regions.  We  will  compare 
 these  values  using  a  mixed  ANOVA  with 
 paradigm  (session  1,  2,  3  or  4)  as  a 
 between-subjects  variable  and  region  and 
 layer as within-subjects variables. 

 ●  Is  the  mismatch  response  stronger  for 
 repetition than temporal sequence prediction? 

 ○  YES  suggests  different  neural  circuits 
 for these two kinds of prediction 

 ○  NO  suggests  common  circuitry  may 
 explain data 

 ●  Make  a  scatter  plot  of  mismatch  response  in 
 oddball vs. temporal sequence prediction 

 ●  data  scattering  all  over  the  plane  suggests 
 different  neural  circuits  for  these  two  kinds  of 
 prediction 

 ●  data  falling  near  a  line  suggests  that 
 additional  circuitry  for  oddball  prediction 
 “feeds into” common circuits 

 Analysis  #4:  Analysis  of  recording  from 
 inhibitory interneurons. 

 ●  Are  inhibitory  neurons  more  strongly  activated 
 in session 2? 

 ○  YES  suggests  that  there  is  feedback 
 from higher cortical areas 

 ●  Is  inhibitory  activity  stronger  in  closed  loop  vs. 
 open loop (session 2)? 

 ○  YES  inhibitory  activity  may  reflect  a 
 sensory prediction 

 ●  Similar analyses for sessions 1 and 3 

 Analysis  #5:  Temporal  Mismatch  Analysis 
 (session 4). 

 ●  Test  whether  baseline  activity  and/or  visual 
 evoked  responses  under  control  conditions 
 are  different  than  for  temporally  deviant  visual 
 stimuli 

 ○  YES  indicates  neurons  encode 
 specific  temporal  predictions  about  the 
 time of occurrence of stimuli 

 ●  Assess  how  distinct  classes  of  interneurons 
 contribute  to  predictive  timing  by  examining 
 their  responses  to  temporally  based 
 mismatches  when  the  stimulus  duration 
 deviates from the control condition 
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 Analysis #6:  Test various prediction models 
 across session types. 

 ●  Quantify learning effects as a function of 
 region and layer. Measure the response 
 amplitude before and after repeated 
 presentations of the same stimulus within a 
 recording session. 

 ●  Analyze  changes  in  neural  responses  within  a 
 recording  session  (e.g.,  occurring  over 
 periods  of  seconds  to  minutes)  to  detect 
 patterns  likely  to  reflect  short-term  memory 
 processes.  Compute  autocorrelations  and 
 cross-correlations across spike trains. 

 ●  Train  deep  learning  models  using 
 self-supervised  learning  (e.g.  to  predict  future 
 activity  from  past  activity)  to  extract  latent 
 feature  representations  of  the  neural  data. 
 Analyze  the  accuracy  of  stimulus  decoders 
 trained  on  the  representations  extracted  from 
 different  areas  and  using  different  temporal 
 windows. 

 ●  Analyze  changes  in  neural  activity  patterns 
 across  learning  days  to  detect  patterns  likely 
 to  reflect  longer-term  experience-dependent 
 plasticity processes. 

 ●  Use  information  theory  criteria  and 
 cross-validation  techniques  to  compare  the 
 goodness-of-fit  of  different  models.  Validate 
 models  using  separate  test  datasets, 
 including  ones  obtained  from  different 
 laboratories. 

 Methods 

 This  perspective  was  developed  through  an 
 innovative  and  open  collaborative  process,  engaging 
 a global network of over 50 scientists. 

 Collaborative Writing Process 
 The  drafting  process  began  with  the  creation  of  a 
 shared  Google  Document  which  was  seeded  with  an 

 initial  outline.  A  publicly  accessible  link  to  this 
 document  was  then  disseminated  via  social  media 
 and  direct  communications,  along  with  detailed 
 contribution  guidelines  to  encourage  broad 
 participation.  To  lay  a  solid  foundation,  two 
 supplementary  documents  were  started,  summarizing 
 key  experimental  and  computational  publications 
 relevant  to  predictive  processing.  These  high-level 
 summaries  provided  a  structured  knowledge  base  for 
 starting  the  review.  Participants  were  invited  to 
 contribute  text,  comments,  and  references  following  a 
 set  of  general  guidelines  designed  to  ensure 
 respectful  engagement  and  constructive  discourse. 
 The  document  was  open  with  full  editing  access,  with 
 no  restrictions,  throughout  the  entire  process  of 
 writing  the  review.  A  weekly  Zoom  meeting  was 
 scheduled  every  Monday  at  9  AM  PST  (12  PM  EST, 
 6  PM  CEST)  to  facilitate  real-time  discussions.  These 
 meetings  occurred  over  a  period  of  10  months. 
 Additionally,  a  Slack  channel  was  created  for 
 asynchronous  communication,  enabling  contributors 
 to  exchange  ideas,  address  specific  sections  of  the 
 manuscript,  and  organize  discussions  around 
 emerging themes. 

 The  majority  of  discussions  occurred  through  Google 
 Doc  comments.  Over  the  course  of  the  collaboration, 
 approximately  1,900  comments  were  created  in  the 
 document.  Due  to  the  limit  imposed  by  Google  Docs 
 on  both  resolved  and  open  comments,  the  document 
 had  to  be  migrated  through  three  consecutive 
 versions  to  accommodate  ongoing  discussions. 
 Comments  were  systematically  reviewed  and 
 resolved  once  consensus  was  reached.  In  some 
 cases,  primary  authors  of  cited  publications  were 
 invited  to  review  and  confirm  the  accuracy  of  specific 
 text  sections,  ensuring  fidelity  to  the  original  research 
 findings. 

 Citation Management 
 To  streamline  reference  management,  the  Paperpile 
 extension  was  used  within  Google  Docs,  allowing 
 contributors  to  insert  citations  efficiently.  Participants 
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 who  could  not  use  Paperpile  were  instructed  to 
 include  references  in  a  standardized  format  for  later 
 integration. 

 In-person Workshop 
 An  in-person  workshop  was  held  at  MIT  on  August  8, 
 2024.  The  workshop,  titled  Attending  to  Errors  in 
 Predictive  Coding:  A  Collaborative  Community 
 Experiment  through  the  OpenScope  Program  , 
 gathered  experimentalists  and  theorists  to  discuss 
 two  competing  hypotheses  on  predictive  coding 
 mechanisms:  a  cellular  hypothesis  and  a  dendritic 
 hypothesis.  The  workshop  was  also  used  to 
 encourage  participation  in  the  review,  which  was  in  its 
 early stages. 

 The workshop was structured into three sessions: 
 ●  Session  1:  Presentations  on  the  broader 

 context  of  predictive  coding  and  specific 
 theoretical predictions. 

 ●  Session  2:  Presentations  from 
 experimentalists  on  key  data  from  their  labs 
 and  discussions  of  how  their  findings  relate  to 
 theoretical models. 

 ●  Session  3:  Presentations  of  concrete 
 experimental  proposals,  followed  by  an  open 
 discussion. 

 Authorship and Attribution 
 A  transparent,  opt-in  authorship  model  was 
 implemented.  Contributors  at  any  scientific  career 
 level  who  provided  substantive  input—either  through 
 direct  text  additions  or  thoughtful  commentary—were 
 invited  to  request  their  name  be  added  to  the  author 
 list.  All  authorship  requests  were  approved  by  a  panel 
 of  four  scientists  who  initiated  the  GAC  workshop. 
 Approvals  were  done  continuously  throughout  the 
 process.  Then,  at  the  end  of  the  review  process, 
 anyone  who  had  requested  authorship  but  whose 
 substantive  contributions  were  not  immediately 
 apparent  to  the  panel  were  directly  asked  to  support 
 their  authorship  request  by  briefly  describing  or 

 pointing  to  their  contributions.  In  most  cases,  this  led 
 to  acceptance  of  the  suggested  authorship,  and  in  a 
 few  cases  it  led  to  voluntary  withdrawal.  Notably, 
 while  the  majority  of  contributors  to  our  shared 
 document  opted  for  authorship,  some  did  not.  Finally, 
 authors  are  listed  in  alphabetical  order  so  as  not  to 
 over-emphasize  the  contribution  of  a  given 
 contributor.  Overall,  we  believe  this  approach  allowed 
 for a balance between inclusion and fairness. 

 Final  Experiment  Selection  and  Polling 
 Process 
 A  consensus-driven  process  was  established  to 
 finalize  experimental  proposals.  An  online  voting 
 round  was  held  and  Google  Forms  was  used  to 
 register  these  votes  anonymously.  The  poll  was 
 designed  to  finalize  the  experimental  section  of  the 
 perspective  and  plan  future  efforts.  It  included 
 questions on: 

 ●  Preferred  journal  submission  options  (first  and 
 second choices) 

 ●  Selection  of  primary  and  secondary 
 experimental  proposals  for  OpenScope  data 
 acquisition 

 ●  Laboratory  interest  in  analyzing  or  collecting 
 data for selected projects. 

 Discussion 

 Predictive  processing  is  a  broad  theoretical 
 framework  that  unifies  a  wide  range  of  computational 
 models,  theoretical  refinements,  and  empirical 
 findings  under  the  core  idea  that  the  brain 
 continuously  generates  and  updates  statistical 
 expectations about sensory input. 

 In  our  review,  we  outlined  both  convergences  and 
 divergences  between  experimental  results  and 
 modeling  work.  We  highlighted  that  a  major  challenge 
 in  interpreting  experimental  data  is  the  diversity  of 
 experimental  designs,  as  each  laboratory  has 
 developed  only  partially  overlapping  tasks.  As  a 
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 result,  despite  decades  of  research,  significant 
 conflicts  remain—for  example  when  it  comes  to  the 
 role  of  specific  cortical  layers  or  specific  inhibitory 
 neurons.  We  hypothesized  that  these  divergences 
 may  be  context  dependent,  stemming  from 
 differences  in  predictive  contexts,  and  thus  designed 
 an  experiment  to  resolve  some  of  the  most  pressing 
 and  readily  resolvable  conflicts  and  open  questions. 
 Our  analysis  plan  proposes  to  test  many  specific 
 hypotheses  regarding  the  nature  of  possible 
 predictive  computations,  and  offers  standards  by 
 which  these  hypotheses  can  be  empirically  refuted. 
 Our  future  public  dataset  will  also  provide  an 
 opportunity  for  all  interested  researchers  to 
 investigate  whether  different  phenomena  studied  in 
 predictive  processing  rely  on  overlapping  or  separate 
 neural circuit components. 

 To  conclude,  we  felt  it  would  be  useful  to  clarify  at 
 which  level  our  work  lies.  As  we  stated  in  the 
 introduction,  our  focus  is  on  Marr  level  3,  and  thus  on 
 understanding  how  a  potential  predictive  processing 
 algorithm  would  be  implemented  at  the  level  of 
 neuronal  circuits.  This  point  is  important  as  we  do  not 
 intend  to  interrogate  the  broader  set  of  hypotheses 
 underlying  predictive  processing.  Rather  we  aim  to 
 test  specific  computational  and  network  primitives 
 that  have  been  proposed  over  the  last  decades  (see 
 Figure  8  ).  These  primitives,  concretely  instantiated  in 
 models of predictive processing are directly testable. 

 The  falsifiability  (sometimes  equated  with  “testability”) 
 of  predictive  processing  has  been  repeatedly 
 questioned  (Kogo  and  Trengove,  2015;  Cao,  2020)  , 
 with  some  suggesting  that  lack  of  falsifiability  marks  a 
 theory  as  pseudoscientific  (Popper,  1935)  .  Below,  we 
 detail  how  our  approach  and  Experimental  Proposal 
 do not suffer from this issue. 

 It  can  be  beneficial  to  clearly  delineate  the  key 
 concepts  that  are  used  to  describe  the  scientific 
 interplay  between  logical  reasoning  and  empirical 
 observations  and  measurement:  A  theory  is  a 
 structured  set  of  abstract  concepts  refined  through 

 empirical  testing  (Popper,  1935;  Kuhn,  1962; 
 Lakatos,  1970)  .  A  model  instantiates  a  theory  by 
 formalizing  specific  assumptions,  constraints,  and 
 parameters  to  generate  testable  predictions  (Suppes, 
 1960;  Van  Fraassen  Bas,  1980;  Giere,  1990)  .  A 
 hypothesis  is  a  concrete,  often  quantitative, 
 prediction derived from a model (  Figure 14  ). 

 As  we  demonstrate  below,  the  core  assumptions  of 
 many,  if  not  most,  scientific  theories  are  not  directly 
 testable,  but  their  model-derived  implications 
 (predictions)  are.  Consequently,  scientific  theories 
 are  tested  indirectly  through  model  predictions  and 
 hypotheses  (Platt,  1964)  .  Instead  of  outright  rejection 
 (falsification),  empirical  testing  adjusts  the  likelihood 
 of  a  theory’s  correctness  based  on  available  data 
 (Ziman,  1981;  Jaynes,  2003)  .  Incompatibilities 
 between  a  theory’s  predictions  and  empirical 
 observations  generally  prompt  modifications.  When  a 
 competing  theory  better  accounts  for  the  empirical 
 evidence,  replacement  may  be  warranted.  In 
 scientific  practice,  replacement  theories  often 
 preserve  key  explanatory  elements  of  prior  theories 
 (Ladyman et al., 2009)  . 

 Problems with Falsifiability as a Criterion 

 What  does  it  mean  for  a  theory  to  be  “testable”?  Is 
 this  synonymous  with  “falsifiable”?  Popper’s  famous 
 falsifiability  criterion  asserts  that  no  theory  can  be 
 fully  proven,  as  new  data  could  always  refute  it 
 (Popper,  1935)  .  However,  this  principle  cuts  both 
 ways:  falsified  theories  can  later  be  revived  by  new 
 evidence.  For  instance,  science  transitioned  from 
 geocentrism  (“the  Sun  moves  around  the  Earth”)  to 
 heliocentrism  (“the  Earth  moves  around  the  Sun”), 
 only  for  special  relativity  to  render  both  statements 
 valid  under  different  reference  frames  (Einstein, 
 1988)  . 

 Refutability - a Multifaceted Test Criterion 

 In  response  to  these  challenges,  many  philosophers 
 of  science  have  argued  that  a  broader  set  of 
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 criteria—best  summarized  as  refutability  —provides  a 
 more  appropriate  framework  for  evaluating  scientific 
 theories  than  falsifiability  (Gruenberger,  1964; 
 Toulmin,  1972;  Dutch,  1982;  Radner  and  Radner, 
 1982;  Laudan,  1983;  Grove,  1985;  Langmuir  and 
 Hall,  1989;  Bunge,  1991;  Vollmer,  1993; 
 Fernandez-Beanato, 2020)  : 

 1.  Logical Coherence:  Testing for internal 
 consistency is as important as empirical 
 validation. A theory containing contradictions 
 is inherently refuted, as contradiction nullifies 
 logical reasoning. Empirical science has 
 never observed a truly self-contradictory 
 phenomenon (even Schrödinger’s cat is 
 mathematically and logically coherent). 

 2.  Testable Implications:  Many core theoretical 
 assumptions in science are not directly 
 testable but provide testable implications. 

 3.  Empirical Consistency:  The implications of 
 theories must not contradict empirical 
 observations. If a theory systematically fails to 
 predict data, it must be modified or replaced. 

 4.  Probabilistic Knowledge:  Scientific insight is 
 not absolute but evolves with data. Science 
 assesses theories based on how well they fit 
 current evidence rather than declaring them 
 definitively true or false. Most progress refines 
 theories rather than eliminating them entirely 
 (Ladyman et al., 2009)  (  Figure 14  ). 

 A  multi-criterion  approach  like  this  one  better  reflects 
 the  nature  of  scientific  progress,  which  occurs 
 through  revision  and  refinement,  rather  than  the 
 pursuit  of  falsification.  This  approach  also  accounts 
 for  the  role  of  quantitative  measurements, 
 mathematics,  predictive  power,  coherence,  and 
 empirical success in scientific evaluation. 

 Thus,  in  accordance  with  a  refutability  framework  that 
 emphasizes  logical  coherence,  testable  implications, 
 empirical  consistency,  and  probabilistic  knowledge, 
 our  experimental  plan  is  designed  to  rigorously 
 evaluate  predictive  processing  at  the  circuit  level. 
 Rather  than  aiming  for  an  outright  falsification,  our 
 approach  embodies  a  broadly  Bayesian  perspective 
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 where  the  likelihood  of  specific  computational 
 primitives  is  continuously  updated  with  empirical 
 evidence. 

 Conclusion 

 In  summary,  we  have  reviewed  in  detail  both 
 experimental  and  theoretical  research  on  predictive 
 processing,  organized  into  the  following  topics:  I)  the 
 diversity  of  error  and  mismatch  types,  II)  the 
 distribution  of  error  computation  across  the  brain,  III) 
 the  diversity  of  predictive  neuronal  responses,  IV)  the 
 role  of  E/I  balance  and  interneurons,  V)  the  role  of 
 apical  dendrites,  VI)  synaptic  plasticity  and  learning 
 rules,  and  VII)  the  link  between  single  neuron  activity 
 and  broader  neural  dynamics.  Based  on  the 
 convergences  and  divergences  identified,  we  have 
 proposed  a  detailed  experiment  designed  to  address 
 core  open  questions  in  our  understanding  of  the 
 circuit  underlying  predictive  processing  in  the  brain. 
 We  have  proposed  a  plan  for  analysing  the  resulting 
 dataset,  and  also  intend  for  it  to  serve  as  a  valuable 
 resource for the broader community to use. 

 Specifically,  we  aim  to  assess  detailed,  quantitative 
 predictions—such  as  the  differences  between 
 stimulus-specific  versus  general  novelty  signals 
 predicted  by  additive,  subtractive,  or  multiplicative 
 models  of  mismatch  responses—using  a  suite  of 
 techniques  (e.g.,  Neuropixels  recordings,  two-photon 
 imaging,  decoding  analyses,  and  latent  space 
 analyses).  By  comparing  empirical  measurements 
 across  various  experimental  conditions  and 
 integrating  them  with  iterative  modeling  efforts,  we 
 will  not  only  test  the  predictions  derived  from  the 
 predictive  processing  framework  but  also  evaluate  its 
 internal  consistency  and  empirical  success  relative  to 
 alternative  theories.  This  multifaceted  approach, 
 grounded  in  rigorous  statistical  validation  and 
 hypothesis-driven  analysis,  reflects  the  progressive 
 nature  of  scientific  inquiry:  theories  are  refined  and 
 strengthened  through  continuous,  quantitative  testing 
 rather  than  being  outright  rejected  based  on  single 

 conflicting  observations.  We  expect  that  the  most 
 likely  outcome  of  this  line  of  investigation  will  be  that 
 it  will  add  detail  and/or  accuracy  and  rigor  to  existing 
 theories  of  predictive  processing,  as  has  historically 
 occurred  in  many  other  avenues  of  scientific 
 investigation (  Figure 15  ). 

 83 



 Neural mechanisms of predictive processing 

 Supplementary Text 1: 
 Dysfunction of predictive 
 signaling in neuropsychiatric 
 disorders 

 Predictive  coding  is  a  powerful  framework  for 
 studying  and  understanding  neuropsychiatric 
 disorders.  It  carries  potential  for  explaining 
 phenomenology  and  symptomology  for  psychotic 
 disorders  (Sterzer  et  al.,  2018)  ,  autism  spectrum 
 disorders  (ASD;  (Sinha  et  al.,  2014)  ),  major 
 depressive  disorder  (MDD;  (Kube  et  al.,  2020)  ),  and 
 others.  Specifically,  hallucinations,  whether  caused 
 by  underlying  clinical  conditions  or  external  chemical 
 compounds  (like  psychedelics),  can  be  explained  in  a 
 predictive  coding  framework  by  an  over-weighting  or 
 under-weighting  of  priors  (Carhart-Harris  and  Friston, 
 2019;  Corlett  et  al.,  2019;  Weilnhammer  et  al.,  2020)  . 
 Carefully  designed  cognitive  tasks  aimed  at 
 assessing  predictive  processing  suggest  that  in 
 schizophrenia,  for  example,  the  encoding  of  priors 
 may  be  more  unstable  or  imprecise,  and  thus  more 
 susceptible  to  disruption  by  unexpected  events 
 (Adams et al., 2018)  . 

 Neurophysiological  evidence  also  supports  the  notion 
 of  dysfunctional  predictive  processing  in 
 schizophrenia.  For  example,  mismatch  negativity,  an 
 EEG  component  thought  to  reflect  a  basic  sensory 
 prediction  error  (Friston,  2005)  ,  has  been  consistently 
 shown  to  be  reduced  in  individuals  with 
 schizophrenia  (Erickson  et  al.,  2016)  .  Importantly,  this 
 reduction  is  observed  in  auditory  and  visual  domains 
 alike  (Avissar  et  al.,  2018;  Mazer  et  al.,  2024)  ,  often 
 precedes  the  onset  of  psychotic  symptomatology 
 (Hamilton  et  al.,  2022)  ,  and  correlates  well  with  global 
 and  cognitive  function  (Light  and  Braff,  2005)  , 
 suggesting  that  it  reflects  deficits  in  information 

 integration  impacting  both  perception  and  cognition  – 
 each core aspects of this disorder. 

 Disruption  in  predictive  processing  has  the  potential 
 to  explain  a  number  of  neuroanatomical 
 observations,  possibly  providing  conceptual  unity  for 
 schizophrenia  pathophysiological  theories.  SOM 
 interneurons  are  known  to  play  a  key  role  in 
 predictive  processing  (e.g.  (Bair  et  al.,  2003;  Hamm 
 and  Yuste,  2016;  Keller  et  al.,  2020b;  Kirchberger  et 
 al.,  2023;  Cuevas  et  al.,  2024;  Furutachi  et  al.,  2024; 
 Ross  and  Hamm,  2024)  and  a  preponderance  of 
 evidence  suggests  that  SOM  neurons  display  the 
 most  dramatic  molecular  and  cellular  alterations  in 
 schizophrenia,  across  all  studied  cortical  regions 
 (Fung  et  al.,  2010,  2014;  Van  Derveer  et  al.,  2021; 
 Batiuk  et  al.,  2022)  .  PV  interneurons  are  also  altered 
 in  the  neocortex  in  schizophrenia,  potentially  due  to 
 reductions  in  excitatory  inputs,  particularly  in  L3  and 
 L4  (Lewis  et  al.,  2012;  Dienel  et  al.,  2023)  . 
 Importantly,  SOM  and  PV  neurons  are  not  reduced  in 
 number  in  schizophrenia,  but  display  lower  transcript 
 levels  suggesting  hypoactivation  (Dienel  et  al.,  2023)  . 
 Findings  around  VIP  neurons  are  notably  less 
 consistent,  suggest  that  this  population  is  intact 
 (Tsubomoto  et  al.,  2019;  Batiuk  et  al.,  2022)  or  at 
 least  less  altered  than  PV  or  SOM  neurons  (Fung  et 
 al., 2010; Arbabi et al., 2024)  . 

 Given  the  relatively  greater  involvement  of  PV  and 
 SOM  neurons  in  cortical  feed-forward  pathways  and 
 recurrent  circuitry,  as  opposed  to  VIP  neurons,  which 
 feature  prominently  in  mediating  cortical  feed-back 
 modulation  (Batista-Brito  et  al.,  2018)  ,  a  unifying 
 interpretation  is  that  signal  propagation  in 
 feed-forward  (Sweet  et  al.,  2004;  Schoonover  et  al., 
 2024)  and  recurrent  circuits  (Hamm  et  al.,  2017)  are 
 more  altered  across  neocortex  in  schizophrenia,  as 
 compared  with  feed-back  or  top-down  modulation, 
 which  may  be  relatively  spared.  Therefore, 
 schizophrenia  may  involve  a  shift  in  balance  toward 
 top-down  predictive  modulation,  and  away  from 
 bottom-up  sensory  processing  (Javitt,  2009)  . 
 Concurrent  with  unstable  priors  in  higher  brain 
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 regions  (Rolls  et  al.,  2008;  Adams  et  al.,  2018)  ,  this 
 could  give  rise  to  illusory  percepts  and  thought 
 disorder.  Consistent  with  this  hypothesis,  acute 
 exposure  to  sub-anesthetic  ketamine,  which  has 
 been  used  as  a  model  of  schizophrenia 
 pathophysiology  for  decades  (Javitt,  1987;  Javitt  et 
 al.,  2012)  ,  increases  top-down  suppression  of  visual 
 cortex  activity  in  mice  (Ranson  et  al.,  2019)  .  Such 
 network-based  interpretations  are  altogether 
 concordant  with  Friston  and  Firth’s  hypothesis  that 
 the  disorder  is  best  understood  as  a  network-level 
 imbalance  in  fronto-sensory  interactions  (Friston  and 
 Frith, 1995)  . 

 Changes  in  interneuron  transcript  levels  are  only  one 
 piece  of  the  puzzle  for  schizophrenia.  The  genetic 
 landscape  explaining  schizophrenia  risk  is  highly 
 heterogeneous  (Owen  et  al.,  2023)  ,  though  there  is 
 some  convergence  around  excitatory  synapses  in 
 cortical  and  hippocampal  structures  (Trubetskoy  et 
 al.,  2022)  .  Recent  post-mortem  work  suggests  that 
 key  excitatory  synaptic  transcripts  may  be  most 
 disrupted  in  early  visual  areas  as  compared  to 
 downstream  frontal  regions  (Schoonover  et  al., 
 2024)  ,  consistent  with  the  top-down 
 dominant/bottom-up  degraded  hypothesis  described 
 above.  However,  this  idea  is  less  consistent  with  the 
 pattern  of  gray  matter  loss  seen  in  chronic 
 schizophrenia,  which  tends  to  impact  frontal  and 
 temporal  regions  most  dramatically  (but  not 
 exclusively  (Gupta  et  al.,  2015)  .  In  fact,  some 
 translational  work  further  supports  an  opposite 
 hypothesis  according  to  which  a  reduction  in 
 feed-back  modulation  to  sensory  regions  from  higher 
 brain  areas  explains  the  altered  corollary  discharge 
 and  auditory  hallucinations  seen  in  the  disorder  (Ford 
 et  al.,  2001;  Rummell  et  al.,  2023)  .  Both  of  these 
 perspectives  suggest  an  imbalance  in  top-down 
 predictive  modulation  vs  bottom-up  sensory 
 processing  in  the  disorder,  yet  they  suggest  different 
 underlying  mechanisms.  One  potential  explanation  is 
 that  the  cause  of  the  imbalance  may  be  changing 
 from  early  stages  (which  involve  degradations  in 
 sensory  processing  (Javitt,  2009;  Javitt  and 

 Freedman,  2015)  to  later  stages  of  the  disorder 
 (which  show  worsening  gray  matter  loss  in  prefrontal 
 regions;  (Vita  et  al.,  2012;  Cropley  et  al.,  2017)  ). 
 While  the  neuromodulatory  system  is  less  implicated 
 in  the  most  recent  Genome-Wide  Association  Studies 
 (GWAS)  for  schizophrenia  (Trubetskoy  et  al.,  2022)  , 
 emerging  treatments  highlight  a  potential  role  for 
 acetylcholine  (Kaul  et  al.,  2024)  ,  which  may  help  to 
 restabilize  the  balance  of  feed-forward  vs  feed-back 
 circuits  via  its  interactions  with  cortical  interneuron 
 systems  (Batista-Brito et al., 2018)  . 

 In  major  depressive  disorder  (MDD),  predictive 
 coding-based  theories  suggest  an  explanation  in 
 which  overly  stable  priors  maintain  negative  beliefs 
 and  become  insensitive  to  contrary  (positive) 
 prediction  errors  (Kube  et  al.,  2020)  or  overly  precise 
 priors  predict  unreliable  outcomes  for  an  individual's 
 actions,  such  that  a  patient  comes  to  expect  a  lack  of 
 control  (Clark  et  al.,  2018)  .  Behavioral  studies  (Kube 
 et  al.,  2019)  and  neurophysiological  evidence  support 
 this  paradigm,  pointing  to  reduced  activation  in 
 reward  prediction  circuits  (Pizzagalli  et  al.,  2009; 
 Kumar  et  al.,  2018)  .  Interestingly,  psychedelic  drugs 
 have  recently  come  into  focus  given  their  efficacy  in 
 treating  MDD,  among  other  neuropsychiatric 
 disorders,  with  potency  comparable  to  the  standard 
 antidepressant  escitalopram  (Carhart-Harris  et  al., 
 2021;  Nutt  and  Carhart-Harris,  2021)  .  A  prominent 
 hypothesis  suggests  that  psilocybin,  LSD,  and  other 
 serotonergic  psychedelics  work  to  reduce  the 
 precision  of  high-level  priors  –  or,  in  the  case  of  MDD, 
 negative  belief  states  –  that  have  become 
 pathological,  allowing  for  new  information  to  be 
 accommodated  (Carhart-Harris  and  Friston,  2019)  . 
 The  potential  clinical  importance  of  psychedelic 
 compounds  is  supported  by  studies  in  patient 
 samples  (Lyons  and  Carhart-Harris,  2018;  Roseman 
 et  al.,  2018;  Ramos  and  Vicente,  2024;  Timmermann 
 et  al.,  2024)  ,  as  well  as  rodent  models  (Fisher  et  al., 
 2024;  West  et  al.,  2024)  .  Neurophysiological 
 evidence  comes  from  human  neuroimaging  studies, 
 showing  changes  in  default  mode  connectivity  during 
 and  long  after  a  dose  of  psychedelics  (Carhart-Harris 
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 et  al.,  2016;  Siegel  et  al.,  2024)  .  Further,  changes  in 
 saccadic  behavior  and  visual  event-related  potentials 
 during  an  oddball  paradigm  also  concord  with  the 
 notion  that  psychedelics  work  to  rebalance  predictive 
 processing circuitry  (West et al., 2024)  . 

 In  ASD,  it  is  proposed  that  top-down  predictive 
 modulation  of  sensorimotor  structures  is  altered, 
 (Sinha  et  al.,  2014)  due  to  imprecise  or  overprecise, 
 but  inaccurate,  priors  (Chao  et  al.,  2024)  .  This 
 account  could  explain  sensory  sensitivities  commonly 
 seen  in  the  disorder  and  in  animal  models,  if 
 incoming  sensory  data  is  insufficiently  predicted  or 
 anticipated  (Schmitz  et  al.,  2003;  Van  de  Cruys  et  al., 
 2014)  and  thus  undergoes  more  extensive 
 processing  (Chao  et  al  2024).  Furthermore,  difficulty 
 in  interpreting  complex  social  interactions,  a 
 characteristic  feature  of  ASD,  is  well-explained  in  a 
 predictive  processing  framework  (Keysers  et  al., 
 2024)  .  EEG  studies  show  that  people  with  ASD 
 exhibit  weaker  pre-stimulus  anticipatory  “prediction 
 potentials”  in  an  oddball  task  (Grisoni  et  al.,  2019) 
 and  diminished  corollary  discharge  (van  Laarhoven  et 
 al.,  2019)  ,  also  consistent  with  this  hypothesis.  In  a 
 basic  visual  oddball  paradigm,  FMR1-KO  mice 
 modelling  genetic  risk  for  ASD  demonstrate  impaired 
 adaptation  and  enhanced,  spatially  unrestricted 
 prediction  error  relative  to  WT  mice;  that  is,  while 
 mismatch  responses  in  WT  were  restricted  to  layer 
 2/3,  Fmr1-KO  mice  exhibited  mismatch  responses 
 across all layers  (Pak et al., 2021)  . 

 Importantly,  overarching  models  that  posit  a  given 
 disorder  as  simply  resulting  from  too  much  top-down 
 or  too  little  bottom-up  input  are  often  met  with 
 contrary  evidence  (Pesthy  et  al.,  2023)  ;  (Arthur  et  al., 
 2023)  and  altogether  fail  to  capture  the  complexity  of 
 the  psychiatric  disorder  under  study.  In  the  case  of 
 psychosis,  for  example,  certain  symptom  clusters 
 (e.g.  delusions)  appear  to  reflect  an  imbalance  in 
 predictive  processing  in  favor  of  predictions,  while 
 other  symptom  clusters  (e.g.,  certain  types  of 
 hallucinations)  appear  to  reflect  the  opposite:  an 
 imbalance  in  favor  of  sensory  evidence  (Sterzer  et 

 al.,  2018)  .  Notably,  these  symptoms  not  only  fall 
 under  the  same  diagnosis,  they  also  manifest  in  the 
 same  individuals,  sometimes  even  simultaneously. 
 Measures  like  MMN,  though  reliably  reduced  in 
 patient  populations,  are  not  diagnostic  of  any  specific 
 disorder.  It  is,  for  example,  tempting  to  conceptualize 
 schizophrenia,  MDD,  and  ASD  as  distinct  disorders 
 of  predictive  processing,  but  reduced  MMN  has  been 
 identified  in  all  three  (Lassen  et  al.,  2022)  .  Similarly, 
 the  inability  to  suppress  sensory  cortical  responses  to 
 self-generated  sounds,  a  function  of  predictive 
 processing  known  as  “corollary  discharge”,  is  found 
 in  both  ASD  and  schizophrenia  (Ford  et  al.,  2001; 
 van Laarhoven et al., 2019)  . 

 One  possibility  is  that  existing  paradigms  to  measure 
 and  study  predictive  processing  in  humans  (such  as 
 MMN  or  impaired  corollary  discharge  to 
 self-generated  vocalizations  (see  Section  III.2  ))  are 
 not  sufficiently  precise  on  their  own  to  disentangle 
 distinct  dysfunctions  of  predictive  circuitry. 
 Alternatively,  it’s  important  to  note  that  these 
 disorders  show  considerable  heterogeneity  not  just  in 
 symptomatology,  but  in  stable  measures  such  as 
 electrophysiology,  brain  structure,  and  genetics. 
 Thus,  distinct  “biotypes”  of  schizophrenia,  for 
 example,  may  exhibit  distinct  alterations  in  predictive 
 processing  (Clementz  et  al.,  2016)  .  Going  forward,  it 
 will  be  important  to  add  nuance  to  these  models, 
 identifying  distinct  alterations  in  predictive  processing 
 (e.g.  imprecise  priors  vs  weak  bottom-up  drive)  that 
 may  manifest  across  different  levels  of  the  cortical 
 hierarchy  within  the  same  disorder  or  within  the  same 
 individuals,  accounting  for  delusions  (at  higher  levels) 
 and  hallucinations  (at  lower  levels)  with  regionally 
 distinct biological mechanisms  (Sterzer et al., 2018)  . 

 Insofar  as  these  are  essentially  disorders  of 
 information  processing,  with  significant  cortical 
 neuropathology,  predictive  processing  presents  itself 
 as  a  useful  framework  for  studying  and 
 conceptualizing  psychiatric  disorders  and  the  efficacy 
 of  various  treatments  (Sterzer  et  al.,  2018)  . 
 Psychiatry  as  a  whole  stands  to  benefit  from 
 computationally  grounded  theories,  as  these  provide 
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 a  structured  framework  for  gathering  and  interpreting 
 data,  and  can  also  be  directly  tested  against  and 
 updated  in  the  face  of  challenging  data  (Huys  et  al., 
 2016)  . 
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 Supplementary Text 2: 
 Subcortical signaling of 
 reward prediction errors 

 In  hierarchical  predictive  coding,  a  prediction  error  is 
 defined  as  a  signal  that  represents  the  mismatch 
 between  a  teaching  signal  and  a  prediction.  Here, 
 predictions  are  the  set  of  top-down  inputs  each 
 neuron  receives  from  higher  levels  in  the  hierarchy, 
 rather  than  an  organism-level  set  of  beliefs  about  the 
 environment.  Some  examples  of  prediction  errors 
 include  sensory  prediction  errors,  motor  prediction 
 errors,  temporal  prediction  errors,  and  Reward 
 Prediction  Errors  (RPEs)  (den  Ouden  et  al.,  2012)  .  In 
 this  box  we  first  highlight  RPEs,  their  role  in  Temporal 
 Difference  (TD)  learning  and  their  subcortical  neural 
 correlates.  We  then  distinguish  and  relate  RPEs  to 
 sensory prediction errors. 

 The TD learning framework 
 In  TD  learning,  a  simulated  agent  seeks  to  learn  a 
 value  function.  This  function  is  used  to  estimate  the 
 value  of  different  actions  an  agent  can  take,  or  states 
 it  can  enter  with  respect  to  a  future  target  signal.  This 
 framework  is  frequently  employed  in  tasks  where  it  is 
 helpful  to  forecast  future  rewards,  because  the 
 reward  signals  are  distant  in  time  from  the  actions 
 and  states  required  to  obtain  them  (Niv  and 
 Schoenbaum,  2008)  .  TD  learning  considers  events 
 that  unfold  over  time:  when  new  information  is 
 received,  like  a  reward  signal,  the  model  compares 
 what  it  expected  with  what  it  received. 
 Mathematically,  the  model  measures  the  difference 
 between  the  predicted  value  at  time  t  and  the 
 updated  value  computed  at  time  t+1  (hence  the  term 
 "temporal  difference").  This  signal  is  then  used  to 
 update  the  predicted  value  of  the  current  state,  and 
 propagated  backward  in  time  to  update  the  predicted 
 value  of  actions  and  states  leading  up  to  the 
 discrepancy,  such  that  their  value  is  also  better 

 estimated  in  the  future.  Notably,  updates  to  actions 
 and  states  are  discounted  as  the  model  moves 
 backward  in  time  to  reflect  their  weaker  causal 
 relationship  to  the  state  or  action  for  which  the 
 discrepancy was observed. 

 Reward Prediction Errors (RPE) 

 Although  exact  definitions  vary,  an  RPE  broadly 
 corresponds  to  the  difference  between  the 
 discounted,  predicted  future  reward  at  time  t,  and  the 
 actual  reward  obtained  at  time  t  +  1  ,  combined  with 
 an  estimate  of  the  discounted,  predicted  future 
 rewards,  updated  based  on  any  new  information 
 received  at  time  t  +  1  .  Future  rewards  are  typically 
 discounted  to  take  into  account  the  fact  that  rewards 
 appear,  behaviourally,  to  be  valued  less  highly  the 
 further  away  they  are  in  time  (Starkweather  and 
 Uchida,  2021)  .  The  estimate  of  the  value  function 
 used  to  guide  actions  in  TD  learning  is  optimized  by 
 minimizing  absolute  RPEs  (Ludvig  et  al.,  2012;  Cone 
 et  al.,  2024)  .  Thus,  theoretically,  when  RPEs  reach 
 zero  for  every  state,  the  value  function  remains  stable 
 and learning is complete. 

 Putative  neuronal  correlates  of  RPEs  have  typically 
 been  identified  in  subcortical  regions.  For  example, 
 dopamine  neurons  in  the  ventral  tegmental  area 
 increase  firing  in  the  presence  of  a 
 better-than-expected  outcome.  Conversely,  they 
 decrease  their  firing  below  baseline  in  the  presence 
 of  a  worse-than-expected  outcome  (Schultz,  1998)  . 
 Importantly,  dopamine  neurons  respond  not  only  to 
 actual  rewards  or  RPEs,  but  also  to  stimuli  that  are 
 predictive  of  rewards  (Waelti  et  al.,  2001;  Fiorillo  et 
 al.,  2003;  Frémaux  and  Gerstner,  2015)  .  The  fact  that 
 dopamine  neurons  respond  to  both  RPEs  and  stimuli 
 predictive  of  reward  has  classically  been  explained 
 via  the  temporal  difference  learning  framework 
 (Ludvig  et  al.,  2008,  2012;  Cone  et  al.,  2024)  .  In 
 addition,  dopamine  neurons  that  signal  motivational 
 values  are  heterogeneous  and  demonstrate  different 
 functional  characteristics.  A  study  by  Matsumoto  and 
 Hikosaka  identified  two  populations  of  dopamine 

 88 

https://paperpile.com/c/io7Jhe/FJ5fQ
https://paperpile.com/c/io7Jhe/d4Syn
https://paperpile.com/c/io7Jhe/d4Syn
https://paperpile.com/c/io7Jhe/8D2SI
https://paperpile.com/c/io7Jhe/8D2SI
https://paperpile.com/c/io7Jhe/QKUCG+FDwxU
https://paperpile.com/c/io7Jhe/QKUCG+FDwxU
https://paperpile.com/c/io7Jhe/wt8HE
https://paperpile.com/c/io7Jhe/xXoox+Fcxzh+esYvC
https://paperpile.com/c/io7Jhe/xXoox+Fcxzh+esYvC
https://paperpile.com/c/io7Jhe/QKUCG+FDwxU+3MKhW


 Neural mechanisms of predictive processing 

 neurons  in  the  substantia  nigra  pars  compacta  and 
 ventral  tegmental  area  (Matsumoto  and  Hikosaka, 
 2009)  .  One  population  of  neurons  showed  signed 
 error  responses,  as  it  was  excited  by 
 reward-predicting  stimuli  and  inhibited  by 
 punishment-predicting  stimuli.  In  contrast,  the  second 
 population  showed  unsigned  prediction  errors,  as  it 
 was  excited  by  both.  These  two  types  of  dopamine 
 neurons  were  also  located  in  different  subregions, 
 suggesting  that  motivational  values  are  signaled  by 
 two  functionally  and  anatomically  distinct  groups  of 
 neurons. 

 Compared  to  the  types  of  signed  and  unsigned 
 prediction  errors  discussed  in  section  III  which  relate 
 to  the  sensory  features  of  the  environment,  signed 
 prediction  errors  in  the  context  of  rewards  indicate 
 whether  the  outcome  of  an  action  is  better  or  worse 
 than  expected.  Thus,  they  can  help  an  agent  more 
 accurately  update  its  estimate  about  the  value  of 
 things  it  has  experienced,  and  encode  more 
 behaviorally  relevant  memory  traces  (Haarsma  et  al., 
 2021;  Rouhani  and  Niv,  2021)  .  For  these  reasons, 
 and  as  described  above,  signed  prediction  errors  are 
 often  used  in  the  context  of  TD  reinforcement 
 learning  (Schultz,  2016a;  Hoy  et  al.,  2023)  .  In  the 
 brain,  signed  and  unsigned  prediction  errors  may  be 
 supported  by  different  neuronal  populations. 
 Serotonin  neurons  in  the  dorsal  raphe  nucleus  have 
 been  shown  to  support  unsigned  prediction  errors 
 and  midbrain  dopamine  neurons  to  support  signed 
 prediction  errors  (Matias  et  al.,  2017)  Nevertheless, 
 the  relationship  between  serotonin  neurons  and 
 unsigned  prediction  error  signaling  remains 
 speculative,  as  studies  employing  different 
 experimental  techniques  and  task  designs  have  not 
 observed  the  involvement  of  serotonin  neurons  in 
 unsigned  prediction  errors  (Cohen  et  al.,  2015; 
 Grossman  et  al.,  2022)  .  The  locus 
 coeruleus-noradrenaline  system  may  also  help  drive 
 the signaling of RPE  (Su and Cohen, 2022)  . 

 Distinguishing  between  sensory  and  reward 
 prediction errors 
 Sensory  and  reward  prediction  errors  can  be 
 distinguished by: 

 (1)  their  definition:  Sensory  prediction  errors 
 result  from  a  mismatch  between  a  sensory  teaching 
 signal  and  a  sensory  prediction,  whereas  RPEs  occur 
 when  there  is  a  mismatch  between  the  predicted  and 
 actual rewards. 

 (2)  their  impact  on  the  organism:  In  the 
 context  of  hierarchical  predictive  coding,  sensory 
 prediction  errors  are  highly  distributed,  computed 
 from  a  broad  range  of  comparisons  between  and 
 within  levels  of  the  sensory  processing  hierarchy.  As 
 a  result,  sensory  prediction  errors  may  not  always 
 have  cognitive  correlates.  In  other  words,  many 
 locally  computed  sensory  prediction  errors  may  not 
 enter  conscious  perception.  RPEs,  on  the  other  hand, 
 involve  organism-level  expectations  about  future 
 rewards. 

 (3)  their  neuronal  correlates:  A  multitude  of 
 subcortical  areas,  including  the  striatum,  lateral 
 habenula,  hypothalamus  and  amygdala,  are  involved 
 in  the  encoding  of  reward-related  information 
 (Hikosaka  et  al.,  2008)  .  Sensory  prediction  errors  of 
 various  modalities,  as  extensively  reviewed  here,  are 
 heavily  associated  with  cortical  areas.  These  results 
 suggest  that  cortical  and  subcortical  areas  play 
 separate  roles  in  sensory  and  reward  prediction 
 errors.  This  may  in  part  reflect  a  self-reinforcing  bias 
 in  the  brain  areas  sensory  versus  reward  prediction 
 error  studies  choose  to  focus  on.  Indeed,  recent 
 studies  suggest  that  midbrain  dopamine  neurons  may 
 also  support  sensory  prediction  errors  (Takahashi  et 
 al.,  2017;  Stalnaker  et  al.,  2019)  .  These  two  systems 
 must  be  heavily  intertwined,  as  information  from  one 
 is  frequently  relevant  to  the  other.  The  states  that  an 
 agent  must  navigate  to  receive  rewards  are  often 
 distinguishable  based  on  sensory  features.  Thus, 
 sensory  processing  is  often  required  for  reward 
 prediction,  and  errors  from  each  system  are  likely 
 relevant  to  the  other.  Accordingly,  subcortical  and 
 cortical  areas  have  been  shown  to  work  together  in 
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 signaling  sensory  cues  relevant  to  rewards 
 (Takakuwa  et  al.,  2017;  Baruchin  et  al.,  2023)  .  Links 
 between  the  two  systems  are  discussed  in  more 
 detail below. 

 Linking sensory and reward prediction errors 

 Although  the  noted  differences  between  sensory  and 
 reward  prediction  errors  suggest  that  they  are 
 processed  differently,  experimental  studies  have 
 established  links  between  the  two.  When  a  sensory 
 mismatch  occurs,  new  sensory  information  in  the 
 environment  can  help  shape  RPEs.  Meanwhile,  an 
 RPE  can  shift  attention  to  different  aspects  of  an 
 environment,  leading  to  changes  in  sensory 
 perception.  This  can,  in  turn,  influence  which  sensory 
 prediction errors will arise. 

 Subcortical  neurons  may  be  involved  in  both  sensory 
 processing  and  the  representation  of  rewards.  For 
 example,  subcortical  superior  colliculus  neurons  that 
 are  involved  in  earlier  stages  of  sensory  processing, 
 receiving  direct  inputs  from  the  retina  are  also 
 modulated  by  rewards.  In  (Baruchin  et  al.,  2023)  , 
 visually  responsive  neurons  in  the  superficial  layers 
 of  the  superior  colliculus  showed  increased  and  more 
 readily  decodable  stimulus  responses  on  trials  that 
 followed  reward  delivery  compared  to  a  negative 
 reinforcement. 

 Neurons  typically  implicated  in  RPEs  may  also 
 encode  sensory  information,  allowing  them  to 
 process  a  reward's  physical  features  and  thereby 
 help  focus  and  redirect  attention  toward  it.  The  early 
 response  of  dopamine  neurons  to  conditioned  stimuli 
 can  be  divided  into  two  components.  The  first  is  a 
 sensory  component,  which  is  evoked  by  the  physical 
 salience  of  a  stimulus  and  promotes  the  detection  of 
 rewards.  The  second  is  a  reward  value  component, 
 which  is  linked  to  the  motivational  salience  of  a 
 stimulus  (Schultz,  2016b)  .  As  discussed  in 
 (Takakuwa  et  al.,  2017)  ,  the  lack  of  direct 
 connections  from  the  cortical  visual  processing 
 stream  to  the  ventral  midbrain  suggests  that  the 
 sensory  component  involves  a  subcortical  visual 

 pathway  via  the  midbrain  superior  colliculus 
 (Takakuwa et al., 2017)  . 

 Studies  have  also  provided  evidence  of  sensory 
 processing  in  neurons  responsible  for  RPE  signaling. 
 For  example,  error-signaling  dopamine  neurons 
 respond  to  changes  in  the  value-neutral  sensory 
 properties  of  an  expected  reward  (Takahashi  et  al., 
 2017)  .  In  a  study  by  Gonzalez  and  colleagues,  rapid 
 environmental  luminance  changes  evoked  dopamine 
 release  in  the  nucleus  accumbens.  These  dopamine 
 signals  encoded  both  the  rate  and  magnitude  of 
 luminance  changes,  facilitating  the  monitoring  of 
 sensory  transitions,  but  not  their  valence.  The 
 authors  concluded  that  the  observed  dopaminergic 
 responses  to  sensory  stimuli  may  orient  attention  to 
 potential  reward  sources  (Kobayashi  and  Schultz, 
 2014; Gonzalez et al., 2023)  . 

 Taken  together,  although  sensory  and  reward 
 prediction  errors  have  distinct  characteristics,  the  two 
 processes  are  likely  highly  intertwined.  Subcortical 
 structures,  such  as  the  superior  colliculus  and 
 dopamine-releasing  midbrain  regions,  may  contribute 
 to  linking  sensory  inputs  to  reward  processing. 
 Neurons  in  these  regions  exhibit  complex  functions 
 that  extend  beyond  RPE  signaling,  e.g.,  processing 
 physical  features  of  rewards,  detecting  sensory 
 property  changes,  and  facilitating  sensorimotor 
 learning.  Given  the  heterogeneity  of  subcortical 
 neurons  and  their  projections  within  and  beyond 
 subcortical  regions,  further  research  is  needed  to 
 clarify  their  contributions  to  sensory  and  reward  PEs. 
 For  this  purpose,  developing  experimental 
 approaches  capable  of  disentangling  reward-related 
 features  from  sensory  features  will  be  essential  for 
 understanding their distinct roles. 
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 Supplementary Text 3: 
 Experimental power analysis 
 for oddball stimuli 

 Understanding  the  statistical  principles  underlying 
 experimental  design  is  critical  for  studying  predictive 
 processing  in  the  brain.  A  key  challenge  is 
 determining  the  number  of  trials  required  to  reliably 
 detect  neuronal  responses  to  oddball  stimuli. 
 Variability  in  neuronal  responses,  background  noise, 
 and  trial-to-trial  adaptation  all  influence  the  statistical 
 power needed to detect meaningful activity. 
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 Publication  Attinger et al 2017  Homann et al 2022  Bastos et al 2023  Knudstrup et al 2024b  Westerberg et al 2024 

 Type of stimulus 
 Drifting gratings coupled to 

 movement 
 Superimposed Gabor 
 patches in a sequence 

 Drifting gratings in a 
 sequence  Static gratings in a sequence 

 Drifting gratings in a 
 sequence 

 Type of oddball  Drifting gratings decoupled 
 from movement 

 Final image in sequence 
 replaced with novel image 

 Deviant grating in sequence 
 of repeated gratings 

 Second grating in sequence 
 replaced by deviant grating 

 Local: Final grating in 
 sequence different from 

 preceding ones 
 Global: Final grating in 
 sequence different from 
 established sequence 

 Temporal 
 parameters  Oddball: 15 sec at random 

 Sequence: 4 images, 250 or 
 300 ms ON 

 Oddball: Every 6 seconds 

 Sequence: Repeated 
 gratings, drifting at 2 

 cycles/sec., 500 ms ON, 1 
 sec OFF 

 Oddball: 12.5% of gratings 

 Sequence: Repeated 
 gratings, 75 ms to 2 sec ON, 

 0 or 1.5 sec OFF 
 Oddball: Different 

 frequencies and spacings 
 tested 

 Sequence: 4 gratings, 
 drifting at 4 cycles/sec., 

 500ms ON, 500 ms OFF, 
 4500 ms per sequence 

 Spatial 
 parameters 

 Vertical, full screen gratings, 
 0.04 cycles/deg. 

 Each image: 100 
 superimposed Gabor 

 patches, 10-20 deg. in size 
 with random orientation and 

 phase. 

 Full field gratings, 8 grating 
 orientations, 0.08 cycles/deg. 

 4 grating orientations, 0.5 
 cycles/deg. 

 Full screen gratings, 0.04 
 cycles/deg. 

 Species  Mouse  Mouse  Mouse  Mouse  Mouse and primate 

 Nb of subjects  3-6 per group  5  4-9 per group  14  7-9 per group 

 Session duration  3x 500s  10min-1h  6 min  10 min  2h 

 Nb of mismatches  3x 33  100 per condition  10 per condition  450 standard, 50 deviant  100 (global) 

 Recording 
 technique  Two-photon  Two-photon  Two-photon  LFP  Neuropixels 

 % responsive 
 neurons  26-40%  77%  10% (PYR)  N/A  50-62 % (local oddball), 

 3-9% (global oddball) 

 Test of 
 significance 

 Mann-Whitney U test 
 between average in 
 response window vs. 
 randomized window 

 Z-score significance test on 
 change in response to 

 novelty 

 Paired two-tailed t-test 
 between control and oddball 

 Non-parametric test on a 
 bootstrapped distribution 

 Cluster-based permutation 
 test. against control 

 Habituation  6 sessions, 2h/day  0 sessions  3 sessions  0 sessions  5 sessions 

 Nb of oddball 
 repeats required  33  100  10  50  144 

 Oddball rate (0-1)  0.07  0.1666666667  0.125  0.1  0.2 

 Time per oddball 
 repeated 

 sequence (s) 
 495  600  160  400  3600 

 Total oddball time 
 (s)  495  600  1440  400  3600 

 Supplementary Table 1. Summary table of parameters values extracted from experimental oddball studies. 
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 To  address  this  challenge,  we  first  summarize 
 parameters  used  in  a  few  oddball  studies  in  mice 
 (see  Supplementary  Table  1  ).  This  table  highlights  a 
 few  key  convergences  and  divergences.  The  oddball 
 rate  across  these  studies  ranged  between  0.07  to 
 0.2.  Given  the  session  duration  in  these  experiments, 
 the  number  of  oddballs  ranged  from  10  to  144  per 
 oddball  type.  Importantly,  studies  with  fewer  oddball 
 numbers  operated  at  shorter  timescales:  Their 
 oddballs  could  be  predicted  from  more  recent 
 stimulus  history  and  were  learned  more  quickly  by 
 mice.  Studies  with  larger  numbers  of  repeats  typically 
 involved  sequential  oddballs  with  longer  temporal 

 history.  Across  these  experiments,  recording  oddball 
 responses  depending  on  more  complex  long-term 
 sensory relationships required more repeats. 
 Based  on  these  observations,  we  developed  a 
 simulation  framework  to  calculate  the  statistical 
 requirements  for  optimizing  trial  numbers  in  oddball 
 experiments.  Neuronal  responses  can  be  recorded 
 using  methods  such  as  calcium  imaging  or 
 electrophysiology.  In  both  cases,  a  measure  of 
 cellular  responsiveness  is  compared  to  background 
 noise  fluctuations.  These  simulations  had  biologically 
 relevant  features,  including  trial-dependent 
 adaptation  and  noise,  providing  a  robust  approach  for 
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 estimating  the  necessary  trial  counts  to  achieve 
 reliable  detection  of  neuronal  responses.  The 
 underlying  code  can  be  accessed  here: 
 https://colab.research.google.com/drive/1Lnd4kP7pg 
 H9tMW6fySOfCHgsgsrSpKqa?usp=sharing 

 We  simulated  a  distributed  population  of  neurons  with 
 stimulus-evoked  responses  that  followed  a 
 log-normal  distribution.  This  distribution  captures  the 
 presence  of  a  few  units  with  large,  easily  detected 
 responses  and  many  more  units  with  weaker 
 responses.  We  qualitatively  compared  our  simulated 
 distribution  (see  Supplementary  Figure  1B  )  with  the 
 measured  distribution  from  two-photon  imaging 
 experiments (see  Supplementary Figure 1A  ). 

 Using  this  distribution,  we  modeled  neuronal 
 response  decay  across  repeated  trials  within  the 
 population  (gray),  reflecting  physiological  adaptation 
 and  reduced  sensitivity  to  repeated  oddball  stimuli. 
 We  then  quantified  the  percentage  of  neurons 
 detected  as  responsive  as  a  function  of  trial  number. 
 Detection  was  assessed  using  a  simple  statistical 
 t-test  against  the  null  distribution.  The  resulting  curve 
 revealed  diminishing  returns  in  detection  rates 
 beyond  a  certain  number  of  trials,  highlighting  the 
 importance  of  balancing  data  collection  efforts  with 
 statistical power constraints. 

 Next,  we  examined  how  the  number  of  recording 
 sessions  (or  mice)  influences  detection  power. 
 Aggregating  data  across  multiple  sessions  increased 
 the  measure  of  the  percentage  of  detected  neurons 
 (  Supplementary  Figure  2  ),  demonstrating  a 
 trade-off  between  the  number  of  trials  per  session 
 and  the  overall  sample  size.  Together,  these 
 simulations  provide  a  principled  approach  for 
 determining  the  optimal  number  of  trials  and  sessions 
 needed  to  reliably  detect  oddball  responses  in 
 cortical  neurons.  Different  oddball  types  might  recruit 
 different  proportions  of  neurons  with  variable  effect 
 size.  Each  oddball  type  can  then  be  simulated 
 separately  by  varying  input  parameters  into  the 
 model. 
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