
© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

SIAM J. CONTROL OPTIM. © 2022 SIAM. Published by SIAM under the terms
Vol. 60, No. 2, pp. 597--619 of the Creative Commons 4.0 license

A UNIFICATION OF WEIGHTED AND UNWEIGHTED PARTICLE
FILTERS\ast 
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Abstract. Particle filters (PFs), which are successful methods for approximating the solution
of the filtering problem, can be divided into two types: weighted and unweighted PFs. It is well
known that weighted PFs suffer from the weight degeneracy and curse of dimensionality. To sidestep
these issues, unweighted PFs have been gaining attention, though they have their own challenges.
The existing literature on these types of PFs is based on distinct approaches. In order to establish a
connection, we put forward a framework that unifies weighted and unweighted PFs in the continuous-
time filtering problem. We show that the stochastic dynamics of a particle system described by
a pair process, representing particles and their importance weights, should satisfy two necessary
conditions in order for its distribution to match the solution of the Kushner--Stratonovich equation.
In particular, we demonstrate that the bootstrap particle filter (BPF), which relies on importance
sampling, and the feedback particle filter (FPF), which is an unweighted PF based on optimal control,
arise as special cases from a broad class and that there is a smooth transition between the two. The
freedom in designing the PF dynamics opens up potential ways to address the existing issues in the
aforementioned algorithms, namely weight degeneracy in the BPF and gain estimation in the FPF.
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1. Introduction.

1.1. Filtering problem. The goal of filtering is to dynamically estimate a latent
variable from noisy observations. We consider the continuous-time nonlinear filtering
problem (in one dimension for the sake of simplicity), where Xt \in \BbbR is the hidden
process satisfying an It\^o stochastic differential equation (SDE) and Yt \in \BbbR is the
observation process evolving according to an It\^o SDE which depends on Xt:

dXt = f(Xt, t) dt+ g(Xt, t) dB
X

t , X0 \sim P0,(1.1)

dYt = h(Xt, t) dt+ dBY

t ,(1.2)

where BX
t , B

Y
t \in \BbbR are independent Brownian motions (BMs) and f(x, t), g(x, t), and

h(x, t) are (known) functions that map \BbbR \times \BbbR \geq 0 \mapsto \rightarrow \BbbR and are called the drift, diffusion,
and observation function, respectively. The initial condition X0 is independent of the
BMs and has (known) distribution P0 with finite second moment and Y0 = 0 (no
observation at first). Let \scrB (\BbbR ) be the Borel \sigma -algebra on \BbbR . The filtering problem is
to find the (regular) conditional distribution of the hidden processXt given the history
of observations \scrF Y

t := \sigma (Ys : 0 \leq s \leq t), that is, Pt(B) := Pr(Xt \in B| \scrF Y
t ) for any
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Borel subsetB \in \scrB (\BbbR ). This distribution is referred to as the filtering distribution, and
in the statistics literature it is also called the posterior distribution, while Pr(Xt \in B)
is called the prior distribution. We let p(x, t) denote the probability density function
corresponding to Pt with respect to the Lebesgue measure, if it exists.

Throughout the paper we assume that f, g satisfy the conditions for the well-
posedness of SDEs (e.g., locally Lipschitz in x uniformly in t; see, e.g., [12, Theorem
5.4]). In addition, to ensure the existence of the filtering density p, we either assume
that g2 \geq \delta > 0 is bounded below by a constant and that f \in C1,0

b , g2 \in C2,0
b , and

h \in C1,0
b , or we consider the linear-Gaussian case. Here C\kappa ,j

b denotes the space of
bounded continuous functions with bounded partial derivatives up to order \kappa in x
and j in t (see [2, Theorems 7.11 and 7.17] for details on existence, uniqueness, and
smoothness of p).

The stochastic processes in this paper are defined on a filtered probability space
(\Omega ,\scrF ,\BbbP , (\scrF t)t\geq 0) (satisfying the usual conditions) and are assumed to be progressively
measurable (hence adapted) with respect to the filtration (\scrF t)t\geq 0. We further denote
by \BbbL \kappa (0, T ) the space of processes (Ft)T\geq t\geq 0 with \BbbE [

\int T

0
| Ft| \kappa dt] <\infty . All SDEs are

in the It\^o sense, and primes (\prime ) denote the (partial) derivative with respect to x.

1.2. Formal solution. It is well known that the evolution of p is described by
the Kushner--Stratonovich equation (KSE) [14, 23]

(1.3) dp(x, t) = \scrL \dagger 
tp(x, t) dt+ p(x, t)

\bigl( 
h(x, t) - \^ht

\bigr) 
(dYt  - \^htdt),

where \scrL \dagger 
t \cdot =  - \partial 

\partial x (f(x, t)\cdot ) +
1
2

\partial 2

\partial x2 (g
2(x, t)\cdot ) is the adjoint Fokker--Planck operator and

\^ht := \BbbE [h(Xt, t)| \scrF Y
t ] =

\int 
\BbbR h(x, t)p(x, t)dx. The initial condition is assumed to be

p(x, 0) = p0(x) \in C2. The KSE consists of two parts: the first part is associated with
the prior dynamics given by the Fokker--Planck equation, while the second part can be
interpreted as a correction resulting from observations, which is proportional to the
so-called innovation term (dYt  - \^htdt). Equation (1.3) can be equivalently converted
into the evolution of a given statistic using integration by parts. Let \phi \in C2 such
that \BbbE [| \phi (Xt)| ] <\infty for all t \geq 0. The conditional expectation of \phi (Xt) evolves as

(1.4) d\BbbE [\phi (Xt)| \scrF Y
t ] = \BbbE [\scrL t\phi (Xt)| \scrF Y

t ] dt+ \BbbE [\phi (Xt)(h(Xt, t) - \^ht)| \scrF Y
t ](dYt  - \^htdt),

where \scrL t\cdot = f(x, t) \partial 
\partial x \cdot + 1

2g
2(x, t) \partial 2

\partial x2 \cdot is the generator of the process Xt.

Example 1 (linear-Gaussian case). We will use this simple case throughout the
paper as an illustration of key concepts. The linear-Gaussian case is characterized by
linear drift terms and additive noise, as well as a Gaussian initial distribution:

(1.5) f(x, t) = ax, g(x, t) = b, h(x, t) = cx, P0 = \scrN (\mu 0, \rho 0),

where a, b, c \in \BbbR . In this case, the KSE (1.3) can be solved in closed-form. We have
Xt| \scrF Y

t \sim \scrN (\^\mu t, \^\rho t) given by the Kalman--Bucy [11] classical result

d\^\mu t = a\^\mu t dt+ c\^\rho t(dYt  - c\^\mu t dt),(1.6)

d\^\rho t = b2 dt+ 2a\^\rho t dt - c2\^\rho 2t dt.(1.7)

The coefficient of the innovation term in (1.6) is called the Kalman gain \=K(t) := c\^\rho t.

In contrast to the linear-Gaussian case, for most signal and observation models
(1.3) does not have closed-form solutions. Likewise, (1.4), when it is applied to the
moments of the filtering distribution, gives rise to a closure problem in which the
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evolution of the nth moment \BbbE [Xn
t | \scrF Y

t ] generally depends on higher-order moments.
Therefore, the KSE is only a ``formal"" solution to the filtering problem and needs
to be approximated numerically in practice. Among the numerical methods, particle
filters (PFs) have been widely and successfully applied because of their versatility.
Below, they will be presented within a broader framework, but see, e.g., [2, section
8.6] and the tutorials [7, 15] for more detailed surveys of the PFs.

1.3. Particle filters. These methods are aimed at approximating the filtering
distribution by the empirical distribution of a particle system, which in full generality
is a triangular array of random variables [5] for some fixed t,

(1.8) \{ S(i,N)
t , w

(i,N)
t \} Ni=1 with

N\sum 
i=1

w
(i,N)
t = 1,

where S
(i,N)
t are samples, also called particles, and w

(i,N)
t are their corresponding

importance weights, which without loss of generality are assumed to be normalized.
To justify such a method, one has to study the N -particle system and show that the
sequence of empirical distributions converges (at least in a weak sense) to the filtering
distribution as N \rightarrow \infty . In this article, however, we use a mean-field-limit approach;
i.e., we study abstract ``particle systems"" characterized by a pair process denoted by
(St,Wt). The following definition is modified from [5, section 2.1].

Definition 1 (targeting condition). The particle system described by a pair
process (St,Wt), representing particles and their weights, respectively, is said to target
the filtering distribution in the filtering problem (1.1)--(1.2) at time t if and only if

(1.9) \BbbE [Wt\phi (St)| \scrF Y
t ] = \BbbE [\phi (Xt)| \scrF Y

t ] a.s.

holds for any measurable function \phi (x) : \BbbR \mapsto \rightarrow \BbbR such that \BbbE [| \phi (Xt)| ] <\infty .

It should be noted that weights for a given St are not unique. For instance, if
the pair (St,Wt) satisfies the targeting condition, then any pair (St,Wt+Vt) is also a
solution, where Vt is a stochastic process independent of St with zero conditional mean
and finite second moment. In subsection 2.1, we further clarify this nonuniqueness.

To have the targeting condition over a period of time, i.e., a dynamic version of
(1.9), we are interested in the time-evolution of (St,Wt). As we shall see later in sub-
section 2.2, this naturally leads to McKean--Vlasov SDEs, in which the coefficients in
the dynamics of (St,Wt) become dependent on the targeted distribution. In numerical
implementations, the left-hand side of (1.9) is approximated by a Monte Carlo esti-

mate 1
M

\sum N
i=1W

(i,N)
t \phi (S

(i,N)
t ) using samples (S

(i,N)
t ,W

(i,N)
t ), i = 1, . . . , N , from the

joint distribution of (St,Wt) given \scrF Y
t , where M :=

\sum N
i=1W

(i,N)
t , which is of order

N . If the samples are chosen appropriately (e.g., i.i.d.), the Monte Carlo estimate con-
verges to the conditional expectation by a law of large numbers and yields asymptotic
consistency of the PF. The normalized weights are then given by w

(i,N)
t = 1

MW
(i,N)
t .

Thus, in theory, if we combine Definition 1 with appropriate sampling, we obtain
an asymptotically exact filter. In practice, however, propagation of the samples re-
quires the McKean--Vlasov terms to be estimated based on the current sample. This
estimation problem is nontrivial and introduces correlations between samples, which
complicates the convergence analysis. Although interesting and worthwhile, the issues
of estimation and convergence are not within the scope of the present article. Instead,
we focus on the characterization of abstract particle systems.
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A particle filter is said to be unweighted if Wt = 1 for all t; otherwise, it is
called weighted. Observe that in particular, (1.9) implies (by setting \phi = 1) that
\BbbE [Wt| \scrF Y

t ] = 1 a.s. and due to the nonnegativity of the variance of Wt, we also have
\BbbE [W 2

t | \scrF Y
t ] \geq 1 a.s. If Wt deviates significantly from unity, this means that the Monte

Carlo variance of the weighted average is larger than it would be for an average with
equal weights. This can be measured by the effective sample size, a commonly used
approximation of which (see, e.g., [17, section 2]) is given by

(1.10) Neff :=

\Biggl( 
N\sum 
i=1

(w
(i,N)
t )2

\Biggr)  - 1

.

Since w
(i,N)
t = 1

MW
(i,N)
t as explained before, by a law of large numbers we have

M/N \rightarrow 1 as N \rightarrow \infty and therefore

(1.11)
N

Neff
=

\biggl( 
N

M

\biggr) 2
1

N

N\sum 
i=1

\Bigl( 
W

(i,N)
t

\Bigr) 2 p - \rightarrow \BbbE [W 2
t | \scrF Y

t ] as N \rightarrow \infty ,

provided samples become i.i.d. for large N . So to keep Neff close to N , it is desirable
that Var[Wt| \scrF Y

t ] = \BbbE [W 2
t | \scrF Y

t ] - 1 remain close to zero. In order to assess the degen-
eracy of a PF algorithm, we are essentially interested in minimizing the unconditional
variance of the importance weights, Var[Wt] = \BbbE [W 2

t ] - 1, taking all possible realiza-
tions of the observation process into account [6]. In subsection 2.1, we will establish
the minimum-variance weight for a fixed particle distribution. We now review two
well-known examples of PFs within the framework above.

\bullet The bootstrap particle filter (BPF). The BPF is a weighted PF that was
originally introduced by [10] and is widely used in discrete-time filtering [7]. Here we
present its continuous-time formulation (see, e.g., [2, Chapter 9] or [15, section 6.1]).
The particles in this filter move with the same law as the hidden process, thereby being
distributed according to the prior. The weight dynamics must consequently include
observations in such a way that the weighted particles are distributed according to
the posterior. The evolution of the particle system denoted by (SB

t ,W
B
t ) reads as

dSB

t = f(SB

t , t) dt+ g(SB

t , t) dBt,(1.12)

dWB

t =WB

t (h(S
B

t , t) - \^ht) (dYt  - \^htdt),(1.13)

with initial condition SB
0 \sim P0 and WB

0 = 1, and Bt being a BM independent of
\{ (BX

t )t\geq 0, (B
Y
t )t\geq 0, X0, S

B
0 \} (note that in practice, particles are driven by independent

BMs). The usual derivation of the BPF is based on a change of probability measure,
in which WB

t is the evaluation of the Radon--Nikodym derivative d\BbbP /d\BbbQ with Xt

replaced by SB
t , where \BbbP is the (original) coupled measure of the system (Xt, Yt) and

\BbbQ is a new measure under which Xt and Yt are independent, the dynamics of Xt

remains unchanged, and Yt corresponds to a BM, dYt = dBY
t [2, Chapter 9]:

(1.14) WB

t =
\~WB
t

\BbbE \BbbQ [ \~WB
t | \scrF Y

t ]
, \~WB

t := \BbbE \BbbQ 

\biggl[ 
d\BbbP 
d\BbbQ 

\bigm| \bigm| \bigm| \bigm| \scrF t

\biggr] 
.

Girsanov's theorem and It\^o's formula then give rise to (1.13).
Implementing the dynamics (1.12)--(1.13) in practice is straightforward. However,

the BPF suffers from the weight decay; that is, most of the weights become negligi-
bly small and only a few of them remain significant, an issue which becomes even
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more severe in high dimensions [24]. A common practice to overcome this issue is to
periodically resample the particles, in which case (1.12)--(1.13) merely describe the
evolution of the particle system between the resampling times. Although resampling
techniques are key ingredients of weighted PFs, they are not the focus of the current
work. Instead, we attempt to find ways to alleviate the weight collapse itself.

\bullet The feedback particle filter (FPF). The FPF is an unweighted PF that
was introduced in [30], initially motivated by mean-field optimal control. In contrast
to the BPF, this filter does not have weight dynamics. Instead, the particles must
incorporate the observations and interact with each other so that they can target the
filtering distribution by themselves. The key idea is to add a correction term, also
called the control input, to the prior dynamics of particles,

dSF

t = f(SF

t , t) dt+ g(SF

t , t) dBt + U(SF

t , t) dt+K(SF

t , t) dYt,(1.15)

dW F

t = 0,(1.16)

and find the unknown functions U and K such that the conditional density of St given
\scrF Y

t solves the KSE (1.3). Here again the initial condition is SF
0 \sim P0 and W F

0 = 1
and Bt is a BM independent of \{ (BX

t )t\geq 0, (B
Y
t )t\geq 0, X0, S

F
0\} . The paper [30] shows

that U(x, t) and K(x, t) under certain technical assumptions must satisfy

\partial 

\partial x
(Kp) + (h - \^ht)p = 0,(1.17)

U =  - 1

2
K

\biggl( 
h+ \^ht  - 

\partial 

\partial x
K

\biggr) 
.(1.18)

The main challenge is to find the so-called gain function K, which in turn depends
on p. In the multidimensional case, (1.17) does not have uniqueness of solutions
because any solution K can generate another solution by adding a divergence-free
vector field. A commonly used solution is obtained (uniquely) by restricting K to
be of gradient form [28], where (1.17) then becomes a weighted Poisson equation.
Different assumptions on K is one aspect of how different PFs arise. Although we are
aware of similar filters, as noted in [18], that require solving equations like (1.17) and
have been referred to as ``particle flow filters,"" we refer to the algorithm above as the
FPF.

Example 2 (linear-Gaussian case, continued). In this case, (1.17)--(1.18) have
closed-form solutions and the gradient-form solution for K equals the Kalman gain.

While fixing K to be in gradient form is useful to pick a gain in practice and
makes the boundary value problem accessible to a range of numerical approximations
such as the RKHS method [19], its necessity is not well justified from a theoreti-
cal perspective. This lack of justification is especially striking on smooth manifolds
without a Riemannian metric given a priori, where the gradient field depends on the
chosen metric [1, 25]. One final point to notice is that the FPF does not require any
resampling procedure, which is an advantage compared to the BPF. Moreover, [24]
shows numerically that the FPF is less prone to the curse of dimensionality (COD)
than the BPF. Table 1 summarizes the comparison between the BPF and FPF.

1.4. Motivation and contribution. So far we have seen two well-known PFs,
each of which was originally based on a distinct approach, yet they both satisfy the
targeting condition (Definition 1). Given the comparison between these methods, it
is still unknown whether combining the strengths of both types is possible. As a step
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Table 1
A comparison between the BPF and the FPF as they have been treated in the literature so far.

Each has its strengths (+) and weaknesses ( - ).

Bootstrap particle filter [10] Feedback particle filter [30]
a weighted particle filter an unweighted particle filter
based on change of probability measure motivated by optimal control
asymptotically exact (+) asymptotically exact (+)
suffers from weight degeneracy ( - ) requires gain estimation ( - )
exhibits the COD ( - ) potentially avoids the COD (+)

towards this goal, we provide a unified treatment of a large family of weighted and
unweighted PFs that is based solely on the targeting condition. Specifically, we do
the following:

\bullet We first characterize the weightsWt in terms of a Radon--Nikodym derivative
of the marginal distributions over St and find the optimal (i.e., minimum-
variance) weight W \ast 

t for fixed particle distribution (see Theorem 2). This
result also sheds some light on the nonuniqueness of importance weights in
particle filtering.

\bullet We then introduce a general dynamics for the particle system (St,Wt) ex-
pressed as a system of SDEs and obtain necessary conditions on its coeffi-
cients for targeting the filtering distribution (see Theorem 3, referred to as
the ``unifying theorem""). The necessary conditions are a system of ordinary
differential equations (ODEs) in one dimension, which becomes a system of
partial differential equations (PDEs) in higher dimensions. The results also
hold in the unconditional case (see Corollary 4).

\bullet As a result of the unifying theorem, we derive a class of PFs which encom-
passes the BPF and FPF with a smooth transition between them, thereby
indicating that these methods are not different in their nature (see Proposi-
tion 5).

\bullet The optimal importance weight W \ast 
t from the first theorem is studied in the

context of the unifying theorem, and its evolution dW \ast 
t is derived (see Propo-

sition 6).
\bullet Finally, we outline two potential applications of the unifying theorem in sec-
tion 3, namely compensating for gain estimation errors with weight dynamics
and providing freedom to alleviate the weight degeneracy.

For the sake of simplicity, we develop the results in the one-dimensional setting. In
principle, the results can be generalized to the multidimensional case; however, further
consideration is required, as more freedom emerges in higher dimensions.

1.5. Related work. A unifying framework for discrete- and continuous-time
filtering (as a Bayesian formulation of the data assimilation problem) from the per-
spective of couplings, optimal transport, and Schr\"odinger bridges is proposed in [20].
Similarly, in [18], three types of unweighted PFs, including the FPF, are unified in
the framework of McKean--Vlasov SDEs. However, to the best of our knowledge a
unification of weighted and unweighted approaches such as this one has not been
attempted. This question is also loosely connected to the concept of proposal distri-
butions in discrete-time particle filters. From the perspective of proposal distributions
in the sequential Monte Carlo (SMC) sampling literature, the BPF can be viewed as
the filter for which the proposal is equal to the prior transition density of the hidden
state. Nevertheless, it is unclear how to view an optimal proposal distribution as in [6,
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section D] in relation to continuous-time filters, in particular the FPF. It was pointed
out in [24, section 3.2] that the optimal proposal becomes trivial in the continuous-
time limit. In the same paper, also the broader question of how to reconcile the
dynamics of the FPF with the importance weights as Radon--Nikodym derivatives of
path measures was posed. The present paper answers this question by adopting a
change-of-measure approach that is a generalization of the path-measure framework
adopted in the literature on continuous-time PFs.

This paper also touches on the notion of nonuniqueness in designing PFs, which
has been discussed in the literature but mainly restricted to the linear-Gaussian case
and freedom of the particle movements. For example, [1] provides a systematic explo-
ration of the nonuniqueness within the class of linear FPF in terms of gauge transforms
and [27] studies the nonuniqueness of the feedback control law in particle dynamics
for different types of ensemble Kalman filters. The aforementioned paper [18] also
explores the nonuniqueness in unweighted PFs and gives a general formulation from
which existing filters can be obtained as special cases by making specific assumptions
on the form of the coefficients. In this work, we examine the nonuniqueness in a more
general setting that includes weight dynamics.

2. Main results.

2.1. A characterization of weights in terms of the Radon--Nikodym
derivatives. The approach used to derive the importance weights in the BPF (1.14)
is difficult to reconcile with filters such as the FPF, in which observation terms are
included in the particle dynamics. This explicit dY term makes the measure of the
particles singular with respect to the measure of the hidden process (see [24, section
3.2] for a discussion of this issue). Here we demonstrate a general relationship between
the process Wt and the Radon--Nikodym derivative of the marginal distributions over
St, which is consistent with both the BPF and FPF, and we also provide the minimum-
variance choice for Wt (for a fixed particle distribution).

Theorem 2. Consider the filtering problem (1.1)--(1.2) with filtering distribution
Pt(B) := Pr(Xt \in B| \scrF Y

t ) for any B \in \scrB (\BbbR ). Let (St,Wt) be a pair process charac-
terizing an abstract particle system. Denote by Qt the conditional distribution of St

given \scrF Y
t , i.e., Qt(B) := Pr(St \in B| \scrF Y

t ). At any time t, under the condition that the
particle system described by (St,Wt) targets Pt, according to Definition 1, we have
the following:

I. The distribution Pt is absolutely continuous with respect to the distribution Qt.
In particular, the Radon--Nikodym derivative dPt/dQt exists, and

(2.1) \BbbE [Wt| \scrF Y
t , St] =

dPt

dQt
(St) a.s.

II. W \ast 
t := dPt

dQt
(St) mimimizes \BbbE [W 2

t ] subject to (2.1).

The proof is given in subsection 5.1, and by reversing the arguments in the proof
it is obvious that (2.1) is already sufficient to guarantee the targeting condition (1.9).
Notice also that if Pt and Qt have densities p(x, t) and q(x, t) with respect to the
Lebesgue measure, then (2.1) turns into

(2.2) \BbbE [Wt| \scrF Y
t , St] =

p(St, t)

q(St, t)
a.s.

As we observed in subsection 1.3, the importance weights are not unique. It is now
also evident from (2.1) that there are many solutions which are not necessarily optimal.
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A large class of suboptimal choices for Wt is of the form (d \~Pt/d \~Qt)(Zt, St), where \~Pt

and \~Qt are respectively the joint conditional (on \scrF Y
t ) distributions of (Zt, Xt) and

(Zt, St) with Zt being some arbitrary \scrF t-measurable process such that the Radon--
Nikodym derivative exists, and the second marginals of \~Pt and \~Qt agree, respectively,
with Pt and Qt. For example, we can let Zt = S0, which takes some information
from the past into account. Also the weights in the BPF (1.14) are of this form, as
by the disintegration of measures and independence of (Xt)t\geq 0 and (Yt)t\geq 0 under the
measure \BbbQ ,1 we have \BbbE \BbbQ [

d\BbbP 
d\BbbQ | \scrF t] = \BbbE \BbbQ [

d\BbbP 
d\BbbQ | \scrF 

Y
t ] \times dPt

dQt
(Xt), and hence the conditional

expectation of the (normalized) Radon--Nikodym derivative of the full measures (after
replacing Xt by S

B
t ) reduces to

dPt

dQt
(SB

t ).
In the FPF, we have by construction that Pt = Qt and therefore W F

t = 1, which
is also the optimal choice---in fact, it is globally optimal as it achieves Var[W F

t ] = 0.
Accordingly, this result reconciles the BPF with the FPF and all other filters for
which Wt as a pathwise Radon--Nikodym derivative does not make sense. Theorem 2
says that the conditional expectation of Wt can always be interpreted as a Radon--
Nikodym derivative and is a version of (i.e., a.s. equal to) the density of the filtering
distribution Pt with respect to the particle distribution Qt. It also shows that in the
BPF, WB

t is different from the optimum W \ast 
t given that we fix the particle dynamics

to the prior dynamics. This is not surprising in view of the well-known degeneracy
problem of the BPF (see [24] and the references therein).

2.2. The unifying theorem. Considering the pair process (St,Wt), which rep-
resents particles and their importance weights, respectively, as explained in subsec-
tion 1.3, we are trying to find conditions on the dynamics of (St,Wt) that allow the
particle system to target the filtering distribution, as defined in Definition 1. Here we
make an ansatz that the stochastic dynamics of the particle system takes the following
general form:

dSt = u(St, t) dt+ k(St, t) dYt + v(St, t) dBt,(2.3)

dWt =Wt

\bigl( 
\gamma (St, t) dt+ \varepsilon (St, t) dYt + \zeta (St, t) dBt

\bigr) 
,(2.4)

where Bt is a BM. From this starting point, our goal is to find the conditions that
the unknown functions \{ u, k, v, \gamma , \varepsilon , \zeta \} should satisfy. To derive the results, certain
assumptions are required as listed below:

(i) Regularity conditions ensure well-posedness of the system of SDEs (2.3)--(2.4),
together with (1.1)--(1.2) (see, e.g., [12, Theorem 6.30]).

(ii) The initial condition is S0 \sim P0 and W0 = 1.
(iii) The BM Bt is independent of \{ (BX

t )t\geq 0, (B
Y
t )t\geq 0, X0, S0\} .

(iv) u \in C1,0 and k, v \in C2,0.
(v) \gamma , \varepsilon , \zeta \in C1,0.

The second key result of our work is the following:

Theorem 3 (unifying theorem). Consider the filtering problem (1.1)--(1.2) with
filtering density p(x, t), which satisfies the KSE (1.3). Let (St,Wt) be a pair process,
representing particles and their importance weights, respectively, that evolves according
to the dynamics (2.3)--(2.4) under the assumptions (i)--(v). Then if the particle system
described by (St,Wt) targets the filtering distribution for all 0 < t < T , according
to Definition 1, the functions \{ u(x, t), k(x, t), v(x, t), \gamma (x, t), \varepsilon (x, t), \zeta (x, t)\} satisfy the

1i.e., \BbbP 
\bigm| \bigm| 
\scrF Y

t \vee \sigma (Xt)
= \BbbP 

\bigm| \bigm| 
\scrF Y

t
\otimes \BbbP Xt| \scrF Y

t
and \BbbQ 

\bigm| \bigm| 
\scrF Y

t \vee \sigma (Xt)
= \BbbQ 

\bigm| \bigm| 
\scrF Y

t
\otimes \BbbQ 

\bigm| \bigm| 
\sigma (Xt)

.
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following equations for all 0 \leq t < T :

\partial 

\partial x
(kp) + (h - \^ht  - \varepsilon )p = 0,(2.5)

1

2

\partial 2

\partial x2
\bigl( 
(k2 + v2  - g2)p

\bigr) 
 - \partial 

\partial x

\bigl( 
(u+ k\varepsilon + v\zeta  - f)p

\bigr) 
+ ((h - \^ht)\^ht + \gamma )p = 0;(2.6)

in addition, the functions \{ \varepsilon (x, t), \gamma (x, t)\} have zero mean under the filtering distri-
bution for all 0 \leq t < T , that is,

(2.7)

\int 
\BbbR 
\varepsilon (x, t)p(x, t)dx = 0,

\int 
\BbbR 
\gamma (x, t)p(x, t)dx = 0.

The proof appears in subsection 5.2. In short, the results follow from the fact that
the terms multiplying dYt and dt on both sides of d\BbbE [Wt\phi (St)| \scrF Y

t ] = d\BbbE 
\bigl[ 
\phi (Xt)| \scrF Y

t

\bigr] 
should be equal a.s., regardless of \phi . In particular, considering \phi = 1 leads to the last
statement (2.7), while considering the class of compactly supported test functions \phi \in 
C2

k yields the system of ODEs (2.5)--(2.6), which become PDEs in higher dimensions.
Note that through these equations, the coefficients in the particle system dynamics
depend on the targeted distribution. This means that the system of SDEs (2.3)--(2.4)
are of McKean--Vlasov type. Recall that based on formula (1.9), the distribution
targeted by a particle system is obtained by evaluating the left-hand side of this
formula with an indicator function as a test function \phi .

Compared to the BPF (1.12)--(1.13) and FPF (1.15)--(1.16), our ansatz (2.3)--(2.4)
is clearly more general in several aspects, for example the presence of dBt and dYt in
both dynamics. Thus, we may refer to this approach as ``hybrid particle filter."" As
we shall show in subsection 2.4, the presence of dBt in the weight process actually
decreases its variance. Here the particle dynamics is still supposed to not involve
Wt explicitly and the coefficients in the weight dynamics are intentionally chosen to
be linear in Wt. This choice has an advantage, as can be seen in the proof of the
theorem. Specifically, it allows us to use the targeting assumption in order to convert
conditional expectations appearing in d\BbbE [Wt\phi (St)| \scrF Y

t ] to posterior expectations.
The theorem above, while providing only necessary conditions for targeting the

filtering distribution, sheds light on the freedom in choosing the coefficients of the
particle and weight dynamics. It is easy to verify that the setting \{ u = f , k = 0,
v = g, \zeta = 0\} yields the BPF (1.12)--(1.13). We demonstrate in subsection 2.3 that
the FPF also satisfies the necessary conditions. Note that the first equation (2.5) is
similar to the gain equation (1.17) in the FPF except the extra term \varepsilon p, which arises
here due to the nonzero weight dynamics. This freedom might help us compensate for
the gain estimation errors with weight dynamics, as will be outlined in subsection 3.1.

We close this subsection by pointing out that our results also hold in the uncon-
ditional setting, i.e., for a particle system targeting the solution of the Fokker--Planck
equation. In particular, if we set h = 0, then the observation process Yt does not
provide any information about Xt and the KSE (1.3) reduces to the Fokker--Planck
equation. The corollary below follows immediately from Theorem 3 and shows that
even in this setting, there exists intrinsic freedom in constructing the dynamics of the
particle system while keeping its distribution invariant.

Corollary 4. Consider the stochastic process Xt satisfying the SDE (1.1), and
let \=p(x, t) denote the probability density function of Xt, which satisfies the Fokker--
Planck equation. Let (St,Wt) be a pair process, representing particles and their im-
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portance weights, respectively, that evolves according to the dynamics below:

dSt = u(St, t) dt+ v(St, t) dBt,(2.8)

dWt =Wt

\bigl( 
\gamma (St, t) dt+ \zeta (St, t) dBt

\bigr) 
,(2.9)

under the assumptions (i)--(v), if applicable. Then if the particle system described by
(St,Wt) targets \=p, i.e., \BbbE [Wt\phi (St)] = \BbbE [\phi (Xt)] holds for any measurable function \phi 
with \BbbE [| \phi (Xt)| ] < \infty , for all 0 < t < T , the functions \{ u(x, t), v(x, t), \gamma (x, t), \zeta (x, t)\} 
satisfy the following equation for all 0 \leq t < T :

(2.10)
1

2

\partial 2

\partial x2
\bigl( 
(v2  - g2)\=p

\bigr) 
 - \partial 

\partial x

\bigl( 
(u+ v\zeta  - f)\=p

\bigr) 
+ \gamma \=p = 0;

in addition, the function \gamma (x, t) satisfies
\int 
\BbbR \gamma (x, t)\=p(x, t)dx = 0 for all 0 \leq t < T .

2.3. A class of particle filters. Our goal now is to introduce a class of PFs
within the result of Theorem 3 that encompasses the BPF as well as the FPF. This
demonstrates how these seemingly different methods can be derived from the same
framework. Observe that in (2.5), \varepsilon = h - \^ht implies k = 0 while \varepsilon = 0 yields (1.17).

Thus, a choice for \varepsilon that linearly interpolates between h - \^ht and 0 makes it possible
to have a smooth transition between the BPF and FPF, though it does not simplify
the gain equation. The next proposition states the result.

Proposition 5. Under the same assumptions as in Theorem 3, and assuming
that (2.5) holds, a particular solution to (2.6) is given by the following class:

\varepsilon = \eta (h - \^ht) + \~\varepsilon ,(2.11)

\gamma =  - (\alpha + \eta  - \alpha \eta )(h - \^ht)\^ht  - (1 - \alpha )\~\varepsilon \^ht,(2.12)

v2 = g2  - \beta k2,(2.13)

u = f  - 1
2k
\bigl( 
\vargamma 1h+ \vargamma 2\^ht + (1 + \beta )\~\varepsilon  - (1 - \beta ) \partial 

\partial xk
\bigr) 
 - v\zeta ,(2.14)

where \~\varepsilon \in C1,0 is an arbitrary function with zero mean under the filtering distribution
such that \varepsilon meets the requirements of (i), \{ \alpha , \beta , \eta \} are free parameters in \BbbR , either
constant or continuously time-varying, and \vargamma 1, \vargamma 2 are defined as follows:

(2.15) \vargamma 1 := 1 - \beta + \eta + \beta \eta , \vargamma 2 := 1 + \beta  - \eta  - \beta \eta  - 2\alpha .

The proof is simple, and it is given in subsection 5.3. In particular, if in the
class above, we fix \{ \~\varepsilon = 0, \zeta = 0, \beta = 0\} and let the others \{ \alpha , \eta \} be free, we
obtain a subclass that interpolates the BPF (when \eta = 1) and the FPF (when \eta = 0,
\alpha = 0). The parameter \eta can be interpreted as the ``observation parameter,"" which
determines how much the observation process is incorporated into the particle or
weight dynamics. We refer to \alpha as the ``drift parameter,"" which only appears in
drift functions u, \gamma . Last, we call \beta the ``diffusion parameter"" since it controls the
magnitude of the diffusion coefficient v. Among these, \eta is the most relevant one as
far as filtering is concerned.

It should be noted that not all parameter choices for \{ \alpha , \beta , \eta \} give rise to a
``practical"" particle filter. In practice, one has to check other criteria, for example the
nondegeneracy of the particle distribution and the stability of the system. This can
be seen explicitly in the linear-Gaussian case below.
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Example 3 (linear-Gaussian case, continued). Consider the three-parameter
\{ \alpha , \beta , \eta \} subclass of particle filters given by Proposition 5 after setting \~\varepsilon = 0 and
\zeta = 0 for the linear-Gaussian setting (1.5) with the filtering distribution (1.6)--(1.7).
Then the (unweighted) particle distribution reads as St| \scrF Y

t \sim \scrN (\mu t, \rho t), where

d\mu t = a\mu t dt+ c\^\rho t(1 - \eta )
\bigl( 
dYt  - c[ 12\vargamma 1\mu t +

1
2\vargamma 2\^\mu t] dt

\bigr) 
,(2.16)

d\rho t = b2 dt+ 2a\rho t dt - c2\^\rho t(1 - \eta )[\vargamma 1\rho t + (\beta  - \beta \eta )\^\rho t] dt.(2.17)

The derivation is briefly explained in subsection 5.4. Observe how particle distribution
interpolates between the prior distribution (when \eta = 1) and the posterior distribution
(when \eta = 0, \alpha = 0). It is easy to confirm that in the latter case, where \beta remains
as the only free parameter, the PF resulting from Proposition 5 corresponds to the
unweighted linear PF stated in [1, equation 17], with one BM, if it is indeed rewritten
in terms of v. Notably, v = 0 recovers the deterministic linear FPF introduced in [26].

As the right-hand side of (2.13) must be nonnegative, we deduce that \beta (1 - \eta )2 \leq 
b2/(c2\^\rho 2t ). Moreover, in the case where \^\rho \infty := limt\rightarrow \infty \^\rho t <\infty , if we want to avoid that
the variance grows exponentially, we need to restrict \eta such that \eta 2 < 1 - 2a/(c2\^\rho \infty ).
Constraints like these become important in numerical implementations.

2.4. Stochastic differential of the optimal weight. We saw in subsection 2.1
that weights for a fixed particle distribution Qt are not unique and indeed W \ast 

t :=
dPt

dQt
(St) is the one that minimizes the variance. In the context of the unifying theo-

rem, which assumes additional constraints regarding the time-evolution of the particle
system, this nonuniqueness means that if we fix the particle dynamics, there are many
possibilities for the weight dynamics. In other words, if we fix the functions \{ u, k, v\} ,
we are then left with three unknowns \{ \gamma , \varepsilon , \zeta \} but only two equations (2.5)--(2.6) to
constrain them. Here we demonstrate that for each choice of the dynamics of St ac-
cording to (2.3), the dynamics of the optimal weight W \ast 

t also takes the form of (2.4)
whose coefficients denoted by \{ \gamma \ast , \varepsilon \ast , \zeta \ast \} are given by the proposition below.

Proposition 6. Fix the particle dynamics (2.3) with S0 \sim P0 under the assump-
tions (iii)--(iv). Then the optimal weight W \ast 

t from Theorem 2 satisfies the SDE

(2.18) dW \ast 
t =W \ast 

t

\bigl( 
\gamma \ast (St, t) dt+ \varepsilon \ast (St, t) dYt + \zeta \ast (St, t) dBt

\bigr) 
,

where \varepsilon \ast , \gamma \ast are Pt-a.s. unique solutions to (2.5)--(2.6) after setting

(2.19) \zeta (x, t) = \zeta \ast (x, t) := v(x, t) \partial 
\partial x

\bigl( 
log p(x,t)

q(x,t)

\bigr) 
.

In addition, \varepsilon \ast , \gamma \ast satisfy the condition (2.7).

The proof, which appears in subsection 5.5, has a straightforward idea, but re-
quires lengthy calculations to find the stochastic differential ofW \ast 

t := p(St,t)
q(St,t)

based on
the Kunita--It\^o--Wentzell formula (see [13, Theorem 1.1]), as the functions p(x, t) and
q(x, t) satisfy SPDEs and their ratio is evaluated at St, which solves an SDE.

The presence of the noise term \zeta \ast (St, t) dBt in (2.18) might appear counterintu-
itive in view of the goal to minimize the variance ofWt. Indeed, adding an independent
BM term would only increase the variance. However, the BM appearing in (2.18) is
the same as that driving the process St, introducing correlation between W \ast 

t and St,
which consequently helps W \ast 

t to achieve the minimal variance possible given the dy-
namics of St. In particular, if we restrict the particle evolution to the prior dynamics
(i.e., u = f , k = 0, v = g), then Proposition 6 results in

(2.20) dW \ast 
t =W \ast 

t (h(St, t) - \^ht) (dYt  - \^htdt) +W \ast 
t (\lambda 

\ast (St, t) dt+ \zeta \ast (St, t) dBt),
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where \zeta \ast is given by (2.19) with v = g and \lambda \ast is the remaining drift coefficient:

(2.21) \lambda \ast (x, t) := 1
p(x,t)

\partial 
\partial x

\bigl( 
g2(x, t)p(x, t) \partial 

\partial x (log
p(x,t)
q(x,t) )

\bigr) 
.

Notice that the presence of an additional term in (2.20) compared to the weight
process in the BPF (1.13) indicates that the importance sampling used in the BPF is
not optimal. Nonetheless, this correction term is not easy to evaluate in practice since
the functions \lambda \ast , \zeta \ast , which involve the densities p, q explicitly, must be estimated from
samples. In the linear-Gaussian case, however, the analytical computation is possible.

Example 4 (linear-Gaussian case, continued). Let the particle process evolve as
the prior dynamics, and denote by \scrN (\mu t, \rho t) its (unweighted) distribution. Then
(2.20)--(2.21) can be computed analytically and yield the following PF:

dSt = aSt dt+ b dBt,(2.22)

dW \ast 
t =W \ast 

t (cSt  - c\^\mu t)(dYt  - c\^\mu tdt)(2.23)

+W \ast 
t b

2
\bigl( 

1
\rho t

 - 1
\^\rho t

+ (St - \^\mu t

\^\rho t
)2  - (St - \mu t)(St - \^\mu t)

\rho t \^\rho t

\bigr) 
dt

+W \ast 
t b
\bigl( 
St - \mu t

\rho t
 - St - \^\mu t

\^\rho t

\bigr) 
dBt.

3. Applications.

3.1. Compensating for gain approximation with weight dynamics. The
gain function K in the FPF is a solution to (1.17), which is fixed; i.e., it only depends
on the model. In the unifying theorem, however, the function k, which has a role
similar to that of K, is a solution to (2.5), which now has a term \varepsilon which can be
chosen freely. Observe that \partial 

\partial x

\bigl( 
(k  - K)p

\bigr) 
= \varepsilon p, which means that any deviation of

k from K in the particle dynamics is compensated by \varepsilon from the weight dynamics
such that the particle system can eventually target the filtering distribution. Recall
from condition (2.7) that the mean of \varepsilon is zero under the filtering distribution. The
variance of \varepsilon under the filtering distribution can serve as an ``error,"" measuring the
difference between k and K. Moreover, smaller values of \varepsilon are preferable because to
keep the weights close to unity, the coefficients in the weight dynamics, including \varepsilon ,
should remain as close to zero as possible.

There are now two approaches to exploiting this freedom in (2.5): (1) to first set
\varepsilon and then solve the equation for k, and (2) to set k and find \varepsilon afterwards. In (1), the
presence of \varepsilon allows us to modify the equation to some extent, which might help us to
use a simpler gain estimation method and compensate for it by an appropriate weight
dynamics. It will be for future research to explore this possibility. In (2), which we
explore in more detail, instead of setting k explicitly, we may restrict ourselves to a
specific class of functions denoted by \scrK and pose the following variational problem:

minimize
k

\scrI [k] :=
\int 
\BbbR 
\varepsilon 2(x, t)p(x, t)dx

subject to k \in \scrK , \varepsilon p = (h - \^ht)p+
\partial 
\partial x (kp),

(3.1)

for a fixed t and p. The second constraint above comes from (2.5), and k must also
satisfy the regularity assumptions required for Theorem 3. The objective functional \scrI 
can be interpreted as the square of the Fisher--Rao norm \| \.p\| 2FR of the fictional change
in the distribution corresponding to the continuity equation \.p + \partial 

\partial x

\bigl( 
(k  - K)p

\bigr) 
= 0

(here we omit the time dependence of k,K and the dot relates to a fictional time
associated with the flow of the fixed vector field k  - K). This contrasts with the use
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of the infinitesimal Wasserstein-2 or Otto's norm \| \.p\| 2W2
=
\int 
(k(x) - K(x))2p(x)dx (see

[16]). As an example, we consider the case when \scrK is the set of constant functions. In
this case, the minimization of \| \.p\| 2W2

over \scrK gives rise to the standard constant gain
approximation in the FPF (see [28, Example 2 and Remark 5]), and analogously, the
problem (3.1) admits a simple analytical solution, which we present in the proposition
below and call Fisher-optimal constant gain for the aforementioned reasons.

Proposition 7 (Fisher-optimal constant gain approximation). Consider (2.5)
in Theorem 3, and let \scrK be the set of functions independent of x with elements \=k(t),
i.e., \=k(t) \in \scrK = \{ k(x, t) : k\prime (x, t) = 0 \forall x \in \BbbR \} . Then the solution \=k\ast (t) to the
variational problem (3.1) at time t is

(3.2) \=k\ast (t) =
\BbbE [h\prime (Xt, t)| \scrF Y

t ]

\BbbE [\psi 2(Xt, t)| \scrF Y
t ]
,

and the corresponding \varepsilon , which can be determined only up to Pt-null set, is \varepsilon 
\ast (x, t) :=

h(x, t)  - \^ht + \=k\ast (t)\psi (x, t), where we have defined \psi (x, t) := p\prime (x, t)/p(x, t) over the
interior of the support of p and \psi (x, t) := 0 otherwise.

The proof is given in subsection 5.6. Note that \BbbE [\psi 2(Xt, t)| \scrF Y
t ] is itself a Fisher

information, namely that of the 1-parameter model p\theta (x, t) = p(x - \theta , t) at \theta = 0.

Example 5 (linear-Gaussian case, continued). It is easy to verify that in the
linear-Gaussian case (1.5), \=k\ast (t) from (3.2) yields the Kalman gain, which in turn
makes \varepsilon \ast (x, t) and thus the objective functional zero. Observe that

h\prime (x, t) = c =\Rightarrow \BbbE [h\prime (Xt, t)| \scrF Y
t ] = c,(3.3)

\psi (x, t) =  - (x - \^\mu t)/\^\rho t =\Rightarrow \BbbE [\psi 2(Xt, t)| \scrF Y
t ] = 1/\^\rho t,(3.4)

which gives the Kalman gain \=k\ast (t) = c\^\rho t.

In general (i.e., the nonlinear or non-Gaussian case), \psi (x, t) and the Fisher in-
formation \BbbE [\psi 2(Xt, t)| \scrF Y

t ] need to be estimated from samples. Estimators for these
quantities can be found, e.g., in [3, 4, 8, 22]. The proposition above can be generalized
to richer classes of functions \scrK , e.g., functions of the form k(x, t) =

\sum 
j aj(t)\varphi j(x, t),

where \{ \varphi j\} j is an appropriate set of basis functions and \{ aj\} j are some coefficients.

3.2. Providing freedom to alleviate weight degeneracy. Weight decay is a
major issue among the weighted PFs. As discussed in subsection 1.3, in order to have
less weight degeneracy, \BbbE [W 2

t ] should remain small. In subsections 2.1 and 2.4, we
derived the optimal importance weight W \ast 

t and its stochastic dynamics dW \ast 
t under

the constraint that particle distribution is given, i.e., particle dynamics is fixed. Here
we would like to derive a general formula for d\BbbE [W 2

t ] corresponding to the weight
dynamics of form (2.4) in terms of \{ \gamma , \varepsilon , \zeta \} . By It\^o's formula, we have

(3.5) dW 2
t = 2W 2

t

\bigl( 
\gamma (St, t)dt+\varepsilon (St, t)dYt+\zeta (St, t)dBt+

1
2\varepsilon 

2(St, t)dt+
1
2\zeta 

2(St, t)dt
\bigr) 
.

Applying Fubini's theorem to the integral form of SDE above would suffice for deriving
d\BbbE [W 2

t ]. However, the presence of W 2
t , which multiplies functions of St, as well as

dYt, which in turn depends on the hidden process Xt, make the analysis of d\BbbE [W 2
t ]

complicated. It is interesting to note that studying d log(Wt) does not have the first
issue because it no longer involves Wt explicitly. Observe that by It\^o's formula

(3.6) d log(Wt) = \gamma (St, t)dt+ \varepsilon (St, t)dYt + \zeta (St, t)dBt  - 1
2\varepsilon 

2(St, t)dt - 1
2\zeta 

2(St, t)dt.
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To overcome the second issue, it turns out that if we use the fact that the innovation
process is a BM, we will get a more useful formula as follows.

Proposition 8. Consider the filtering problem (1.1)--(1.2). Let (St,Wt) be a
pair process such that Wt solves the SDE (2.4) under the assumptions (ii), (iii), and
(v) while St is a progressively measurable process with respect to \scrF B

t \vee \scrF Y
t \vee \sigma (S0).

Suppose that h(X\cdot , \cdot ) \in \BbbL 1(0, t) and \BbbE [W 2
t ],\BbbE [| logWt| ] <\infty for all t \geq 0. Then

d\BbbE [W 2
t ] = 2\BbbE 

\bigl[ 
W 2

t

\bigl( 
\gamma (St, t) + \varepsilon (St, t)\^ht +

1
2\varepsilon 

2(St, t) +
1
2\zeta 

2(St, t)
\bigr) \bigr] 
dt,(3.7)

d\BbbE [log(Wt)] = \BbbE 
\bigl[ 
\gamma (St, t) + \varepsilon (St, t)\^ht  - 1

2\varepsilon 
2(St, t) - 1

2\zeta 
2(St, t)

\bigr] 
dt.(3.8)

The proof appears in subsection 5.7. Notice that due to the nonnegativity of
Var[Wt], we have \BbbE [W 2

t ] \geq 1 and due to log(x) \leq x - 1, we have \BbbE [log(Wt)] \leq 0. It can
be shown (by counterexample) that \BbbE [log(Wt)] is not necessarily a proper measure for
degeneracy. However, the formulas above are insightful for investigating the possibility
of exploiting the freedom given by the terms \gamma , \varepsilon , \zeta in order to find other steady-state
solutions for \BbbE [W 2

t ] besides the minimum-variance solution in Proposition 6. We defer
this investigation to future research, but to illustrate the usefulness of the formulas
above, we apply them to the weights in the BPF (1.13):

d\BbbE [WB

t
2
] = \BbbE 

\bigl[ 
WB

t
2
(h(SB

t , t) - \^ht)
2
\bigr] 
dt,(3.9)

d\BbbE [log(WB

t )] =  - 1
2\BbbE 
\bigl[ 
(h(SB

t , t) - \^ht)
2
\bigr] 
dt.(3.10)

Equation (3.9) implies that in the BPF, we always have d\BbbE [WB
t
2] \geq 0, and hence the

number of effective particles will inevitably decay over time. Note also that if the
observation process is m-dimensional, the drift coefficient on the right-hand side of
(3.9) is given by \BbbE [WB

t
2\| h(SB

t , t) - \^ht\| 2], and therefore the time constant of the weight
decay will scale with 1/m (compare the analysis with [24, section 3.1.1]).

4. Discussion. Existing particle filters fall into two distinct types. Unweighted
PFs (such as the FPF) assimilate new data by moving around particles while keeping
the weights associated to each particle fixed, whereas weighted PFs (such as the BPF)
assimilate new data by reweighing particles. In this paper, we proposed a unifying
framework for these types of PFs. Our proposed hybrid filter allows particles to be
moved as well as reweighed in response to new observations. This gives a lot of freedom
on how to design a PF. This freedom obviously needs to be constrained in order to
make sure that the empirical distribution of weighted particles effectively converges to
the filtering distribution (i.e., to be asymptotically exact). The necessary conditions
are summarized by (2.5)--(2.6) in the unifying theorem.

Even after having constrained the freedom of the particle and weight dynamics
to satisfy the targeting condition, there is still substantial freedom that could be
exploited. An interesting extension of the present work will be to determine whether
there exists a ``sweet spot"" where the strengths of unweighted PFs (i.e., the absence of
the weight collapse problem) could be combined with the strengths of simple weighted
PFs such as the BPF (where the solution of (2.5)--(2.6) is trivial). Practically, this
would amount to defining a cost function which combines the cost associated to the
severity of the weight decay as well as the cost for computing the solutions of (2.5)--
(2.6). We leave this question for further work.

Another extension of the present work would be to relax the strong assumptions
made in the SDEs (2.3)--(2.4). Indeed, in (2.3), it is assumed that the particle dy-
namics does not involve Wt explicitly and (2.4) assumes that the coefficients in the
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weight dynamics are linear in Wt. In this construction, St is the main process, but
Wt can be thought of as an auxiliary process driven by St (recall (3.6)) and trans-
forming the distribution of St into the filtering distribution. These assumptions were
made to simplify the expression for the necessary conditions in the unifying theorem.
However, if we relax them, we will obtain even more freedom on the choice of particle
and weight dynamics that could be leveraged to increase the chance of obtaining a
sweet spot as described in the previous paragraph. For example, we could enforce a
drift term in the weight dynamics that pulls the weight back to unity and compen-
sate for this specific choice by appropriate functions in the particle dynamics. This
could be interpreted as a smooth resampling procedure, unlike classical resampling,
where particles and weights have the undesirable feature of changing abruptly at the
resampling times.

Finally, this paper is entirely focused on necessary conditions that the hybrid
particle filter needs to satisfy in order to target the filtering distribution. An obvious
next question will be to determine sufficient conditions that need to be satisfied by
the model such that (2.5)--(2.6) guarantee that the targeting condition is met for an
extended period of time (i.e., the converse of Theorem 3). The main difficulty will be
to establish conditions under which the solutions of (2.5)--(2.6) make the SDEs (2.3)--
(2.4) well-posed. This question has been partly addressed in [18] for some special cases
but remains open in the general case considered here. Furthermore, additional work
is required to establish sufficient conditions under which a PF with a finite number
N of particles has a uniformly bounded error. Indeed, at the end of subsection 2.3,
we saw that in a simple linear-Gaussian case, the variance of the unweighted particles
can grow exponentially if a specific parameter is above a given threshold (which is
not recognized by the necessary conditions). This feature is clearly undesirable when
the number of particles is finite since it implies that the number of samples that
effectively support the filtering distribution decreases with time, which is similar to
what occurs in the BPF. It would therefore be desirable to derive sufficient conditions
that guarantee the stability of the filter.

5. Proofs. This section presents all the proofs of our results. In a nutshell, the
key results follow directly from the targeting condition (1.9) by evaluating different
types of test functions \phi , specifically indicator function \phi (x) = 1B(x), constant func-
tion \phi (x) = 1, and \phi \in C2

k , which lead to (2.1), (2.7), and (2.5)--(2.6), respectively.

5.1. Proof of the Radon--Nikodym characterization of the weight.

Proof of Theorem 2.
I. By the targeting condition (1.9), we have for all integrable functions \phi 

\BbbE [Wt\phi (St)| \scrF Y
t ] = \BbbE 

\Bigl[ 
\BbbE [Wt\phi (St)| \scrF Y

t , St]
\bigm| \bigm| \bigm| \scrF Y

t

\Bigr] 
(5.1)

= \BbbE 
\Bigl[ 
\phi (St)\BbbE [Wt| \scrF Y

t , St]
\bigm| \bigm| \bigm| \scrF Y

t

\Bigr] 
(5.2)

=

\int 
\BbbR 
\phi (x)\BbbE [Wt| \scrF Y

t , St = x]Qt(dx)(5.3)

=

\int 
\BbbR 
\phi (x)Pt(dx) = \BbbE [\phi (Xt)| \scrF Y

t ].(5.4)

Let B \in \scrB (\BbbR ) be a Borel subset. Take \phi (x) = 1B(x) the indicator function of
B; then

(5.5)

\int 
B

\BbbE [Wt| \scrF Y
t , St = x]Qt(dx) = Pt(B),
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which shows the first claim (2.1).
II. This follows directly from Lemma 9 just below.

Lemma 9. Let (\Omega ,\scrF , P ) be a probability space and W \ast a \scrG -measurable random
variable defined on this space. Suppose \scrG \subseteq \scrF and \BbbE [W \ast 2] < \infty . Then W \ast is the
(a.s. unique) solution to the optimization problem

minimize
W

\BbbE [W 2]

subject to \BbbE [W | \scrG ] =W \ast a.s.
(5.6)

Proof. \BbbE [W 2] can be written as

\BbbE [W 2] = \BbbE [(W  - W \ast )2] - \BbbE [W \ast 2] + 2\BbbE [WW \ast ](5.7)

= \BbbE [(W  - W \ast )2] - \BbbE [W \ast 2] + 2\BbbE 
\bigl[ 
\BbbE [WW \ast | \scrG ]

\bigr] 
(5.8)

= \BbbE [(W  - W \ast )2] - \BbbE [W \ast 2] + 2\BbbE 
\bigl[ 
W \ast \BbbE [W | \scrG ]

\bigr] 
(5.9)

= \BbbE [(W  - W \ast )2] + \BbbE [W \ast 2].(5.10)

As \BbbE [W \ast 2] is fixed, to minimize \BbbE [W 2], we have to minimize \BbbE [(W  - W \ast )2]. This
is attained by any random variable Wopt such that \BbbE [(Wopt  - W \ast )2] = 0. Then
Chebyshev's inequality implies that

(5.11) Pr(| Wopt  - W \ast | \geq \lambda ) = 0 for all \lambda > 0.

In other words, Wopt =W \ast a.s.

5.2. Proof of the unifying theorem. This subsection is devoted to the proof
of Theorem 3. A key ingredient for the proof is the next lemma, whose first two
assertions come from Lemma 2 in [29]. It allows us to not only interchange conditional
expectations with integrals but also adapt the \sigma -algebra accordingly, which makes it
distinct and stronger from the normal conditional Fubini theorem.

Lemma 10. Take the system of SDEs (2.3)--(2.4) for the pair process (St,Wt)
under the assumptions (ii)--(v). Let F (x,w, t) be an \BbbR -valued measurable function
such that F (S\cdot ,W\cdot , \cdot ) \in \BbbL 2(0, t). Then

\BbbE 
\biggl[ \int t

0

F (Ss,Ws, s) ds
\bigm| \bigm| \bigm| \scrF Y

t

\biggr] 
=

\int t

0

\BbbE 
\bigl[ 
F (Ss,Ws, s)

\bigm| \bigm| \scrF Y
s

\bigr] 
ds,(5.12)

\BbbE 
\biggl[ \int t

0

F (Ss,Ws, s) dYs

\bigm| \bigm| \bigm| \scrF Y
t

\biggr] 
=

\int t

0

\BbbE 
\bigl[ 
F (Ss,Ws, s)

\bigm| \bigm| \scrF Y
s

\bigr] 
dYs,(5.13)

\BbbE 
\biggl[ \int t

0

F (Ss,Ws, s) dBs

\bigm| \bigm| \bigm| \scrF Y
t

\biggr] 
= 0.(5.14)

Proof. The process F (St,Wt, t) is \scrF Y
t \vee \scrF B

t \vee \sigma (S0)-measurable. Statements (5.12)
and (5.13) then follow directly from Lemma 2 in [29]. The last claim (5.14) is similar
to the zero-mean property of the It\^o integral and has a similar proof, yet it involves
conditional expectation. For the It\^o integral, we have

(5.15)

\int t

0

F (Ss,Ws, s)dBs = lim
n\rightarrow \infty 

n - 1\sum 
i=0

F (Sti ,Wti , ti)(Bti+1  - Bti)
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in probability, where \{ ti\} ni=0 is a partition of [0, t] with maxi(ti+1 - ti) \rightarrow 0 as n\rightarrow \infty .
Consequently, by the dominated convergence theorem for conditional expectations

\BbbE 
\biggl[ \int t

0

F (Ss,Ws, s)dBs

\bigm| \bigm| \bigm| \scrF Y
t

\biggr] 
= lim

n\rightarrow \infty 
\BbbE 

\Biggl[ 
n - 1\sum 
i=0

F (Sti ,Wti , ti)(Bti+1
 - Bti)

\bigm| \bigm| \bigm| \scrF Y
t

\Biggr] 
(5.16)

= lim
n\rightarrow \infty 

n - 1\sum 
i=0

\BbbE 
\bigl[ 
F (Sti ,Wti , ti)

\bigm| \bigm| \scrF Y
t

\bigr] 
\BbbE 
\bigl[ 
Bti+1

 - Bti

\bigr] 
= 0,(5.17)

where we used the fact that the Brownian motion increment Bti+1
 - Bti is independent

of \scrF Y
t as well as the random values Sti and Wti at time ti and its mean is zero.

Given the lemma above, we are now ready to prove Theorem 3.

Proof of Theorem 3. By the targeting assumption for all 0 < t < T as well as the
initial condition, we know that

(5.18) \BbbE [Wt\phi (St)| \scrF Y
t ] = \BbbE [\phi (Xt)| \scrF Y

t ] (0 \leq t < T )

holds a.s. for any measurable test function \phi with \BbbE [| \phi (Xt)| ] <\infty , in particular for any
integrable \phi \in C2, which allows us to write an equality for the stochastic differential
of these processes in the It\^o sense:

(5.19) d\BbbE [Wt\phi (St)| \scrF Y
t ] = d\BbbE [\phi (Xt)| \scrF Y

t ] (0 \leq t < T ).

The right-hand side of expression above is given by (1.4), which consists of two terms
multiplying dYt and dt. The plan is to compute the left-hand side in terms of the
unknown functions \{ u, k, v, \gamma , \varepsilon , \zeta \} from SDEs (2.3)--(2.4). It turns out that the left-
hand side also consists of two terms multiplying dYt and dt since we take conditional
expectation with respect to \scrF Y

t , and thus terms multiplying dBt vanish. Two fun-
damental ODEs (or PDEs in higher dimensions) finally follow from the fact that the
terms multiplying dYt and dt (more precisely, dBY

t and dt) on each side of (5.19) are
equal a.s. regardless of \phi . The proof is structured in three steps:
(a) We first find the stochastic differential d(Wt\phi (St)) from SDEs (2.3)--(2.4) using

It\^o's formula.
(b) In order to obtain d\BbbE [Wt\phi (St)| \scrF Y

t ], we write the result of the previous step in
integral form, take the conditional expectation of both sides with respect to \scrF Y

t ,
use Lemma 10 to interchange conditional expectations with integrals, and finally
turn the result back into the differential form.

(c) We use the targeting assumption (5.18) to convert the conditional expectations
that involve (Wt, St) into posterior expectations (this becomes possible because of
the special form that we take for the stochastic dynamics of the particle system).
Finally, we investigate the implications of the equalities resulting from (5.19) for
some class of test functions \phi .

Some aspects of our proof are inspired by the usual proof of the Fokker--Planck equa-
tion (see, e.g., [21, Proof of Theorem 5.4]) and the derivation of the FPF [29, 30].

Step (a). Take any test function \phi (x) \in C2. To obtain the stochastic differential
of Wt\phi (St) from the SDEs (2.3)--(2.4), we apply It\^o's formula

(5.20) d
\bigl( 
Wt\phi (St)

\bigr) 
=Wt\scrA t\phi (St) dt+Wt\scrB t\phi (St) dYt +Wt\scrC t\phi (St) dBt,
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where the linear operators \{ \scrA t, \scrB t, \scrC t\} have been defined as

\scrA t\phi (x) := \gamma (x, t)\phi (x) +
\bigl[ 
u(x, t) + k(x, t)\varepsilon (x, t) + v(x, t)\zeta (x, t)

\bigr] 
\phi \prime (x)(5.21)

+ 1
2

\bigl[ 
k(x, t)2 + v(x, t)2

\bigr] 
\phi \prime \prime (x),

\scrB t\phi (x) := \varepsilon (x, t)\phi (x) + k(x, t)\phi \prime (x),(5.22)

\scrC t\phi (x) := \zeta (x, t)\phi (x) + v(x, t)\phi \prime (x).(5.23)

Step (b). Writing the SDE (5.20) in integral form and taking the conditional
expectation of both sides gives the following:

(5.24) \BbbE 
\bigl[ 
Wt\phi (St)

\bigm| \bigm| \scrF Y
t

\bigr] 
= \BbbE 

\bigl[ 
W0\phi (S0)

\bigm| \bigm| \scrF Y
t

\bigr] 
+ \BbbE 

\biggl[ \int t

0

Ws\scrA s\phi (Ss)ds
\bigm| \bigm| \bigm| \scrF Y

t

\biggr] 
+ \BbbE 

\biggl[ \int t

0

Ws\scrB s\phi (Ss)dYs

\bigm| \bigm| \bigm| \scrF Y
t

\biggr] 
+ \BbbE 

\biggl[ \int t

0

Ws\scrC s\phi (Ss)dBs

\bigm| \bigm| \bigm| \scrF Y
t

\biggr] 
.

Now apply Lemma 10 to interchange conditional expectations with integrals in the ex-
pression above, provided that W\cdot \scrA \cdot \phi (S\cdot ),W\cdot \scrB \cdot \phi (S\cdot ),W\cdot \scrC \cdot \phi (S\cdot ) \in \BbbL 2(0, t). Moreover,
the last term is zero by the third claim of the aforementioned lemma. Then

(5.25) \BbbE 
\bigl[ 
Wt\phi (St)

\bigm| \bigm| \scrF Y
t

\bigr] 
= \BbbE 

\bigl[ 
W0\phi (S0)

\bigm| \bigm| \scrF Y
0

\bigr] 
+

\int t

0

\BbbE 
\bigl[ 
Ws\scrA s\phi (Ss)

\bigm| \bigm| \scrF Y
s

\bigr] 
ds+

\int t

0

\BbbE 
\bigl[ 
Ws\scrB s\phi (Ss)

\bigm| \bigm| \scrF Y
s

\bigr] 
dYs,

which can be put in differential form as

(5.26) d\BbbE 
\bigl[ 
Wt\phi (St)

\bigm| \bigm| \scrF Y
t

\bigr] 
= \BbbE 

\bigl[ 
Wt\scrA t\phi (St)

\bigm| \bigm| \scrF Y
t

\bigr] 
dt+ \BbbE 

\bigl[ 
Wt\scrB t\phi (St)

\bigm| \bigm| \scrF Y
t

\bigr] 
dYt.

Step (c). It becomes clear now why our ansatz (2.3)--(2.4) for the dynamics of
the particle system is advantageous. As the particle dynamics does not involve Wt

explicitly and the coefficients in the weight dynamics are linear in Wt, the arguments
of the conditional expectations in (5.26) become linear inWt. This allows us to use the
targeting assumption (5.18), which holds for any (integrable) measurable function, in
order to convert conditional expectations involving (St,Wt) to posterior expectations:

(5.27) d\BbbE [Wt\phi (St)| \scrF Y
t ] = \BbbE [\scrA t\phi (Xt)| \scrF Y

t ]dt+ \BbbE [\scrB t\phi (Xt)| \scrF Y
t ]dYt.

Now we have an expression for the left-hand side of (5.19) in terms of posterior expec-
tations and we recall that the right-hand side is given by (1.4). As terms multiplying
dt and dYt (more precisely, dBY

t and dt) on both sides match, we conclude that

\BbbE [\scrA t\phi (Xt)| \scrF Y
t ] = \BbbE [\scrL t\phi (Xt)| \scrF Y

t ] - \BbbE [\phi (Xt)(h(Xt, t) - \^ht)\^ht| \scrF Y
t ],(5.28)

\BbbE [\scrB t\phi (Xt)| \scrF Y
t ] = \BbbE [\phi (Xt)(h(Xt, t) - \^ht)| \scrF Y

t ](5.29)

a.s. The equalities above hold for any \phi \in C2. In particular, \phi = 1 implies

(5.30) \BbbE [\gamma (Xt, t)| \scrF Y
t ] = 0, \BbbE [\varepsilon (Xt, t)| \scrF Y

t ] = 0

a.s., which proves the last claim in the theorem.
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Additionally, we can use integration by parts in (5.28)--(5.29) to rewrite them only
in terms of \phi (but not its derivatives). If we further restrict ourselves to compactly
supported test functions \phi \in C2

k , boundary terms vanish and we formally have\int 
\BbbR 
\phi (x)

\Bigl[ 
\scrA \dagger 

tp(x, t) - \scrL \dagger 
tp(x, t) + (h(x, t) - \^ht)\^htp(x, t)

\Bigr] 
dx = 0,(5.31) \int 

\BbbR 
\phi (x)

\Bigl[ 
\scrB \dagger 
tp(x, t) - (h(x, t) - \^ht)p(x, t)

\Bigr] 
dx = 0,(5.32)

where \scrA \dagger 
t , \scrB 

\dagger 
t , and \scrL \dagger 

t are the formal adjoints of \scrA t, \scrB t, and \scrL t, respectively, with
respect to the Lebesgue measure. Since these equations hold for all \phi \in C2

k and the
terms inside the square brackets are continuous in x (given the assumptions (iv) and
(v)), the fundamental lemma in the calculus of variations (see, e.g., [9, Lemma 1])
implies that the terms inside the square brackets are identically zero on \BbbR , which gives
two main equations of the theorem, as we will see soon. The remainder of the proof
will be concerned with calculating the adjoint operators \scrA \dagger 

t and \scrB \dagger 
t .

The integrals we deal with have the general form of \BbbE [l(Xt, t)\phi 
\prime (Xt)| \scrF Y

t ] or
\BbbE [l(Xt, t)\phi 

\prime \prime (Xt)| \scrF Y
t ], where l(x, t) is a C1,0 or C2,0 function, respectively. We have

(5.33) \BbbE [l(Xt, t)\phi 
\prime (Xt)| \scrF Y

t ] =

\int 
\BbbR 
\phi \prime lp dx = \phi lp

\bigm| \bigm| \bigm| \infty 
 - \infty 

 - 
\int 
\BbbR 
\phi (lp)\prime dx =  - 

\int 
\BbbR 
\phi (lp)\prime dx,

in which the boundary term is zero because \phi has compact support. Similarly, we can
use the integration by parts twice and write

(5.34) \BbbE [l(Xt, t)\phi 
\prime \prime (Xt)| \scrF Y

t ] =

\int 
\BbbR 
\phi \prime \prime lp dx =  - 

\int 
\BbbR 
\phi \prime (lp)\prime dx =

\int 
\BbbR 
\phi (lp)\prime \prime dx.

Using this technique, we have

\BbbE [\scrA t\phi (Xt)| \scrF Y
t ] =

\int 
\BbbR 
\phi 
\Bigl[ 
\gamma p - (up)\prime  - (k\varepsilon p)\prime  - (v\zeta p)\prime + 1

2 (k
2p+ v2p)\prime \prime \underbrace{}  \underbrace{}  

\scrA \dagger 
tp(x,t)

\Bigr] 
dx,(5.35)

\BbbE [\scrB t\phi (Xt)| \scrF Y
t ] =

\int 
\BbbR 
\phi 
\Bigl[ 
\varepsilon p - (kp)\prime \underbrace{}  \underbrace{}  
\scrB \dagger 

tp(x,t)

\Bigr] 
dx.(5.36)

Plugging \scrA \dagger 
tp(x, t) and \scrB \dagger 

tp(x, t) into (5.31)--(5.32) completes the proof.

5.3. Derivation of the class of particle filters.

Proof of Proposition 5. Equation (2.6) is a second-order ODE, consisting of three
parts. A trivial solution to this equation can be obtained by setting each part to zero.
Alternatively, one can use (2.5) to first change the form of (2.6) and then set each
part to zero. Specifically, the second-order term \partial 2

\partial x2 (k
2p) in (2.6) can be converted

from the second-order derivative into the first-order derivative using (2.5) as follows:

(5.37) \partial 2

\partial x2 (k
2p) = \partial 

\partial x

\bigl( 
kk\prime p+ k(kp)\prime 

\bigr) 
= \partial 

\partial x

\bigl( 
k(k\prime  - h+ \^ht + \varepsilon )p

\bigr) 
.

Likewise, the zero-order term (h  - \^ht)\^htp in (2.6) can yield a first-order derivative
using (2.5):

(5.38) (h - \^ht)\^htp =  - \partial 
\partial x (k

\^htp) + \varepsilon \^htp.
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To obtain a general expression, we may simply split

\partial 2

\partial x2 (k
2p) = \beta \partial 2

\partial x2 (k
2p) + (1 - \beta ) \partial 2

\partial x2 (k
2p),(5.39)

(h - \^ht)\^htp = \alpha (h - \^ht)\^htp+ (1 - \alpha )(h - \^ht)\^htp,(5.40)

where \alpha , \beta \in \BbbR are free parameters, which can be (continuous) functions of t, but not
of x, because we would like to have the possibility to take them inside the derivatives
in the next calculation steps. In the equations above, we let the first parts remain
unchanged, while for the second parts, we use (5.37) and (5.38). Equation (2.6) then
becomes

(5.41)
1

2

\partial 2

\partial x2
\bigl( 
(\beta k2 + v2  - g2)p

\bigr) 
 - \partial 

\partial x

\Bigl( \Bigl( 
u - f +

1

2
k
\bigl( 
(1 - \beta )h+ (1 + \beta  - 2\alpha )\^ht + (1 + \beta )\varepsilon  - (1 - \beta )k\prime 

\bigr) 
+ v\zeta 

\Bigr) 
p
\Bigr) 

+
\bigl( 
\alpha (h - \^ht)\^ht + (1 - \alpha )\varepsilon \^ht + \gamma 

\bigr) 
p = 0.

In the equation above, by separately setting each of the three terms to zero, we obtain
a particular solution. Furthermore, we wish to derive the results for a \varepsilon that consists
of an interpolation. As we discussed in subsection 2.3, the choice of \varepsilon that linearly
interpolates between h  - \^ht and 0 is a relevant choice for our purpose. We also let
\varepsilon consist of a free function (to not restrict ourselves to just an interpolation). So we

take \varepsilon = \eta (h  - \^ht) + \~\varepsilon , where \eta is a free parameter like \alpha , \beta , and \~\varepsilon is an arbitrary
function with zero mean under the posterior distribution (to guarantee the condition
(2.7)). To sum up, plugging in \varepsilon to the modified ODE (5.41) and setting each term
to zero yield the results of this proposition.

5.4. Derivation of the particle distribution. Here we first present a lemma
that describes the evolution equation of q(x, t) for a particle dynamics of the general
form (2.3). We then apply the result to the linear-Gaussian case in particular. This
lemma will also be used later for the proof of Proposition 6.

Lemma 11 (Proposition 1 in [28]). Consider the stochastic process St satisfying
the SDE (2.3) under the assumptions (iii)--(iv). The probability density function of
St given \scrF Y

t , denoted by q(x, t), evolves as the following SPDE:

(5.42) dq(x, t) = \scrJ \dagger 
t q(x, t) dt+\scrK \dagger 

tq(x, t) dYt,

where \scrJ \dagger 
t \cdot :=  - \partial 

\partial x (u(x, t)\cdot ) +
1
2

\partial 2

\partial x2 (k
2(x, t) \cdot +v2(x, t)\cdot ) and \scrK \dagger 

t \cdot :=  - \partial 
\partial x (k(x, t)\cdot ).

Proof of statement (2.16)--(2.17). After setting \~\varepsilon = 0 and \zeta = 0 in Proposition 5
for the linear-Gaussian setting, the coefficients of the particle dynamics are given by

k(t) = (1 - \eta )c\^\rho t,(5.43)

v2(t) = b2  - \beta (1 - \eta )2c2\^\rho 2t ,(5.44)

u(x, t) = ax - 1
2 (1 - \eta )c2\^\rho t(\vargamma 1x+ \vargamma 2\^\mu t),(5.45)

where (5.43) is obtained by solving (2.5). Due to the linearity and initial Gaussian
distribution, the particle distribution will stay Gaussian, St| \scrF Y

t \sim \scrN (\mu t, \rho t). Hence,
it only remains to find the evolution of the mean \mu t = \BbbE [St| \scrF Y

t ] and variance \rho t =
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Var[St| \scrF Y
t ]. Using integration by parts, we can derive from (5.42) that

d\BbbE [St| \scrF Y
t ] = \BbbE [u(St, t)| \scrF Y

t ] dt+ \BbbE [k(St, t)| \scrF Y
t ] dYt,(5.46)

dVar[St| \scrF Y
t ] = \BbbE [(St  - \BbbE [St| \scrF Y

t ])u(St, t) + v2(St, t)| \scrF Y
t ] dt(5.47)

+ Var[k(St, t)| \scrF Y
t ] dt+ \BbbE [(St  - \BbbE [St| \scrF Y

t ])k(St, t)| \scrF Y
t ] dYt.

Substituting (5.43)--(5.45) into (5.46)--(5.47) yields the result.

5.5. Derivation of the optimal weight dynamics.

Proof of Proposition 6. The goal is to obtain the stochastic differential d(p(St,t)
q(St,t)

),

for which we now know that p(x, t) and q(x, t) satisfy the SPDEs (1.3) and (5.42),
respectively, and St solves the SDE (2.3). As a first step, we calculate by It\^o's lemma

(5.48) d
\bigl( p(x,t)
q(x,t)

\bigr) 
= \Lambda 1(x, t) dt+ \Lambda 2(x, t) dYt,

where the functions \{ \Lambda 1(x, t),\Lambda 2(x, t)\} are given by

\Lambda 1 := p
q

\bigl( 
1
p\scrL 

\dagger 
tp - (h - \^ht)\^ht  - 1

q\scrJ 
\dagger 
t q  - 1

q (h - \^ht)\scrK \dagger 
tq +

1
q2 (\scrK 

\dagger 
tq)

2
\bigr) 
,(5.49)

\Lambda 2 := p
q

\bigl( 
(h - \^ht) - 1

q\scrK 
\dagger 
tq
\bigr) 
.(5.50)

Next, to calculate d(p(St,t)
q(St,t)

), the Kunita--It\^o--Wentzell formula can be used (see [13,

Theorem 1.1], and set Ft(x) = p(x,t)
q(x,t) , Mt = St as continuous semimartingales). We

get

(5.51) d
\bigl( p(St,t)
q(St,t)

\bigr) 
= \Upsilon 1(St, t) dt+\Upsilon 2(St, t) dYt +\Upsilon 3(St, t) dBt,

where the functions \{ \Upsilon 1(x, t),\Upsilon 2(x, t),\Upsilon 3(x, t)\} are given by

(5.52) \Upsilon 1 := \Lambda 1 + \scrJ t
p
q +\scrK t\Lambda 2, \Upsilon 2 := \Lambda 2 +\scrK t

p
q , \Upsilon 3 := \scrV t

p
q ,

with operators \scrJ t\cdot := u(x, t) \partial 
\partial x \cdot + 1

2 (k
2(x, t) + v2(x, t)) \partial 2

\partial x2 \cdot and \scrK t\cdot := k(x, t) \partial 
\partial x \cdot 

whose adjoints have been already introduced in Lemma 11. We have also defined the
operator \scrV t\cdot := v(x, t) \partial 

\partial x \cdot . It is easy to see that \Upsilon 3 = p
q (v(log

p
q )

\prime ) =: p
q \zeta 

\ast , which

proves (2.19). Further, it can be verified that \Upsilon 2 and \Upsilon 1 correspond to p
q \varepsilon 

\ast and p
q \gamma 

\ast ,

respectively, where \varepsilon \ast and \gamma \ast are Pt-a.s. unique solutions to (2.5)--(2.6) after setting
\zeta = \zeta \ast . The calculation steps are, however, omitted on account of space. Finally, to
show that \varepsilon \ast , \gamma \ast also satisfy (2.7), it is easy to see that the optimal weight satisfies
\BbbE [W \ast 

t | \scrF Y
t ] = 1 a.s., which leads to the same result as shown in (5.30).

5.6. Derivation of the Fisher-optimal constant gain approximation.

Proof of Proposition 7. Given the definition of \psi (x, t), the objective functional
\scrI [\=k] can be written as

(5.53) \BbbE [\varepsilon 2(Xt, t)| \scrF Y
t ] = \BbbE [(h(Xt, t) - \^ht)

2| \scrF Y
t ]

+ \=k(t)2\BbbE [\psi 2(Xt, t)| \scrF Y
t ] - 2\=k(t)\BbbE [h\prime (Xt, t)| \scrF Y

t ] a.s.

where we used integration by parts for the last term and the boundedness of h. For a
fixed t and p, we take the derivative of the objective functional with respect to \=k(t):

(5.54)
d

d\=k
\BbbE [\varepsilon 2(Xt, t)| \scrF Y

t ] = 2\=k(t)\BbbE [\psi 2(Xt, t)| \scrF Y
t ] - 2\BbbE [h\prime (Xt, t)| \scrF Y

t ] a.s.
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Furthermore, observe that the second derivative is a.s. positive:

d2

d\=k2
\BbbE [\varepsilon 2(Xt, t)| \scrF Y

t ] = 2\BbbE [\psi 2(Xt, t)| \scrF Y
t ] > 0 a.s.(5.55)

Thus, the minimizer \=k\ast (t) is found by setting the first derivative (5.54) to zero.

5.7. Derivation of weight degeneracy dynamics.

Lemma 12 (Proposition 2.30 in [2]). Consider the filtering problem (1.1)--(1.2).

The innovation process It, which evolves according to the SDE dIt = dYt  - \^htdt, is
an \scrF Y

t -adapted BM if h(X\cdot , \cdot ) \in \BbbL 1(0, t) holds.

Proof of Proposition 8. Plug dYt = dIt + \^htdt into SDEs (3.5)--(3.6), write them
in integral form, and take the expectation of both sides. In addition to Bt, the
innovation process It is a BM by Lemma 12. Hence, terms that involve Bt and It
vanish due to the fact that the expectation of It\^o's integral is zero. Finally, applying
Fubini's theorem (see, e.g., [12, Theorem 2.39]) for the remaining terms and turning
the result back into the differential form give the results.
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